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Abstract. Complex industrial systems consist of many heterogeneous devices 

running different hardware and software in a connected, layer-organized 

environment. Since all these software instances must be updated occasionally, and 

since they could affect the layers under and above, the definition of deployment 

strategies that will reduce downtime is necessary. In previous work, we focused 

on identifying common problems in software update processes and concentrated 

on the most effective update strategies running at the lowest (Internet of Things – 

IoT) and highest (Enterprise Resource Planning – ERP) levels. The result was a 

set of recommendations and strategies that should help minimize network 

utilization and processing resources and make the process as energy-efficient as 

possible. After that, the core effort of the research is shifted toward the 

Manufacturing Execution System (MES) layer – the layer that brings the higher 

complexity, both in terms of connectivity and software complexity. Following the 

actual Industry 4.0 paradigm, the software in the MES layer becomes even more 

critical since it is expected to integrate a whole new set of responsibilities 

previously belonging to various levels or external solutions. To facilitate further 

requests, deployment strategies are reevaluated and enriched with innovative 

approaches such as A/B testing and the separate update service. This paper shows 

the possible further development of the hybrid software deployment system when 

applied to the multiconnected levels, such as the MES. The adaptation shows 

positive results regarding the network load distribution and significant effort 

reduction when a rollback is needed. 
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1. Introduction 

Complex industrial systems represent an exciting conglomerate of various technical 

solutions. Knowledge from different engineering sciences is needed to solve the 
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challenges from process modeling, signal collecting, and processing through plant layout 

design to raw materials and finished goods transportation, distribution, and storage. 

Nowadays, all these aspects are supported by adequate software. Due to significant 

differences between diverse aspects of the organization in the industrial facility, the 

complete structure is divided into standardized layers. The standard ISA95 [1] defines in 

detail how to split the industrial system organization and what the responsibility of each 

layer is. Following the standard, the information technology (IT) subsystem in the 

industrial environment consists of many heterogeneous devices running different pieces 

of software in a connected and layer-organized environment [2] (Fig. 1). Starting from 

the sensor and actuator layer connected with microcontrollers (in our work, we will 

reference it as the IoT layer) [3], through the Edge layer [4][5], via SCADA [6] and 

manufacturing execution systems (MES) [7] to enterprise resource planning (ERP) [8], 

all pieces of equipment run the software that needs to be updated occasionally. 

 

Fig. 1. ISA95 levels according to the industrial standard [1] 

Software update, as a process, is an activity that is considered highly problematic in 

the industrial environment. From the point of view of the process engineer, it should 

either happen never or only in predefined maintenance slots. It came from the 

experience with the previous deployment methods, where intensive planning must be 

done, and some areas of the industrial facility will be disconnected for a more extended 

period. If deployment needs to be reverted or reconfigured, the problem will be even 

more significant. 

In our previous work, we have been focused on the deployment of the software in the 

lowest (the IoT level [9]) and the highest (the ERP level [10]) levels of the system. From 

the connectivity point of view, these two layers have been of minor operation 

complexity since they maintain connectivity only to nearby levels. IoT nodes are usually 

connected only to Edge computers, while the ERP communicates with MES. The main 

difference between them is the requirements regarding the volume of the needed 

resources. In the IoT area, resource shortages are faced in every aspect of work.  

This paper represents the direct extension of the work published in the CERCIRAS 

2021 workshop. The definition of the testing environment and the default deployment 

strategies used for IoT nodes were the starting point and thus included in this work. This 

paper describes the usage of the concepts of the software update approach for a single 

node with limited storage space and expands then further on the application at the MES 

level. 

As mentioned, any deployment strategy must consider energy consumption, storage 

space, and processing power. Such an environment requires carefully defined 

deployment methods and, even more importantly, backup and restore strategies in case 

of unsuccessful deployments. The next step was to generalize the approach described for 
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IoT nodes and apply it to the ERP layer [10]. In that sense, this paper could be seen as 

the further continuation of the work we described in [10]. Since ERP layer software was 

built with more advanced software tools, it offers more possibilities for defining the 

update strategy. In that sense, the different software deployment methods were analyzed, 

and a set of routines that should improve deployment scenarios was proposed and 

evaluated. Deployment strategies, defined in [10], were the next step in our deployment 

and were thus used as another starting point in our work. The explained use of advanced 

strategies was another building block to define routines for the MES software. The 

software at the ERP level shares the complexity, technology stack, and implementation 

approaches with MES, which was of significant value for this work. 

The next goal is to apply the proposed deployment routines to the MES layer. MES is 

the layer that brings the higher complexity into the design, both in terms of connectivity 

and software complexity. Following the actual Industry 4.0 paradigm, the software in the 

MES layer becomes even more critical since it is expected to integrate a whole new set 

of responsibilities previously belonging to various levels or external solutions. 

Deployment strategies are reevaluated and enriched with innovative approaches to 

facilitate further requests. For example, the MES server could be connected to SCADA 

on one side and to the ERP on another. In contrast, the clients could be connected 

directly to measuring devices in Edge or IoT to register and visualize different 

measurements. 

In this situation, downtime during the update needs to be evaluated through multiple 

sides to ensure proper reconnection and operation continuation from various sides. Also, 

one must remember that with new requirements under Industry 4.0, the MES software 

should offer new functionalities that often come without full specification and where 

multiple versions must be simultaneously evaluated. This paper shows the results of the 

research that had the following research tasks: 

- Test and adapt the deployment strategies suggested in [9] and [10] and try to 

use them both for server and client components of the MES level. 

- Focus to reduce network load on the MES server side. 

- Organize deployment to stop the erroneous deployment as soon as possible. 

- Integrate the process of the practical test of new functionalities when the 

customer must choose between multiple solutions. 

This research relies on our previous work, primarily described in [9] and [10], and 

represents its continuation and improvement. 

2. Background – Industry 4.0 Paradigm and Existing MES 

Systems 

MES and Industry 4.0 are critical components of the modern manufacturing landscape. 

They aim to integrate technology and data to optimize production processes, improve 

efficiency, and drive innovation in many new ways. Industry 4.0, the Fourth Industrial 

Revolution, represents a radical shift in manufacturing practices.  

It involves the digitization and the use of advanced scheduling and execution 

algorithms in manufacturing processes, moving away from mass production towards 

customized production that caters to individual customer requirements (Fig. 2). This 
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means that a portion of the planning and scheduling will be moved from ERP to the 

MES level. Next, MES plays a crucial role in Industry 4.0 by providing real-time 

visibility, control, and intelligence across the entire product life cycle value chain. It 

should allow for seamless communication, analysis, and data utilization to drive 

intelligent actions in the physical world. This means that the connection from MES will 

not only go to the SCADA layer but also directly to Edge, IoT, and sensor networks in 

some cases. 

 

Fig. 2. Main elements of Industry 4.0 

With full rights, the new generation of MES and Industry 4.0 is expected to enable 

organizations to harness the power of digital technologies and intelligent, connected 

systems to revolutionize their manufacturing processes. They would allow organizations 

to optimize production processes, improve efficiency, and drive innovation by 

leveraging robotics, analytics, artificial intelligence, nanotechnology, the Internet of 

Things, and cloud computing. These technologies enable organizations to automate 

tasks, analyze data for actionable insights, and connect various parts of the production 

process for seamless coordination and optimization. At the same time, it is, more than 

ever, expected that software runs with the lowest possible downtime and that all 

activities run as smoothly as possible. 

While previous work focused on single-connection levels, like IoT and ERP, this 

paper will evaluate the application and extension of the existing set of recommendations 

for software at the MES level. MES-level software significantly differs from those 

running in IoT nodes but is closer to ERP systems. First, MES systems usually follow 

service-oriented architecture (SOA) with various clients.  

These software instances run on servers or in the workstation, with significant 

processing power and memory storage compared to IoT nodes. It looks like the MES 

systems run in an environment where resources are not the problem, but it is not quite 

like that. Depending on the configuration and the set of required operations, MES clients 
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could weigh up to a few hundred megabytes. It depends, of course, on the 

implementation technology and other dependencies. Still, if they are implemented as the 

thick client, the usual user requirement, their update process could employ significant 

network traffic. 

