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Abstract. Advancements in intelligent transportation systems (ITS) have high-
lighted the importance of accurately predicting travel time (TTP), not only to im-
prove personal mobility but also to promote broader sustainability and well-being
objectives. By reducing congestion, optimizing routes, and curtailing excessive en-
ergy consumption, robust TTP methods can foster eco-friendly travel and enhance
public health. However, achieving high accuracy in TTP is challenging due to the
influence of various factors, such as missing data, temporal patterns, and weather
conditions. In this paper, we analyze how various factors, ranging from data pre-
processing and feature selection to model architecture, affect TTP performance.
Beginning with data imputation, we explore alternative techniques like interpola-
tion, maximum-value imputation, and denoising autoencoders. We then investigate
the influence of temporal and weather-related features on prediction quality. Sub-
sequently, we compare two baseline models (XGBoost and LSTM) and five hybrid
models to shed light on their comparative strengths. Using real-world data from
both Taiwan and California, our experiments demonstrate that data preprocessing
and feature engineering (e.g., imputation strategy, time-window selection) are often
as critical to TTP accuracy as the complexity of the model itself. Notably, sim-
pler models such as XGBoost and LSTM can outperform more elaborate hybrid
models when the data pipeline is refined appropriately. We conclude that a careful,
data-centric approach is essential in building TTP solutions that align with broader
sustainability goals, including reduced carbon emissions, minimized traffic jams,
and enhanced commuter well-being.
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1. Introduction

Urban transportation systems face increasing pressure to accommodate economic growth,
environmental regulations, and societal well-being. Traffic congestion is a key challenge,
leading to longer travel times, increased fuel consumption, and significant contributions
to greenhouse gas emissions and commuter stress [1]. Consequently, accurate travel time
prediction (TTP) has become a linchpin in modern intelligent transportation systems [2].
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From a sustainability perspective, more precise travel-time estimates can facilitate route
optimization, promote eco-driving, and enable better scheduling of public transport, thus
lowering the overall carbon footprint and improving citizens’ quality of life [3].

Despite its real-world impact, TTP is not straightforward. This complexity arises from
various factors, such as driver behavior, traffic incidents, holiday effects, climate, and
inherent variability in demand patterns [2]. Many studies have thus attempted to enhance
TTP by proposing increasingly sophisticated models. Typically, these models require a
careful sequence of steps: data collection, cleaning and feature engineering, missing-value
imputation, model design, and performance evaluation [4]. Each stage may substantially
affect the overall accuracy.

A critical research gap lies in understanding which of these steps exerts the greatest
influence on the final predictive performance. While it is tempting to assume that sophis-
ticated model architectures—like ensemble methods and deep neural networks—lead to
the largest gains, recent analyses show that data-driven strategies such as improved im-
putation or refined feature construction can be equally important [4]. By identifying how
each facet of the TTP pipeline contributes to performance, practitioners can build more
robust, efficient systems that directly advance sustainability targets: less idle time for ve-
hicles (thereby cutting down emissions), more reliable public transport schedules, and
minimized commuter stress.

In this paper, we aim to dissect and compare the influence of key methodological fac-
tors on TTP accuracy. The workflow of our study integrates both data-centric and model-
centric perspectives to identify key factors influencing travel time prediction (TTP). From
a sustainability and well-being standpoint, this workflow highlights how methodologi-
cal choices in data preprocessing, feature design, and model selection can directly affect
traffic efficiency, energy use, and commuter experience.

– data preprocessing.
We begin with data preprocessing, which plays a decisive role in sustainable mo-
bility. Incomplete or unrealistic data (e.g., sensors recording zero travel time and
zero speed simultaneously) can lead to systematic biases. To avoid unreliable pre-
dictions that may worsen congestion or resource waste, we evaluate multiple impu-
tation strategies—such as maximum-value substitution, interpolation, and denoising
autoencoders—using real-world datasets. Robust imputation ensures that forecasts
support eco-friendly routing and reduce unnecessary idling, thereby lowering emis-
sions.

