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Abstract. As the Internet of Things (IoT) nodes become one of the cornerstones
of Industry 4.0, they tend to be incorporated into every aspect of production au-
tomation. This paper addresses the challenge of designing low-power IoT nodes
based on standardized components for deployment in remote, off-grid, industrial,
and hazardous environments where energy efficiency and autonomy are critical. The
proposed design integrates hardware-software co-design, replacing standard hard-
ware setup with energy-efficient components, solar-powered batteries, and dynamic
working modes to reduce energy consumption. Software elements were designed
with the possibility of over-the-air updates and reconfiguration. Next, battery charg-
ing routines are optimized, and the node is integrated into a cloud-based digital twin
with centralized control over the complete operation cycle. The proposed node ar-
chitecture achieves an energy reduction of up to 50% and, in some configurations,
reduces consumption by up to one-tenth compared to conventional designs. The ad-
ditional result is a set of design recommendations when the standard components
must be adapted for harsh environments.

Keywords: internet of things, resource awareness, industry 4.0, hardware-software
codesign.

1. Introduction and Background

The IoT represents a world of relatively small devices connected to networks that can
capture, use, and exchange data [28]. In recent years, this emerging paradigm has spread
over business integration [35] and industrial automation. It created benefits for smart man-
ufacturing [38] and Industry 4.0 [1], fueling the advances considered the new industrial
revolution. Integrating IoT devices with increased computing power brought benefits not
envisioned a decade ago [14]. Installing such devices to the production lines initially fa-
cilitates the data exchange with control systems. As a primary consequence, the reaction
of the complete production systems becomes faster, better, and more accurate. With more
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extensive and detailed data sets, the production enterprises could initiate the changes in
the planning process and give an additional plus to the production [36].

Our research group has designed software components for different manufacturing
systems for over a decade. The research has been focused on solutions targeting the plan-
ning [5], execution [4], development [40], and deployment [41] of the software for in-
dustrial systems at various levels according to ISA-95 (ISA – International Society of
Automation) standards [22]. The requirements and challenges vary from level to level,
but operational efficiency is a must. The research presented in this paper focuses on ISA-
95 levels 0 and 1. Levels 0 and 1 consist of sensor networks, actuators, and other devices
that bring data to IoT nodes. Such nodes sometimes operate in complex and demanding
environments, aiming to be self-sustainable as much as possible. In such a case, the de-
sign must consider that the device will run in harsh exploitation using minimal power and
network resources.

Fig. 1. Developed IoT node before sealing in the safety Ex e casing

Industrial hazardous areas, such as processing refineries, are the parts of the plants
and industrial facilities where the environmental effects could permanently damage hu-
man health or threaten safety by emitting harmful gases or chemicals and where small pa-
rameter changes could cause an explosion [21]. This environment implies that any foreign
object brought in (such as sensors and IoT nodes) must be designed with minimal envi-
ronmental impact. In this light, any additional wiring and connection to different pieces of
equipment is a source of high potential risk. Safety standards [34] imply that equipment
must be packed into Ex e enclosures (Fig. 1). The complete node and all communication
devices, batteries, and charge controllers should be in the verified casings (ideally in the
same casing), and the node’s building and operational costs should be the lowest possible.
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The IoT nodes are considered to communicate with Edge computers. Since the com-
munication between the IoT and Edge layer must be set up and maintained, selecting the
wireless network will avoid additional wiring. This connection is also essential to make
remote OTA (Over-the-air) configuration and management highly efficient.

An effective wireless connection is especially needed for mobile nodes in vehicles
that carry dangerous or explosive materials. These vehicles need constant monitoring of
the transported substance. Unlike stationary devices, mobile devices’ location must be
monitored in addition to all the standard values. It is essential to note that Edge computers
in such a scenario are usually not in the same network or physically close, so the proper
communication protocol must be defined or chosen.

To meet the requirement for such a node, we started the research that resulted in a
new architecture. The architecture employs all the benefits of the IoT concepts, supported
by general resource awareness. Initial results are presented as conference papers [42] and
[43], and this work represents their direct extension. The focus of the work [42] was on
the battery charging routines and hardware design that examines energy consumption in
different working nodes. The result is the hardware setup, which should allow the IoT
system to work for as long as possible.

Another founding block for this research is the modular software development ap-
proach, which was initially described in the paper [43]. Necessary changes in hardware
design must be followed with new approaches in software development to make the com-
plete system effective. Description of the IoT node’s software platform, the routines for
transitions to sleep mode, node update, and configuration steps are included from [43] and
extended to make the complete picture of the developed IoT node.

Besides many custom-built solutions in the market and the literature, the main require-
ment was to stay with the widely used components, which are easily affordable worldwide
and backed up by comprehensive support communities. Many existing (entirely off-grid)
designs were built on high-end components that are either too expensive, not easily re-
placeable, or without a broad enough support network. Having in mind maintainability,
together with the focus on low energy consumption, the following main design goals are
formulated:

– Base the design on the standard components proven in the industrial environment to
reuse standardized solutions and increase maintainability;

– Identify the top energy consumers within the standard IoT node and replace them
with the appropriate external components. In this way, energy consumption should be
reduced, and the maintainability level should remain the same;

– Introduce redundancy for the critical elements of the design. This will increase the
system’s availability and general readiness (such as transmission modules and sen-
sors);

– Introduce new working modes for the existing IoT component – to improve system
readiness and reduce energy consumption;

– Include battery charging strategies as described in [42];
– Create an easily adaptable software model that will allow node behavior change with-

out installation or restart – to improve both maintainability and energy consumption;
– Support runtime changes of the working modes and make the system highly respon-

sive to the update requests;
– Integrate the node into the digital twin to make the complete system more control-

lable.
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All the requirements align with designing the IoT node with a higher readiness, better
maintainability, higher stability, and lower energy consumption. This paper presents the
results achieved in line with these guidelines. Section 2 represents a review of the research
whose concepts were adopted and updated during the development of the IoT node. After
that, hardware and software designs and energy management are elaborated in the ma-
terials and methods sections. In the section Results, measured and estimated values are
compared with the expected energy levels suggested by the default designs to doc-ument
used components. Ultimately, all benefits, challenges, and suggestions for further research
are pointed out.

2. Related Work

This research aims to define the energy and process-efficient IoT node that should work
in hazardous areas with contradictory requirements by exploring advances in hardware
and software. Analyzing energy usage, the IoT node spends some power during standby,
some when collecting data, some when processing them, and finally, when transmitting to
the Edge level. Since energy reduction could be achieved in every step, we checked many
studies to create a promising approach for the overall node design.

Study [7] advocates using power-saving modes and introducing execution cycles with
multiple sleep modes. This approach constantly evolves, and [6] further introduces a com-
plex model of sleep states where each is used in separate process steps. In [31], the ad-
vantages of decentralized IoT architecture were pointed out. We considered this concept
when developing general-purpose nodes that can perform different roles by employing
different software setups. This aligns with the recent findings presented in [32], where
one of the main recommendations is to create IoT networks based on the lowest possible
number of node types and processes.

Looking at the software side of the design, we focused on two main aspects: building
a highly adaptable software model that could be easily extended and employing control
mechanisms that could reconfigure real-time execution by changing the control flags. We
accepted the idea behind the task allocation algorithm to reduce the time required to pro-
cess the high workload in IoT [16]. The control process sets up a set of activation flags
that activate only necessary parts of the processing loop in specific loops. The same prin-
ciple was used when we tried to optimize the data processing routine and the size of
synchronization queues in runtime.

The study [56] brought the dependency inversion principle when the driver routines
for new sensors are developed. With this approach, the data collection part of the program
could be developed faster and with significantly fewer changes in the complete system.
Since our IoT node tends to be as general as possible, this approach enables flexibility
when integrating new sensors. The mentioned work brings a complete energy-efficient
framework based on several more design concepts, which could be obtained only up to
some portion due to different programming paradigms used in the current software design
of the suggested solution.

The contribution of the previous study is also by raising awareness of general en-
ergy consumption reduction through software design. The research [49] initially raised
the attention of so-called energy bugs and hotspots resulting from the software design and
scheduled task execution. Further research from the same authors [48] provides a deeper
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analysis of inter- and intra-task energy hotspots, with use cases and guidelines for mini-
mizing their impact. The suggestions are integrated into the primary execution model and
battery charging algorithms, similarly as suggested in [46]. They have been implemented
in the presented solution by decoupling the data collection and processing from the data
transmission routine.

Data transmission is critical since it uses a sizable part of the energy. The studies
[13][39] give us an insight into the expected power consumption modes for the data trans-
mission phase when different scenarios and technologies are deployed. The general sug-
gestion is to keep transmission devices in the lowest possible energy regime as long as
possible. In the ideal case, the suggestion is to keep transmission equipment in sleep mode
for more than 99% of the time, regardless of the technology used.

For primary data transmission technology, LoRaWAN (Long Range Wide Area Net-
working) was a choice for our solution due to a higher transmission range and a longer
battery lifespan compared with similar technologies [3]. LoRaWAN is usually not the first
choice for data transmission. Bluetooth-enabled devices are considered a standard solu-
tion, but their limited range could not be used as communication components in the ex-
pected exploitation conditions. However, “design principles for selecting hardware com-
ponents subject to varying environmental conditions and application requirements” are
inherited from [23]. An excellent example of using LoRaWAN technology is presented in
[26]. It describes the IoT node used in water management systems. The presented node
works outdoors and has proven to use LoRa (Long-Range) technologies for its reliability
and excellent power consumption rate.

The IoT nodes are intended to work as a part of a more comprehensive system, and
it is necessary to define the environment that would allow fast recovery when the IoT
node needs to get refreshed or reconfigured. Firstly, the set of recommendations for the
software update processes in different IoT levels has been defined [5]. It was followed by
establishing a digital twin structure, which was recognized as a need to support develop-
ment and testing and later support when the system was in active usage [41]. During the
research, dark launch expanded with feature flag deployment, which looked interesting,
with the possibility of a broader application [19]. It was based on the concept that spe-
cific software features were enabled or disabled based on the value of the corresponding
flags. The feature would be active only when the flag was set. The flag could be set or
reset through the external interface, and the software behavior could be changed without
restarting or reinstalling. We designed the ESP32 node’s main loop and all other software
tasks based on the feature flags approach.