Compared to ERP software, MES runs fewer complex algorithms, but it connects 

more extended software and services and runs in significantly more numbers and 

variants of clients. It is also essential to state that with the current technology demands 

fueled by the Industry 4.0 initiative, the importance of the MES system rose. Nowadays, 

MES is often required to provide many functionalities native to other systems. The MES 

should now support continuing different reporting, overall equipment effectiveness 

tracking (OEE), Andon boards, deeper integration with ERP systems and SCADAs, and 

ending various synchronizations with warehouse, packaging, and other systems. 

3. Related Work 

The existing literature offers various deployment strategies, evaluations, and 

recommendations. In most cases, the existing research covers software that runs in layers 

such as MES and ERP. Besides, it has been constructive for our current scope of 

research, but it was a bit misleading when one tends to define the close-to-universal 

strategies and approaches. These higher layers deal with clients transferring significant 

data and executing numerous transactions. When defining development strategies for 

lower levels, the standard approaches from the literature are not directly implementable 

due to their unique limitations.  

The most critical points for resource management at lower levels are storage capacity 

and data traffic through connecting networks. The overall effect is not the same on all 

layers [15]. MES runs in a shop floor environment on devices with processing power 

similar to standard computers. 

The storage space is not a critical requirement for devices running MES or ERP 

software, but they are usually connected to their server using the wireless network. The 

wireless networks in the industrial environment could experience different disruptions 

because of operating nearby machines generating high-frequency harmonics and other 

security threats [16]. Data package verification and consistency are critical for MES and 

ERP client nodes. When deploying a new software version to some device, an update 

package of significantly higher volume than usual data traffic needs to be distributed via 

a network, verified, and stored on the destination device. The old version needs to be 

backup in case of rollback [17] [18]. Next, the Edge layer's primary mission is to collect 

all the data from sensor networks and pass it to the MES. In this case, the proper buffer 

implementation ensures smooth software upgrades. 

All the mentioned layers are highly heterogeneous, with different pieces of hardware 

running the software instances with diverse categories of software. Overall, in the 

complete industrial system, the type of used devices, their number, and the amount of 

transferred data (per device) could be between 1kB and 1GB. To make the complete 

process more demanding, the devices sometimes do not have enough memory to store 

two software versions; thus, they would require backup in a different location. This 
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leads to the situation that sometimes it is nearly impossible to upgrade with no downtime 

or at least with very low downtime [19]. 

As with every process, a software update could fail for numerous reasons. In that 

case, a complete deployment approach or deployment system must provide the 

possibility to roll back to the previous version [20]. The rollback will then take more 

resources and worsen the situation, so we need to ensure that system governance 

successfully goes through the process [21]. 

To reduce the impact of the mentioned problems and potential system downtime, we 

aimed to define a more general approach that could be configured to use the 

combination of blue-green [22] and canary deployment [23] styles in combination with 

both shared and local backups [24]. This approach looks promising at the IoT level. The 

approach was tested in a production environment, and the results were published in [9] 

and [10]. 

Working on a general set of recommendations [9] [10], we conclude that regardless 

of the type of software and the operating level, the blue/green approach could be 

effectively used at any node (Table 1). New components used to build IoT nodes 

increased memory and processing power, so keeping two versions simultaneously would 

probably not be a problem. The blue/green approach, per se, could be improved with 

additional techniques such as buffers and backup nodes [9] [10]. For example, at all 

levels, a blue/green approach supported by the dark mode with feature flags could be 

used for server node deployment. This will give flexibility and security; newly 

developed features could be gradually turned on until the complete server update is 

reached. For clients, blue/green is the primary choice, which could be enriched with 

buffers and feature flags if the resource pool and used implementation technology allow. 

Table 1. Elements of the deployment strategy used in various levels (BG – blue/green, DF – dark 

mode with feature flags, CS – canary with sentinel node, CB – canary with backup node, IB – 

intermediate buffer, (XX) - optionally) (as suggested in [10]) 

Level Server Client network Single Client 

Levels 0 and 1 (sensor network) BG + (DF) CB + IB (BG) + IB 

Level 2 (IoT nodes and Edge computers) BG + DF CB / CS + IB BG + IB 

Level 3 (MES) BG + DF CS / CB BG + DF + IB 

Level 4 (ERP) BG + DF CS BG + DF + IB 

 

The level of downtime reduction is significantly reduced in this scenario compared to 

standard approaches such as recreate deployment and rolling deployment [27]. In the 

recreate deployment, the previous version of the software is shut down, and the new one 

starts after the old one has been stopped. Rolling deployment is applicable for complex 

systems with multiple servers. It is based on the recreate deployment but applies to 

various services. The downtime is exceptionally low, but the length of an upgrade 

process depends on the number of servers/nodes in an array, and it could take 

considerable time. The proposed deployment strategy will improve overall deployment 

time even more in the case of the rolling strategy since the blue/green switch could be 

done in the close period; there is no need to wait until all the servers are updated in the 

sequence. 

The new request that does not fit into the proposed framework is to have the 

possibility to support simultaneous evaluation of different versions of functionality. 



Hybrid Deployment Strategy           407 

Besides, it could be done through the feature flags, but it will eventually require more 

consolidation and stabilization work. The A/B testing deployment approach is included 

to address such requests. This approach is used on the client side to improve the 

development and test phase and provide the possibility for limited testing in the 

production environment. This approach aims to offer different functionalities to some 

clients and then evaluate the user's reaction and acceptance. The update is usually done 

in a few groups of varying sentinel nodes.  

Recreating and rolling deployment are crucial concepts in software development and 

operations at the MES level [28]. Recreating refers to rebuilding a software system or 

environment from scratch, often to resolve issues or update components. On the other 

hand, rolling deployment involves deploying new software versions in a gradual and 

controlled manner, allowing for continuous delivery and minimizing downtime. 

Integration with other systems and services traditionally occurs at the end of a 

development life cycle, but rapidly developed applications are integrated almost 

immediately. Testing occurs during every iteration, enabling stakeholders to quickly 

identify and discuss errors, code vulnerabilities, or complications and immediately 

resolve them without impacting the development progress. As stated in [29], “integration 

with other systems and services traditionally occurs at the end of a development life 

cycle, but rapidly developed applications are integrated almost immediately”. This 

iterative approach to development and testing is a crucial aspect of recreating and rolling 

deployment methodologies. 

 

Fig. 3. A/B testing deployment 

A/B deployment (Fig. 3) strategy has become increasingly popular in various fields, 

including technology, marketing, and product development. This strategy involves 

testing a product or service's versions, A and B, to see which performs better [25]. The 

first source highlights the importance of product or service innovations in engaging 

customers and improving performance. It suggests that the market development strategy, 

which focuses on pursuing additional market segments or geographical regions, can 

increase sales but also comes with more risk. The second source discusses different 

methods for gaining market share, including product development and market 

development [26]. In the Industry 4.0 era, the use of A/B testing deployment is a 

comparable advantage within the installations of MES. The installation supports A/B 

testing and easy transition to the new version, which is considered more advanced and 



408           Petar Rajković et al. 

customizable. The A/B testing is widely popular with deployment based on container 

technologies, such as Kubernetes [30], since they involve end-users in decision-making 

over the new version of the software. 

4. Testing Environment 

As it has been known, the update process comes with the risk of diverse potential 

failures that could leave parts of the system unresponsive, running with unpredictable 

behavior, or emitting erroneous data. For this reason, the update process must be 

executed in a highly controllable environment that allows easy and efficient rollbacks in 

case a flawed deployment is detected. As stated before, all software components in the 

industrial system are usually organized in layers. Layers exchange data with each other 

using different software protocols. The mentioned facts make the overall software 

update process a bit more complex than within a standard information system 

environment, and every error could lead to serious domino effects [11] [12]. Updating 

software in one layer could impact the targeted device and other devices in the same and 

different layers. For example, the update performed on the device running at the MES 

level could affect software instances running in other layers. 

The additional limitation point is the expectation for the highest possible performance 

and the requirement that software run using as few resources as possible. The complete 

system must have a high degree of resource awareness, and both storage space and 

network bandwidth usage must be carefully planned during the update process in order 

not to reduce the execution of the running components significantly [13][14]. For this 

reason, the resolute digital twin is used for testing.  

