
Computer Science and Information Systems 22(2):401–435 https://doi.org/10.2298/CSIS240807027R

Hybrid Deployment Strategy for Software Updates to

the Manufacturing Execution System Layer*

Petar Rajković1, Dejan Aleksić
2
, Dragan Janković1, Aleksandar Milenković1, and

Anđelija Đorđević1

1 University of Niš, Faculty of Electronic Engineering,

Aleksandra Medvedeva 4, 18104 Niš, Serbia

{petar.rajkovic, dragan.jankovic, aleksandar.milenkovic, andjelija.djordjevic}@elfak.ni.ac.rs
2 University of Niš, Faculty of Science and Mathematics, Department of Physics,

Višegradska 33, PO BOX 224, 18106 Niš Serbia

alexa@pmf.ni.ac.rs

Abstract. Complex industrial systems consist of many heterogeneous devices

running different hardware and software in a connected, layer-organized

environment. Since all these software instances must be updated occasionally, and

since they could affect the layers under and above, the definition of deployment

strategies that will reduce downtime is necessary. In previous work, we focused

on identifying common problems in software update processes and concentrated

on the most effective update strategies running at the lowest (Internet of Things –

IoT) and highest (Enterprise Resource Planning – ERP) levels. The result was a

set of recommendations and strategies that should help minimize network

utilization and processing resources and make the process as energy-efficient as

possible. After that, the core effort of the research is shifted toward the

Manufacturing Execution System (MES) layer – the layer that brings the higher

complexity, both in terms of connectivity and software complexity. Following the

actual Industry 4.0 paradigm, the software in the MES layer becomes even more

critical since it is expected to integrate a whole new set of responsibilities

previously belonging to various levels or external solutions. To facilitate further

requests, deployment strategies are reevaluated and enriched with innovative

approaches such as A/B testing and the separate update service. This paper shows

the possible further development of the hybrid software deployment system when

applied to the multiconnected levels, such as the MES. The adaptation shows

positive results regarding the network load distribution and significant effort

reduction when a rollback is needed.

Keywords: computer science, information systems, Word, typesetting.

1. Introduction

Complex industrial systems represent an exciting conglomerate of various technical

solutions. Knowledge from different engineering sciences is needed to solve the

* This manuscript is an extended version of the paper published in the proceedings of the CERCIRAS 2021

workshop.

402 Petar Rajković et al.

challenges from process modeling, signal collecting, and processing through plant layout

design to raw materials and finished goods transportation, distribution, and storage.

Nowadays, all these aspects are supported by adequate software. Due to significant

differences between diverse aspects of the organization in the industrial facility, the

complete structure is divided into standardized layers. The standard ISA95 [1] defines in

detail how to split the industrial system organization and what the responsibility of each

layer is. Following the standard, the information technology (IT) subsystem in the

industrial environment consists of many heterogeneous devices running different pieces

of software in a connected and layer-organized environment [2] (Fig. 1). Starting from

the sensor and actuator layer connected with microcontrollers (in our work, we will

reference it as the IoT layer) [3], through the Edge layer [4][5], via SCADA [6] and

manufacturing execution systems (MES) [7] to enterprise resource planning (ERP) [8],

all pieces of equipment run the software that needs to be updated occasionally.

Fig. 1. ISA95 levels according to the industrial standard [1]

Software update, as a process, is an activity that is considered highly problematic in

the industrial environment. From the point of view of the process engineer, it should

either happen never or only in predefined maintenance slots. It came from the

experience with the previous deployment methods, where intensive planning must be

done, and some areas of the industrial facility will be disconnected for a more extended

period. If deployment needs to be reverted or reconfigured, the problem will be even

more significant.

In our previous work, we have been focused on the deployment of the software in the

lowest (the IoT level [9]) and the highest (the ERP level [10]) levels of the system. From

the connectivity point of view, these two layers have been of minor operation

complexity since they maintain connectivity only to nearby levels. IoT nodes are usually

connected only to Edge computers, while the ERP communicates with MES. The main

difference between them is the requirements regarding the volume of the needed

resources. In the IoT area, resource shortages are faced in every aspect of work.

This paper represents the direct extension of the work published in the CERCIRAS

2021 workshop. The definition of the testing environment and the default deployment

strategies used for IoT nodes were the starting point and thus included in this work. This

paper describes the usage of the concepts of the software update approach for a single

node with limited storage space and expands then further on the application at the MES

level.

As mentioned, any deployment strategy must consider energy consumption, storage

space, and processing power. Such an environment requires carefully defined

deployment methods and, even more importantly, backup and restore strategies in case

of unsuccessful deployments. The next step was to generalize the approach described for

Hybrid Deployment Strategy 403

IoT nodes and apply it to the ERP layer [10]. In that sense, this paper could be seen as

the further continuation of the work we described in [10]. Since ERP layer software was

built with more advanced software tools, it offers more possibilities for defining the

update strategy. In that sense, the different software deployment methods were analyzed,

and a set of routines that should improve deployment scenarios was proposed and

evaluated. Deployment strategies, defined in [10], were the next step in our deployment

and were thus used as another starting point in our work. The explained use of advanced

strategies was another building block to define routines for the MES software. The

software at the ERP level shares the complexity, technology stack, and implementation

approaches with MES, which was of significant value for this work.

The next goal is to apply the proposed deployment routines to the MES layer. MES is

the layer that brings the higher complexity into the design, both in terms of connectivity

and software complexity. Following the actual Industry 4.0 paradigm, the software in the

MES layer becomes even more critical since it is expected to integrate a whole new set

of responsibilities previously belonging to various levels or external solutions.

Deployment strategies are reevaluated and enriched with innovative approaches to

facilitate further requests. For example, the MES server could be connected to SCADA

on one side and to the ERP on another. In contrast, the clients could be connected

directly to measuring devices in Edge or IoT to register and visualize different

measurements.

In this situation, downtime during the update needs to be evaluated through multiple

sides to ensure proper reconnection and operation continuation from various sides. Also,

one must remember that with new requirements under Industry 4.0, the MES software

should offer new functionalities that often come without full specification and where

multiple versions must be simultaneously evaluated. This paper shows the results of the

research that had the following research tasks:

- Test and adapt the deployment strategies suggested in [9] and [10] and try to

use them both for server and client components of the MES level.

- Focus to reduce network load on the MES server side.

- Organize deployment to stop the erroneous deployment as soon as possible.

- Integrate the process of the practical test of new functionalities when the

customer must choose between multiple solutions.

This research relies on our previous work, primarily described in [9] and [10], and

represents its continuation and improvement.

2. Background – Industry 4.0 Paradigm and Existing MES

Systems

MES and Industry 4.0 are critical components of the modern manufacturing landscape.

They aim to integrate technology and data to optimize production processes, improve

efficiency, and drive innovation in many new ways. Industry 4.0, the Fourth Industrial

Revolution, represents a radical shift in manufacturing practices.

It involves the digitization and the use of advanced scheduling and execution

algorithms in manufacturing processes, moving away from mass production towards

customized production that caters to individual customer requirements (Fig. 2). This

404 Petar Rajković et al.

means that a portion of the planning and scheduling will be moved from ERP to the

MES level. Next, MES plays a crucial role in Industry 4.0 by providing real-time

visibility, control, and intelligence across the entire product life cycle value chain. It

should allow for seamless communication, analysis, and data utilization to drive

intelligent actions in the physical world. This means that the connection from MES will

not only go to the SCADA layer but also directly to Edge, IoT, and sensor networks in

some cases.

Fig. 2. Main elements of Industry 4.0

With full rights, the new generation of MES and Industry 4.0 is expected to enable

organizations to harness the power of digital technologies and intelligent, connected

systems to revolutionize their manufacturing processes. They would allow organizations

to optimize production processes, improve efficiency, and drive innovation by

leveraging robotics, analytics, artificial intelligence, nanotechnology, the Internet of

Things, and cloud computing. These technologies enable organizations to automate

tasks, analyze data for actionable insights, and connect various parts of the production

process for seamless coordination and optimization. At the same time, it is, more than

ever, expected that software runs with the lowest possible downtime and that all

activities run as smoothly as possible.

While previous work focused on single-connection levels, like IoT and ERP, this

paper will evaluate the application and extension of the existing set of recommendations

for software at the MES level. MES-level software significantly differs from those

running in IoT nodes but is closer to ERP systems. First, MES systems usually follow

service-oriented architecture (SOA) with various clients.

These software instances run on servers or in the workstation, with significant

processing power and memory storage compared to IoT nodes. It looks like the MES

systems run in an environment where resources are not the problem, but it is not quite

like that. Depending on the configuration and the set of required operations, MES clients

Hybrid Deployment Strategy 405

could weigh up to a few hundred megabytes. It depends, of course, on the

implementation technology and other dependencies. Still, if they are implemented as the

thick client, the usual user requirement, their update process could employ significant

network traffic.

Compared to ERP software, MES runs fewer complex algorithms, but it connects

more extended software and services and runs in significantly more numbers and

variants of clients. It is also essential to state that with the current technology demands

fueled by the Industry 4.0 initiative, the importance of the MES system rose. Nowadays,

MES is often required to provide many functionalities native to other systems. The MES

should now support continuing different reporting, overall equipment effectiveness

tracking (OEE), Andon boards, deeper integration with ERP systems and SCADAs, and

ending various synchronizations with warehouse, packaging, and other systems.