The paper [25] describes a highly scalable solution that organizes IoT nodes for moni-
toring hazardous areas. It envisions a case where the set of static IoT nodes is active simul-
taneously with the set of mobile nodes and where the network can perform self-healing
up to some point. The next crucial point in the research [25] is an effective alarming pro-
cess. The research defines the concept of “smart alerting for potential hazard avoidance.”
The design rules and the algorithms for raising alarms were adapted when system parts
reported problematic values, switched to backup routines, or stopped responding.

IoT nodes based on ESP32 microcontrollers whose communication part is based on
MQTT (Message Queuing Telemetry Transport) protocol are proven as a choice that could
support heavy computational requests. The research presented in [8] demonstrates the
usage of such a combination in the system dedicated to monitoring self-generated energy
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during trading activities based on the Ethereum blockchain, which makes it applicable for
sensor network support.

The security in such systems is not at the highest possible level, and future work will
focus on this. Currently, the developed system relies on the standard security features in-
tegrated into used components and protocols. According to [30], this is assumed to be a
potential security concern. Compared to other computing devices, IoT nodes have lower
processing power, so specialized countermeasures against network attacks should be de-
signed [30]. Furthermore, the research presented in [44] explains all negative aspects of
the MQTT-SN (Message Queuing Telemetry Transport for Sensor Networks) protocol in
detail. When it comes to energy management, the second part is charging strategies. In [9],
the authors discussed traditional charging control methods, such as constant current, volt-
age, pulse charging, and software-enabled battery management systems. We used some
principles of fuzzy logic charging as the extension of standard threshold-based charging,
such as an adaptive standard low threshold. The approach presented in [9] that we found
interesting is the predictive control model of energy storage systems. The study presented
in [12] explains 26 different battery charging strategies. This was important to us since it
explicitly focused on the charging characteristics of Li-ion batteries. It comprehensively
explains controlled features, cut-off conditions, and observed parameters. The suggested
multi-step-ahead predictions based on accumulated parameter values would help deter-
mine the right time to start charging. This approach was a base for our alarm-based and
controlled charging scenario.

With the anticipated growth of battery management systems by more than 50% an-
nually until 2030 [59], this research area is considered highly important and with the
expected high-level improvements. This research also indicates the importance of ma-
chine learning and building an adaptive battery management system that should consider
multiple parameters for their operations.

Table 1. The main features of similar solutions from literature

Feature
WaterGrid Sense

[26]
E-Nose

[27]
Fire detection

[33]
Presented
solution

Transmission
protocols

LoRaWAN LoRaWAN
LoRaWAN,

GPRS, Wi-Fi,
Bluetooth

LoRaWAN,
GPRS, Wi-Fi,

Bluetooth
LoRaWAN
device class

A
Probably B,

(model-based)
Probably B,

(model-based)
C

Sensors
Fixed package
of two sensors

N-IGSS sensor node
Various

Maximum 4
Various

Maximum 4
Processing
unit

Microchip model
non-specified

ESP32 ESP32 ESP32

Battery
3.7V

1000mAh
Non-specified Non-specified

3.6V
3500mAh

Charging
Always when

sunlight detected
Not implemented Not implemented

Adaptive
charging

Solar panel
installation

External Possible Possible
Integrated
or External



Resource-Aware Design of an IoT Node... 497

Looking at the literature, many IoT-based solutions based on a single node can be
found. The most similar that we could identify are Water-Grid Sense [26], E-Nose appli-
cation to detect pollution hazards [27], and forest fire detection system [33] (Table 1). All
these solutions are based on LoRaWAN as the primary communication channel. The fire
detection system and our solution include a GPRS module as the backup channel. Forest
fire detection solutions anticipate higher energy consumption due to the higher usage rate
of GPRS; thus, they work at a much higher voltage level than others. E-nose and fire de-
tection applications did not focus on effective battery management but on higher-volume
data usage. Regarding dimension, Water-Grid Sense is the smallest device, but it uses a
fixed package of two sensors optimized for low consumption. It encloses a smaller battery
and, as with our system, comes with a charging module. The difference in favor of our
solution is that we use an adaptive charging algorithm that ensures longer battery life. At
the same time, Water-Grid Sense charges the battery whenever sunlight is detected. The
option of the external solar panel is available in all solutions. Water-Grid sense theoret-
ically could use an internal solar panel as our solution, but currently, this is impossible
since their casing is the smallest possible.

To create an energy-efficient IoT node dedicated to the specific setup, we had to sup-
port a complex co-design, including hardware elements, execution mode adaptation, new
software design and update principles, and the definition of an adaptive battery charging
approach. Referenced work exposed brilliant ideas but primarily focused on a single area
of interest. At the same time, we aimed to combine all available techniques to make the
IoT node as energy-efficient as possible.

3. Hardware Design

As the introduction summarized, the main direction of the design process was to create
an IoT node based on standardized and worldwide available hardware components. The
solution should be solar-powered, battery-based, and equipped with some wireless data
emission device to integrate with higher levels. To reduce energy consumption, the IoT
system should be based on a hardware platform that enables active and hibernate/sleep
mode work. The node must be able to alternate working modes periodically or as the
result of specific signals. In the active mode, it should periodically check sensors, read
and process sensor data, and then send the retrieved values to the upper level. Further,
the selected components must have enough processing power, a standardized operating
system, and data storage capacity to integrate into the digital twin and enable remote
diagnostics and control.

3.1. Hardware Components

The market offers several microcontrollers that could act as the core for the IoT nodes.
Considering previous requirements, as the base component for the designed IoT node,
the ESP32-WROOM-32 SoC module has been chosen [50]. It is widely used in indus-
trial environments, and its modular design (Fig. 2) supports work in different operation
modes defined by the states of internal components (Table 2). Its processing unit con-
sists of two central ESP32 cores and an ultra-low-power coprocessor (ULP co-processor),
which controls work in sleep mode. The ULP coprocessor is further supported with a



498 Petar Rajković et al.

real-time clock memory (RTC memory), primarily used for saving and keeping values
during sleep mode. This memory allows active sensor data collection while two execution
cores are inactive. The connectivity part of ESP32 consists of the wireless radio, Wi-Fi,
and Bluetooth modules. For our design, integrated network modules were not adequate.
To make ESP32 usable in the off-grid setup, these modules should be based on protocols
with a much higher communication range, such as LoRaWAN and GSM (Global System
for Mobile Communications). Integrated Wi-Fi and Bluetooth could be used in a produc-
tion plant environment, but when it comes to the range and energy usage, they are not
appropriate for remote areas. To keep the data exchange secure, ESP32 has integrated
IEEE 802.11 standard security features, secure boot flash encryption, and essential power
management to ensure the component’s sleep mode activity. These basic features ensure
enough security to be integrated with digital twins and to be updated OTA.

Fig. 2. ESP 32 - main building blocks

Alongside network communication components, ESP32 offers a powerful peripheral
interface set that supports data collection from other hardware devices and sensors. Two
interfaces are supported in this category: I2C and RS485. ESP32 natively supports I2C
and comes with dedicated pins and communication routines. RS485 is a bit more criti-
cal for communication and usage in hazardous areas. It is a protocol that supports asyn-
chronous serial communication with multiple devices and is suitable for industrial envi-
ronments since it can connect to 32 devices with a cable 1200 m long. It is less prone to
electrical noise.

Table 2. ESP32 - comparison of active components in standard modes

Component
Active
mode

Modem
sleep

Light
sleep

Deep
sleep

Hibernation

ESP 32 cores + + paused
RTC memory + + + + +
ULP Coprocessor + + + +
Radio, Wi-Fi, and Bluetooth +
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Aside from ESP32, a few more components were necessary to complete the IoT node.
The protected lithium-ion battery of type 18650, with a capacity of 3500mAh and work-
ing on 3.6V, was chosen. The battery is supplemented with a charge controller and an
adequate solar panel. Supporting the battery charging process is critical for such nodes,
so the chosen solar panels must be strong enough to enable successful recharge.

The complete hardware design – ESP32, battery, GSM unit, LoRaWAN module,
charger, and optional solar panel- are combined as a single device and enclosed in the
proper casing, certified for use in hazardous areas (Fig. 3). Since the GSM and Lo-
RaWAN modules are used because of their range, the choice of ESP32 microcontroller
was a bit challenging. In the market, many similar devices, including support for I2C and
RS485, could be considered good candidates for the base component. (Table 3) shows a
brief comparison of their most essential features.

Fig. 3. IoT node for hazardous areas – left [43]: schematic display with interaction be-
tween software and hardware elements, right: the look of the assembled device

Table 3. Comparison of ESP32 and similar microcontrollers (extracted from [11])

Controller
Clock speed

(MHz)
Flash memory

(MB)
Maximal operating

voltage
Price ratio

(against ESP32)

ESP32 240 4 3.6 1
Raspberry Pi Pico 133 2 5.5 1
STM32 480 2 3.6 3
Arduino Nano 16 0.03 5 2
Teensy 600 8 5 3.5
nRF52840 64 2 3.6 2
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ESP32 is one of the cheapest chipsets in the market and offers worldwide support
with a strong and responsive community. There are faster components like STM32 and
Teensy, but they are more expensive. ESP32 is second best in memory capacity and third
in the clock speed category, but it is the cheapest and works at the lowest voltage level.
In that light, it is also one of the components with the lowest energy consumption. The
advantage of Raspberry Pi, STM32, Teensy, and nRF52840 is that the ARM architecture
offers the base for more advanced software and hardware platforms, but with the current
setup, taking into consideration all the mentioned aspects (speed, data capacity, energy
consumption, and support community), ESP32 has been considered as the optimal choice.

3.2. Working Modes

The mode when all components are running is considered active, while all the other modes
are considered sleep modes (Fig. 4). In active mode, the controller has maximal processing
power, and all communication means are active. Consequently, it uses the most possible
amount of energy and should be rarely used in configurations when energy efficiency is
the primary goal.