The digital twin (Fig. 4) is created partly in the laboratory environment and partly in 

the cloud to simulate different connectivity scenarios and have an overview of worse-

case scenarios regarding latency and execution. The emulated hardware in a digital twin 

is set to the lowest acceptable resource level, which should simulate worse execution 

conditions than those in the production environment. The testing digital twin is 

introduced while implementing the one-of-the-kind production system [32]. As the demo 

factory, the plant producing doors and windows is set. 

Such a production facility is used for demonstrating since it combines all diverse 

kinds of production and needs multiple sensors and precise mechanical units to be 

integrated. On the MES, the level needs several diverse types of clients and services. 

The digital twin environment used for testing was described in [10] and improved to 

support more complex environments. Previous research focused either on IoT nodes, 

which were entirely configured in the local network, or on ERP clients, which were all 

the same and ran only in the cloud. The IoT level in the digital twin consists of 100 

nodes connected to simulated instances of sensors and actuators. Each IoT contains a 

different number of sensors and actuators, which count within the node and could be 

anything between a few and 1,000. The count of 100 gives enough flexibility and 

complexity to perform testing in the development phase.  

The digital twin, an exact mirror replica of the industrial facility environment, could 

be created for the production phase. In the default model, following the ISA95 model, 

sensors are connected to IoT nodes. Especially after the Industry 4.0 concept brought 
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new requirements for MES systems, a direct connection between MES clients and 

measuring sensors could be established, too. 

 

Fig. 4. The composition of the examined system containing all levels of the ISA95 model 

Sensors within one IoT node could be different, and all could run various software. 

Sensors could be active either constantly or just for predefined periods. They could 

collect heterogeneous data with varying sample rates during their operation time. All 

these facts make the IoT level very dynamic from the operational point of view. They 

could increase the probability that the complete node went out of a stable state in case of 

problematic deployments.  
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The available memory space is usually between 1 and 5 MB per device, which is 

enough for the necessary software. The nodes in the IoT layer are connected using 

various methods, ranging from cable network connectors to LoRaWAN, which creates 

an inconsistent environment in terms of connection speed and quality. The most 

complex situation is with LoRa-connected devices since their bandwidth could be only 

10-20 kbps. 

IoT node layers are further connected to Edge computers or Edge nodes. Edge nodes 

communicate between the shop floor and hazardous areas on one side and higher levels, 

such as MES and enterprise resource planning (ERP), on the other. Edge nodes are 

devices based on Raspberry Pi or similar base sets and are usually connected by a 

Wireless network with an effective network speed of around 20 Mbps. Their space 

requirements are around 30 MB per node. There were 10 of these nodes in our test 

environment. To support testing, the mesh of 10 Edge computers is modeled in digital 

twin. Each of them is set to collect data from 10 IoT nodes. 

From the resource awareness point of view, software components on MES and ERP 

levels are easier to manage. They run on desktop/laptop computers with enough 

processing power, disk space, and bandwidth, but resource planning is inevitable even 

with them. In our test environment, we used 200 MES clients connected to 4 MES 

servers (two load-balancing and two redundant, with the possibility to change the 

configuration) and 30 ERP clients connected to the Microsoft Dynamics server. All the 

clients at this level are a few hundred megabytes in volume and are located under a 

gigabyte network. 

Table 2. Different MES clients and their functionalities 

MES Client Type Connection within MES Level Connection to other levels/services 

Administrative Server ERP 

Operation Buffer, Server Edge 

Configuration Server ERP, External cloud services 

Management Server, Operation clients Reporting 

Measurement Server IoT, Edge 

 

Different connectivity and execution actions support different types of MES clients 

(Table 2). Administrative clients perform operations related to the ERP level. They are 

responsible for synchronizing operations definitions, catalog data, material definitions, 

and other master data needed to properly exchange data between MES and ERP.  

The operation client has a connection to the execution buffer on the MES side and to 

the Edge level. The execution buffer is an optional implementation that allows clients to 

continue to run when the server is offline. It contains a buffer filled with tasks that must 

be executed in the workstation and collects data generated during production. Once the 

connection is reestablished, the data flow will resume, and the server-side upgrade will 

have the lowest possible impact on the clients. 

The configuration client is described in detail in [32]. It is used to define new 

products and eventually upload these data to cloud services and ERP. The management 

client acts as a synchronization node between ERP and operation clients. It is 

responsible for downloading production orders from ERP and uploading collected status 

change data measurements, etc. Ultimately, the measurement client will provide the 
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interface for material registration and integration with IoT nodes such as sensors and 

other measurement devices. 

5. Transition of Deployment Strategy from IoT to MES node 

The software update process for IoT nodes and sensor/actuator devices running in a 

production environment is particularly sensitive. In industrial automation, sensors and 

actuators emerge as fundamental components that underpin efficient, safe, and precise 

operations. These unassuming devices are pivotal in monitoring, controlling, and 

optimizing various processes across diverse industries. The update of such small 

components requires detailed planning before an update. Thorough planning is needed 

because they are, on the one hand, tiny both in size and capacity and on the other hand, 

they are running in a hazardous environment where the only possible connection is 

relatively slow LoRa networks with no wiring possible and limited physical access, (Fig. 

5). If some physical intervention is needed, the stoppage of the complete industrial 

process is often a requirement. 

Besides the slow network, the low-performance hardware is one additional potential 

problem. This fact could result in an unacceptable long update process, which could 

move the targeted device off the system for an extended period. The last, but not the 

least important, is the energy consumption problem. Software updates are an activity 

that requires significantly more energy than regular data collection and data transmission 

processes. Thus, this process must be planned for when the battery is charged to the 

highest possible level and when the eventual rollback will not drain the battery. 

At first sight, it looks like there are no common issues or problems between IoT and 

MES clients. MES clients have fewer limitations, especially in processing power and 

storage capacity. This statement suggests that one can assume that any kind of 

deployment strategy is convenient for MES clients. It could be said this from a strictly 

technical perspective, but when including different business requirements, it turned out 

that deployment at the MES level must be carefully designed, too. Furthermore, the 

main building blocks for both clients are similar (Fig. 5). In both client types, regardless 

of different implementation technologies, Communication, data collection, and the 

processing block could suffer from the same problem. The problems with the low energy 

level are related to IoT, while the MES clients could suffer from synchronization and 

compatibility problems. 

Noticing this, we realize that the deployment strategy defined for IoT nodes could 

apply to MES clients and be enriched with the experience through the ERP client 

deployment project as presented in Table 1. Blue/green deployment could be used if the 

destination node has enough storage space. The difference would be in the specific 

implementation technology, but the concept will remain the same. Additionally, an 

intermediate buffer, defined at the IoT node level, could be safely applied to the MES 

level. The MES nodes implementation is based on the concept from the IoT level and 

then enriched with additional features that will bring even further benefits to the MES 

level. 

Traditionally, the MES nodes usually used some of the classic deployment 

methods—recreate or rolling deployments. Such an approach has been acceptable in 
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recent years. Still, due to the manufacturing shift towards Industry 4.0, users started 

looking at the re-installation process connected with downtime as a problem. In the case 

of rolling-like deployment, the issue relates to a long waiting period until the new 

version becomes fully available. 

Furthermore, such an approach would require an IT assistant in the facility, ready to 

help, run an installer, or perform some similar support activity. Since this was not 

acceptable anymore, we aimed for an approach already applied in IoT nodes and for its 

transition to MES-level software. 

 

Fig. 5. Comparison of building blocks of IOT (left) and MES (right) client nodes 

5.1. Software Update Approach for IoT and MES Nodes 

Looking at the single IoT node, our choice for a software update is a semaphore-based 

green/blue approach (Fig. 6). This approach is possible with devices storing at least two 

software versions simultaneously. In this case, the critical points are typically low 

bandwidth and possibly low battery levels. The approaches to solving these two 

problems are elaborated further in [34]. 

The problems with applying such an approach at the MES level resemble the IoT 

level. First, data storage limitation is not, per se, the main issue, but the device could run 

into such a problem when the access rights for the installer are not managed correctly. 

The issues with access rights are not present in the IoT node since the vendor is 

responsible for hardware and software. At the MES level, the software is installed, in 

most cases, on the customer’s equipment, for which the IT security and management 

team is responsible for maintenance. 

As mentioned, the problem with low space could appear at the MES level if the 

installer has no delete rights for older versions. Since the MES clients could come with a 
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few hundred megabytes of installed software and generate large log files, the issue with 

the space could arise if the delete and backup processes are not managed correctly.  