3. Related Work

The existing literature offers various deployment strategies, evaluations, and

recommendations. In most cases, the existing research covers software that runs in layers

such as MES and ERP. Besides, it has been constructive for our current scope of

research, but it was a bit misleading when one tends to define the close-to-universal

strategies and approaches. These higher layers deal with clients transferring significant

data and executing numerous transactions. When defining development strategies for

lower levels, the standard approaches from the literature are not directly implementable

due to their unique limitations.

The most critical points for resource management at lower levels are storage capacity

and data traffic through connecting networks. The overall effect is not the same on all

layers [15]. MES runs in a shop floor environment on devices with processing power

similar to standard computers.

The storage space is not a critical requirement for devices running MES or ERP

software, but they are usually connected to their server using the wireless network. The

wireless networks in the industrial environment could experience different disruptions

because of operating nearby machines generating high-frequency harmonics and other

security threats [16]. Data package verification and consistency are critical for MES and

ERP client nodes. When deploying a new software version to some device, an update

package of significantly higher volume than usual data traffic needs to be distributed via

a network, verified, and stored on the destination device. The old version needs to be

backup in case of rollback [17] [18]. Next, the Edge layer's primary mission is to collect

all the data from sensor networks and pass it to the MES. In this case, the proper buffer

implementation ensures smooth software upgrades.

All the mentioned layers are highly heterogeneous, with different pieces of hardware

running the software instances with diverse categories of software. Overall, in the

complete industrial system, the type of used devices, their number, and the amount of

transferred data (per device) could be between 1kB and 1GB. To make the complete

process more demanding, the devices sometimes do not have enough memory to store

two software versions; thus, they would require backup in a different location. This

406 Petar Rajković et al.

leads to the situation that sometimes it is nearly impossible to upgrade with no downtime

or at least with very low downtime [19].

As with every process, a software update could fail for numerous reasons. In that

case, a complete deployment approach or deployment system must provide the

possibility to roll back to the previous version [20]. The rollback will then take more

resources and worsen the situation, so we need to ensure that system governance

successfully goes through the process [21].

To reduce the impact of the mentioned problems and potential system downtime, we

aimed to define a more general approach that could be configured to use the

combination of blue-green [22] and canary deployment [23] styles in combination with

both shared and local backups [24]. This approach looks promising at the IoT level. The

approach was tested in a production environment, and the results were published in [9]

and [10].

Working on a general set of recommendations [9] [10], we conclude that regardless

of the type of software and the operating level, the blue/green approach could be

effectively used at any node (Table 1). New components used to build IoT nodes

increased memory and processing power, so keeping two versions simultaneously would

probably not be a problem. The blue/green approach, per se, could be improved with

additional techniques such as buffers and backup nodes [9] [10]. For example, at all

levels, a blue/green approach supported by the dark mode with feature flags could be

used for server node deployment. This will give flexibility and security; newly

developed features could be gradually turned on until the complete server update is

reached. For clients, blue/green is the primary choice, which could be enriched with

buffers and feature flags if the resource pool and used implementation technology allow.

Table 1. Elements of the deployment strategy used in various levels (BG – blue/green, DF – dark

mode with feature flags, CS – canary with sentinel node, CB – canary with backup node, IB –

intermediate buffer, (XX) - optionally) (as suggested in [10])

Level Server Client network Single Client

Levels 0 and 1 (sensor network) BG + (DF) CB + IB (BG) + IB

Level 2 (IoT nodes and Edge computers) BG + DF CB / CS + IB BG + IB

Level 3 (MES) BG + DF CS / CB BG + DF + IB

Level 4 (ERP) BG + DF CS BG + DF + IB

The level of downtime reduction is significantly reduced in this scenario compared to

standard approaches such as recreate deployment and rolling deployment [27]. In the

recreate deployment, the previous version of the software is shut down, and the new one

starts after the old one has been stopped. Rolling deployment is applicable for complex

systems with multiple servers. It is based on the recreate deployment but applies to

various services. The downtime is exceptionally low, but the length of an upgrade

process depends on the number of servers/nodes in an array, and it could take

considerable time. The proposed deployment strategy will improve overall deployment

time even more in the case of the rolling strategy since the blue/green switch could be

done in the close period; there is no need to wait until all the servers are updated in the

sequence.

The new request that does not fit into the proposed framework is to have the

possibility to support simultaneous evaluation of different versions of functionality.

Hybrid Deployment Strategy 407

Besides, it could be done through the feature flags, but it will eventually require more

consolidation and stabilization work. The A/B testing deployment approach is included

to address such requests. This approach is used on the client side to improve the

development and test phase and provide the possibility for limited testing in the

production environment. This approach aims to offer different functionalities to some

clients and then evaluate the user's reaction and acceptance. The update is usually done

in a few groups of varying sentinel nodes.

Recreating and rolling deployment are crucial concepts in software development and

operations at the MES level [28]. Recreating refers to rebuilding a software system or

environment from scratch, often to resolve issues or update components. On the other

hand, rolling deployment involves deploying new software versions in a gradual and

controlled manner, allowing for continuous delivery and minimizing downtime.

Integration with other systems and services traditionally occurs at the end of a

development life cycle, but rapidly developed applications are integrated almost

immediately. Testing occurs during every iteration, enabling stakeholders to quickly

identify and discuss errors, code vulnerabilities, or complications and immediately

resolve them without impacting the development progress. As stated in [29], “integration

with other systems and services traditionally occurs at the end of a development life

cycle, but rapidly developed applications are integrated almost immediately”. This

iterative approach to development and testing is a crucial aspect of recreating and rolling

deployment methodologies.

Fig. 3. A/B testing deployment

A/B deployment (Fig. 3) strategy has become increasingly popular in various fields,

including technology, marketing, and product development. This strategy involves

testing a product or service's versions, A and B, to see which performs better [25]. The

first source highlights the importance of product or service innovations in engaging

customers and improving performance. It suggests that the market development strategy,

which focuses on pursuing additional market segments or geographical regions, can

increase sales but also comes with more risk. The second source discusses different

methods for gaining market share, including product development and market

development [26]. In the Industry 4.0 era, the use of A/B testing deployment is a

comparable advantage within the installations of MES. The installation supports A/B

testing and easy transition to the new version, which is considered more advanced and

408 Petar Rajković et al.

customizable. The A/B testing is widely popular with deployment based on container

technologies, such as Kubernetes [30], since they involve end-users in decision-making

over the new version of the software.

4. Testing Environment

As it has been known, the update process comes with the risk of diverse potential

failures that could leave parts of the system unresponsive, running with unpredictable

behavior, or emitting erroneous data. For this reason, the update process must be

executed in a highly controllable environment that allows easy and efficient rollbacks in

case a flawed deployment is detected. As stated before, all software components in the

industrial system are usually organized in layers. Layers exchange data with each other

using different software protocols. The mentioned facts make the overall software

update process a bit more complex than within a standard information system

environment, and every error could lead to serious domino effects [11] [12]. Updating

software in one layer could impact the targeted device and other devices in the same and

different layers. For example, the update performed on the device running at the MES

level could affect software instances running in other layers.

The additional limitation point is the expectation for the highest possible performance

and the requirement that software run using as few resources as possible. The complete

system must have a high degree of resource awareness, and both storage space and

network bandwidth usage must be carefully planned during the update process in order

not to reduce the execution of the running components significantly [13][14]. For this

reason, the resolute digital twin is used for testing.

The digital twin (Fig. 4) is created partly in the laboratory environment and partly in

the cloud to simulate different connectivity scenarios and have an overview of worse-

case scenarios regarding latency and execution. The emulated hardware in a digital twin

is set to the lowest acceptable resource level, which should simulate worse execution

conditions than those in the production environment. The testing digital twin is

introduced while implementing the one-of-the-kind production system [32]. As the demo

factory, the plant producing doors and windows is set.

Such a production facility is used for demonstrating since it combines all diverse

kinds of production and needs multiple sensors and precise mechanical units to be

integrated. On the MES, the level needs several diverse types of clients and services.

The digital twin environment used for testing was described in [10] and improved to

support more complex environments. Previous research focused either on IoT nodes,

which were entirely configured in the local network, or on ERP clients, which were all

the same and ran only in the cloud. The IoT level in the digital twin consists of 100

nodes connected to simulated instances of sensors and actuators. Each IoT contains a

different number of sensors and actuators, which count within the node and could be

anything between a few and 1,000. The count of 100 gives enough flexibility and

complexity to perform testing in the development phase.

The digital twin, an exact mirror replica of the industrial facility environment, could

be created for the production phase. In the default model, following the ISA95 model,

sensors are connected to IoT nodes. Especially after the Industry 4.0 concept brought

Hybrid Deployment Strategy 409

new requirements for MES systems, a direct connection between MES clients and

measuring sensors could be established, too.

Fig. 4. The composition of the examined system containing all levels of the ISA95 model

Sensors within one IoT node could be different, and all could run various software.

Sensors could be active either constantly or just for predefined periods. They could

collect heterogeneous data with varying sample rates during their operation time. All

these facts make the IoT level very dynamic from the operational point of view. They

could increase the probability that the complete node went out of a stable state in case of

problematic deployments.

410 Petar Rajković et al.

The available memory space is usually between 1 and 5 MB per device, which is

enough for the necessary software. The nodes in the IoT layer are connected using

various methods, ranging from cable network connectors to LoRaWAN, which creates

an inconsistent environment in terms of connection speed and quality. The most

complex situation is with LoRa-connected devices since their bandwidth could be only

10-20 kbps.