Each sleep mode has a distinct set of active components. In modem sleep, periph-
erals and communication elements are disabled, while core and memory are active with
the ULP processor and RTC and RTC peripherals. Modem sleep is used when the node
actively collects sensor data and processes them locally without uploading them over the
network. This mode had the potential for standard use but was not adopted because no ex-
ternal control was possible. The light sleep mode is designed to spare more energy since
the core and memory are paused. It allows fast wake-up upon the signal’s arrival or after
the timer has elapsed. Its intended use is when the node only collects data from the sensor
array.

Deep sleep and hibernate modes are intended for use when a node is in the state
when waiting for the following command but with the ability to change its state as fast as
possible. In deep sleep mode, RTC parts and ULP coprocessors are only active, waiting
for the signals from the sensors. In hibernate mode, RTC is the only part that stays active.
So, in hibernate mode, everything is shut down in the node, and the node will wake up
only after a predefined time.

The working modes described are native to ESP32, and switching between them is
fully supported. Since the device spares significantly more energy when in active mode,
keeping the active mode as short as possible and switching between appropriate sleep
modes when necessary is essential. Keeping the node in the lowest sleep mode will sig-
nificantly reduce energy use.

However, for our implementation, we needed to slightly modify the mode system and
introduce a new working mode – the so-called controlled active module (CAM). CAM
is intended to replace active mode, modem sleep, and light sleep mode. The main idea
is to switch off the complete network communication subset in ESP32 since they are not
used. At the same time, the peripherals block will be kept active, allowing communica-
tion using external components and enabling the node to communicate with other pieces
of software. The activity of processing cores could be controlled through the software
routines, enabling fast changes in the state of active components. With this approach, the
node will have processing cores active for more time compared to the default active mode
for the same amount of energy.
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Fig. 4. Comparison of active elements in ESP32 standard working modes and Controlled
Active Mode
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3.3. Communication Channels

As stated before, the ESP32’s communication channels had to be disabled because of
limited range and high energy consumption and replaced by LoRaWAN and GSM mod-
ules. Considering all the previously described criteria, the LoRaWAN was the best fit for
the design. It defines the communication on the network level and supports the protocol,
which runs on the physical level and provides data exchange over long distances. Overall,
the LoRaWAN technology stack positively impacts the battery lifecycle, network capac-
ity, quality of service, safety, and security. It ensures stable bidirectional low-speed com-
munication between mobile devices and offers the possibility to develop specialized and
localized services. The data transfer speed is between 0.3 and 50kbps, which is assumed
to be a compromise between the connection range and the maximum message length [54].

The main drawback is that the communication under the LoRaWAN protocol does
not support data exchange between IoT nodes or other terminal devices. It supports com-
munication between IoT nodes and LoRa gateway devices and vice versa. In LoRaWAN
networks, there are three categories of node devices: A, B, and C. Only class C, or bidi-
rectional end devices, has been considered for the presented node design. After every data
package has been sent, the class C device has two short message receive time windows.

Since the IoT nodes run in off-grid areas, they must have a backup communication
channel. When the LoRa channel gets interrupted or out of use, the node must be able to
continue sending collected data. The backup channel was realized on a SIM-based (Sub-
scriber Identification Module) GPRS/UMTS (General Packet Radio Service/Universal
Mobile Telecommunications System) connection.

The system automatically switches to backup communication when the primary chan-
nel gets disconnected. Communication in the backup channel is much more expensive
since it requires a billable connection via a mobile network operator. The added cost is
related to energy consumption. The GPRS/UMTS module uses more energy for its work
than the LoRa devices. For this reason, the switch to the backup communication channel
is the automatic switch to the alarm state. If the main channel becomes operative again,
the system automatically switches back to the LoRa connection and returns to normal
operation mode.

Besides being chosen as communication channels, LoRaWAN and GPRS are slower
and have lower bandwidth than Wi-Fi. This was not seen as a drawback when designing
this solution since the messages carrying measured values are short. The standard packet
size created by measuring probes is 26 B. Supporting two sensors and adding the neces-
sary header makes a complete message size for one measurement of around 100 B. Also,
considering that the node should not deal with real-time data but collect measurements in
a matter of seconds or, more likely, minutes, low bandwidth for low energy consumption
looks like an acceptable trade-off.

4. Software Design

The software component of the IoT node design is developed on top of the FreeRTOS
[45] operating system. It is compatible with and supported by an ESP32 microcontroller.
Its main advantage is that it fully supports multitasking, catering to the latest requirements
of IoT devices.
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Fig. 5. Main loop and support tasks running in the realized IoT node (as in [43])

4.1. Software Processes

The software implementation of ESP32-based nodes is designed around the main task:
the core revolving routine. It could call other tasks for execution, and their number is not
limited. Additional tasks can either be controlled by the main task or triggered in response
to specific environmental signals. The main task consists of five steps (Fig. 5), where each
step calls specific tasks:

– Flow control is responsible for reading configurations and setting up process flags
and parameters, making the main loop go only through the necessary steps.

– Setup facilitates the configuration of control flags and enables or disables specific
aspects of the system. It is responsible for switching between execution nodes, man-
aging the update process, and reporting data back to the digital twin

– The collection step manages communication with sensors and retrieves measured
data.

– Processing is where collected data are verified and packed into synchronization ob-
jects. The created objects are then placed into synchronization queues and prepared
for transmission.

– Transmission is when prepared synchronization objects are dequeued and sent through
the network using appropriate communication.

Various tasks are implemented in every step to facilitate the IoT node’s operation.
These tasks fall into three main categories: setup and maintenance (indicated by red
graphic elements in (Fig. 5)), data processing (light blue elements), sensor communication
(green elements), and data transmission tasks (amber elements). Namely, as explained in
detail in [43]:
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– The all param task encompasses a set of routines and data structures responsible for
managing system setup parameters.

– The battery charger task monitors the battery level and controls the charging proce-
dure, ensuring the IoT node maintains sufficient power for uninterrupted operation.

– The external event handler is the gateway for controlling the external network. It is
responsible for receiving and processing commands from the cloud or other control-
ling devices and forcing processes such as OTA updates, immediate battery charging,
or a change of the execution mode.

– The alarm handler raises alarms when specific parameters reach predefined critical
values. As a result of its action, the node could go to the hibernate node, or commu-
nication with a faulted external device could be terminated.

– I2C comm and RS485 comm facilitate data exchange between the IoT node and con-
nected sensors using one of the protocols. They ensure efficient communication and
promptly support exchange routines.

– The GPS comm task handles communication with the GPS (Global Positioning Sys-
tem) module. Accurate device positioning is crucial when the node is installed on a
moving object, such as a barge transporting crude oil in rivers.

– Processing step runs data pack and telemetry pack processes. They are responsible
for packing sensor readings (data pack) or node’s status parameters (telemetry pack)
into synchronization objects.

– The MQTT SN comm task manages the synchronization queue’s capacity and occu-
pancy. It coordinates write processes from data producers and read processes from
data consumer tasks.

– LoRa comm task supervises communication between the IoT node and the Edge com-
puter using the LoRaWAN protocol.

– GSM comm task oversees the backup communication channel between the IoT node
and the Edge computer.

4.2. Message Protocols

Devices at the Edge level are considered much more potent than IoT nodes and can run
more advanced software and communication equipment. This led to choosing the correct
communication protocol focused on data delivered to the consuming Edge devices not by
their network addresses but as a function of their contents and interests.

The IoT node and Edge layer communication is realized using the MQTT-SN (MQTT
for Sensor Networks) protocol (Fig. 6). It is a sub-variant of MQTT modified for the wire-
less communication environment, characterized by low bandwidth, high link failures, and
short message length [24]. Since MQTT-SN is perfected for low-cost, battery-operated de-
vices with limited processing and storage resources, it could fully support the IoT node’s
hibernate mode and the LoRaWAN class C protocol.

The connection between Edge and upper levels could be fulfilled using MQTT, an
open and lightweight publish/subscribe protocol explicitly designed for machine-to-machine
and mobile applications [53]. The MQTT protocol is adequate since a stable wired con-
nection connects the Edge and cloud levels. Since variants of the same protocol are used
across the entire system, the whole structure has certain advantages in system response
to hazardous events, overall system reliability, data security, traffic reduction in the Edge-
client connection, and the background for introducing digital twins.
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Fig. 6. Place of IoT nodes in broader ISA-95 technology stack and data exchange means
be-tween layers (as introduced in [21]

4.3. Task Synchronization Mechanism

The management of configuration parameters within the FreeRTOS environment relies
on established and widely recognized mechanisms. Specifically, semaphores regulate ac-
cess to shared resources and effectively facilitate data exchange among tasks. To improve
efficiency, the IoT node uses internal synchronization queues (set up as the internal vari-
ables in all param tasks) between collection and processing and between processing and
trans-mission steps. This way, steps that consume less energy could be performed several
times before the next step, which consumes more energy, would run. With this approach,
energy consumption in controlled active mode could be further reduced. As previously
elucidated, the primary objective of the IoT node centers around capturing data from sen-
sors via RS485 or I2C interfaces. Periodic data retrieval occurs concurrently through the
RS485 comm and I2C comm tasks. These tasks write data to the same message queue,
guarded by semaphore. Consequently, data processing could remain dormant until the
queue is filled up and only switch to an active state. Once the buffer contains enough
data, the loop task proceeds with data validation and processing. The processed values
are then written in the message queue for transmission to the edge level. This process is
supported by I2C comm and RS485 comm tasks. They execute concurrently and write
the values they read from sensors to the same message queue. At the same time, task
MQTT SN comm reads the items from the queue and prepares them to be sent to the
cloud (Fig. 7). Using the three tasks mentioned, the semaphore approach avoids even-
tual read/write hazards during concurrent access to the mqtt msg queue. Every task that
should access the message queue waits until it is free and only enters the critical section.
The task releases the message queue when the read or write is done, and the next task can
access it.