Next, the installation could also create bandwidth problems if not appropriately 

managed. For example, in a factory with 200 workstations, each would require an MES 

client installed. In some cases, more MES clients could be launched on the same 

machine. At least 200 clients will require an update when an updated version is detected. 

If distributed from a single spot, as often chosen, the update process could easily make a 

bottleneck in the network. Furthermore, the MES client will maintain a connection to 

more layers in the ISA95 structure, which could cause further synchronization problems. 

For comparison, nodes at the ERP level, closely elaborated in [10], do not have 

connections to another system, which makes them much easier to handle. 

 

Fig. 6. Semaphore-based blue-green deployment strategy used for IoT nodes [10] 

Coming back from IoT nodes, the base for the deployment approach is a blue/green 

strategy. This is the backbone of our update system. It is easy to be implemented in any 

technology. The main idea behind the blue/green strategy is to ensure that the target 

device always keeps at least two software versions – actual running (version N-1) and 

previously verified (version N-2). To reduce the data loss during the switchover, the 

node setup is completed by a message queue. Message queue collects data from sensors, 

and data are removed from the queue after being processed. The queue could be 

implemented as an independent entity to continue collecting data during the switchover. 

The update process starts by replacing version N-2 with the new version N. At that 

moment, version N-1 is still active, and the device runs uninterrupted. During that 

period, the device experiences higher-than-average network traffic and battery use. Once 

version N – 2 is deleted and version N is uploaded and verified, the switchover could 

start. The device begins operating version N, but its communication points remain 

inactive. When version N is fully up and running, the semaphore opens communication 

to version N and stops version N-1.  

In that case, there is almost no operation downtime, and the complete update process 

is seamless for the customer (Fig. 7). In a well-orchestrated process, data loss during the 

switchover can be effectively mitigated. In the worst-case scenario, only signals received 

during the switchover—typically lasting several seconds—may be lost and left 

unprocessed. The switchover is seamlessly executed for IoT nodes by transitioning to 

sleep mode. Since sleep modes are an integral part of processing, facilitated by a 

dedicated core, transitioning to and from sleep mode is considered a native operation for 

IoT nodes. 
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In many cases, this approach will also be fully applicable to MES nodes. 

Unfortunately, not always. Two central problems appeared here with MES clients. First, 

as mentioned before, the older version (N – 1) will not be deleted in case of a lack of 

privilege. If not managed properly, this will cause a problem with the space on the 

destination node. The next problem is the switchover phase. MES clients are much 

larger pieces of software with a powerful GUI that maintains integration with different 

services on the MES level and even to different Edge, SCADA, and IoT devices. The 

proper switchover would require replacing the client version and reestablishing 

a connection to other connected instances (Fig. 8). This makes the buffering system even 

more important here than at other levels. 

/* define sleep request event bits */
#define SLP_REQ_BAT_CHARGER_TASK_BIT  ( 1 << 0 ) 
#define SLP_REQ_PARAM_TASK_BIT        ( 1 << 1 ) 
#define SLP_REQ_GPS_TASK_BIT          ( 1 << 2 ) 
#define SLP_REQ_LoRa_TASK_BIT         ( 1 << 3 ) 
#define SLP_REQ_GSM_TASK_BIT          ( 1 << 4 ) 
#define SLP_REQ_MQTT_SENDER_TASK_BIT  ( 1 << 5 ) 
#define SLP_REQ_READ_I2C_TASK_BIT     ( 1 << 6 ) 
#define SLP_REQ_READ_485_TASK_BIT     ( 1 << 7 ) 

/* define sleep  acknowledgement event bits */
#define SLP_ACK_BAT_CHARGER_TASK_BIT  ( 1 << 0 ) 
#define SLP_ACK_PARAM_TASK_BIT        ( 1 << 1 ) 
#define SLP_ACK_GPS_TASK_BIT          ( 1 << 2 ) 
#define SLP_ACK_LoRa_TASK_BIT         ( 1 << 3 ) 
#define SLP_ACK_GSM_TASK_BIT          ( 1 << 4 ) 
#define SLP_ACK_MQTT_SENDER_TASK_BIT  ( 1 << 5 ) 
#define SLP_ACK_READ_I2C_TASK_BIT     ( 1 << 6 ) 
#define SLP_ACK_READ_485_TASK_BIT     ( 1 << 7 ) 

0 0 0 0 0 0 0 0

EventGroupHandle_t ev_req_sleep = NULL;
EventGroupHandle_t ev_ack_sleep = NULL;

ev_req_sleep

0 0 0 0 0 0 0 0ev_ack_sleep

main
task

I2C_comm 
task

set event bit

0 1 0 0 0 0 0 0ev_req_sleep

0 0 0 0 0 0 0 0ev_ack_sleep

read event bit

0 0 0 0 0 0 0 0ev_req_sleep

0 1 0 0 0 0 0 0ev_ack_sleep

set/reset event bit

 

Fig. 7. Software update sequence with the sleeping sequence 

Blue/green is not a favorable solution; it is only for successful updates. It proves its 

value when the update fails. In that case, blue/green offers an effortless way to switch 

back to the previous (valid and proven) version N—1. Furthermore, such a rollback will 

not require additional data traffic, which is desirable in any scenario and level. Once the 

error is solved, version N could be replaced with the next update. 

The blue/green setup supports both full and partial version updates. In case of a 

partial version update, the new version will be generated when the copy of N-1 gets 

merged with new libraries and configuration files. The partial approach is faster and 

brings a lower network load. It is helpful for MES-level clients, but it is even more 

suitable for devices with more processing power on the IoT level. The easiest way to 

spot them at the IoT level is to check if they use GSM modems and LoRa adapters. In 

brief, partial deployment is more efficient for more complex software components. 



Hybrid Deployment Strategy           415 

 

Fig. 8. Software update sequence for MES client (expanded from [10]) 

 This approach will not solve every deployment problem. In some cases, it could be 

inefficient or even useless. In case of a partial update, it could happen that the 

deployment package did not come with all necessary dependencies. Then, the update 

will fail, leading to additional data transfer and new version creation. 

Next, the new version might be larger than the available space, even after deleting 

version N-1. In this situation, the blue/green approach cannot give positive results, and 

the update will fail. This would lead to the request for additional intervention and, in the 

best case, reducing the deployment to recreation mode. 

Since the software is connected to services and other running instances on various 

levels, their interface might change occasionally. Or even buffer service needs to be 

updated. Blue/green will not help or solve the problem if this happens. Such updates 

then need to be implemented during planned downtime and meticulously organized to 

follow all necessary steps in the required order. 

The last but not the least essential problem is when the device runs out of power 

during the update process. It could happen to any device, but those running on battery 

are more prone to this problem. The mentioned problem is not typical for MES nodes. 

They are connected to standard LAN/WLAN or Profibus network and are usually 

connected to the continuous power supply. If they lose the power during the update, they 
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will continue to run the N version after the restart. Also, suppose the MES client is 

installed in a battery-running device like a tablet or laptop. Their operation system will 

only be configured to run updates if the device is connected to the power grid. 

As the clients run in more powerful nodes and more complex environments, their 

update process could be enriched with more proficient methods. The methods are 

feature flags, dark mode, or A/B testing, which will offer an easy transition to new 

functionality. The new version will be the same as the previous one upon the switchover, 

and then new functionalities could be gradually enabled. The end user would 

increasingly receive new features in this way. In case of a problem, the features could be 

quickly turned off remotely. Also, new versions of features could be assigned to specific 

clients to evaluate, following the A/B testing strategy. 

5.2.  Software Update Approach for Devices with Limited Storage Space 

To address this challenge, an additional device of the same type, preferably with a larger 

storage capacity, is introduced. This backup node is a repository for storing backup 

versions of the currently running software. In scenarios where the Internet of Things 

(IoT) layer comprises multiple similar or identical nodes, adding an extra device is not 

perceived as a drawback but as a justifiable minimal cost. 

The same approach applies to Manufacturing Execution System (MES) clients. 

However, the key distinction lies in the role assigned to the chosen node. In the MES 

environment, the selected node assumes the mantle of a leading or sentinel client 

responsible for distributing update packages within its designated group. Utilizing 

backup nodes at the MES client level is also feasible, especially in cases where stringent 

IT security protocols prohibit the retention of old software versions due to company 

policies. 