IoT node layers are further connected to Edge computers or Edge nodes. Edge nodes

communicate between the shop floor and hazardous areas on one side and higher levels,

such as MES and enterprise resource planning (ERP), on the other. Edge nodes are

devices based on Raspberry Pi or similar base sets and are usually connected by a

Wireless network with an effective network speed of around 20 Mbps. Their space

requirements are around 30 MB per node. There were 10 of these nodes in our test

environment. To support testing, the mesh of 10 Edge computers is modeled in digital

twin. Each of them is set to collect data from 10 IoT nodes.

From the resource awareness point of view, software components on MES and ERP

levels are easier to manage. They run on desktop/laptop computers with enough

processing power, disk space, and bandwidth, but resource planning is inevitable even

with them. In our test environment, we used 200 MES clients connected to 4 MES

servers (two load-balancing and two redundant, with the possibility to change the

configuration) and 30 ERP clients connected to the Microsoft Dynamics server. All the

clients at this level are a few hundred megabytes in volume and are located under a

gigabyte network.

Table 2. Different MES clients and their functionalities

MES Client Type Connection within MES Level Connection to other levels/services

Administrative Server ERP

Operation Buffer, Server Edge

Configuration Server ERP, External cloud services

Management Server, Operation clients Reporting

Measurement Server IoT, Edge

Different connectivity and execution actions support different types of MES clients

(Table 2). Administrative clients perform operations related to the ERP level. They are

responsible for synchronizing operations definitions, catalog data, material definitions,

and other master data needed to properly exchange data between MES and ERP.

The operation client has a connection to the execution buffer on the MES side and to

the Edge level. The execution buffer is an optional implementation that allows clients to

continue to run when the server is offline. It contains a buffer filled with tasks that must

be executed in the workstation and collects data generated during production. Once the

connection is reestablished, the data flow will resume, and the server-side upgrade will

have the lowest possible impact on the clients.

The configuration client is described in detail in [32]. It is used to define new

products and eventually upload these data to cloud services and ERP. The management

client acts as a synchronization node between ERP and operation clients. It is

responsible for downloading production orders from ERP and uploading collected status

change data measurements, etc. Ultimately, the measurement client will provide the

Hybrid Deployment Strategy 411

interface for material registration and integration with IoT nodes such as sensors and

other measurement devices.

5. Transition of Deployment Strategy from IoT to MES node

The software update process for IoT nodes and sensor/actuator devices running in a

production environment is particularly sensitive. In industrial automation, sensors and

actuators emerge as fundamental components that underpin efficient, safe, and precise

operations. These unassuming devices are pivotal in monitoring, controlling, and

optimizing various processes across diverse industries. The update of such small

components requires detailed planning before an update. Thorough planning is needed

because they are, on the one hand, tiny both in size and capacity and on the other hand,

they are running in a hazardous environment where the only possible connection is

relatively slow LoRa networks with no wiring possible and limited physical access, (Fig.

5). If some physical intervention is needed, the stoppage of the complete industrial

process is often a requirement.

Besides the slow network, the low-performance hardware is one additional potential

problem. This fact could result in an unacceptable long update process, which could

move the targeted device off the system for an extended period. The last, but not the

least important, is the energy consumption problem. Software updates are an activity

that requires significantly more energy than regular data collection and data transmission

processes. Thus, this process must be planned for when the battery is charged to the

highest possible level and when the eventual rollback will not drain the battery.

At first sight, it looks like there are no common issues or problems between IoT and

MES clients. MES clients have fewer limitations, especially in processing power and

storage capacity. This statement suggests that one can assume that any kind of

deployment strategy is convenient for MES clients. It could be said this from a strictly

technical perspective, but when including different business requirements, it turned out

that deployment at the MES level must be carefully designed, too. Furthermore, the

main building blocks for both clients are similar (Fig. 5). In both client types, regardless

of different implementation technologies, Communication, data collection, and the

processing block could suffer from the same problem. The problems with the low energy

level are related to IoT, while the MES clients could suffer from synchronization and

compatibility problems.

Noticing this, we realize that the deployment strategy defined for IoT nodes could

apply to MES clients and be enriched with the experience through the ERP client

deployment project as presented in Table 1. Blue/green deployment could be used if the

destination node has enough storage space. The difference would be in the specific

implementation technology, but the concept will remain the same. Additionally, an

intermediate buffer, defined at the IoT node level, could be safely applied to the MES

level. The MES nodes implementation is based on the concept from the IoT level and

then enriched with additional features that will bring even further benefits to the MES

level.

Traditionally, the MES nodes usually used some of the classic deployment

methods—recreate or rolling deployments. Such an approach has been acceptable in

412 Petar Rajković et al.

recent years. Still, due to the manufacturing shift towards Industry 4.0, users started

looking at the re-installation process connected with downtime as a problem. In the case

of rolling-like deployment, the issue relates to a long waiting period until the new

version becomes fully available.

Furthermore, such an approach would require an IT assistant in the facility, ready to

help, run an installer, or perform some similar support activity. Since this was not

acceptable anymore, we aimed for an approach already applied in IoT nodes and for its

transition to MES-level software.

Fig. 5. Comparison of building blocks of IOT (left) and MES (right) client nodes

5.1. Software Update Approach for IoT and MES Nodes

Looking at the single IoT node, our choice for a software update is a semaphore-based

green/blue approach (Fig. 6). This approach is possible with devices storing at least two

software versions simultaneously. In this case, the critical points are typically low

bandwidth and possibly low battery levels. The approaches to solving these two

problems are elaborated further in [34].

The problems with applying such an approach at the MES level resemble the IoT

level. First, data storage limitation is not, per se, the main issue, but the device could run

into such a problem when the access rights for the installer are not managed correctly.

The issues with access rights are not present in the IoT node since the vendor is

responsible for hardware and software. At the MES level, the software is installed, in

most cases, on the customer’s equipment, for which the IT security and management

team is responsible for maintenance.

As mentioned, the problem with low space could appear at the MES level if the

installer has no delete rights for older versions. Since the MES clients could come with a

Hybrid Deployment Strategy 413

few hundred megabytes of installed software and generate large log files, the issue with

the space could arise if the delete and backup processes are not managed correctly.

Next, the installation could also create bandwidth problems if not appropriately

managed. For example, in a factory with 200 workstations, each would require an MES

client installed. In some cases, more MES clients could be launched on the same

machine. At least 200 clients will require an update when an updated version is detected.

If distributed from a single spot, as often chosen, the update process could easily make a

bottleneck in the network. Furthermore, the MES client will maintain a connection to

more layers in the ISA95 structure, which could cause further synchronization problems.

For comparison, nodes at the ERP level, closely elaborated in [10], do not have

connections to another system, which makes them much easier to handle.

Fig. 6. Semaphore-based blue-green deployment strategy used for IoT nodes [10]

Coming back from IoT nodes, the base for the deployment approach is a blue/green

strategy. This is the backbone of our update system. It is easy to be implemented in any

technology. The main idea behind the blue/green strategy is to ensure that the target

device always keeps at least two software versions – actual running (version N-1) and

previously verified (version N-2). To reduce the data loss during the switchover, the

node setup is completed by a message queue. Message queue collects data from sensors,

and data are removed from the queue after being processed. The queue could be

implemented as an independent entity to continue collecting data during the switchover.

The update process starts by replacing version N-2 with the new version N. At that

moment, version N-1 is still active, and the device runs uninterrupted. During that

period, the device experiences higher-than-average network traffic and battery use. Once

version N – 2 is deleted and version N is uploaded and verified, the switchover could

start. The device begins operating version N, but its communication points remain

inactive. When version N is fully up and running, the semaphore opens communication

to version N and stops version N-1.

In that case, there is almost no operation downtime, and the complete update process

is seamless for the customer (Fig. 7). In a well-orchestrated process, data loss during the

switchover can be effectively mitigated. In the worst-case scenario, only signals received

during the switchover—typically lasting several seconds—may be lost and left

unprocessed. The switchover is seamlessly executed for IoT nodes by transitioning to

sleep mode. Since sleep modes are an integral part of processing, facilitated by a

dedicated core, transitioning to and from sleep mode is considered a native operation for

IoT nodes.

414 Petar Rajković et al.

In many cases, this approach will also be fully applicable to MES nodes.

Unfortunately, not always. Two central problems appeared here with MES clients. First,

as mentioned before, the older version (N – 1) will not be deleted in case of a lack of

privilege. If not managed properly, this will cause a problem with the space on the

destination node. The next problem is the switchover phase. MES clients are much

larger pieces of software with a powerful GUI that maintains integration with different

services on the MES level and even to different Edge, SCADA, and IoT devices. The

proper switchover would require replacing the client version and reestablishing

a connection to other connected instances (Fig. 8). This makes the buffering system even

more important here than at other levels.