– temporal and contextual features.
Daily and weekly traffic cycles, along with weather-related attributes, strongly shape
mobility outcomes. By incorporating the most informative features while avoiding
noise, models can better anticipate rush-hour congestion or weekend fluctuations.
This reliability is vital for reducing commuter stress, ensuring punctual public trans-
port, and enabling logistics planning that minimizes wasted fuel and travel time.

– model comparison.
Two baseline approaches—XGBoost and LSTM—are contrasted with five hybrid
models, including XGBoost+GRU [27], DNN-XGBoost[22], DE-SKSTM[13],
T-GCN[22], and ATT-GRU[33]. We have more detail discussion about the models in
Section 2. This comparative stage clarifies whether sophisticated architectures neces-
sarily yield improvements once the data pipeline is well-refined.
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From a societal perspective, better TTP methods have tangible benefits for well-being,
logistics, and environmental sustainability. By reducing traffic congestion, one can miti-
gate driver stress, lower public transport delays, and curb excessive emissions. With the
rise of green computing and responsible AI, TTP stands out as a domain where data-
centric improvements and model-centric refinements converge for both user welfare and
ecological advantage. Overall, the workflow underscores that sustainable and well-being
outcomes in transportation systems are not driven by model complexity alone. Instead,
high-quality data handling and carefully selected features often deliver the largest bene-
fits—reducing congestion, cutting emissions, and promoting reliable, less stressful mo-
bility. By balancing model-centric and data-centric strategies, our pipeline directly aligns
methodological rigor with ecological responsibility and commuter welfare.

Contributions
– Comprehensive Factor Analysis: We provide an end-to-end analysis of TTP pipelines,

detailing how various steps—from imputation to feature design—affect accuracy.
This clarifies which elements merit the most attention in practice.

– Robust Empirical Evaluation: We use extensive real-world datasets from Taiwan
and California to validate our observations. By comparing both short- and long-term
TTP scenarios, we demonstrate that data-centric enhancements often prove as im-
pactful as switching to more advanced model architectures.

– Data-Centric vs. Model-Centric Insight: Our comparative study reveals that, in the
context of freeway travel-time prediction, enhancements in data preprocessing often
yield as much improvement as moving to more complex modeling frameworks. By
emphasizing the primacy of data-centric approaches, we provide new guidance for
TTP practitioners: invest first in high-quality data pipelines before escalating model
complexity.

– Sustainability and Well-Being Implications: By framing TTP within a broader con-
text of eco-friendly and health-aware transportation systems, we highlight its con-
tribution to efficient mobility planning and reduced carbon emissions, thus directly
advancing well-being and environmental goals.

The rest of this paper is organized as follows. Section 2 surveys relevant literature
on TTP, focusing on both data-centric and model-centric approaches. Section 3 defines
our problem and details the two real-world datasets used. Section 4 discusses the impu-
tation techniques. Section 5 presents both base and hybrid models. Section 6 explores
our experimental results, including ablation studies on key factors (imputation, temporal
features, and sliding-window size) and final model comparisons. Lastly, Section 7 draws
conclusions and connects our findings to sustainable transportation practices.

2. Related Work

Travel time prediction (TTP) is crucial for both short-term (5–30 minutes) and long-term
(beyond 1 hour) planning. Short-term TTP enables real-time decision-making such as im-
mediate route adjustments and congestion management, whereas long-term predictions
support strategic logistics planning, public transport scheduling, and sustainable urban
development. Accurate TTP significantly contributes to reducing congestion, fuel con-
sumption, emissions, and enhancing overall commuter well-being.
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2.1. Traditional Statistical Methods

Early research primarily employed parametric statistical models such as ARIMA and
Kalman Filters [9]. While effective in capturing linear dependencies and trends within
stationary data, these models struggle with non-linear, highly dynamic traffic data typ-
ically encountered during peak periods, holidays, or special events. Their limitations in
adaptability and responsiveness encouraged the exploration of more flexible, data-driven
approaches.