The deployment process commences by transferring the new version (version N) to 

the backup or sentinel node. Once this operation is completed, the backup node 

disseminates version N to all devices running the same software. Notably, this approach 

slightly extends overall downtime, as the target node must first halt the previous version 

(N – 1), acquire the new version, and subsequently initiate version N. Conversely, no 

discernible difference in overall downtime occurs when the backup node acts as a 

sentinel. 

An inherent drawback of this approach pertains to increased data traffic requirements. 

However, this traffic is confined solely to communication between the sentinel or 

backup node and the clients within its designated group. An additional advantage 

emerges during potential rollback scenarios. After uploading version N to the backup 

node, deployment to sensor nodes occurs sequentially. The process begins with the 

sentinel device (borrowing from the canary deployment concept), where comprehensive 

validation under production conditions occurs. If the new version proves valid, 

subsequent nodes receive the update. Conversely, the rollback sequence is limited to the 

sentinel device if issues arise. 

In the second scenario, continuous uptime on the device is not feasible during the 

update process. Specifically, the currently running version (N-1) must transition to sleep 

mode and then be removed from the destination device. Subsequently, the new version 

(version N) is uploaded, configured, and activated using a wake-up command. Until 
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version N is fully operational, the node remains in downtime and temporarily unable to 

collect or exchange data—an inherent vulnerability that must be managed. 

5.3. Software Update in Edge Layer Affecting IoT and MES Nodes 

The simple software update at the Edge level would be managed at the other levels by 

employing message queues. Incoming messages to the Edge level will be handled when 

it becomes operational again. Messages from the output queues of the Edge level will be 

processed until Edge components are offline. The connecting systems will raise an alarm 

if all the items are processed. The same will apply if the incoming buffers become fully 

loaded.  

 

Fig. 9. Software update scheme with message queue [9] 

Considering this, it is crucial to define the buffers as wide and long enough to 

accommodate the amount of data that could be generated during more extended 

downtimes. In the scenario when the device from the Edge level must remain inactive 

for a period of deployment and when there are no buffers or message queues 

implemented, the connected systems will run into an alarm state. Devices at the MES 

level will raise an alarm, but they will continue executing other actions that are not 

connected to the Edge level. Some functionalities will be temporarily stopped, but most 

work could continue.  

Devices at the IoT level will not be in such an advantageous position in this case. 

Without a buffer, devices at the IoT level will get disconnected for the same amount of 

time as the Edge-level devices. For IoT nodes, this will be a situation of a high alarm 

state, and they will execute the following course of events: 

- Devices in IoT nodes detect disconnection event 

- Devices raise the internal alarm 

- Start reconnection procedure in predefined time frames 
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Fig. 10. Reconnection sequence between IoT, Edge, and MES node 

Without a buffer enabled, while the Edge level node is not running, IoT nodes will 

not have a destination where to send processed data. This will cause significant data loss 

for the complete deployment areas, which could be unacceptable if the process 

consumes extensive time. This problematic state will last until the Edge layer node starts 

running again. When a node from the Edge layer restarts and returns online, IoT nodes 

will connect again and continue exchanging data.  

In some cases, IoT nodes will not be able to reconnect due to a change in 

communication protocol or a hardware error. In these cases, IoT nodes will run a 

general alarm, and then the Edge node must be moved back to the previous version. 

When an update is needed in both layers, the update notification signal will stop the 

general alarm, and then all IoT nodes will be updated individually. The update will be 

driven from the backup node. 

One of the commonly used solutions to reduce the necessity for frequent updates 

across the levels is the using a buffer between the layers (Fig. 9). In this case, the buffer 

is implemented as the message queue. In most cases, when the communication protocol 

changes, only the synchronization buffer will be updated, while all the nodes in the IoT 

layer will continue to work. In this way, downtime will hit only one layer (in this case, 

the Edge layer) while the other layers will continue to run without interruptions. 

Introducing a message queue solves the previously described issue but at the cost of a 

bit more complex setup and integration. Fig. 10 This shows the process of integration 

with the Edge level. The approach is the same for IoT and MES nodes on opposite sides 

of the Edge node. The Edge nodes establish communication using message queues 
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(MQTT in the case of the presented system). MQTT brokers and clients are installed at 

the Edge and the MES level. The IoT node needs only the client.  

The connection is initiated from the client on one level to the broker on another. 

When this communication is established, the broker waits for the client's connection at 

its level and accepts the subscription request. In this way, MQTT clients in the IoT and 

Edge levels are connected through the broker at the Edge level. Similarly, MQTT clients 

from the Edge and MES levels will be connected through the broker at the MES level. 

It must be stated that when transferring data using a message queue, data loss could 

happen during the software update. Message queues usually contain objects of specific 

types produced on one side and consumed on another. The two most common scenarios 

are when the connection between the message queue and one of the sides (producer or 

consumer) cannot be established, while another is when the data queue contains objects 

of unrecognizable type in the destination. The first situation is handled in a way that 

stops the producer until the connection is fully re-established. The second situation 

happens mostly when the version of consumer software is replaced in a way that stops 

supporting old message formats. In this case, the messages remaining in the queue will 

be lost. Synchronization through message queues is an essential aspect of the software 

update, but it goes beyond the scope of this paper. 

6. Update Mechanism for MES Nodes 

The main shift that could be done at the MES level is integrating the software update 

mechanism into the solution. MES architecture, which we exploited in our 

environments, is service-oriented architecture (SOA) based on different technologies. 

On the server side, multiple services running to achieve necessary functionalities. The 

current setup is between single service and microservices since the system consists of 

main execution and multiple supporting services. While the supporting services could be 

turned on and off independently, the leading execution service must be active to put the 

system in run mode. In that sense, the update service is one of the services on the server 

side responsible for server and client updates. Ideally, the update service is configured to 

run in the independent node. It takes care of the order of the update and data buffers 

during the update process. 

Depending on the requirements, the update service could take care of every single 

node in the system or equally distribute the updates depending on the node type. The 

update service takes care of sentinel/backup nodes (if configured) and monitors and 

switches different feature flags and A/B functionality variants on and off. The approach 

with the controllable update mechanism, driven from the single node, applies to any 

ISA95 level. Depending on the technology, implementation could be different, but the 

concept of maintaining the update process and the configuration from the single point 

makes the system fully controllable and maintainable. Moving these functionalities from 

the execution service and its connected microservices to an independent node avoids the 

well-known problem of the server bottleneck during the update process. In the cases 

where the execution service itself triggers and controls the update, the network traffic 

significantly rises during a brief period, which could lead to different synchronization 

problems.  
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The additional advantage of implementing such a node is the possibility of 

connecting it to the digital twin in the cloud. This feature makes updating over the air 

and synchronization with the digital twin possible. Having such a connection would 

allow a complete industrial facility to be controlled remotely, and the existing digital 

twin would always be available for any test and analysis. 

Both client and server nodes will use the standard network protocols to operate at the 

MES and ERP levels. In the lower levels, the accessibility will depend on the 

implemented technology. Still, with the appropriate network adapters, the update node 

could achieve control also over the instances in Edge and IoT levels. The update node 

could also monitor configuration changes in production environments and take adequate 

action when the change is detected. Depending on the configuration or requirement, it 

could push the change to a digital twin, raise an alarm for the additional check, or 

overwrite the configuration. 

 The additional benefit is the more accessible support for testing and verification 

before moving the change production environment. As mentioned before, after the 

solution has been evaluated to a digital twin, test, or staging environment, the 

deployment for production could be ready significantly faster. The access to 

configurations already prepared in the digital twin environment allows the update 

manager to check the destination clients and easily spot if the local changes have been 

made. In that case, it could stop the deployment and raise the alarm to the technician to 

decide how to proceed. Alternatively, the update manager could override the 

configuration in the client machines and force the update. 

The update node could also push the update for the server side. At the MES level, the 

server-side SOA system will also store all the actual and previous versions of the clients, 

allowing easier recovery and fallback in the case of unsuccessful deployment. In case of 

the configuration on multiple server instances, the update manager will track the order of 

the update, using the feature flag system to control the start and stop of all 

microservices. As mentioned, the leading service on the server side is the execution 

service required to be active to make the entire system run.  