/* define sleep request event bits */
#define SLP_REQ_BAT_CHARGER_TASK_BIT (1 << 0)
#define SLP_REQ_PARAM_TASK_BIT (1 << 1)
#define SLP_REQ_GPS_TASK_BIT (1 << 2)
#define SLP_REQ_LoRa_TASK_BIT (1 << 3)
#define SLP_REQ_GSM_TASK_BIT (1 << 4)
#define SLP_REQ_MQTT_SENDER_TASK_BIT (1 << 5)
#define SLP_REQ_READ_I2C_TASK_BIT (1 << 6)
#define SLP_REQ_READ_485_TASK_BIT (1 << 7)

/* define sleep acknowledgement event bits */
#define SLP_ACK_BAT_CHARGER_TASK_BIT (1 << 0)
#define SLP_ACK_PARAM_TASK_BIT (1 << 1)
#define SLP_ACK_GPS_TASK_BIT (1 << 2)
#define SLP_ACK_LoRa_TASK_BIT (1 << 3)
#define SLP_ACK_GSM_TASK_BIT (1 << 4)
#define SLP_ACK_MQTT_SENDER_TASK_BIT (1 << 5)
#define SLP_ACK_READ_I2C_TASK_BIT (1 << 6)
#define SLP_ACK_READ_485_TASK_BIT (1 << 7)

0 0 0 0 0 0 0 0

EventGroupHandle_t ev_req_sleep = NULL;
EventGroupHandle_t ev_ack_sleep = NULL;

ev_req_sleep

0 0 0 0 0 0 0 0ev_ack_sleep

main
task

I2C_comm
task

set event bit

0 1 0 0 0 0 0 0ev_req_sleep

0 0 0 0 0 0 0 0ev_ack_sleep

read event bit

0 0 0 0 0 0 0 0ev_req_sleep

0 1 0 0 0 0 0 0ev_ack_sleep

set/reset event bit

Fig. 7. Software update sequence with the sleeping sequence

Blue/green is not a favorable solution; it is only for successful updates. It proves its

value when the update fails. In that case, blue/green offers an effortless way to switch

back to the previous (valid and proven) version N—1. Furthermore, such a rollback will

not require additional data traffic, which is desirable in any scenario and level. Once the

error is solved, version N could be replaced with the next update.

The blue/green setup supports both full and partial version updates. In case of a

partial version update, the new version will be generated when the copy of N-1 gets

merged with new libraries and configuration files. The partial approach is faster and

brings a lower network load. It is helpful for MES-level clients, but it is even more

suitable for devices with more processing power on the IoT level. The easiest way to

spot them at the IoT level is to check if they use GSM modems and LoRa adapters. In

brief, partial deployment is more efficient for more complex software components.

Hybrid Deployment Strategy 415

Fig. 8. Software update sequence for MES client (expanded from [10])

 This approach will not solve every deployment problem. In some cases, it could be

inefficient or even useless. In case of a partial update, it could happen that the

deployment package did not come with all necessary dependencies. Then, the update

will fail, leading to additional data transfer and new version creation.

Next, the new version might be larger than the available space, even after deleting

version N-1. In this situation, the blue/green approach cannot give positive results, and

the update will fail. This would lead to the request for additional intervention and, in the

best case, reducing the deployment to recreation mode.

Since the software is connected to services and other running instances on various

levels, their interface might change occasionally. Or even buffer service needs to be

updated. Blue/green will not help or solve the problem if this happens. Such updates

then need to be implemented during planned downtime and meticulously organized to

follow all necessary steps in the required order.

The last but not the least essential problem is when the device runs out of power

during the update process. It could happen to any device, but those running on battery

are more prone to this problem. The mentioned problem is not typical for MES nodes.

They are connected to standard LAN/WLAN or Profibus network and are usually

connected to the continuous power supply. If they lose the power during the update, they

416 Petar Rajković et al.

will continue to run the N version after the restart. Also, suppose the MES client is

installed in a battery-running device like a tablet or laptop. Their operation system will

only be configured to run updates if the device is connected to the power grid.

As the clients run in more powerful nodes and more complex environments, their

update process could be enriched with more proficient methods. The methods are

feature flags, dark mode, or A/B testing, which will offer an easy transition to new

functionality. The new version will be the same as the previous one upon the switchover,

and then new functionalities could be gradually enabled. The end user would

increasingly receive new features in this way. In case of a problem, the features could be

quickly turned off remotely. Also, new versions of features could be assigned to specific

clients to evaluate, following the A/B testing strategy.

5.2. Software Update Approach for Devices with Limited Storage Space

To address this challenge, an additional device of the same type, preferably with a larger

storage capacity, is introduced. This backup node is a repository for storing backup

versions of the currently running software. In scenarios where the Internet of Things

(IoT) layer comprises multiple similar or identical nodes, adding an extra device is not

perceived as a drawback but as a justifiable minimal cost.

The same approach applies to Manufacturing Execution System (MES) clients.

However, the key distinction lies in the role assigned to the chosen node. In the MES

environment, the selected node assumes the mantle of a leading or sentinel client

responsible for distributing update packages within its designated group. Utilizing

backup nodes at the MES client level is also feasible, especially in cases where stringent

IT security protocols prohibit the retention of old software versions due to company

policies.

The deployment process commences by transferring the new version (version N) to

the backup or sentinel node. Once this operation is completed, the backup node

disseminates version N to all devices running the same software. Notably, this approach

slightly extends overall downtime, as the target node must first halt the previous version

(N – 1), acquire the new version, and subsequently initiate version N. Conversely, no

discernible difference in overall downtime occurs when the backup node acts as a

sentinel.

An inherent drawback of this approach pertains to increased data traffic requirements.

However, this traffic is confined solely to communication between the sentinel or

backup node and the clients within its designated group. An additional advantage

emerges during potential rollback scenarios. After uploading version N to the backup

node, deployment to sensor nodes occurs sequentially. The process begins with the

sentinel device (borrowing from the canary deployment concept), where comprehensive

validation under production conditions occurs. If the new version proves valid,

subsequent nodes receive the update. Conversely, the rollback sequence is limited to the

sentinel device if issues arise.

In the second scenario, continuous uptime on the device is not feasible during the

update process. Specifically, the currently running version (N-1) must transition to sleep

mode and then be removed from the destination device. Subsequently, the new version

(version N) is uploaded, configured, and activated using a wake-up command. Until

Hybrid Deployment Strategy 417

version N is fully operational, the node remains in downtime and temporarily unable to

collect or exchange data—an inherent vulnerability that must be managed.

5.3. Software Update in Edge Layer Affecting IoT and MES Nodes

The simple software update at the Edge level would be managed at the other levels by

employing message queues. Incoming messages to the Edge level will be handled when

it becomes operational again. Messages from the output queues of the Edge level will be

processed until Edge components are offline. The connecting systems will raise an alarm

if all the items are processed. The same will apply if the incoming buffers become fully

loaded.

Fig. 9. Software update scheme with message queue [9]

Considering this, it is crucial to define the buffers as wide and long enough to

accommodate the amount of data that could be generated during more extended

downtimes. In the scenario when the device from the Edge level must remain inactive

for a period of deployment and when there are no buffers or message queues

implemented, the connected systems will run into an alarm state. Devices at the MES

level will raise an alarm, but they will continue executing other actions that are not

connected to the Edge level. Some functionalities will be temporarily stopped, but most

work could continue.

Devices at the IoT level will not be in such an advantageous position in this case.

Without a buffer, devices at the IoT level will get disconnected for the same amount of

time as the Edge-level devices. For IoT nodes, this will be a situation of a high alarm

state, and they will execute the following course of events:

- Devices in IoT nodes detect disconnection event

- Devices raise the internal alarm

- Start reconnection procedure in predefined time frames

418 Petar Rajković et al.

Fig. 10. Reconnection sequence between IoT, Edge, and MES node

Without a buffer enabled, while the Edge level node is not running, IoT nodes will

not have a destination where to send processed data. This will cause significant data loss

for the complete deployment areas, which could be unacceptable if the process

consumes extensive time. This problematic state will last until the Edge layer node starts

running again. When a node from the Edge layer restarts and returns online, IoT nodes

will connect again and continue exchanging data.

In some cases, IoT nodes will not be able to reconnect due to a change in

communication protocol or a hardware error. In these cases, IoT nodes will run a

general alarm, and then the Edge node must be moved back to the previous version.

When an update is needed in both layers, the update notification signal will stop the

general alarm, and then all IoT nodes will be updated individually. The update will be

driven from the backup node.

One of the commonly used solutions to reduce the necessity for frequent updates

across the levels is the using a buffer between the layers (Fig. 9). In this case, the buffer

is implemented as the message queue. In most cases, when the communication protocol

changes, only the synchronization buffer will be updated, while all the nodes in the IoT

layer will continue to work. In this way, downtime will hit only one layer (in this case,

the Edge layer) while the other layers will continue to run without interruptions.

Introducing a message queue solves the previously described issue but at the cost of a

bit more complex setup and integration. Fig. 10 This shows the process of integration

with the Edge level. The approach is the same for IoT and MES nodes on opposite sides

of the Edge node. The Edge nodes establish communication using message queues

Hybrid Deployment Strategy 419

(MQTT in the case of the presented system). MQTT brokers and clients are installed at

the Edge and the MES level. The IoT node needs only the client.

The connection is initiated from the client on one level to the broker on another.

When this communication is established, the broker waits for the client's connection at

its level and accepts the subscription request. In this way, MQTT clients in the IoT and

Edge levels are connected through the broker at the Edge level. Similarly, MQTT clients

from the Edge and MES levels will be connected through the broker at the MES level.

It must be stated that when transferring data using a message queue, data loss could

happen during the software update. Message queues usually contain objects of specific

types produced on one side and consumed on another. The two most common scenarios

are when the connection between the message queue and one of the sides (producer or

consumer) cannot be established, while another is when the data queue contains objects

of unrecognizable type in the destination. The first situation is handled in a way that

stops the producer until the connection is fully re-established. The second situation

happens mostly when the version of consumer software is replaced in a way that stops

supporting old message formats. In this case, the messages remaining in the queue will

be lost. Synchronization through message queues is an essential aspect of the software

update, but it goes beyond the scope of this paper.

6. Update Mechanism for MES Nodes

The main shift that could be done at the MES level is integrating the software update

mechanism into the solution. MES architecture, which we exploited in our

environments, is service-oriented architecture (SOA) based on different technologies.