2.2. Machine Learning Approaches

Addressing limitations of traditional methods, nonparametric machine learning techniques,
including Random Forests (RF) [29], Gradient Boosting, and specifically Extreme Gra-
dient Boosting (XGBoost) [12], emerged due to their ability to manage complex nonlin-
ear relationships and robustness against noisy and missing data. These ensemble learn-
ing methods demonstrated significant predictive improvements over traditional statistical
models, particularly in handling traffic data variability and non-stationarity.

2.3. Deep Learning Methods

Recent advancements in deep learning techniques, notably recurrent neural networks
(RNN) such as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU),
further enhanced TTP accuracy by effectively modeling intricate temporal dependen-
cies [21]. RNN-based methods can learn complex traffic patterns over both short- and
long-term horizons, thus significantly improving predictions under dynamic and uncer-
tain conditions. Additionally, attention-based architectures like Transformers [34] and In-
former [41] have also been proposed, achieving superior performance in capturing long-
range temporal interactions within large-scale data, although their complexity and com-
putational overhead remain substantial.

2.4. Hybrid Models

To leverage the strengths of both machine learning and deep learning, hybrid models have
recently gained attention. These models typically integrate multiple algorithms to address
specific limitations inherent to individual approaches. For example, Ting et al. [27] com-
bined GRU and XGBoost through linear regression to capture both nonlinear and linear
temporal dynamics. Similarly, Ho et al. [22] utilized a two-phase hybrid structure integrat-
ing DNN and XGBoost to handle long and short-term sequences. Spatial-temporal hybrids
such as Temporal Graph Convolutional Networks (T-GCN) explicitly model road network
structures and temporal dependencies, significantly benefiting scenarios with prominent
spatial interactions [30]. Furthermore, attention-enhanced GRU (ATT-GRU) models dy-
namically identify and emphasize influential temporal intervals, thereby improving pre-
dictions in highly fluctuating traffic conditions [33].
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2.5. Sustainability and Well-Being Perspectives

Beyond methodological improvements, recent literature emphasizes the broader impli-
cations of accurate TTP on sustainability and quality of life [35]. Improved predictions
significantly reduce unnecessary travel delays, vehicle idling, and associated emissions,
promoting sustainable urban mobility. Reliable TTP also reduces commuter stress by min-
imizing uncertainty, thereby enhancing urban well-being and overall life quality.

Table 1 summarizes representative approaches, identifies their limitations, and high-
lights how our study specifically addresses existing research gaps.

Table 1. Summary of representative TTP research approaches, limitations, and contribu-
tions of this study

Category Representative Studies Limitations Contribution of This Study
Traditional Statistical Methods ARIMA, Kalman Filters [9] Limited flexibility for nonlinear pat-

terns; struggle with high variability
Investigates hybrid methods effectively
managing complex nonlinear patterns
and variability

Machine Learning Methods RF [29], XGBoost [12] Insufficient modeling of sequential and
temporal dynamics

Emphasizes integration with deep re-
current models to explicitly capture
temporal sequences

Deep Learning Methods LSTM, GRU [21]; Transform-
ers [34], Informer [41]

High complexity, limited interpretabil-
ity, computational overhead

Examines simpler yet effective hybrid
models that balance predictive perfor-
mance with interpretability

Hybrid Models Ting’s Hybrid [27], Ho’s Hy-
brid [22], T-GCN [30], ATT-
GRU [33]

Lack of systematic comparison on how
each modeling stage (data preprocess-
ing, feature engineering) affects predic-
tive outcomes

Provides comprehensive experimental
evaluation of key methodological fac-
tors, emphasizing the critical role of
data preprocessing and feature selection
in achieving accurate predictions

Sustainability & Well-being Sustainable mobility frame-
works [35]

Limited direct linkage between pre-
dictive methodology and sustainability
benefits

Explicitly connects predictive im-
provements to sustainability outcomes,
demonstrating how enhanced TTP
reduces congestion, emissions, and
commuter stress

3. Preliminary

3.1. Problem Definition

We consider a freeway travel time prediction problem aiming for long-term TTP, for in-
stance 1 hour ahead. Let t represent the current 5-minute time slot and t∗ = t + 12 be
the future target (i.e., 1 hour later). Our goal is to forecast the travel time Tt∗ based on
features observed in the sequence of preceding time slots. Specifically, denote xt as the
feature vector of time slot t. To capture temporal information, we collect a sliding-window
set of ℓ prior vectors, i.e., (xt−ℓ, xt−ℓ+1, . . . , xt). The task is to learn a function f such
that:

f
( ℓ⋃
i=0

xt−ℓ+i

)
= Tt+12.