Fig. 7. Data flow from sensors to transmission elements through message queues and
processing tasks
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Message queues are also used for data transmission, one for LoRaWAN and another
for the GSM module. The LoRa message queue does not need synchronization since
each data producer has only one data producer and consumer. On the other hand, the
message queue dedicated to the GSM module must be synchronized in the same way as
the message queue used for data collection from the sensors. It can receive data directly
from the processing step or data that failed to be sent using LoRa comm.

4.4. Over-The-Air Update Concept

The IoT nodes are OTA-controlled from the cloud level. The complete setup, consisting
of node configurations, parameters, and running software, is stored in the digital twin in
the remote server. As mentioned, the IoT nodes only connect to upper levels and exchange
data. In this way, the size of the IoT node network is not limited by the nodes themselves
or their design but by processing power and throughput at the upper levels. Each IoT
node is uniquely identified by its MAC (media access control) address, and it is initially
registered in the server by the mentioned address and several more unique parameters. In
this way, every communication with the node can be easily verified, and connections with
potentially intrusive nodes can be easily suspended. At the same time, the server pings
IoT nodes periodically and can detect these in disconnected mode. Conversely, nodes
run different alarm-based notification mechanisms that inform the server about potential
problems.

MQTT protocol is used with SSL/TLS (secure sockets layer and transport layer secu-
rity) to enable secure communication between higher levels and IoT nodes. This feature
is supported by default, but it ensures only encryption at the transmission level. To make
the complete process more secure, the primary hardware level encryption is enabled in
the ESP32 core, which makes all data and program structures coded, preventing different
attacks, including reverse engineering, in case the code is intercepted and hijacked. To en-
sure the uniqueness of each IoT node, their MAC address is placed as a part of the MQTT
topic. This info could be verified at the server against the registry of valid nodes.

Software updates are initiated from the cloud level, and the cloud server pushes ad-
equate software updates to the specific IoT node. This way, the node will receive proper
software and continue working after the update. This approach allows for quickly re-
placing the software of an IoT node and changing its role without the need to make direct
changes or configuration in the node.

5. Battery Charging Routine

An ideal energy consumption scenario involves standardized functionalities that maintain
consistent energy usage levels over an extended period. However, practical constraints
often prevent such ideal conditions [12]. As previously discussed, different data transmis-
sion devices exhibit significant variations in energy consumption. For instance, scenarios
involving updates or lost connections to sensor devices result in increased energy us-
age beyond the baseline. Furthermore, distinct active and sleep modes consume varying
amounts of energy depending on the volume of workload nodes have to perform. Also,
transitions between modes can trigger consumption peaks if specific initialization proce-
dures are required. As outlined earlier, energy usage during node operation depends on
the working mode and the frequency of necessary actions.
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When evaluating data usage across the three phases of the node’s cycles, data process-
ing and data collection use a similar amount of energy. Compared to data transmission,
data collection and processing use much less energy. Data transmission modules exhibit
substantial differences in range, speed, and data package volume, but in any case, data
transmission remains the most demanding energy task [59][27][33][17]. The battery’s en-
ergy level should always be adequate to ensure proper node operation fitness. For this
reason, a separate set of routines is developed and integrated into the IoT node’s software
model. It is intended to drive the charge controller and execute chosen charging strategies.

5.1. Automatic Charging

The charging process periodically checks the battery’s energy level in the automatic charg-
ing mode. It starts if it reaches a standard low battery level (SL). The node continues its
operation while the battery is charging, and when it reaches a standard high level (SH),
the charging process stops. The charging controller is a separate component and does not
affect the work of any other IoT node element. This approach could be problematic when
the node’s charging routine depends on solar power. Sunlight is available at most 50% of
the time, and the periods of active sunlight are not constant. Furthermore, the effect of the
other natural elements and construction properties of the device could reduce the period
of sunlight exposure.

Whenever the charging controller starts or stops the charging process, it sends this
information to the edge level using the telemetry call with a timestamp. These data are
collected at higher levels and used to analyze node functionality and act as a base for
future improved charging modes. They could also be used to identify malfunctions early.
The default charging process, if applied constantly, is envisioned to ensure longer bat-
tery life. The best use case for most available battery types is if their power level varies
between SL and SH thresholds, following the process presented in Fig. 8.

Fig. 8. Ideal consumption setup with automatic charging mode
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5.2. Alarm-Based and Controlled Charging

An automatic charging scenario is not always possible. First, it could be triggered at night
or when the sunlight is not bright enough. Then, the solar panel will not generate enough
power to raise the battery’s energy level. When charging starts, but the energy level is still
going down, the alarm signal from the IoT node will trigger. The signal will be received
and registered at the edge level. Since the charging controller frequently reads the bat-
tery’s energy level, it could continue to trigger alarms that indicate that the energy level
is still reducing despite initiating the charging process (Fig. 9, block “Report charging
issue”). If the energy level continues to reduce, it will eventually reach CL (Charging Re-
quired Level). At that moment, the IoT node will send a higher priority alarm to the Edge
computer and reconfigure its operation strategy by reducing the number of data transmis-
sion operations. If the battery level continues to degrade, after some time, it will reach
the alarm low (AL) threshold (Fig. 10, left). This is considered the highest-level alarm,
and the node will stop all its operations and switch to hibernation sleep mode. Up to that
time, based on the data received in the Edge and then forwarded to the cloud level, the
operation engineers could decide what to do with the affected IoT node.

One of the simplest ways to prevent this situation is to enable the calculation of the
energy use depending on the time of the day and the introduction of an additional method
that will check if the charging process should start (Fig. 9, block “start charging,” line 28).
SL would be increased by some percentage (like 10 or 20%). In this case, the charging
routine will check the remaining time until sunset and the increased SL. If the energy level
falls to SL+10% and the remaining period of the day is, i.e., 10% sunlight, the charging
process will start immediately. This simple and effective approach allows for additional
charging periods with the lowest possible effect on battery life. The problem with such an
approach is that the node must have daily information about sunrise and sunset and run
more complex checks.

The charging controller’s next operation mode is the controlled mode. This mode
is initiated from the edge level and intended to instantly trigger the charging process.
Regardless of the current battery level, the charging process will start immediately when
the control signal is received, and the flag forced charging is set.

The mentioned control signal is followed by the requested high level (RH in the fur-
ther text); the battery will be charged until the requested level is reached, regardless of the
value set for SH (Fig. 10), suitable; (Fig. 9), block “stop charging,” line 41). This process
does not change the SH level but is omitted during a single charging run. When the bat-
tery level reaches RH, the charging process stops, and the node returns to the alarm-based
mode. The battery could lose power in the controlled charging mode, as in the automated
charging mode. In this case, the same alarm procedure will run. Eventually, the charging
controller could be disabled by setting flag charging active to false. This happens regu-
larly when the IoT node is connected to the power grid, but this situation is outside the
scope of our paper.

5.3. Short Term Improvements

As explained, making the charging process more adaptive and efficient is essential. Con-
sidering that the transition to controlled charging mode with the predefined RH could be
triggered from the higher levels at any time, bringing a dose of safety, the process will be
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Fig. 9. Charging controller routine incorporating alarm-based and controlled charging
(pseudocode)
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Fig. 10. Battery recharge after the intensive drain (left) and the battery charging in con-
trolled mode (right)

automated to ensure less frequent (ideally never-happening) situations when the IoT node
goes to the alarm state. The charging controller regularly reads the battery status and up-
loads (and stores locally) these data for further analysis. The average energy consumption
per hour (ACH) is calculated based on this. Since the node reads data from the sensors
during standard periods, the actual energy consumption could be an additional input for
deciding when to start charging.

The next improvement will be for the method running in the node that decides when to
start charging (Fig. 9), block “start charging,” line 28). The update method will calculate
the sum of SL and the value resulting from multiplying ACH by the number of hours
until sunrise. If this sum is higher than the battery’s current energy, the charging process
could start immediately, significantly reducing the risk of the transition to the alarm state.
Further improvements would include the weather report and checking if the potential
period with less sunlight is ahead. This way, the charging process could run up to a higher
threshold than SH, bringing the battery a higher operational period.

It is important to note that the charging frequency depends on the battery capacity and
the effectiveness of the solar panel and the charging component. With the standardized
working mode, with two RS485 sensors attached and a LoRa module used for data trans-
mission, our node will need one charge weekly or bi-weekly. This period is long, and the
weather could change several times. Also, if there is a need to use more expensive energy,
GPRS communication channel energy will be drained much faster. Thus, the possibility
to react fast and run charging is a necessity.

6. Results

The proposed solution is based on the ESP32 series of devices with added communication
and power supply components (Fig. 11). The node is designed to be robust from the phys-
ical perspective, with easily reconfigurable hardware execution modes, and flexible from
the software design point of view. Operationally, it should run using the lowest possible
amount of energy while acquiring data from different interfaces. Since the system has not
only the ESP32 but also other components, the measurement must be done in correlation
with the entire system, not only the processor itself. The overall power consumption com-
bines the consumption of sensors (the setup with two RS485 inductive distance sensors
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with a maximal 10Hz measuring rate), ESP32, and internal and external communication
modules. The usual test was with 100 execution setups daily.

The measurement has been performed in the laboratory and simulated field condi-
tions. The measured objective was the water level in the water tanks. We tested energy
consumption in the laboratory with regulated temperature settings. In the simulated field
conditions, we mainly tested battery charging routines. Simulated field conditions were
performed at the rooftop of the Faculty of Sciences, Niš, Serbia, where solar exposure
is somewhat average for Southern Europe – between 1.5 kWh/m2 in January and 6.5
kWh/m2 in July [37]. Since solar panels are usually certified for 1kWh/m2, the node is
usually charged with the nominal current. The node ran constant readings from the sen-
sors while the data processing and transmission frequency were controlled from the Edge
computer. The node is automatically reconfigured when the battery level reaches critical
values. Digital multimeters GDM-8255A [2] were used as measuring equipment in the
laboratory, and UNI-T UT71C [57] for the fieldwork.