On the server side, multiple services running to achieve necessary functionalities. The

current setup is between single service and microservices since the system consists of

main execution and multiple supporting services. While the supporting services could be

turned on and off independently, the leading execution service must be active to put the

system in run mode. In that sense, the update service is one of the services on the server

side responsible for server and client updates. Ideally, the update service is configured to

run in the independent node. It takes care of the order of the update and data buffers

during the update process.

Depending on the requirements, the update service could take care of every single

node in the system or equally distribute the updates depending on the node type. The

update service takes care of sentinel/backup nodes (if configured) and monitors and

switches different feature flags and A/B functionality variants on and off. The approach

with the controllable update mechanism, driven from the single node, applies to any

ISA95 level. Depending on the technology, implementation could be different, but the

concept of maintaining the update process and the configuration from the single point

makes the system fully controllable and maintainable. Moving these functionalities from

the execution service and its connected microservices to an independent node avoids the

well-known problem of the server bottleneck during the update process. In the cases

where the execution service itself triggers and controls the update, the network traffic

significantly rises during a brief period, which could lead to different synchronization

problems.

420 Petar Rajković et al.

The additional advantage of implementing such a node is the possibility of

connecting it to the digital twin in the cloud. This feature makes updating over the air

and synchronization with the digital twin possible. Having such a connection would

allow a complete industrial facility to be controlled remotely, and the existing digital

twin would always be available for any test and analysis.

Both client and server nodes will use the standard network protocols to operate at the

MES and ERP levels. In the lower levels, the accessibility will depend on the

implemented technology. Still, with the appropriate network adapters, the update node

could achieve control also over the instances in Edge and IoT levels. The update node

could also monitor configuration changes in production environments and take adequate

action when the change is detected. Depending on the configuration or requirement, it

could push the change to a digital twin, raise an alarm for the additional check, or

overwrite the configuration.

 The additional benefit is the more accessible support for testing and verification

before moving the change production environment. As mentioned before, after the

solution has been evaluated to a digital twin, test, or staging environment, the

deployment for production could be ready significantly faster. The access to

configurations already prepared in the digital twin environment allows the update

manager to check the destination clients and easily spot if the local changes have been

made. In that case, it could stop the deployment and raise the alarm to the technician to

decide how to proceed. Alternatively, the update manager could override the

configuration in the client machines and force the update.

The update node could also push the update for the server side. At the MES level, the

server-side SOA system will also store all the actual and previous versions of the clients,

allowing easier recovery and fallback in the case of unsuccessful deployment. In case of

the configuration on multiple server instances, the update manager will track the order of

the update, using the feature flag system to control the start and stop of all

microservices. As mentioned, the leading service on the server side is the execution

service required to be active to make the entire system run.

The server side of the update mechanisms is responsible for communicating with

clients and other external systems – such as databases, configuration storage, and other

external services. It could be configured to retrieve data from multiple sources and

prepare the deployment packages according to the status set in the digital twin. As

mentioned, its role is also to monitor the validity of the complete system to check if the

configurations or client versions may change outside of the deployment process and to

raise the alarm in case of misalignments.

Both clients and service exchange ping messages to keep the system communication

status. Ping messages could contain distinct parameters and run in different periods.

While some are used only to check if there are responses on the other side, others could

be used to verify client versions and configurations. At the same time, regular messages

that exchange data are used to maintain connectivity. Every message delivery failure

could trigger an alarm and run the re-assessment process and eventual network

reconfiguration. In some cases, the sentinel clients could take the server role for the

group of clients and maintain connectivity in the alarm mode.

Hybrid Deployment Strategy 421

6.1. Update Node Routines

The DeploymentHelper component handles configuration updates in scenarios where the

application reverts to an older version or when a specified time for updating specific

clients has elapsed, necessitating updates for the remaining clients. This component is

situated on the server side, as all configurations for this application reside on the same

machine as the service. Consequently, the service possesses all necessary permissions

for file modification and physical addresses where the files are located.

The base class diagram to support client updates is presented in Fig. 11. Instances of

class Update Status Info stores the info about the version and application name. The

bare minimum of the data should be maintained for every client. They come to the MES

or update service as part of ping messages from clients. Combining these pieces of

information with the data in the internal cache, the process that keeps track of versions

could maintain their activity tables regularly. Activity tables are kept in the update

process and periodically synchronized with the digital twin environment. The objects of

this class, either persisted in the memory or a dedicated location in the file system, are

also used as the contact point for the DeploymentDispatcher.

On the single node level, the DeploymentDispatcher is the component responsible for

the entire update process. It could be configured to ping the server or sentinel client to

check for the new version or to wait for the update notification. Once the latest version

is discovered, the update process will start and be executed in UpdateDirector.

The update thread will run in the background and gather all necessary configurations

and binaries from the update node to form the new version of the client. After a new

client is formed, it will trigger the rest of the process and perform possible additional

steps, such as a backup of the previous version and a blue/green switch. When

configured in the sentinel node, this functionality will propagate the installation to other

nods in the group. As the ultimate step of the update process, the information about the

software version will be pushed back to the update node and the digital twin to ensure

the proper version info synchronization.

It is essential to point out that DeploymentDispatcher could progress both with

complete client updates and partial functionality enabled/disabled. In that way, direct

support for feature flags is implemented. The client could come with an updated version

of the software, but in case of any problem, the additional features could be disabled.

Also, configuration changes could be pushed from the server to ensure the required

reconfiguration.

The update manager instance is created when the application is started. It is

constantly active and periodically checks for recent updates if configured to run in active

mode. During initialization, the update manager checks the application's version and all

modules to ensure the up-to-date application signature is ready for comparison with the

version on the server.

The update manager listens to the server's ping and notification commands in passive

mode. In this scenario, the server notifies the client that the updated version is available,

and the client starts the update process. Also, it is usual to configure both modes in the

same and dedicate each process to a specific part of the update process. For example,

the check for the new client version could be configured in active mode, while the

configuration updates could be passive and pushed by the server instead of the client's

request.

422 Petar Rajković et al.

Fig. 11. The relations between main entities in the deployment subsystem

An instance of this class creates an object of the DeploymentDispatcher class and

immediately invokes its primary function, as shown in Fig. 12. This function manages a

specific client's update process and could halt software updates if necessary. It is

responsible for initiating the update process as long as the attribute's value that keeps the

loop alive remains unchanged.

This method initially attempts to retrieve the file containing the necessary information

for updating. If that file does not exist, the method returns a false value, indicating that it

failed to obtain the appropriate file. If the file is successfully retrieved, relevant data

required for updating is extracted from it. Subsequently, it checks whether beta updates

are active. If they are and the specified time for this type of update has elapsed, the

UpdatesManifest.xml file is updated. In this file, the active software version is set to the

“beta” version, and updates of this type are marked as inactive. Next, it verifies whether

the current client version matches the version that should be on our machine (Fig. 12).

New client versions must be downloaded if the current client version is missing or

differs from the version in the file while beta updates are inactive. In the case of active

beta updates and the client still not being on the beta version, affirmative information is

returned to download new files, but only if random access permits. This ensures that not

all clients receive the updated value, only those with “luck” (Fig. 12). All clients

downloading the updated version exit the function and return a value true. If the random

selection does not choose a client, the thread responsible for updating is put to sleep for

a predefined number of minutes. Afterward, the thread is again put to sleep for a few

seconds, triggering the update check.

Hybrid Deployment Strategy 423

Fig. 12. The sequence of choosing and verifying the correct software version

The DownloadUpdates method retrieves updates from the corresponding file (the file

path is specified in the update specification). If beta updates are active, it fetches the file

named in BetaFilePath; otherwise, it retrieves the file named in FilePath. BetaFilePath

is used when the A/B deployment must be supported, while for regular deployments, the

filed FilePath directs to the update location. This approach also solves the issue of

network connection interruptions to the new client, as the update is not applied until it is

fully downloaded locally. Finally, the application that launches the latest client version

is restarted.

7. Results and Discussion

This research came out of the project that resulted in the development of a complex

industrial monitoring system aimed at all ISA95 levels – from IoT nodes through Edge

and MES to ERP level. During the project, for more than 15 years, our team was

focused on different aspects of development and implementation, starting from the

improvements of CAD/CAM databases [31] through all different implementations at all

levels, up to development for the software update system integrated with the cloud [9]

[10].

424 Petar Rajković et al.

Fig. 13. View on the ERP client - production order definition

The tests are conducted in a digital environment that resembles the industrial façade

carpentry facility. Section 4 gives all the necessary details in the composition of the test

environment. Such production is interesting since it combines different production types

– from serial production to one-of-a-kind configured products [32]. At the same time,

such a facility combines processes based on various physical and chemical procedures in

material treatment, thus requiring all kinds of digital interaction, starting from thermal

sensors and actuators through intelligent industrial machines integrated with MES

clients up to ERP software enhanced with different CAD and planning tools (Fig. 13)

[33].

Having experience with diverse types of software developed on different ISA95

levels, we identified the common problems in software updates and tend to generalize

the update architecture, node structure, and processes. The results were preliminarily

evaluated at the IoT and ERP levels because they have limited effects on the rest of the

system, being connected only to the neighboring level. Following the results and

recommendations from the previous work, we decided to expand the update system to

the most challenging MES level (Fig. 14).