Each feature vector xt may include traffic flow, speed, and additional variables like weather
factors or time-of-day indicators. The chosen window size ℓ balances capturing relevant
historical context against excessive model complexity or data dimensionality.
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Fig. 1. The 69 routes in the Taiwan dataset. Each numbered green circle indicates a sensor-
defined route segment

Fig. 2. The 81 routes in the California dataset (https://pems.dot.ca.gov/). Each
red circle represents a route segment between two sensors in Los Angeles County

3.2. Data Preparation

We employ two real-world datasets, each using a 5-minute time interval:

1. Taiwan Dataset (MOTC). Collected from the Freeway Bureau of the Ministry of
Transportation and Communications (MOTC), Taiwan, spanning January to July 2018.
Figure 1 illustrates sensor locations on a freeway corridor from Taipei to Hsinchu,
covering 69 distinct segments. For each route segment, we obtained average travel
time, average speed, and traffic flow.

2. California Dataset (PeMS). Extracted from the Caltrans Performance Measurement
System (PeMS) for District 7 (Los Angeles) across January to July 2018. We formed
81 segments by pairing adjacent sensors on a single freeway (see Figure 2). Distances
are used with speeds to infer travel time. The dataset captures average flow, speed, and
segment length.

Both datasets contain missing or zero values. For zero values, it often indicates no
vehicle passed during that interval. Accurately imputing missing or zero entries is essen-
tial for robust TTP, as naive approaches can produce systematic bias or degrade model
training.

3.3. Quantitative Sustainability Impact

While our primary focus has been on methodological improvements to travel-time predic-
tion (TTP), existing literature provides emission and cost parameters that let us estimate
broader benefits. For example, a typical U.S. gasoline passenger vehicle emits about 400
g CO2 per mile (≈250 g/km) [50]. The average one-way commute in the U.S. is 27.6
minutes (≈22 km at 50 km/h) [51]. If a 10% reduction in mean absolute error (MAE)

https://pems.dot.ca.gov/
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of TTP translates to 2.8 minutes (≈2.3 km) fewer kilometers driven per trip, the CO2

savings per vehicle per trip are:

∆mCO2
= 2.3 km× 250

g

km
≈ 575 g .

Over 10 000 daily commuters, this yields roughly 5.75 t of CO2 avoided each day.
Economically, the U.S. Department of Transportation values travel time at $18.80 per

hour per driver [52]. A 2.8-minute time saving corresponds to

∆Value =
2.8

60
h× $18.80/h ≈ $0.88 per trip.

Across 10 000 commuters, this amounts to $8 800 in daily time-savings benefits.
These simple calculations, based entirely on established emission factors and eco-

nomic valuations, demonstrate that even modest TTP accuracy improvements can yield
sizeable environmental and economic gains without additional experiments.

4. Imputation Methods Description

Reliable handling of missing or zero-valued data is a foundational step in TTP, especially
under the aim of sustainable and stress-free commutes. Poorly handled gaps can lead to
flawed predictions, increasing congestion and resource waste. Here, we compare several
approaches:

4.1. Interpolation with Historical Reference

Following Chou et al. [13], a multi-step interpolation is performed. First, intermediate
missing points are replaced by linear interpolation if neighboring points are available. If
gaps persist, the algorithm refers to values from the same time point in prior or subsequent
weeks. Finally, remaining missing cells are filled with averages from the corresponding
sensor. This multi-layered strategy is efficient and straightforward.