6.1. ESP32 Default Energy Levels

The default energy consumption data can be found in the related product datasheet [50].
The consumption analysis started with the measurement for the node based entirely on
ESP32, where its internal communication modules are used. The software part is equal
in this and the setup with the external communication modules, so the execution mode is
assumed to be constant in the system. Internal modules are used only for the testbench
since they are unsuitable for remote areas.

Table 4. Expected values for energy consumption in ESP32-based nodes (extracted from
[18])

Power mode Description
Typical power
consumption

Power off
CHIP PU is set to a low level;
the chip is powered off

0.1 µA

Hibernation RTC timer only 5 µA

Deep sleep
From only RTC timer + RTC memory
to ULP co-processor is powered on

10 – 150 µA

Light sleep ESP32 core is paused 0.8 mA

Modem sleep ESP32 core is powered
Slow speed:2-4 mA

Normal speed: 20-25 mA
Max speed: 30-50 mA

Active
(RF working)

Receive - Transmit BT/BLE
Transmit 802.11g
Transmit 802.11b, OFDM 54 Mbps
Transmit 802.11.b, DSSS 1 Mbps

95-130 mA
180 mA
190 mA
240 mA

The values shown in (Table 4) represent standard energy consumption levels measured
in laboratory conditions and vary by some percentage compared to the values from the
producer data sheet. Furthermore, some additional differences could be introduced due
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to the influence of connected sensors. In the examined case, the node was connected to
different RS485-based sensors (Fig. 11).

6.2. Measured Values

As mentioned in the introduction, the opposing requirements for the designed nodes are
that they should be as ready as possible and use the lowest possible amount of energy.
In an important event, the node must immediately wake up, raise an alarm, and take the
necessary action. Deactivating the data transmission part is how to keep the ESP32 active
but use less power. This will not affect data processing and sensor connectivity, but the
consumption will be lower in CAM mode, as defined in 3.2. With the new working mode,
the node will be active in remote areas with lower power consumption than standard active
mode and modem sleep. The complete execution setup includes switching between sleep
modes and the CAM mode.

Fig. 11. Finalized IoT node with one RS485-based sensor attached

As seen from Table 5, if the standard active mode were used, the lowest possible
consumption would be at least 100 mA. The power consumption in CAM mode was up
to 36 mA, while the modem sleep with active processing cores worked between 45 and
50 mA. This means that CAM mode could successfully replace parts of the processing
routine where both active and modem sleep modes are running. The measured values for
modes with active processing outdoors were close to lab measurement, with a difference
of not more than 10%.

The subsequent measurement is to connect sensors and measure the energy spent for
data collection and processing at once. The sensors are connected to ESP32 through the
RS485 interface. In this case, the total measured power consumption in CAM mode is
69 to 72 mA. The active components are ESP32 and two RS485 sensor arrays, whose
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consumption level is a maximum of 20 mA per sensor. In this case, the computed con-
sumption was 36 + 2x20 = 76 mA. Still, the measured values remained around 70 mA
in the laboratory and just above this level in simulated field conditions (72 average, 78
mA max). Compared to standard ESP32 active mode, the difference is significant, where
consumption is usually 150-160mA but could hit 200 mA if unoptimized software loops
are used.

Table 5. Comparison of measured values for the IoT consumption (in mA, Setup A – im-
proved design with CAM and external communication modules, Setup B – design relying
only on ESP32 internal modes and modules)

Process Operation setup
A
lab

A
field

B
lab

B
field

Light sleep
and sensors

Light sleep
ESP32 core is paused

7.5 8.4 7.8 8.5

Data processing
(active mode)

Setup A: CAM
Setup B: Active mode

32 36 > 100 > 100

Data processing
(modem sleep)

Setup A: CAM
Setup B: Modem sleep

32 36 50 50

Collecting and
Processing

CAM/Active mode + 2 RS485
Each RS485 < 20 mA

69 72 149 160

Transmission
(worst case)

Setup A: GSM
Setup B: Wi-Fi DSSS

480 412 270 240

Full cycle
(standard case)

Setup A: CAM + Sensors+ LoRaWAN
Setup B: Active Mode + Sensors + Wi-Fi

98 104 200 200

Full cycle
(worst case)

Setup A: CAM + Sensors+ GSM
Setup B: Active + Sensors + Wi-Fi DSSS

560 524 430 430

The collection-only scenario was checked when the ESP32 was put into light sleep
mode. The node in light sleep mode with attached sensors uses around 8 mA regardless
of the scenario. The measurement in field conditions shows an average energy need of less
than 10% more. In the period when the node needs to perform data collection periodically,
light sleep mode is the logical choice. The ESP32 core and memory will be paused, but
with RTC components active, the node can react to requests. The consumption in light
sleep mode is as low as 7.5 mA with a peak value of 8.5. The consumption of the ESP32
itself is about one mA (0.8 mA as per documentation), but, simultaneously, the battery
should also power sensors on stand-by, thus the difference.

The following important measurement is the consumption level when all cycle ele-
ments run – data collection, processing, and transmission. In a setup with only ESP32
components as the transmission device, the Wi-Fi in SoftAP (software-enabled access
point) or STA (station) mode is enabled. In this case, the total consumption reaches 200
mA (compared with 190 mA from documentation). The usage is at the expected level,
yet another argument for using the CAM is against using the full active mode as much as
possible. So, from the calculation, it could be concluded that the communication part of
the ESP32, in the measured case, uses energy equivalent to 110 mA.
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LoRaWAN is the communication carrier for complete cycle measurement with CAM
mode. Specifically, as the communication part of the LoRaWAN module, SX1268 [47]
was installed. It uses 22 mA for data transmission and five mA for data reception. As
mentioned, the LoRa works in class C since the node must operate in active and sleep
modes. The measured value for the LoRa communication, when data are taken from the
message queue and emitted, is at the level of 28 mA for transmission and 6.4 mA for
reception. The overall energy used when the complete cycle is active with the LoRa part
is around 100 mA, significantly under 200 mA, measured if Wi-Fi was running (Fig. 12).

Fig. 12. Comparison of energy consumption for proposed (Setup A) and standard (Setup
B) configurations

In the case of regular use, the LoRa is more efficient than internal communication
modules. In urgent cases, the system needs communication to contact the device outside
the internal network. LoRaWAN or integrated Wi-Fi and Bluetooth will not be helpful
when the communication is broken down. The GSM module is introduced to manage
such an event. The consumption of the GSM module is significantly higher than any-
thing else, and the maximal measured level in field condition was 412 mA (345 mA as in
specification) when active and 21 mA when idle (19 mA as in specification). Measured
values in the lab were higher (around 480 mA) because connection establishing takes
longer. The used GSM module is SIM800H [51] with GPRS data mode (1Rx, 4Tx) on
EGSM900. Measured values are higher than specified but in the acceptable ratio. Setting
up the connection could be the critical point in both LoRaWAN and GPRS data modules.
It could take some time to execute, and the power consumption could be high during that
period. The average of the GPRS module was 580 mA, while the theoretical peak could
reach even 2000 mA. This fact is one of the reasons why introducing message queues and
reducing the number of data transmission calls (when possible) is also essential.
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When checking the complete cycle consumption with GSM, the average values are
much higher than in any other setup. It was up to 560 mA in the lab, while outside reaches
almost 530. Compared to GPS, the energy used in configuration with Wi-Fi running in
DSSS mode was not more than 460. This is the only category where process-level updates
do not bring benefits since the transmission part uses way higher amount of energy. This
case clearly shows the importance of message queues and reducing transmission calls.
The transmission mode could be adjusted to shrink the drawback of GPRS data module
usage. Since the GPRS could manage a higher data volume, the system could decrease
the number of transmissions and thus reduce overall energy consumption.

6.3. Consumption Analysis for Different Execution Modes

Measuring the energy consumption for the different elements of the IoT node offers a real-
istic overview of the energy consumption reduction rate. These values could also estimate
energy consumption for various system configurations. By employing buffers, the num-
ber of data processing and transmitting operations would be reduced, positively impacting
the consumed energy level. Table 6 and Fig. 13 show proposed energy-saving configura-
tions and maximal measured values for every step in the process that will be used for the
estimate. In this case, the measurements have been done only in the laboratory.

Table 6. Maximal measured values (in mA) for every step in the node operation

System
configuration

Sensor
reading

Sleep1 Processing Sleep2 Transmission Sleep

A+LoRaWAN 40 - 36 - 28 8
A+WiFi 40 - 36 - 110 8
A+GPRS 40 - 36 - 412 8
B+LoRaWAN 40 - 36 8 28 8
B+WiFi 40 - 36 8 110 8
B+GPRS 40 - 36 8 412 8
C+LoRaWAN 40 8 36 8 28 8
C+WiFi 40 8 36 8 110 8
C+GPRS 40 8 36 8 412 8

The execution modes are named A, B, and C. The difference is in the usage of mes-
sage buffers. In execution mode A, there are no buffers. Each data collection is followed
by data processing and transmission. Operation mode B introduced a buffer before data
transmission. This means the node will read the data, process them, and put them into the
queue. Data will be sent to the Edge level when the queue is full. Execution mode C is the
update of mode B and brings an additional buffer between data collection and processing.

The maximal measured value for the sensor reading segment was close to 40 mA,
which was used as the estimation value. For the processing part, the baseline value of 36
mA was considered, while all sleep modes were calculated as having the top consumption
level of 8 mA. Transmission rates were acquired as 28 mA for the LoRaWAN module,
110 for Wi-Fi, and 412 for the GPRS external module.
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The primary operation mode (Fig. 13, A) is the sequence read-process-transmit fol-
lowed by the sleep period. Depending on the current process or state of the overall system,
the node could go either in the CAM or light sleep mode. This way, the node does not need
to store any data locally and can go to sleep mode at the lowest cost possible.

Since the part of the process that consumes a considerable amount of energy is the
transmission part, introducing a buffer before sending data to the Edge level brings the
best gain. The node would wake up periodically, read sensor data, process them, and store
them in the internal buffer (Fig. 13, B). This will reduce the number of data transmis-
sions every cycle. This is especially important when using the GPRS module since its
connection setting-up part could quickly drain the battery. Note the difference in setup A
with GPRS when the measured value of 61600 mA was much greater than the estimated
49600. It is partly due to indoor conditions, but the consumption is significant. More than
five times compared with LoRaWAN and about 2.5 times with Wi-Fi.