The server side of the update mechanisms is responsible for communicating with 

clients and other external systems – such as databases, configuration storage, and other 

external services. It could be configured to retrieve data from multiple sources and 

prepare the deployment packages according to the status set in the digital twin. As 

mentioned, its role is also to monitor the validity of the complete system to check if the 

configurations or client versions may change outside of the deployment process and to 

raise the alarm in case of misalignments.  

Both clients and service exchange ping messages to keep the system communication 

status. Ping messages could contain distinct parameters and run in different periods. 

While some are used only to check if there are responses on the other side, others could 

be used to verify client versions and configurations. At the same time, regular messages 

that exchange data are used to maintain connectivity. Every message delivery failure 

could trigger an alarm and run the re-assessment process and eventual network 

reconfiguration. In some cases, the sentinel clients could take the server role for the 

group of clients and maintain connectivity in the alarm mode. 
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6.1. Update Node Routines 

The DeploymentHelper component handles configuration updates in scenarios where the 

application reverts to an older version or when a specified time for updating specific 

clients has elapsed, necessitating updates for the remaining clients. This component is 

situated on the server side, as all configurations for this application reside on the same 

machine as the service. Consequently, the service possesses all necessary permissions 

for file modification and physical addresses where the files are located. 

The base class diagram to support client updates is presented in Fig. 11. Instances of 

class Update Status Info stores the info about the version and application name. The 

bare minimum of the data should be maintained for every client. They come to the MES 

or update service as part of ping messages from clients. Combining these pieces of 

information with the data in the internal cache, the process that keeps track of versions 

could maintain their activity tables regularly. Activity tables are kept in the update 

process and periodically synchronized with the digital twin environment. The objects of 

this class, either persisted in the memory or a dedicated location in the file system, are 

also used as the contact point for the DeploymentDispatcher. 

On the single node level, the DeploymentDispatcher is the component responsible for 

the entire update process. It could be configured to ping the server or sentinel client to 

check for the new version or to wait for the update notification. Once the latest version 

is discovered, the update process will start and be executed in UpdateDirector.  

The update thread will run in the background and gather all necessary configurations 

and binaries from the update node to form the new version of the client. After a new 

client is formed, it will trigger the rest of the process and perform possible additional 

steps, such as a backup of the previous version and a blue/green switch. When 

configured in the sentinel node, this functionality will propagate the installation to other 

nods in the group. As the ultimate step of the update process, the information about the 

software version will be pushed back to the update node and the digital twin to ensure 

the proper version info synchronization.  

It is essential to point out that DeploymentDispatcher could progress both with 

complete client updates and partial functionality enabled/disabled. In that way, direct 

support for feature flags is implemented. The client could come with an updated version 

of the software, but in case of any problem, the additional features could be disabled. 

Also, configuration changes could be pushed from the server to ensure the required 

reconfiguration. 

The update manager instance is created when the application is started. It is 

constantly active and periodically checks for recent updates if configured to run in active 

mode. During initialization, the update manager checks the application's version and all 

modules to ensure the up-to-date application signature is ready for comparison with the 

version on the server. 

The update manager listens to the server's ping and notification commands in passive 

mode. In this scenario, the server notifies the client that the updated version is available, 

and the client starts the update process. Also, it is usual to configure both modes in the 

same and dedicate each process to a specific part of the update process. For example, 

the check for the new client version could be configured in active mode, while the 

configuration updates could be passive and pushed by the server instead of the client's 

request. 



422           Petar Rajković et al. 

 

Fig. 11. The relations between main entities in the deployment subsystem 

An instance of this class creates an object of the DeploymentDispatcher class and 

immediately invokes its primary function, as shown in Fig. 12. This function manages a 

specific client's update process and could halt software updates if necessary. It is 

responsible for initiating the update process as long as the attribute's value that keeps the 

loop alive remains unchanged.  

This method initially attempts to retrieve the file containing the necessary information 

for updating. If that file does not exist, the method returns a false value, indicating that it 

failed to obtain the appropriate file. If the file is successfully retrieved, relevant data 

required for updating is extracted from it. Subsequently, it checks whether beta updates 

are active. If they are and the specified time for this type of update has elapsed, the 

UpdatesManifest.xml file is updated. In this file, the active software version is set to the 

“beta” version, and updates of this type are marked as inactive. Next, it verifies whether 

the current client version matches the version that should be on our machine (Fig. 12). 

New client versions must be downloaded if the current client version is missing or 

differs from the version in the file while beta updates are inactive. In the case of active 

beta updates and the client still not being on the beta version, affirmative information is 

returned to download new files, but only if random access permits. This ensures that not 

all clients receive the updated value, only those with “luck” (Fig. 12). All clients 

downloading the updated version exit the function and return a value true. If the random 

selection does not choose a client, the thread responsible for updating is put to sleep for 

a predefined number of minutes. Afterward, the thread is again put to sleep for a few 

seconds, triggering the update check. 



Hybrid Deployment Strategy           423 

 

Fig. 12. The sequence of choosing and verifying the correct software version 

The DownloadUpdates method retrieves updates from the corresponding file (the file 

path is specified in the update specification). If beta updates are active, it fetches the file 

named in BetaFilePath; otherwise, it retrieves the file named in FilePath. BetaFilePath 

is used when the A/B deployment must be supported, while for regular deployments, the 

filed FilePath directs to the update location. This approach also solves the issue of 

network connection interruptions to the new client, as the update is not applied until it is 

fully downloaded locally. Finally, the application that launches the latest client version 

is restarted. 

7. Results and Discussion 

This research came out of the project that resulted in the development of a complex 

industrial monitoring system aimed at all ISA95 levels – from IoT nodes through Edge 

and MES to ERP level. During the project, for more than 15 years, our team was 

focused on different aspects of development and implementation, starting from the 

improvements of CAD/CAM databases [31] through all different implementations at all 

levels, up to development for the software update system integrated with the cloud [9] 

[10]. 
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Fig. 13. View on the ERP client - production order definition 

The tests are conducted in a digital environment that resembles the industrial façade 

carpentry facility. Section 4 gives all the necessary details in the composition of the test 

environment. Such production is interesting since it combines different production types 

– from serial production to one-of-a-kind configured products [32]. At the same time, 

such a facility combines processes based on various physical and chemical procedures in 

material treatment, thus requiring all kinds of digital interaction, starting from thermal 

sensors and actuators through intelligent industrial machines integrated with MES 

clients up to ERP software enhanced with different CAD and planning tools (Fig. 13) 

[33]. 

Having experience with diverse types of software developed on different ISA95 

levels, we identified the common problems in software updates and tend to generalize 

the update architecture, node structure, and processes. The results were preliminarily 

evaluated at the IoT and ERP levels because they have limited effects on the rest of the 

system, being connected only to the neighboring level. Following the results and 

recommendations from the previous work, we decided to expand the update system to 

the most challenging MES level (Fig. 14). 

7.1. Guidelines for Combining Different Deployment Strategies 

Our research was led by the request to reduce the potential downtime during the 

software update in a challenging environment such as the industrial facility. The actual 

criticality of this request is not equal from level to level, but the customer requirement 

tends to go to 0 downtime regardless of the software system. To reach this goal, we 

decided to replace the standard deployment (stop-copy-run) with a combined strategy 
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that should employ the benefits from different deployment processes. Looking at the 

single node, we aimed for the blue/green deployment as the base concept. 

This concept could be enriched then with feature flags, dark mode, and A/B testing 

deployments to fine-tune the update process and to release new functionalities in the 

controllable environment. At the level of the node networks, the concepts of canary 

deployment were applied to the development of backup and sentinel nodes, which 

function as the group leads and will receive the first update and then push forward 

deployment into the subsequent nodes in its group. Combining these three well-known 

approaches in the proposed way, we tried to benefit from all the positive aspects we 

could get: 

- Blue-green deployment gives the possibility for a fast version switch. 

- Dark mode and feature flags allow simple enabling or turning off single 

functionalities. 

- A/B testing allows running several feature variants to let the customer decide 

which to accept. 

- Canary deployment allows prompt identification of deployment errors. 

- A synchronization buffer allows us to keep one layer insulated and operative 

while the connected layers are in downtime or performing an update. 

The proposed methodology is initially subjected to rigorous testing at the IoT level. 