4.2. Max Imputation

In highway contexts, zero speed readings may imply no car is present, which sometimes
indicates free-flow conditions. Thus, we can impute zero speed by the legal speed limit.
Similarly, zero travel time is substituted by minimal travel time consistent with that free-
flow assumption. This approach is simple and computationally light, making it suitable
for large-scale deployment if it does not overly distort peak congestion periods.

4.3. Denoising Autoencoder (DAE)

Denoising autoencoders have been used to learn a compact, robust representation of data
while reconstructing intentionally corrupted inputs [7]. One can randomly mask certain
features (e.g., speed or flow) and train a DAE to reconstruct them. In principle, DAE
can capture subtle correlations among features, yielding accurate imputations even un-
der complex missingness patterns. However, this approach demands more computational
power and careful hyperparameter tuning.
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Fig. 3. Structure of an LSTM unit, including three gating mechanisms that modulate in-
formation flow

5. Base and Hybrid Model Frameworks

We examine both standard and composite models. While sophisticated architectures can
capture intricate spatiotemporal dependencies, simpler models may suffice if data are
well-prepared.

5.1. Base Models

XGBoost Ensemble Learning XGBoost is a boosted-tree method known for strong per-
formance and scalability [14]. By iteratively training weak learners on residual errors, it
effectively handles varied data types and missing values. The objective combines a loss
function (e.g., mean-squared error) with a regularization term to manage model complex-
ity. XGBoost has proven especially effective for structured data in TTP [15], enabling
quick training over large datasets.

Long Short-Term Memory (LSTM) Network An LSTM [21] is an RNN variant de-
signed to retain long-range information. It mitigates vanishing gradient issues with three
gating mechanisms: input, forget, and output gates. This sequential structure suits time-
series tasks like TTP, where historical conditions exert prolonged influence. Figure 3 out-
lines the LSTM cell.

5.2. Hybrid Models

In this research, we evaluated several hybrid models, specifically Ting’s method [27],
Ho’s method [22], DE-SLSTM [13], T-GCN [30], and ATT-GRU [33], due to their
proven effectiveness and relevance in travel time prediction literature. The rationale be-
hind the selection of these particular hybrid models includes:

– Domain-Specific Validity: These models have been extensively validated in recent
transportation literature and demonstrated effectiveness in real-world transportation
forecasting scenarios. Specifically, Ting’s method [27] and Ho’s method [22] suc-
cessfully combined robust traditional ensemble methods (XGBoost) and deep recur-
rent models (GRU/LSTM), making them ideal candidates for capturing both stable
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and transient temporal patterns in freeway travel time data. Similarly, DE-SLSTM
[13], T-GCN [30], and ATT-GRU [33] provided comprehensive benchmarking and
confirmed effectiveness in multiple TTP case studies.

– Interpretability and Practical Decision-Making: Selected hybrid models combin-
ing interpretable machine-learning methods (XGBoost) with deep learning (LSTM/-
GRU) provide transparent, explainable predictions. This interpretability is particu-
larly valuable for transportation management and policy decision-making, enabling
stakeholders to confidently utilize predictions in sustainable mobility planning.

– Explicit Spatiotemporal Modeling Capability: Methods like T-GCN explicitly in-
corporate spatial structure (road adjacency) alongside temporal modeling via recur-
rent networks (GRU). Similarly, ATT-GRU leverages temporal attention to emphasize
critical intervals. Such explicit spatiotemporal integration aligns closely with freeway
data characteristics, offering more targeted predictive capability than purely temporal
methods (e.g., Transformers and Informer).

Hybrid models integrating ensemble and sequential methods Hybrid methods such as
GRU-XGBoost (Ting’s Hybrid) [27], DNN-XGBoost (Ho’s Hybrid) [22], and
DE-SLSTM [13] integrate traditional ensemble learners with deep sequential architec-
tures, aiming to effectively capture diverse temporal patterns. Specifically, Ting’s Hybrid
combines GRU and XGBoost predictions through linear regression to leverage nonlin-
ear and linear temporal relationships (Figure 4). Ho’s Hybrid splits data into long-term
and short-term sequences, processes them individually using DNN and XGBoost, re-
spectively, and then combines outputs via another DNN (Figure 5). DE-SLSTM employs
stacked LSTM ensembles tailored explicitly for peak and non-peak periods, optionally
including weather data to enhance context-awareness (Figure 6).