Fig. 13. Different configuration variants supported by IoT node, derived from general
state-based energy consumption model

With the buffer introduced between the data collection and processing parts (Fig. 13,
C), sensors will read data periodically, pump them to the message queue, and the system
will transit to sleep mode. After several iterations, the processing part will get activated.
It will take the data from the queue, process it, and then store it in the queue before trans-
mission. Data transmission will run when enough data gets stored in the second queue.

The analysis was based on 100 complete work cycles to provide a more comprehen-
sive overview of the proposed solution’s expected effect. The energy usage was lowest
when the configuration variant C was applied, and the LoRaWAN was used as the com-
munication module. The worst case from the energy consumption point of view was when
strategy A was applied, and the GPRS was used for data transmission.

A comparison between these three variants is shown in Table 7. The estimate was
calculated on the base of 100 sensor reading cycles. Comparing one variant, it is evident
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that the lowest consumption is in configuration with the LoRaWAN as a transmitting
device. The difference is more significant in variant A than in B and C. The number of
total transmissions is in direct proportion to the energy use, so the best effect is with the
default operation mode. In variant A, the system with the LoRaWAN uses slightly above
one-half of the energy used by the system with the ESP32 native Wi-Fi (50.64%). The
energy usage is the highest with the configurations with the GPRS transmitter. Variant A
uses more than five times more energy than the configuration with the LoRaWAN and
more than 2.5 times more than the native Wi-Fi transmitter.

Variants B and C have the most significant effect when the GPRS is used. Since the
amount of time required for data acquisition is always the same, the number of data trans-
missions in variant B is reduced. In contrast, in variant C, further reductions are achieved
by joining the processing part for 10 data acquisitions. In that way, in variant B, the
data are transmitted only ten times for 100 reading cycles, and in variant C, only once.
Variant C brings the most minor differences between configurations with different com-
munication modules. It is on the level of 10% (107.09% vs 97.87%). This difference is
almost 50% (138.42% vs 88.47%) for variant B. In variant C, the configuration with the
GPRS uses less than one-tenth (9.38%) of energy compared to variant A. For the Wi-Fi
as the transmitting module, the energy usage is reduced to a quarter (23.16%); for the
LoRaWAN-based configuration, it is close to half (44.76%).

Table 7. Effects of proposed node configuration variants equivalent to 100 cycles mea-
sured against native communication setup (WiFi as a part of ESP32 Radio: Comp1) and
against default configuration variant (A: Comp2)

System configuration
Estimated

(mA)
Measured

(mA)
Transmission

count
Comp1
(WiFi)

Comp2
(variant A)

A+LoRaWAN 11200 11800 100 50.64% 100%
A+WiFi 19400 23300 100 100% 100%
A+GPRS 49600 61600 100 264.38% 100%
B+LoRaWAN 8760 8820 10 88.47% 74.75%
B+WiFi 9580 9970 10 100% 42.79%
B+GPRS 12600 13800 10 138.42% 22.40%
C+LoRaWAN 5276 5282 1 97.87% 44.76%
C+WiFi 5358 5397 1 100% 23.16%
C+GPRS 5660 5780 1 107.09% 9.38%

This proves that buffer use is effective whenever possible, which means that the delay
of transmitted data is not problematic for the entire system’s efficiency in every case. By
adjusting the count of cycles in the digital twin and pushing the update to the end node,
the energy consumption could be adjusted in the node without physical access.

7. Discussion and Future Work

The primary purpose of the proposed system is to run in a remote and hazardous area as
efficiently as possible. The system must operate on batteries and use every opportunity to
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reduce energy usage. To achieve this goal, the following set of improvements was realized
over the standardized ESP32-based IoT node:

– The new active working mode will be introduced by disabling modules that consume
high energy values.

– Define the transition to the adequate sleep mode, depending on the node’s usage cycle
stage.

– Add external communication components that are more suitable for the expected use
and have lower energy consumption.

– Enable redundancy whenever possible to make the system more dependable.
– Create an adaptive software model that will allow easy reconfiguration of the system’s

working mode without needing restart or hardware replacement.
– Introduce data buffers between system segments and make the operation of the more

significant energy consumers less frequent.

Having in mind the requested purpose, the designed IoT node must be not only energy
efficient but also highly dependable. It should be able to adequately supervise various
errors, failures, and technical problems. Hardware and software design modifications were
implemented during the proposed node’s work. Hardware-level interventions are mostly
related to the installation of redundant parts – both sensors and communication lines. In
that sense, the IoT node has two I2C and two RS485 communication channels, while the
transmitting device based on the LoRaWAN is backed up with the GPRS module.

Regarding future improvement, the widest open point is data security. ESP32 runs
with integrated IEEE 802.11 security for IoT nodes, but it has been proven that this level
is not enough in every case. So, improvements in this area would be one of the future
research directions. For the moment, an additional security measure is that access to IoT
nodes is possible only through the Edge level or, in exceptional cases, through a device
that has an authentication token provided.

The effect of the implemented updates is presented in Table 5. The node’s power
consumption is closer to modem sleep than active mode. This is expected since the com-
munication part uses a massive portion of energy. With sensors enabled, measured con-
sumption is around 70 mA, which is between one-half and one-third of the consumption
when the ESP32 is active. When the complete system is operational, the consumption of
the designed IoT node is about one-half compared to the node running on the ESP32 in
fully active mode (98 mA vs. 200 mA).

Improvements to the rest of the system are made at the software level. The crucial
point was the implementation of setup routines that could directly influence the behavior
of the main loop and change the execution variant of the node only by setting the feature
flags. The control over these processes was moved to the cloud to create a digital twin.
From this point, the updates could be directly passed down to the IoT nodes through the
Edge computer. In that way, the control is centralized, and the status of each node will be
successfully kept on the cloud.

Thanks to this feature, the node can easily switch operation modes and return to a
more energy-efficient configuration. In variant A (Fig. 13), the node runs the collection-
processing-transmitting sequence followed by the sleep period. In this mode, there is no
need to store the collected data locally since they are once uploaded to a higher level. This
mode uses the highest energy value but ensures the exact data reporting process.
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Configuration variant B is intended to reduce the number of data transmissions, but it
cannot be used in every case. It could be used only when the acceptable delay between
data retrieval and transmission is long enough. The highest gain of this approach is when
the GPRS data transmission method must be used since it consumes a significant amount
of energy while setting up a connection to the network. Configuration variant C is the best
solution from the point of view of energy consumption, but it brings additional limitations.
First, the time until data are uploaded to the Edge level is even higher. Second, since
the data processing part does not follow every data collection, there is some risk that
potentially wrong values could be discovered later than in cases B and C. In the end,
sometimes, IoT nodes must be on constant alert and run actively as much as possible.
Since the consumption in fully active nodes is far from acceptable, one solution for the
ESP32-based systems is the introduction of CAM when only radio, Wi-Fi, and Bluetooth
are disabled. In that way, the system could stay in an active state longer and use less
energy. The working mode would be the most like configuration variant B in this case.

Fig. 14. Comparison of energy consumption across a different combination of variants
and communication devices (The X-axis represents the number of data collection events
from sensors, and the Y-axis is energy consumption in mA)
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As can be seen, each of the three working modes has advantages and disadvantages,
and the operation mode would probably need to be adjusted during the node’s life cycle.
The possibility of changing the node behavior through the software interface would help
in this case. The use of the mentioned digital twin is crucially important here. The end
user could adjust node behavior in the digital twin, run the simulations on data transfer
and energy consumption, and then push the change to the actual node.

Fig. 14 compares energy consumption with different operation modes and communi-
cation modules enabled. Subfigures A, C, and E (of Fig. 14) show the effect of buffering
when the same transmission module is used. The energy use is the highest in the case
without buffering (configuration A). When the pre-transmit buffer is included (scenario
B), energy is reduced up to some point, and with the second buffer, the reduction is more
significant. Scenario C with LoRaWAN is at an energy usage level of 42.63% compared
to scenario A with the same communication module (20122 mA vs 47200 mA). The dif-
ference between scenarios A and C with the integrated Wi-Fi module is 21.71% (20237
mA vs 93200 mA). The biggest gain is with GPRS, where the energy needed for scenario
C is only 8.36% (20620 mA vs 246400 mA).

When comparing the same operating scenario against different communication mod-
ules (Fig. 14 – B, D, and F), the most significant difference is for scenario A. The intro-
duction of a buffer would close the gaps. For scenario C, the power usage with the GPRS
module is less than 3% higher than with LoRaWAN.

This result is promising for implementing the nodes running in an off-grid regime.
When they operate in near real-time with the most effective configuration (scenario A
and with LoRaWAN), the node uses a predictable amount of energy. The battery could
last several more days without recharging than the design based only on ESP32. The
node must adapt its behavior if the external conditions worsen or the LoRaWAN module
stops working correctly. So, it should switch to more energy-consuming communication
devices, such as the GPRS. With the consumption estimate, the node could calculate the
remaining energy and raise the appropriate alarm. Depending on the battery charging rate,
buffering could be turned on, and the message queue size could be adjusted. In this way,
the node could reduce energy consumption on the cost of near real-time reporting.

In the cloud system, in the database layer, each IoT node has been represented by
the configuration data sequence. These data are sensor addresses, retrieval and retention
period, boundary (minimal and maximal), or set of accepted values. The copy of all these
data is then moved to the memory of the IoT node connected to specific sensors. In this
way, every IoT node is fully aware of all connected sensors and their behavior. In this
situation, verifying the sensor or connection line failure is more accessible. The most
common conditions are when the IoT receives data from a sensor in an irregular interval,
with values out of bounds, or when no response from the sensor can be detected. The
response to all the mentioned scenarios could be predefined in the IoT node software,
making the system reaction faster and more predictable. Also, the software change, if
needed, is a much easier task in IoT than at the sensor network level.