7.1. Guidelines for Combining Different Deployment Strategies

Our research was led by the request to reduce the potential downtime during the

software update in a challenging environment such as the industrial facility. The actual

criticality of this request is not equal from level to level, but the customer requirement

tends to go to 0 downtime regardless of the software system. To reach this goal, we

decided to replace the standard deployment (stop-copy-run) with a combined strategy

Hybrid Deployment Strategy 425

that should employ the benefits from different deployment processes. Looking at the

single node, we aimed for the blue/green deployment as the base concept.

This concept could be enriched then with feature flags, dark mode, and A/B testing

deployments to fine-tune the update process and to release new functionalities in the

controllable environment. At the level of the node networks, the concepts of canary

deployment were applied to the development of backup and sentinel nodes, which

function as the group leads and will receive the first update and then push forward

deployment into the subsequent nodes in its group. Combining these three well-known

approaches in the proposed way, we tried to benefit from all the positive aspects we

could get:

- Blue-green deployment gives the possibility for a fast version switch.

- Dark mode and feature flags allow simple enabling or turning off single

functionalities.

- A/B testing allows running several feature variants to let the customer decide

which to accept.

- Canary deployment allows prompt identification of deployment errors.

- A synchronization buffer allows us to keep one layer insulated and operative

while the connected layers are in downtime or performing an update.

The proposed methodology is initially subjected to rigorous testing at the IoT level.

This choice stems from the formidable constraints encountered in this stratum,

encompassing software resources, network bandwidth, and energy consumption

limitations. Additionally, deploying IoT systems in critical and hazardous environments

underscores the need to minimize direct human intervention and avoid installing

supplementary infrastructural components, such as power or network cables.

Complicating matters further, physical access to IoT nodes remains a challenging

endeavor. This challenge arises not solely from technological considerations but also

from mechanical and security protocols. Removing various mechanical elements in

certain instances becomes necessary to reach IoT devices physically. Moreover, these

devices often operate in environments hazardous to human safety, necessitating stringent

procedures for device access.

Previously, a conventional update approach, or recreate deployment, was employed,

wherein the software component was replaced either entirely or partially (via a stop-

copy-start process). However, this standard update method posed several issues, which

can be briefly summarized as follows:

- The downtime was always present. If the software component is in the updating

process, the software device cannot be used.

- In case of an erroneous update, software should be restored to its previous

version, which would lead to further downtime.

- The restore process sometimes drains the battery, requiring the personnel

member to go to the hazardous area.

- Connected layers generally could not continue to work since they were flooded

with alarm signals.

Our results with the proposed combined deployment approach proved our

expectations and varied between different software layers and scenarios. Applying the

proposed strategy reduced the overall downtime and number of unnecessary rollbacks.

This was achieved by the cost of implementing the backup node, the implementation of

426 Petar Rajković et al.

the buffer level, and a slight increase in data traffic. Table 3 shows the behavior of the

network of 100 IoT nodes analyzed in a test environment.

Fig. 14. MES client set up in a factory environment - connected to cutting machine and the

signals that bring measurement values

Having the configuration with one leading node, the total number of updates coming

from the update node or the cloud to the IoT network will be reduced from the total

number of nodes (NN in further text) to one. The updated version will come from the

outside system to update the node, which will guide the update for the rest of the IoT

nodes. In this way, the bottleneck in communication between the IoT level and the rest

of the system will be reduced or eventually avoided. This way, the number of security

checks will be reduced to only one. In a scenario where every node gets an update

outside the network, a security check will be performed every time due to standard

security policies.

The proposed hybrid approach will require more space. If the clients can support

blue/green deployment, they will need twice as much space as in the case of recreate

deployment. One additional slot for the distributed version should be added to the space

required. The sentinel client will use the distribution/sentinel/backup node to download

the updated version and then forward the update.

Hybrid Deployment Strategy 427

Table 3. The effects of the proposed deployment strategy on the IoT level containing 100 IoT

nodes connected to a single Edge node (TD – time to shut down the software in the node, TU –

time to start the software in the node, TS – time switch between the versions, IS – software

instance size per node, NN – number of nodes). Combined from [9] and [10]

Measurement With recreate deployment With hybrid strategy

Number of software uploads to IoT

level – successful deployment
NN

1 (only to the leading

node)

Number of internal uploads –

successful deployment
0 NN

Number of software uploads -

unsuccessful deployment
Average 8% of NN 1 to the backup node

Security check on upload NN 1 (only to backup node)

Number of internal software uploads

– unsuccessful deployment
0 1

Rollbacks with unsuccessful

deployments
8% of NN 1 + 1

Downtime per node TD + TU (in seconds) TS (in milliseconds)

Used space for software per node

(with blue-green approach)
1 x IS 2 x IS

Used space for software with buffer

node
NN x IS NN x IS + IS

Update distribution Manual or with a task scheduler

Optimized by backup

node or pushed from the

cloud

Downtime when connected layer

update
If the update is running Until the buffer has data

The concept proposed for IoT nodes in [10] further evolved and applied to the ERP

nodes [10]. With further customization, it is successfully applied to the MES level. The

expected effect is presented in Table 4. Both ERP and MES clients share similarities in

size and software architecture. Both have more extensive software instances than those

in the IoT and Edge levels. Due to the software's mentioned size, update distribution

could cause problems comparable to those from the IoT level, primarily if the update is

run from the same node where the server is running. In that case, the single node should

run NN uploads, which could take significant network resources.

To address this challenge, a strategic division of client nodes into N1 groups by AG

clients is proposed (Fig. 15). This approach draws inspiration from the canary

deployment methodology, wherein a dedicated group of clients serves as the initial

testing cohort. During the first iteration, updates are dispatched to sentinel nodes,

responsible for essential testing. Subsequently, these sentinel nodes propagate the

verified updates to the nodes within their respective groups. In the event of an error

detected at the sentinel level, a rollback ensues, ensuring that most clients remain

shielded from erroneous software versions. This approach undergoes slight adaptation

when applied to the MES layer. The rationale behind this modification lies in the

inherent diversity of MES clients. Unlike ERP clients, which typically exhibit uniform

features, MES clients cater to distinct operational stations, each potentially possessing a

significantly separate set of functionalities. In the MES environment, an initial client

group is selected for deployment. The updated version is relayed to its sentinel node,

where thorough verification occurs. Upon successful verification, the updated version

cascades to the remaining group members. Subsequently, the verified functionality

extends to other sentinel nodes.

428 Petar Rajković et al.

Table 4. The estimated effects of the proposed deployment strategy in MES and ERP level (TD –

time to shut down the software in the node, TU – time to start the software in the node, TS – time

switch between the versions, TF – time needed to activate feature flags and A/B features, IS –

software instance size per node, BS – buffer size, NN – total number of nodes, N1 – number of

level 1 nodes (sentinel/backup nodes), G – number of level 2 groups, AG – average number of

level 2 nodes per group AG = (NN – N1)/G)

Measurement Recreate deployment Hybrid deployment

ERP level

Hybrid deployment MES

level

Number of software uploads to

level 1 nodes – successful

deployment

NN N1 1 + (N1 – 1)

Number of software up-loads to

level 2 nodes (average per

group, successful deployments)

0 AG AG

Number of software uploads to

level 1 (rollback needed)
NN Up to N1 1

Number of software uploads to

level 2 (rollback needed)
0 0 AG

Security check on upload NN N1
1

Only in the update node

Downtime per node TD + TU TS TS + TF

Total space used NN x IS
NN x (2 x IS + BS) +

IS
NN x (2 x IS + BS)

Update distribution
Manual or with a task

scheduler

Optimized by backup

node
Over the air

Downtime when connected layer

update

If the update is

running

Until the buffer has

data

0 – ERP Until the buffer

has data – Edge / IoT

Fig. 15. Differences in deployment approach for ERP (left, as presented in [10]) and MES clients

(right)

Hybrid Deployment Strategy 429

Table 5. Effects of different client deployment approaches to MES and ERP level – 3 groups of

10 clients (STD – standard approach, WoD – Wave of Distribution, RD – Recreate Deployment,

HD – Hybrid Deployment, CwS – Canary with Sentinel, GwS – Groups with Sentinel)

Measurement ERP RD ERP HD CwS MES RD MES HD GwS

Number of update packages

sent from the server to clients

(1st WoD)

30 3 30 1 + 2

Amount of data sent from the

server to clients (in GB, 1st

WoD)

1.35 0.14 0.75 0.03 + 0.07

Network traffic peak (in %,

server outbound, 1st WoD)
100 18.65 78.40 5.67

Distribution group size (2nd

WoD)
- 10 - 10

Distribution time per group of

clients (seconds, 1st WoD)
64.28 7.55 41.19 2.77 + 6.01

Distribution time per group of

clients (seconds, 2nd WoD)
- 17.08 12.55

Single client

switchover/update time

(seconds)

32.28 4.58

25.19 (MES

only)

31.22

(complete)

2.41 (MES only)

8.67 (complete)

Single client

switchover/restart time when

rollback is needed (seconds)

34.10 6.78

26.49 (MES

only)

33.53

(complete)

4.33 (MES only)

9.02 (complete)

While this approach does not directly reduce total network traffic, it effectively

distributes the load across update and sentinel nodes, mitigating network traffic hotspots.

Anticipated downtime per node may be slightly higher for MES clients due to the

activation of feature flags and A/B functionalities. Additionally, depending on

configuration, MES clients may require time to establish connections with signal sources

from distinct levels. Notably, integrating the update mechanism with the Cloud level and

the digital twin introduces the prospect of fully controllable over-the-air deployment,

potentially paving the way for a transition to software-as-a-service for specific system

elements.