This choice stems from the formidable constraints encountered in this stratum, 

encompassing software resources, network bandwidth, and energy consumption 

limitations. Additionally, deploying IoT systems in critical and hazardous environments 

underscores the need to minimize direct human intervention and avoid installing 

supplementary infrastructural components, such as power or network cables. 

Complicating matters further, physical access to IoT nodes remains a challenging 

endeavor. This challenge arises not solely from technological considerations but also 

from mechanical and security protocols. Removing various mechanical elements in 

certain instances becomes necessary to reach IoT devices physically. Moreover, these 

devices often operate in environments hazardous to human safety, necessitating stringent 

procedures for device access. 

Previously, a conventional update approach, or recreate deployment, was employed, 

wherein the software component was replaced either entirely or partially (via a stop-

copy-start process). However, this standard update method posed several issues, which 

can be briefly summarized as follows: 

- The downtime was always present. If the software component is in the updating 

process, the software device cannot be used. 

- In case of an erroneous update, software should be restored to its previous 

version, which would lead to further downtime. 

- The restore process sometimes drains the battery, requiring the personnel 

member to go to the hazardous area. 

- Connected layers generally could not continue to work since they were flooded 

with alarm signals. 

Our results with the proposed combined deployment approach proved our 

expectations and varied between different software layers and scenarios. Applying the 

proposed strategy reduced the overall downtime and number of unnecessary rollbacks. 

This was achieved by the cost of implementing the backup node, the implementation of 
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the buffer level, and a slight increase in data traffic. Table 3 shows the behavior of the 

network of 100 IoT nodes analyzed in a test environment. 

 

Fig. 14. MES client set up in a factory environment - connected to cutting machine and the 

signals that bring measurement values 

Having the configuration with one leading node, the total number of updates coming 

from the update node or the cloud to the IoT network will be reduced from the total 

number of nodes (NN in further text) to one. The updated version will come from the 

outside system to update the node, which will guide the update for the rest of the IoT 

nodes. In this way, the bottleneck in communication between the IoT level and the rest 

of the system will be reduced or eventually avoided. This way, the number of security 

checks will be reduced to only one. In a scenario where every node gets an update 

outside the network, a security check will be performed every time due to standard 

security policies. 

The proposed hybrid approach will require more space. If the clients can support 

blue/green deployment, they will need twice as much space as in the case of recreate 

deployment. One additional slot for the distributed version should be added to the space 

required. The sentinel client will use the distribution/sentinel/backup node to download 

the updated version and then forward the update. 
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Table 3. The effects of the proposed deployment strategy on the IoT level containing 100 IoT 

nodes connected to a single Edge node (TD – time to shut down the software in the node, TU – 

time to start the software in the node, TS – time switch between the versions, IS – software 

instance size per node, NN – number of nodes). Combined from [9] and [10] 

Measurement With recreate deployment With hybrid strategy 

Number of software uploads to IoT 

level – successful deployment 
NN 

1 (only to the leading 

node) 

Number of internal uploads – 

successful deployment 
0 NN 

Number of software uploads -

unsuccessful deployment 
Average 8% of NN 1 to the backup node 

Security check on upload NN 1 (only to backup node) 

Number of internal software uploads 

– unsuccessful deployment 
0 1 

Rollbacks with unsuccessful 

deployments 
8% of NN 1 + 1 

Downtime per node TD + TU (in seconds) TS (in milliseconds) 

Used space for software per node 

(with blue-green approach) 
1 x IS 2 x IS 

Used space for software with buffer 

node 
NN x IS NN x IS + IS 

Update distribution Manual or with a task scheduler 

Optimized by backup 

node or pushed from the 

cloud 

Downtime when connected layer 

update 
If the update is running Until the buffer has data 

 

The concept proposed for IoT nodes in [10] further evolved and applied to the ERP 

nodes [10]. With further customization, it is successfully applied to the MES level. The 

expected effect is presented in Table 4. Both ERP and MES clients share similarities in 

size and software architecture. Both have more extensive software instances than those 

in the IoT and Edge levels. Due to the software's mentioned size, update distribution 

could cause problems comparable to those from the IoT level, primarily if the update is 

run from the same node where the server is running. In that case, the single node should 

run NN uploads, which could take significant network resources.  

To address this challenge, a strategic division of client nodes into N1 groups by AG 

clients is proposed (Fig. 15). This approach draws inspiration from the canary 

deployment methodology, wherein a dedicated group of clients serves as the initial 

testing cohort. During the first iteration, updates are dispatched to sentinel nodes, 

responsible for essential testing. Subsequently, these sentinel nodes propagate the 

verified updates to the nodes within their respective groups. In the event of an error 

detected at the sentinel level, a rollback ensues, ensuring that most clients remain 

shielded from erroneous software versions. This approach undergoes slight adaptation 

when applied to the MES layer. The rationale behind this modification lies in the 

inherent diversity of MES clients. Unlike ERP clients, which typically exhibit uniform 

features, MES clients cater to distinct operational stations, each potentially possessing a 

significantly separate set of functionalities. In the MES environment, an initial client 

group is selected for deployment. The updated version is relayed to its sentinel node, 

where thorough verification occurs. Upon successful verification, the updated version 

cascades to the remaining group members. Subsequently, the verified functionality 

extends to other sentinel nodes. 
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Table 4. The estimated effects of the proposed deployment strategy in MES and ERP level (TD – 

time to shut down the software in the node, TU – time to start the software in the node, TS – time 

switch between the versions, TF – time needed to activate feature flags and A/B features, IS – 

software instance size per node, BS – buffer size, NN – total number of nodes, N1 – number of 

level 1 nodes (sentinel/backup nodes), G – number of level 2 groups, AG – average number of 

level 2 nodes per group AG = (NN – N1)/G) 

Measurement Recreate deployment Hybrid deployment 

ERP level 

Hybrid deployment MES 

level 

Number of software uploads to 

level 1 nodes – successful 

deployment 

NN N1 1 + (N1 – 1) 

Number of software up-loads to 

level 2 nodes (average per 

group, successful deployments) 

0 AG AG 

Number of software uploads to 

level 1 (rollback needed) 
NN Up to N1 1 

Number of software uploads to 

level 2 (rollback needed) 
0 0 AG 

Security check on upload NN N1 
1 

Only in the update node 

Downtime per node TD + TU TS TS + TF 

Total space used NN x IS 
NN x (2 x IS + BS) + 

IS 
NN x (2 x IS + BS) 

Update distribution 
Manual or with a task 

scheduler 

Optimized by backup 

node 
Over the air 

Downtime when connected layer 

update 

If the update is 

running 

Until the buffer has 

data 

0 – ERP Until the buffer 

has data – Edge / IoT 

 

 

Fig. 15. Differences in deployment approach for ERP (left, as presented in [10]) and MES clients 

(right) 
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Table 5. Effects of different client deployment approaches to MES and ERP level – 3 groups of 

10 clients (STD – standard approach, WoD – Wave of Distribution, RD – Recreate Deployment, 

HD – Hybrid Deployment, CwS – Canary with Sentinel, GwS – Groups with Sentinel) 

Measurement ERP RD ERP HD CwS MES RD MES HD GwS 

Number of update packages 

sent from the server to clients 

(1st WoD) 

30 3 30 1 + 2 

Amount of data sent from the 

server to clients (in GB, 1st 

WoD) 

1.35 0.14 0.75 0.03 + 0.07 

Network traffic peak (in %, 

server outbound, 1st WoD) 
100 18.65 78.40 5.67 

Distribution group size (2nd 

WoD) 
- 10 - 10 

Distribution time per group of 

clients (seconds, 1st WoD) 
64.28 7.55 41.19 2.77 + 6.01 

Distribution time per group of 

clients (seconds, 2nd WoD) 
- 17.08  12.55 

Single client 

switchover/update time 

(seconds) 

32.28 4.58 

25.19 (MES 

only) 

31.22 

(complete) 

2.41 (MES only) 

8.67 (complete) 

Single client 

switchover/restart time when 

rollback is needed (seconds) 

34.10 6.78 

26.49 (MES 

only) 

33.53 

(complete) 

4.33 (MES only) 

9.02 (complete) 

 

While this approach does not directly reduce total network traffic, it effectively 

distributes the load across update and sentinel nodes, mitigating network traffic hotspots. 