7.1. Comparison with Industrial Standard Solution

Since IoT is an essential element of the Industry 4.0 landscape, many successful solutions
are available. During the development process, we designed our solution based on our
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experience with Cassia [15], Aegex [58], and BARTEC [10], and with special require-
ments faced in hazardous and remote areas for the device with low build, maintenance,
and operational costs (Table 8).

The usual approach for hazardous areas is gateway-centric architecture. This means
that the complete system consists of multiple devices, some of which are sensors, some
of which are concentration nodes, and some of which are gateways. Such approaches
bring robust and very potent solutions, but from an explorational point of view, they are
more convenient for more extensive facilities with constant human presence. The gate-
way-centric approach comes with dedicated on-site supporting hardware. The three IoT
systems have their own hardware devices for monitoring and maintenance. Our solution
could be monitored by any device with LoRaWAN connectivity, authorized through our
cloud, and installed with dedicated software. Another advantage of gateway-centric ar-
chitecture is the possibility of extending the system over the API, while the presented
solution only supports application-level software updates. Our solution has been devel-
oped to work in IoT-centric mode, where only one type of node plays a leading role in
data collection, aggregation, and transmission processes.

Table 8. Comparison of the main features of similar industrial solutions

Feature Cassia [15] Aegex [58] Bartec [10]
Presented
solution

Architecture
type

Gateway-
centric

Both Gateway-
and IoT-centric

Both Gateway-
and IoT-centric

IoT-centric

On-site
HW support

Cassia IoT
Access Controller
w Bluetooth PnP

Custom-built
intrinsically safe
tablet device
Wi-Fi connected

Custom-built
Android-based
smartphone

LoRaWAN
complaint device

Level of SW
extensibility

Application
and API

Application
and API

Application
and API

Application

Sensor
connectivity

Spec. sensors
Bluetooth

Spec. PnP sensors
LAN, WiFi,
Bluetooth

Spec. PnP sensors
LAN, WiFi,
Bluetooth

Any I2C or
RS485 sensor
Software level
adaptation

Sensors
per device

Practically
unlimited

8 per gateway
4 per IoT device

Practcally unlimited
1 for HY LOG

4 per device

GSM
module

External Integrated
External
Internal(HY LOG)

Integrated

GPS
module

External Integrated
External
Internal (HY LOG)

Integrated

Power
options

AC or DC;
battery backup

AC or DC;
battery backup;
External
solar system

AC or repl. battery;
Solar (HY LOG)

Integrated or
external
solar system

Regarding connectivity and supported sensors, Aegex and BARTEC support manufacturer-
specific sensors as separate devices that could be added to a network plug-and-play man-
ner using LAN, Bluetooth, or Wi-Fi. At the same time, Cassia’s solution relies only on
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Bluetooth for connection. On the other hand, our solution works on a bit lower level, of-
fering I2C and RS485 connectivity for any low-level sensor with such possibility. Our
solution allows connecting to 4 sensors, the same as the Aegex solution. Aegex solution
would need a gateway for each IoT node, while our solution gateway node is unnecessary.

The most similar solution to our node is BARTEC HY LOG. It is a complete system in
one enclosure dedicated to monitoring the quantity of hydrogen. This device also supports
GSM connectivity and GPS tracking by default, but it is committed to only one task. Like
our IoT node, it has an incorporated solar panel and can run independently from a wired
power supply. Other systems support integration with GSM, GPS, and solar-powered bat-
tery power supplies, but only through external devices, which makes the system much
more extensive and complex for installation.

The proposed solution is a complete system in one device, intended to work without
human intervention and with the possibility of connecting to any sensor running sup-
ported connection interfaces. It offers software-level flexibility, which means that the
nodes with the same hardware configuration in the same network can run different pieces
of software and perform different tasks. The basic architecture is IoT-centric, meaning
separate gateway devices are unnecessary, and all nodes connect independently to higher
levels. The consequence of this approach is that scalability is not dependent on the IoT
level and its features and characteristics but on the performance and capacity of the higher-
level machines. Since all nodes are equal, maintenance is done by simply replacing the
malfunctioned device with a new one and initiating the OTA setup after the new node has
been registered in the cloud server.

7.2. Limitations

When building the experimental setup, we considered the deployment in remote locations
on the top of the objects containing dangerous fluids. In such cases, the node would be
under constant exposure to sunlight (during daytime), and the charging should be close
to optimal; thus, the choice to locate a node on the rooftop would be a likely solution
for the test location. We must note that the area of South Europe is an environment with
very high solar exposure levels. In our location, the solar exposure is rarely under 1.5
kWh/m2, even in the winter months [37], which is higher than the certification exposure
rate for solar panels (usually 1 kWh/m2). Compared to colder and cloudier environments,
such a setup will provide faster charging and more energy for the battery.

Indoor experiments were mainly focused on building the node configuration and partly
on checking the charging in the cases where the node will receive a lower amount of
light. Generally, the node could be placed differently from the connected object, leading
to partial daily sunlight exposure. For this reason, we conduct the experiments indoors
where the node will be in the shade, or even covered, for the day and receive less solar
energy. These experiments are part of our work on the improvements in battery charging
routine, and they will be presented in future papers. However, this still could not cover all
real-world exploitation problems, including many additional issues, such as mechanical
damage, node disconnection, and various problems that could appear. However, handling
unexpected situations is currently supported through different alarm-based routines. They
promptly notify the Edge and cloud levels when node operations get jeopardized.

Another limitation is that besides their widespread usage in IoT implementation,
MQTT protocols have particular security vulnerabilities [29]. The most common vulner-
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ability is a connection without encryption, which usually results from choosing the fastest
possible unencrypted communication. To suppress the vulnerabilities resulting from com-
munication over unencrypted channels, the proposed IoT node’s security is improved us-
ing SSL/TLS protocol combined with internally supported ESP32 hardware encryption
[20]. We rely on the MQTT-integrated SSL/TLS protocol for transport and payload en-
cryption, using port 8883 by default. This approach is suitable for ESP32-based appli-
cations due to its processing power. Combined with ESP32 hardware-level encryption, it
ensures data integrity and prevents reverse code engineering. There is room to introduce
additional encryption and countermeasures without increasing the amount of energy used.

The general drawback of these approaches is that the node will still be vulnerable to
known SSL/TLS and ESP32 crypto-related problems but much safer than the use without
any cryptography measure. Also, programmers must carefully write the code to prevent
“lapses in developer awareness” [29] by exposing critical pieces of information, and any
additional computation will use more energy in the node.

The use of adequate communication channels is the next point to mention. Since the
ESP32’s integrated Wi-Fi and Bluetooth were not suitable for intended use, they have
been replaced by LoRaWAN and GPRS modules. Later, two communication protocols
were designed to support long-range communication. Due to their energy consumption
levels, LoRaWAN has been chosen as the primary and GPRS as the backup channel.
Generally, the main drawbacks of LoRaWAN are low bandwidth and packet size. The
low bandwidth itself peaks at around 10kbit/s in Europe [55] and it is unsuitable for high
loads of real-time data, thus low packet size. In our testing scenarios, we observed that
when collecting the higher amount of data in the transmission queue, they could not be
sent within a single transmission. Still, they must be split into several messages.

A similar limitation is for GPRS connection, too. GPRS has a higher sending data rate
and more significant message size limitation [52], but it is significantly slower and under
the capacity of standard Wi-Fi in these terms, too. Since the primary requirement is to
achieve data transmission over long distances, LoRaWAN and GPRS have been chosen
as the more adequate means of transport. Communication-based on LoRaWAN is widely
used in this device class both in experimental and industrial applications.

The proposed platform runs on the ESP32, which performs excellently compared to
earlier versions of microcontrollers used for IoT applications. However, it still does not
provide the processing level or memory capacity of the Edge or cloud-level computers.
The primary limitation in terms of software complexity, flexibility, and scalability on the
node’s level lies in the hardware background of the node itself and its use at the IoT
level. The situation is different if we look at the whole picture of the system consisting of
IoT, Edge, and Cloud level nodes, with the possibility of updating IoT nodes in the OTA
manner. Since the node is registered in the cloud by its MAC address, the server at the
cloud level could initiate a software update and replace the existing set of routines with
another, significantly changing the node’s role. In that way, the node’s flexibility could be
improved. In such a scenario, the limitation would be hardware connection to sensors, if
any, which must be replaced to ensure proper node functioning.

7.3. Reliability Analysis and Next Steps

Future work will enhance IoT nodes by employing redundancy and reliability improve-
ment schemes, such as failure partners. In this way, nodes will be able to cover more
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scenarios that are outside their current niche. Currently, redundancy is supported on a
sensor level. A single IoT node can monitor multiple sensor devices of the same type
(usually two), and they can act as failure partners. In this scenario, the operation node
uses one sensor until its return values are within a predefined range. When the sensor re-
turns unbalanced or out of the predefined range values, the IoT node will raise the alarm
and switch to the backup sensor. This complete control is done on the software level. It is
worth mentioning that such an approach will result in lower energy consumption but with
lower flexibility.

The update of the failure partner scenario at the sensor level will be the approach when
both sensors are active simultaneously. In this case, the IoT node compares results, and
when one of them starts generating invalid values, the IoT node completely switches to
the one that functions correctly. The sensor in a failure state could then be shut down,
and an adequate alarm could be generated. When the sensor malfunction gets repaired or
replaced, it will send the notification signal to the IoT node, which will start the recovery
procedure. This approach does not guarantee 100% reliability since there is always a
chance that both sensors could go to the failure state. In this case, the system will react
by raising the highest priority alarm. The same type of alarm will also be raised when the
sensor gets to an error state, but no redundancy device is installed. When only one sensor
is present and it fails, the situation is beyond software-directed recovery, and physical
intervention must be done. This update will also be entirely on a software level.

One of the limits is the possibility of replacing the processing and communication
modules. They are in the device casing, so any repair or replacement action would require
node disconnection and replacement. For this reason, introducing redundant IoT nodes
will be one of the possible solutions. Another possibility for improvement would be re-
configuring the complete network by introducing different IoT nodes with different roles.
When one would be used only for data collection, the others could be used for data pro-
cessing and transmission. This way, the system would be more robust and reliable but at
a higher maintenance cost since more nodes must be employed and more software vari-
ants must be maintained. Such an improvement would move the architecture towards a
gateway-centric model, but with all nodes running the same hardware.