Hybrid models explicitly modeling spatiotemporal dependencies Models such as T-
GCN [30] and ATT-GRU [33] explicitly address spatiotemporal relationships within traf-
fic data. T-GCN integrates graph convolutional networks (GCN) for capturing spatial ad-
jacency with GRU to model temporal dynamics, effectively representing freeway network
interactions (Figure 7). ATT-GRU incorporates a self-attention mechanism within GRU
layers to dynamically focus on critical historical intervals, refining prediction accuracy
especially under fluctuating traffic conditions (Figure 8). These specialized architectures
directly incorporate spatial and temporal information, making them particularly suited to
complex freeway traffic scenarios.

To clearly summarize and compare these hybrid models, Table 2 provides an overview
of each model’s strengths, weaknesses, and typical application scenarios.

6. Experiment

We now detail experimental setups and evaluations. Our focus is to reveal how each
methodological choice—from imputation techniques to temporal feature
engineering—affects prediction accuracy. We also examine training efficiency to gauge
the practicality of each approach, given real-world constraints on resource usage or sus-
tainability considerations.
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Table 2. Summary comparison of hybrid travel-time prediction models

Model Strengths Weaknesses
GRU-XGBoost (Ting’s Hybrid) [27] Clearly integrates linear and nonlinear temporal

patterns; straightforward linear regression com-
bination.

Limited spatial modeling capability; may over-
simplify complex dynamics.

DNN-XGBoost (Ho’s Hybrid) [22] Handles long- and short-term sequences sepa-
rately for detailed pattern analysis; flexible tem-
poral feature incorporation.

Increased complexity due to multi-phase struc-
ture; careful parameter tuning needed.

DE-SLSTM [13] Explicitly designed for peak vs. non-peak con-
ditions; incorporates optional weather indica-
tors.

Computationally intensive; complexity from
configuring multiple stacked LSTMs.

T-GCN [30] Explicit spatial graph and temporal integration;
accurately represents freeway networks.

Requires precise adjacency data; more complex
model structure.

ATT-GRU [33] Dynamically identifies critical historical inter-
vals via attention; robust under highly variable
conditions.

Attention mechanism increases complexity; re-
duced interpretability due to dynamic weight-
ing.

Fig. 4. Structure of Ting’s GRU-XGBoost hybrid model [27]. Predictions from GRU and
XGBoost are integrated through linear regression

Fig. 5. Structure of Ho’s Hybrid Model [22], leveraging DNN and XGBoost in tandem
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Fig. 6. Structure of DE-SLSTM [13]. Multiple LSTMs capture long- and short-term de-
pendencies, with additional weather features optionally included

Fig. 7. Structure of T-GCN [30], combining a graph convolutional network for spatial data
with GRU layers for temporal patterns

Fig. 8. ATT-GRU model [33] incorporates a self-attention layer atop GRU units for refined
weighting of time steps
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Table 3. TTP performance by XGBoost under different imputation methods

Taiwan Max Chou’s DAE
Mean MAE 16.766 16.762 16.965

Median MAE 14.183 13.551 14.244
Mean RMSE 47.422 47.168 47.646

Median RMSE 37.751 38.907 37.748
California Max Chou’s DAE
Mean MAE 4.143 4.143 4.150

Median MAE 3.152 3.152 3.152
Mean RMSE 8.244 8.237 8.250

Median RMSE 6.318 6.318 6.365

Table 4. TTP performance by LSTM under different imputation methods

Taiwan Max Chou’s DAE
Mean MAE 16.940 17.024 17.184

Median MAE 12.767 13.749 13.631
Mean RMSE 45.034 45.243 45.152

Median RMSE 35.005 35.835 35.027
California Max Chou’s DAE
Mean MAE 4.420 4.462 4.453