Anticipated downtime per node may be slightly higher for MES clients due to the 

activation of feature flags and A/B functionalities. Additionally, depending on 

configuration, MES clients may require time to establish connections with signal sources 

from distinct levels. Notably, integrating the update mechanism with the Cloud level and 

the digital twin introduces the prospect of fully controllable over-the-air deployment, 

potentially paving the way for a transition to software-as-a-service for specific system 

elements. 

We compared the update behavior for the array of 30 ERP and 30 MES clients 

running in the test environment to evaluate predicted values. They have been split into 

three groups of ten clients for the simulation. The findings, presented in Table 5, align 

with the estimation from Table 4. Due to their smaller size, MES clients create less 

network traffic than ERP clients. The amount of required space and network peaks are 

lower for the MES network.  

7.2. Advantages and Drawbacks 

The advantage of the approach shown in this work is that if it is applied to MES nodes, 

it results in faster recovery if the deployment error is noticed, compared to the one 

presented in [9] and [10]. Usually, it is enough to do the rollback only in one sentinel 

node. The next advantage is the possibility of running multiple versions of some 

functionality and quickly switching them on or off. Ultimately, integrating with cloud 
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services and establishing a complete digital twin helps detect errors and change. The 

environment we used for the test is a demo digital twin for beta testing.  

It is essential to note that two separate times must be measured when the MES client 

is started or when the switchover is handled. The most critical moment is when the client 

is in running mode and connects to the MES service, allowing it to perform standard 

MES functionality – operation execution, labor logging, etc. Next is the moment when 

the client is connected to other data sources. In our example, clients are connected to an 

OPC (object for process control) server that acts as a system that collects measurements 

from the sensors. Generally, these data sources could be different depending on the area 

of the industrial facility where the client is running. 

The software update challenges discussed in this study constitute only a portion of the 

broader complexity. For over fifteen years, we have continuously relied on systems 

developed by our research group, honed through rigorous coordination, and field-tested 

in partner industrial facilities. The software update process encompasses several critical 

dimensions, including compatibility concerns, system stability, data migration 

intricacies, and the imperative of user adoption. Addressing compatibility issues 

necessitates comprehensive testing across diverse system configurations before 

deployment. 

To this end, we advocate for establishing a dedicated test environment within our 

domain or creating a digital twin in the cloud. For instance, transitioning to a different 

platform version for Windows application development may introduce incompatibilities 

with OPC servers. Similarly, upgrading the database server to a newer version could 

disrupt continuous connectivity between MES or ERP systems until the connection 

driver is updated. Altering the data structure of messages stored in message queues 

poses the risk of data loss for existing records, rendering them unreadable by the current 

system. 

User adoption hinges on effective communication and targeted training to elucidate 

the benefits of updates and familiarize users with new features. Soliciting feedback from 

users both before and following updates facilitates the identification and resolution of 

any emerging issues. The strategic inclusion of A/B deployment techniques further 

enhances this process. 

The typical application of the proposed software update mechanisms is limited to 

some point. This means that the suggested set of updates could not be directly used for 

software not developed in the line of the examined software development and 

deployment approaches. For example, if the software has no properly exposed extension 

and configuration classes, there will not be the possibility to use feature flags or A/B 

approaches. On the other hand, blue/green and canary deployments could be 

implemented through a committed team supported with the necessary hardware and 

acquiring specific deployment routines. A deeper implementation of the proposed 

deployment solution would require additional pieces of software and/or additional 

adaptation in the target software. 

During the development process, not all pieces of software were designed suitably 

and flexibly for such update mechanisms. Initially, the MES software was developed 

with fixed configuration files in which content was loaded on system startup, and the 

update was not possible while the software was running. This was primarily related to 

the server side. Any configuration change used to lead to service restart, which 

eventually results in execution disruption. For this reason, the blue/green deployment 
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was the first included in the setup. It guaranteed reduced downtime and faster system 

operational availability. On the other hand, the software adaptation for MES clients 

came a bit later since it only needed to restart local clients in the operator’s place, which 

had a limited impact. The next set of updates was the approach that could trigger 

configuration refresh through a database or file reload. With this approach, feature flags 

and later approaches became fully supported, and the software was ready to become a 

part of the complex deployment system, significantly reducing downtime when 

redeployed.  

Mitigating system disruptions involves judiciously scheduling updates during off-

peak hours and transparently communicating potential downtime to users. Meanwhile, 

prudent planning and rigorous testing of data migration procedures minimize 

complications arising from data transfer. 

In summary, a carefully orchestrated update process, underpinned by thoroughly 

vetted software versions and executed at the opportune moment, constitutes the linchpin 

of a successful upgrade. 

8. Conclusion 

Having more than a decade and a half of experience with industrial systems, our 

research team went through different projects involving software development at all 

ISA95 levels. The challenges in development vary across the levels due to user 

requirements, technical complexity, and performance expectations. All these software 

instances must work in accordance and be a reliable element of the industrial facility. 

The common challenge for all the pieces of software is the system update. Usually, the 

system on one level consists of the server and several dozen or hundreds of clients. 

When it comes to the update, it should be done as fast as possible and with lower 

resource consumption without creating bottlenecks in the facility. 

The research findings significantly advance the formulation of deployment strategies 

for intricate, layered industrial software systems. When deploying software updates, 

several common challenges arise, including downtime, increased network traffic, and 

storage space utilization. At lower levels, energy consumption during the deployment 

process also warrants consideration. 

We introduce additional backup nodes into the system to address the limited storage 

space issue. Although these backup nodes exhibit a slightly larger volume than regular 

IoT nodes, this tradeoff is deemed acceptable given the achieved outcomes. Notably, 

total downtime has been dramatically reduced—from seconds to milliseconds—

representing a reduction of less than one percent of the initial duration. 

The approach used in IoT nodes [9] was successfully applied to ERP [10] and MES 

levels by improving the defined hybrid deployment mode. The findings align with those 

observed for IoT nodes, emphasizing the potential incorporation of novel features and 

deployment strategies. This adaptability makes the deployment process for ERP and 

MES clients more user-friendly, fostering higher user acceptance rates. 

We devised a hybrid strategy combining blue-green, canary, and dark mode elements 

with feature flags, A/B testing, and enhanced standard deployments. This strategy is 

bolstered by an inter-layer buffer and the inclusion of specific nodes—the update node 
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on the server side and backup and sentinel nodes on the client side. By implementing 

this approach, we effectively curtailed overall downtime, reducing the duration required 

for system restart to a period proximate to the switchover. Remarkably, this reduction 

translates to less than 10% of the time typically consumed by classic deployment 

methods. The most noticeable improvement is in the case of erroneous deployment when 

the error could be tracked down and stopped in the first sentinel node. 

With the backup/sentinel node active, we reduced the number of software uploads in 

case of an erroneous update to the time needed for two switchovers of the single node. If 

chosen correctly, the initial sentinel node will provide an adequate test environment for 

error detection. Unlike the ERP clients, where the approach was to release the update to 

all sentinel nodes, with MES clients, the strategy was to send the update to a single 

sentinel, and then it would take care of its group. In the worst case, the targeted group 

needs to be reverted, but this will be done inside the group without the need for 

interaction with the server or the update node. 

The changes in the deployment process applied to MES nodes are driven mainly by 

the Industry 4.0 paradigm and the requirements that came with it. MES and Industry 4.0 

are transforming manufacturing practices by digitizing and making processes intelligent, 

enabling organizations to cater to individual customer requirements and achieve 

operational excellence. In short, MES and Industry 4.0 are revolutionizing 

manufacturing by integrating advanced technologies and data-driven systems to create a 

more interconnected and efficient production environment.  

Enhancing the efficiency of the software update process stands as a pivotal element 

within an optimized production environment. The overarching objective is facilitating 

software updates beyond scheduled maintenance windows. Leveraging the proposed 

hybrid deployment method, seamless layer-wide updates become feasible, particularly 

when interactions with other levels remain unchanged. Notably, this approach 

significantly truncates downtime—from hours and minutes to mere seconds and 

milliseconds. Furthermore, our future trajectory involves extending our efforts to the 

Edge level. This strategic expansion aims to devise solutions that mitigate the impact of 

buffering and inter-level communication system modifications more effectively. 
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