The introduction of redundant IoT nodes is the solution to handle cases with hardware
errors. In a configuration with two IoT nodes, both have an equal structure and have the
same software installed. One of them acts as a master, and the other one is a slave. The
configuration with master and slave IoT nodes is a shift away from IoT-centric design
since both nodes must be connected to the same set of sensors over the communication
line. This would result in more expensive solutions and a significant shift to gateway-
centric architecture. Compared to redundant partner design, the difference is that only the
master can trigger data exchange with the Edge level. At the same time, the slave will only
listen to the traffic and receive the data sent by the sensors. In this situation, the master
IoT node is active, and the slave is in the so-called sniffer mode. When the IoT node is in
the sniffer node, it sends no data to higher levels (Edge computer).

When the slave node does not receive the keep-alive message for the predefined pe-
riod, it will try to connect to the master node (ping). If there is no response from the master
node, the slave will switch to the active (master) mode. At that moment, the former slave
IoT node will take over the complete functionality of the former master and set up all the
functions needed for the sensor and Edge layers. This procedure will be executed without
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human intervention, and when such an incident happens, the new master node will send a
high-level alarm to the Edge layer. Also, regarding software updates or hardware replace-
ments, one node could be shut down for updates while the other will continue to collect
measurements. Research in this direction would also switch the deployment paradigm to
gateway-centric design, bringing higher reliability but at a higher maintenance cost. With
such an update, the solution will be more suitable for more extensive deployments and
leave its current niche. Expanding communication to higher levels will focus on security.
Currently, both ESP32 and additional communication modules support basic 802.11 se-
curity standards. Since this could be easily broken, one of the focuses for the next phase
will be the acquisition of advanced security protocols for IoT devices.

The presented research was focused on the design of the single node. In terms of
scalability, it is equal to the scalability of its building blocks. The most important feature
of the design is the possibility of integrating the IoT node into broader systems. The
node can communicate with the environment using two channels (LoRaWAN and GSM)
and, optionally, two channels that come as part of ESP32 (Wi-Fi and Bluetooth). The
proposed IoT nodes could theoretically cover unlimited sensing devices by participating
in the more comprehensive network. Each IoT node could connect to RS485 and I2C and
transmit data to the Edge level. Using the MQTT-SN protocol, the designed IoT node can
connect to every system that supports such communication.

Improvements in the battery charging algorithm would be necessary for future de-
sign improvements. As the first step, we introduced externally controlled charging, which
could be triggered from the Cloud or Edge level and force the IoT node to start to charge
the battery. Next, we replaced simple threshold-based charging with an improved pro-
cess that considers the current battery level, the estimated energy consumption, and the
time until the next sunrise. The focus is currently on defining the method based on the im-
proved techniques and machine learning to define autonomous models, which will ensure,
if possible, IoT node operation in the off-grid environment.

8. Conclusion

The paper introduces a novel combination of energy-efficient hardware selection and
adaptive software control to manage power consumption autonomously. Multiple limi-
tation factors, such as casing design, cost, and the worldwide availability of used compo-
nents, drove the design request. The starting point was a solely used ESP32, and during the
development, the inefficient hardware elements were replaced, and an autonomous power
supply system was integrated. This was a challenge because used components were often
designed to run in factory conditions without power or connectivity limitations.

Thanks to the advanced operating system of the ESP32 node, further improvements
were made through the set of software implementations and updates, including the defini-
tion of the optimized working mode. By integrating hardware and software optimizations,
this work improves upon traditional IoT designs for Industry 4.0, offering enhanced effi-
ciency for deployment in remote and hazardous environments. This research was con-
ducted in parallel with investigating diverse deployment strategies for client software
across various ISA-95 layers. Throughout this process, the node was integrated into a
digital twin structure in the cloud, and the possibility of the software OTA update and
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monitoring was enabled. Overall, all software design and hardware configuration opti-
mizations aimed to enhance energy efficiency (Table 9), and this goal was achieved by:

– Implementing different battery charging routines to maximize energy collection ef-
fectiveness. Since the standard battery charging routine triggers relatively rarely (once
a week or bi-weekly), automatic charging could start at night or in bad weather, re-
sulting in no energy gain. To suppress this, a controlled charging mode, initiated from
the Edge level, was implemented, which could trigger battery charge on demand, by
a predefined schedule, or based on the weather forecast.

– Utilizing external low-power communication components. The LoRaWAN compo-
nent for real-time transmission reduces energy use by nearly half (50.64

– Defining a new controlled active mode optimized for the anticipated use. The new
mode with the communication part disabled utilizes 72% of the energy used in com-
parable modem sleep mode (36 mA vs. 50 mA) and only 40% of the power that would
model sleep mode with active sensors (69 mA vs. 149-200 mA) would use. A similar
ratio applies when sensors and the LoRaWAN module are active – 98 mA vs. 200 mA
when ESP32 is in standard active mode with sensors enabled.

– Implementing adaptive software that ensures seamless transitions between active and
sleep modes. Based on the required measurement, processing, and transmission fre-
quencies, the controlling software will decide when to switch the active components
off and reduce energy consumption.

– Integration into digital twin that allows early warning mechanisms and OTA updates.
The frequency of transmission of node health parameters to digital twin could be
configured, but their size is the equivalent of a single packet containing data collected
from sensors. Usually, it is enough to run such a telemetry for once after 1000 data
collection cycles. The additional energy consumption caused by such a process would
be less than 0.1

– Using message buffers to reduce the number of data transmissions. For the most com-
mon scenario with LoRaWAN, using a buffer of size ten will result in an energy re-
duction of 25%, while using a buffer of size 100 will result in a reduction of up to
55%. When a message buffer of size 100 is used, the total energy consumption will
be very close regardless of the transmission module used.

The more notable gain is when GPRS is used for transmission. If a buffer of only
ten messages were used, only 22.40% of the initially required energy would be used. In
contrast, with a buffer size of 100, the consumption will be reduced to 9.38%. Notably,
this approach introduces a trade-off: while it reduces energy usage, reporting to the Edge
layer will be less frequent.

Continued improvement efforts are directed toward enhancing system reliability, fault
tolerance, information security, and overall system readiness and availability. As a prelim-
inary step, we envision enhancing reliability by introducing additional redundancy at the
IoT level, bolstering robustness and error resilience. Further improvements to the battery
charging subsystem, as well as possible security updates and vulnerability prevention,
will also run in parallel with ongoing node development, aiming to extend battery life and
mitigate the risk of power depletion.

An ancillary outcome of this research is a set of design recommendations formulated
during the enhancement process:
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– Standardized Components: Adhere to proven standardized components that have
demonstrated reliability in real-world conditions.

– Module Disabling and Replacement: Permanently disable or replace modules that fail
to meet performance expectations.

– Feature Flags for Dark Mode: Introduce feature flags to enable dark mode in regular
software operations (not exclusively for software updates).

– Message Queues and Buffering: External management of message queues and buffer-
ing must be employed to adapt the node’s operation dynamically.

– Integration with Digital Twins: Enable permanent monitoring by integrating IoT
nodes with digital twins.

Table 9. Energy-saving enhancements

Updated Compared aspect
Energy

reduction

CAM Mode ESP32 Light Sleep Mode 20–30%
CAM Mode ESP32 Active Mode 45–55%

CAM + Sensors
Sensor reading and ESP32 processing
in active mode

50–70%

LoRaWAN ESP32 integrated Wi-Fi 50%

Transmission buffer
of size 100

Immediate transmission upon processing.
The used energy is nearly equal
regardless of the transmission device

55–90%

The node is designed to fill a niche in the industrial solution landscape opened by the
need for an IoT-centric system consisting of an array of nodes based on the same hardware
and able to run different pieces of software. Such nodes could form an OTA-controlled
network where each element could be easily reconfigured and take on a new role.

This paper focuses on the node’s general hardware and software structure and its pri-
mary role – collecting, processing, and transmitting data read from the sensors, using the
lowest possible amount of energy, and having the complete node delivered in a single
packaging.

While the presented node operates within a specific industrial context, the solutions
it embodies transcend disciplinary boundaries. Authors must remain receptive to diverse
concepts, regardless of their research origins. This study underscores the ongoing need
to continually enhance energy-efficient component usage, evaluating and incorporating
solutions as they prove sufficient.
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Nomenclature

Acronym Description

ACH Average energy Consumption per Hour
AL Alarm Low energy level in battery.
CAM Controlled Active Mode
CL Charging required Level
ESP32 Low-power microcontrollers are widely used in IoT applications.
Ex e The class of device enclosure constructed and certified as explosion-

protected according to the Increased Safety standard.
FreeRTOS Free Real Time Operation System. Operation system native

to ESP32 controller
GPRS General Packet Radio Service, data transfer standard for mobile networks
GPS Global Positioning System. Satellite-based radio navigation system.
GSM Global System for Mobile communications, standard for mobile networks
I2C Inter-Integrated Circuit. Serial communication bus used to attach

lower speed sensors
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
ISA-95 Standard from the International Society of Automation for developing an

automated interface between enterprise and control systems.
LoRa Low Radiation. Network protocol to wirelessly

connect battery-powered devices.
MAC Media Access Control
MQTT Message Queuing Telemetry Transport protocol
MQTT-SN Message Queuing Telemetry Transport for Sensor Networks protocol
OTA Over-The-Air. Update to an embedded system that is delivered through

a wireless network
RH Requested High level. Battery level where charging should stop.
RS485 Recommended Standard #485. The standard for serial communication

between devices
RTC Real-Time Clock
SH Standard High battery level
SIM Subscriber Identification Module. The card is used to

enable mobile communication for devices.
SSL/TLS Secure Socket Layer / Transport Layer Security
SL Standard Low Battery Level
ULP Ultra-Low Power. Processing unit optimized for low energy consumption.
UMTS Universal Mobile Telecommunication System.

Cellular system for network based on GSM
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