We compared the update behavior for the array of 30 ERP and 30 MES clients

running in the test environment to evaluate predicted values. They have been split into

three groups of ten clients for the simulation. The findings, presented in Table 5, align

with the estimation from Table 4. Due to their smaller size, MES clients create less

network traffic than ERP clients. The amount of required space and network peaks are

lower for the MES network.

7.2. Advantages and Drawbacks

The advantage of the approach shown in this work is that if it is applied to MES nodes,

it results in faster recovery if the deployment error is noticed, compared to the one

presented in [9] and [10]. Usually, it is enough to do the rollback only in one sentinel

node. The next advantage is the possibility of running multiple versions of some

functionality and quickly switching them on or off. Ultimately, integrating with cloud

430 Petar Rajković et al.

services and establishing a complete digital twin helps detect errors and change. The

environment we used for the test is a demo digital twin for beta testing.

It is essential to note that two separate times must be measured when the MES client

is started or when the switchover is handled. The most critical moment is when the client

is in running mode and connects to the MES service, allowing it to perform standard

MES functionality – operation execution, labor logging, etc. Next is the moment when

the client is connected to other data sources. In our example, clients are connected to an

OPC (object for process control) server that acts as a system that collects measurements

from the sensors. Generally, these data sources could be different depending on the area

of the industrial facility where the client is running.

The software update challenges discussed in this study constitute only a portion of the

broader complexity. For over fifteen years, we have continuously relied on systems

developed by our research group, honed through rigorous coordination, and field-tested

in partner industrial facilities. The software update process encompasses several critical

dimensions, including compatibility concerns, system stability, data migration

intricacies, and the imperative of user adoption. Addressing compatibility issues

necessitates comprehensive testing across diverse system configurations before

deployment.

To this end, we advocate for establishing a dedicated test environment within our

domain or creating a digital twin in the cloud. For instance, transitioning to a different

platform version for Windows application development may introduce incompatibilities

with OPC servers. Similarly, upgrading the database server to a newer version could

disrupt continuous connectivity between MES or ERP systems until the connection

driver is updated. Altering the data structure of messages stored in message queues

poses the risk of data loss for existing records, rendering them unreadable by the current

system.

User adoption hinges on effective communication and targeted training to elucidate

the benefits of updates and familiarize users with new features. Soliciting feedback from

users both before and following updates facilitates the identification and resolution of

any emerging issues. The strategic inclusion of A/B deployment techniques further

enhances this process.

The typical application of the proposed software update mechanisms is limited to

some point. This means that the suggested set of updates could not be directly used for

software not developed in the line of the examined software development and

deployment approaches. For example, if the software has no properly exposed extension

and configuration classes, there will not be the possibility to use feature flags or A/B

approaches. On the other hand, blue/green and canary deployments could be

implemented through a committed team supported with the necessary hardware and

acquiring specific deployment routines. A deeper implementation of the proposed

deployment solution would require additional pieces of software and/or additional

adaptation in the target software.

During the development process, not all pieces of software were designed suitably

and flexibly for such update mechanisms. Initially, the MES software was developed

with fixed configuration files in which content was loaded on system startup, and the

update was not possible while the software was running. This was primarily related to

the server side. Any configuration change used to lead to service restart, which

eventually results in execution disruption. For this reason, the blue/green deployment

Hybrid Deployment Strategy 431

was the first included in the setup. It guaranteed reduced downtime and faster system

operational availability. On the other hand, the software adaptation for MES clients

came a bit later since it only needed to restart local clients in the operator’s place, which

had a limited impact. The next set of updates was the approach that could trigger

configuration refresh through a database or file reload. With this approach, feature flags

and later approaches became fully supported, and the software was ready to become a

part of the complex deployment system, significantly reducing downtime when

redeployed.

Mitigating system disruptions involves judiciously scheduling updates during off-

peak hours and transparently communicating potential downtime to users. Meanwhile,

prudent planning and rigorous testing of data migration procedures minimize

complications arising from data transfer.

In summary, a carefully orchestrated update process, underpinned by thoroughly

vetted software versions and executed at the opportune moment, constitutes the linchpin

of a successful upgrade.

8. Conclusion

Having more than a decade and a half of experience with industrial systems, our

research team went through different projects involving software development at all

ISA95 levels. The challenges in development vary across the levels due to user

requirements, technical complexity, and performance expectations. All these software

instances must work in accordance and be a reliable element of the industrial facility.

The common challenge for all the pieces of software is the system update. Usually, the

system on one level consists of the server and several dozen or hundreds of clients.

When it comes to the update, it should be done as fast as possible and with lower

resource consumption without creating bottlenecks in the facility.

The research findings significantly advance the formulation of deployment strategies

for intricate, layered industrial software systems. When deploying software updates,

several common challenges arise, including downtime, increased network traffic, and

storage space utilization. At lower levels, energy consumption during the deployment

process also warrants consideration.

We introduce additional backup nodes into the system to address the limited storage

space issue. Although these backup nodes exhibit a slightly larger volume than regular

IoT nodes, this tradeoff is deemed acceptable given the achieved outcomes. Notably,

total downtime has been dramatically reduced—from seconds to milliseconds—

representing a reduction of less than one percent of the initial duration.

The approach used in IoT nodes [9] was successfully applied to ERP [10] and MES

levels by improving the defined hybrid deployment mode. The findings align with those

observed for IoT nodes, emphasizing the potential incorporation of novel features and

deployment strategies. This adaptability makes the deployment process for ERP and

MES clients more user-friendly, fostering higher user acceptance rates.

We devised a hybrid strategy combining blue-green, canary, and dark mode elements

with feature flags, A/B testing, and enhanced standard deployments. This strategy is

bolstered by an inter-layer buffer and the inclusion of specific nodes—the update node

432 Petar Rajković et al.

on the server side and backup and sentinel nodes on the client side. By implementing

this approach, we effectively curtailed overall downtime, reducing the duration required

for system restart to a period proximate to the switchover. Remarkably, this reduction

translates to less than 10% of the time typically consumed by classic deployment

methods. The most noticeable improvement is in the case of erroneous deployment when

the error could be tracked down and stopped in the first sentinel node.

With the backup/sentinel node active, we reduced the number of software uploads in

case of an erroneous update to the time needed for two switchovers of the single node. If

chosen correctly, the initial sentinel node will provide an adequate test environment for

error detection. Unlike the ERP clients, where the approach was to release the update to

all sentinel nodes, with MES clients, the strategy was to send the update to a single

sentinel, and then it would take care of its group. In the worst case, the targeted group

needs to be reverted, but this will be done inside the group without the need for

interaction with the server or the update node.

The changes in the deployment process applied to MES nodes are driven mainly by

the Industry 4.0 paradigm and the requirements that came with it. MES and Industry 4.0

are transforming manufacturing practices by digitizing and making processes intelligent,

enabling organizations to cater to individual customer requirements and achieve

operational excellence. In short, MES and Industry 4.0 are revolutionizing

manufacturing by integrating advanced technologies and data-driven systems to create a

more interconnected and efficient production environment.

Enhancing the efficiency of the software update process stands as a pivotal element

within an optimized production environment. The overarching objective is facilitating

software updates beyond scheduled maintenance windows. Leveraging the proposed

hybrid deployment method, seamless layer-wide updates become feasible, particularly

when interactions with other levels remain unchanged. Notably, this approach

significantly truncates downtime—from hours and minutes to mere seconds and

milliseconds. Furthermore, our future trajectory involves extending our efforts to the

Edge level. This strategic expansion aims to devise solutions that mitigate the impact of

buffering and inter-level communication system modifications more effectively.

Acknowledgment. CERCIRAS supported this work – COST Action CA19135, funded by COST.

The Ministry of Science, Technological Development, and Innovation of the Republic of Serbia

supported this work [grant number 451-03-65/2024-03/200102].

References

1. ISA95, Enterprise-Control System integration- ISA (no date) isa.org. [Online]t:

https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95

(current October 2024).

2. Shu, Z., Wan, J., Zhang, D., Li, D.: Cloud-integrated cyber-physical systems for complex

industrial applications. Mobile Networks and Applications 21.5 865-878. (2016):

3. Kondratenko, Y., Kozlov, O., Korobko, O., Topalov, A.: Complex industrial systems

automation based on the internet of things implementation. In Information and

communication technologies in education, research, and industrial applications (pp. 164–

187). Springer International Publishing. https://doi.org/10.1007/978-3-319-76168-8_8.

(2018)

Hybrid Deployment Strategy 433

4. Sha, K., Errabelly, R., Wei, W., Yang, T. A., Wang, Z.: EdgeSec: Design of an edge layer

security service to enhance iot security. In 2017 IEEE 1st international conference on fog

and edge computing (ICFEC). IEEE. https://doi.org/10.1109/icfec.2017.7 (2017)

5. Li, H., Ota, K., Dong, M.: Learning iot in edge: Deep learning for the internet of things with

edge computing. IEEE Network, 32(1), 96–101. https://doi.org/10.1109/mnet.2018.1700202.

(2018)

6. Sajid, A., Abbas, H., Saleem, K.: Cloud-Assisted iot-based SCADA systems security: A

review of the state of the art and future challenges. IEEE Access, 4, 1375–1384.

https://doi.org/10.1109/access.2016.2549047. (2016).

7. Urbina Coronado, P. D., Lynn, R., Louhichi, W., Parto, M., Wescoat, E., Kurfess, T.: Part

data integration in the Shop Floor Digital Twin: Mobile and cloud technologies to enable a

manufacturing execution system. Journal of Manufacturing Systems, 48, 25–33.

https://doi.org/10.1016/j.jmsy.2018.02.002. (2018)

8. Chofreh, A. G., Goni, F. A., Klemeš, J. J., Malik, M. N., Khan, H. H.: Development of

guidelines for the implementation of sustainable enterprise resource planning systems.