Median MAE 3.290 3.450 3.452
Mean RMSE 8.453 8.468 8.461

Median RMSE 6.608 6.573 6.654

6.1. Evaluation Metrics

We adopt Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for quan-
titative performance. Let yi and ŷi be the ground-truth and predicted values:

MAE =
1

n

n∑
i=1

| yi − ŷi |, (1)

RMSE =

√√√√ 1

n

n∑
i=1

( yi − ŷi )2. (2)

MAE treats all residuals equally, thus reflecting overall average deviation. RMSE pe-
nalizes larger errors more, highlighting performance under high-variance or peak traffic
scenarios. We report per-route means and medians to capture robust trends across sensor
locations.

6.2. Data Preprocessing Phase

Imputation Comparison We first compare three missing or zero-value imputation strate-
gies (Section 4): interpolation (Chou’s), max imputation, and DAE. Table 3 shows perfor-
mance using an XGBoost predictor, while Table 4 uses LSTM.

For both XGBoost and LSTM, max and Chou’s imputation usually outperform de-
fault DAE. While DAE can be competitive if extensively tuned, simpler strategies often
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Fig. 9. Relation between (RMSE + MAE)/2, window size, and training time. Error im-
provement tapers off beyond 24 slots

Fig. 10. Weather stations (orange) and freeway sensors (green) in northern Taiwan. Each
sensor is mapped to its closest weather station

suffice in large-scale highway data. We adopt max imputation moving forward due to its
conceptual simplicity and consistent performance.

Figure 9 illustrates the trade-off among average errors, window size, and training cost.
A 24-slot window is a practical sweet spot for many real-world settings.

Effects of Weather Features (Taiwan Example) One might assume weather influences
TTP, especially under extreme conditions like heavy rain or snow. However, Taiwan’s
subtropical climate seldom experiences snow, and heavy rainfall is sporadic. Figure 10
shows the distribution of weather stations. We integrate precipitation, wind speed, and
temperature from the nearest station to each freeway sensor. Figures 11 and 12 compare
the performance with and without weather data using XGBoost and LSTM, respectively.
In most cases, adding weather increases errors, indicating it may behave as noise under
relatively mild climates. LSTM tolerates the extra features better than XGBoost but still
sees no real accuracy boost. Hence, while weather can be crucial in regions with regular
extreme events (e.g., heavy snow), it may not always be beneficial. Complexity or over-
fitting can degrade performance, emphasizing the importance of domain-specific feature
selection for sustainability-oriented traffic forecasting.
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Fig. 11. Weather-feature comparison for XGBoost on the Taiwan dataset. Red lines (with
weather) generally exceed blue lines (without weather) in errors

Fig. 12. Weather-feature comparison for LSTM on the Taiwan dataset. Additional features
do not systematically improve prediction
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Table 5. With or without extra temporal features. “All features” includes hour, minute,
day-of-week, and national holiday

Metric None Holiday Minute Hour Day All
Taiwan MAE 16.892 16.793 16.011 15.984 16.662 15.693

RMSE 45.997 46.063 45.509 45.467 45.820 45.973
California MAE 4.144 4.125 3.519 3.526 4.012 3.963

RMSE 8.067 8.062 7.195 7.219 7.855 7.802

Table 6. Model configurations before and after editing (EF). “-” means unspecified or not
used in the original paper

Model Original Features (OF) Original Imputation / Window Edited (EF)
Ting’s Hybrid Travel time, Speed, Volume DAE, 6-slot window Use hour feature, max imputation, 24-slot
Ho’s Hybrid Travel time, Volume, Hour, Day Max imputation, 12-slot window Add speed, max imputation, 24-slot
DE-SLSTM Travel time, Speed, Hour, Peak, Weather Interpolation, 12-slot Remove weather, add volume, max imp., 24-slot
T-GCN Speed only Interpolation, 12-slot Retained original setup (structure change otherwise)
ATT-GRU Speed only Not specified Add max imputation, 12-slot window
LSTM Not specified Not specified Use speed, volume, travel time, hour, 24-slot, max
XGBoost Not specified Not specified Use speed, volume, travel time, hour, 24-slot, max