Journal of Cleaner Production, 244, 118655. https://doi.org/10.1016/j.jclepro.2019.118655.

(2020)

9. Rajković, P., Aleksić, D., Janković, D., Milenković, A., Đorđević, A.: Resource Awareness

in Complex Industrial Systems–A Strategy for Software Updates. In Proceedings of the First

Workshop on Connecting Education and Research Communities for an Innovative Resource

Aware Society (CERCIRAS), Novi Sad, Serbia (Vol. 2). https://ceur-ws.org/Vol-

3145/paper10.pdf. (2021)

10. Rajković, P., Aleksić, D., Djordjević, A., Janković, D.: Hybrid software deployment strategy

for complex industrial systems. Electronics, 11(14), 2186.

https://doi.org/10.3390/electronics11142186. (2022)

11. Cozzani, V., Antonioni, G., Landucci, G., Tugnoli, A., Bonvicini, S., Spadoni, G.:

Quantitative assessment of domino and NaTech scenarios in complex industrial areas.

Journal of Loss Prevention in the Process Industries, 28, 10–22.

https://doi.org/10.1016/j.jlp.2013.07.009. (2014)

12. Chen, Y., Chen, J., Gao, Y., Chen, D., Tang, Y.: Research on software failure analysis and

quality management model. In 2018 IEEE international conference on software quality,

reliability and security companion (QRS-C). IEEE. https://doi.org/10.1109/qrs-

c.2018.00030. (2018)

13. Usman, M., Felderer, M., Unterkalmsteiner, M., Klotins, E., Mendez, D., Alégroth, E.:

Compliance requirements in large-scale software development: An industrial case study. In

Product-Focused software process improvement (pp. 385–401). Springer International

Publishing. https://doi.org/10.1007/978-3-030-64148-1_24. (2020)

14. Kalunga, J., Tembo, S., Phiri, J.: Industrial internet of things common concepts, prospects

and software requirements. International Journal of Internet of Things, 9(1), 1-11. (2020)

15. Chen, C., Reniers, G., Khakzad, N.: A thorough classification and discussion of approaches

for modeling and managing domino effects in the process industries. Safety Science, 125,

104618. https://doi.org/10.1016/j.ssci.2020.104618. (2020)

16. Ren, Z., Chen, C., Zhang, L.: Security Protection under the Environment of WiFi. In 2017

international conference advanced engineering and technology research (AETR 2017).

Atlantis Press. https://doi.org/10.2991/aetr-17.2018.11. (2018)

17. Kim, D.-Y., Kim, S., Park, J. H.: Remote software update in trusted connection of long range

iot networking integrated with mobile edge cloud. IEEE Access, 6, 66831–66840.

https://doi.org/10.1109/access.2017.2774239. (2018)

18. Asokan, N., Nyman, T., Rattanavipanon, N., Sadeghi, A.-R., Tsudik, G.: ASSURED:

Architecture for secure software update of realistic embedded devices. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 37(11), 2290–2300.

https://doi.org/10.1109/tcad.2018.2858422. (2018)

434 Petar Rajković et al.

19. Mugarza, I., Parra, J., Jacob, E.: Cetratus: A framework for zero downtime secure software

updates in safety‐critical systems. Software: Practice and Experience, 50(8), 1399–1424.

https://doi.org/10.1002/spe.2820. (2020)

20. Stevic, S., Lazic, V., Bjelica, M. Z., Lukic, N.: IoT-based software update proposal for next

generation automotive middleware stacks. In 2018 IEEE 8th international conference on

consumer electronics - Berlin. IEEE. https://doi.org/10.1109/icce-berlin.2018.8576241.

(2018)

21. Mirhosseini, S., Parnin, C: Can automated pull requests encourage software developers to

upgrade out-of-date dependencies? In 2017 32nd IEEE/ACM international conference on

automated software engineering (ASE). IEEE. https://doi.org/10.1109/ase.2017.8115621.

(2017)

22. Fowler, M.: Blue-green deployment, March (2010). [Online].

http://martinfowler.com/bliki/BlueGreenDeployment.html (current October 2024).

23. Tarvo, A., Sweeney, P. F., Mitchell, N., Rajan, V. T., Arnold, M., Baldini, I.:

CanaryAdvisor: A statistical-based tool for canary testing (demo). In ISSTA '15:

International symposium on software testing and analysis. ACM.

https://doi.org/10.1145/2771783.2784770. (2015)

24. Killi, B. P. R., Rao, S. V.: Towards improving resilience of controller placement with

minimum backup capacity in software defined networks. Computer Networks, 149, 102–114.

https://doi.org/10.1016/j.comnet.2018.11.027. (2019)

25. Vincent, L.: Marketing strategies for commercialization of new technologies. In Advances in

the study of entrepreneurship, innovation & economic growth (pp. 257–287). Emerald Group

Publishing Limited. https://doi.org/10.1108/s1048-473620160000026009, (2016)

26. Pleshko, L. P., Heiens, R. A.: The contemporary product-market strategy grid and the link to

market orientation and profitability. Journal of Targeting, Measurement and Analysis for

Marketing, 16(2), 108–114. https://doi.org/10.1057/jt.2008.2. (2008)

27. Buzachis, A., Galletta, A., Celesti, A., Carnevale, L., Villari, M.: Towards osmotic

computing: A blue-green strategy for the fast re-deployment of microservices. In 2019 IEEE

symposium on computers and communications (ISCC). IEEE.

https://doi.org/10.1109/iscc47284.2019.8969621. (2019)

28. Mampage, A., Karunasekera, S., Buyya, R.: A holistic view on resource management in

serverless computing environments: Taxonomy and future directions. ACM Computing

Surveys. https://doi.org/10.1145/3510412. (2022)

29. Chien, C.: What is rapid application development (RAD)? (2020). [Online].

https://codebots.com/app-development/what-is-rapid-application-development-rad (current

October 2024).

30. Munikanth: Kubernetes Deployment Strategies, Medium. (2023). [Online].

https://medium.com/@munikanthtech/kubernetes-deployment-strategies-fc1557d21e8f

(current October 2024).

31. Aleksić, D., Janković, D.: The use of scripts in a CAD/CAM database. In The X

International Conference on Information, Communication and Energy Systems and

Technologies (ICEST 2009), June (pp. 25-27). (2009)

32. Aleksic, D., Jankovic, D., Rajkovic, P.: Product configurators in SME one-of-a-kind

production with the dominant variation of the topology in a hybrid manufacturing cloud. The

International Journal of Advanced Manufacturing Technology, 92(5-8), 2145–2167.

https://doi.org/10.1007/s00170-017-0286-1. (2017)

33. Aleksić, D., Janković, D. Stoimenov, L.: A case study on the object-oriented framework for

modeling product families with the dominant topology variation in the one-of-a-kind

production. Int J Adv Manuf Technol 59, 397–412, https://doi.org/10.1007/s00170-011-

3466-4. (2012)

34. Rajković, P., Aleksić, D., Janković, D.: The Implementation of Battery Charging Strategy for

IoT Nodes. In: Zeinalipour, D., et al. Euro-Par 2023: Parallel Processing Workshops. Euro-

Hybrid Deployment Strategy 435

Par 2023. Lecture Notes in Computer Science, vol 14352. Springer, Cham.

https://doi.org/10.1007/978-3-031-48803-0_4. (2024)

Petar Rajković is an Assistant Professor at the University of Niš, Faculty of Electronic

Engineering. He obtained his Ph.D. in software engineering from the same

university and teaches various courses at all levels of study. He is focused on model-

driven development and information system research, with practical experience in

developing innovative software solutions for industrial automation and public health.

Dejan Aleksic is an Associate Professor at the Faculty of Sciences and Mathematics of

the University of Nis, Serbia. He obtained his Ph.D. in software engineering from the

Faculty of Electrical Engineering at the same university. His research interests include

Product configuration, Mass Customization, One-of-a-kind production, and Industrial

IoT.

Dragan S. Janković received a B.Sc., M.Sc., and a Ph.D. in computer science from the

Faculty of Electronic Engineering, University of Niš, Serbia, in 1991, 1995, and 2001,

respectively. Currently, he works as a full professor at the Department of Computer

Science, Faculty of Electronic Engineering, and head of the Laboratory for Medical

Informatics. His research interests include logic design, software development,

algorithms, medical informatics, artificial intelligence in medicine, and blockchain

technology. He was a participant or project leader in more than 30 research and

development projects. He published over 350 scientific papers and 10 technical

solutions.

Aleksandar Milenković is an Assistant Professor in the Faculty of Electronic

Engineering at the University of Nis. He has over ten years of experience in modelling,

developing, and implementing medical information systems. He holds a Doctor of

Science degree in computer science. His current research interests include medical

informatics, medical information systems, and machine learning in medicine.

Andjelija Djordjevic is a Teaching Assistant at the Department of Computer Science,

Faculty of Electronic Engineering, University of Nis. She is a PhD student at the Faculty

of Electronic Engineering since 2020. She obtained her master's and bachelor's degrees

at the same faculty in 2020 and 2019, respectively. Her research interests include

software engineering, algorithm design and analysis, and medical informatics. She works

on a project dedicated to the development of manufacturing execution systems and is a

member of the Laboratory for Medical Informatics at the Faculty of Electronic

Engineering.

Received: December 20, 2019; Accepted: May 02, 2020