Temporal Features Finally, we examine cyclic features (e.g., hour of day, minute of
hour), holiday labels, and day-of-week indicators. Table 5 summarizes the average per-
formance (XGBoost + LSTM) on both datasets. There are three key findings: 1) Adding
hour or minute features helps capture daily cycles; 2) National-holiday tags do not sig-
nificantly improve accuracy, reflecting limited difference from normal weekends in these
datasets; 3) Using too many features can overcomplicate training; selective choice (e.g.,
hour) can be more effective.

6.3. Model Comparison Phase

We now evaluate each base or hybrid model (Section 5) with two sets of features and
preprocessing: 1) Original Features: The features, imputation, and window size used in
the model’s original publication; 2) Edited Features (EF): Our refined approach: max
imputation, 24-slot windows, and hour-based temporal features. (T-GCN and ATT-GRU
maintain their original structural assumptions.)

Table 6 outlines these adjustments, while Table 7 summarizes final results.
Observations:

Table 7. Comparison of all models on Taiwan (left) and California (right), with MAE and
RMSE under both original features (OF) and edited features (EF). A dash “-” indicates
the model’s reference or default was not tested in that scenario

Taiwan California
MAE RMSE MAE RMSE

Model OF EF OF EF OF EF OF EF
Ting’s Hybrid 19.743 16.871 52.205 49.024 4.723 3.687 9.290 7.598
Ho’s Hybrid 23.844 21.800 55.150 54.972 4.378 4.284 8.627 8.505
DE-SLSTM 17.235 16.648 44.902 44.109 4.538 4.654 8.022 8.117
T-GCN 17.955 18.908 46.882 47.266 27.626 26.039 30.832 30.424
ATT-GRU - 18.417 - 42.207 - 3.833 - 7.837
LSTM - 16.041 - 44.128 - 3.577 - 7.200
XGBoost - 15.927 - 46.807 - 3.476 - 7.239
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1. Importance of Data Editing. Most models (Ting, Ho, DE-SLSTM) see improved ac-
curacy after adopting our refined pipeline (EF), underscoring the high impact of data
preprocessing.

2. Base Models Often Excel. Surprisingly, simpler base models—LSTM and
XGBoost—deliver superior or comparable performance, despite the complexity of
certain hybrid architectures (e.g., T-GCN). In particular, XGBoost yields the lowest
mean MAE, whereas LSTM excels in RMSE.

3. Context Matters. T-GCN, which benefits from spatial adjacency, underperforms in
California because we used data from a single freeway corridor with fewer complex
interlinks. For large, well-connected networks, T-GCN might prove more advanta-
geous.

4. Sustainability Relevance. When TTP is accurate, it not only enhances personal travel
but also reduces wasted vehicle hours and emissions, contributing to environmen-
tal and well-being gains. Simpler models with well-prepared data may be especially
useful for large-scale or resource-limited deployments (e.g., smaller city agencies).

7. Conclusion and Outlook

This work investigated how various data- and model-centric factors influence long-term
travel time prediction (TTP) on freeways, with an eye toward environmental sustain-
ability and human well-being. We compared multiple imputation methods, finding that
simpler interpolation or max-value techniques can match or outperform more complex
denoising autoencoders. We also demonstrated how carefully chosen temporal features
(like hour-of-day) improve predictive accuracy, whereas additional signals (e.g., weather
in Taiwan) may introduce noise. In the second phase, we examined seven modeling ap-
proaches—ranging from standard ensemble learners (XGBoost) and neural networks
(LSTM) to hybrids (Ting’s model, Ho’s model, DE-SLSTM, T-GCN, ATT-GRU). Our
results show that base models can rival or exceed more elaborate architectures if the data
pipeline is well-structured. For practical deployment, these findings suggest that focusing
effort on data cleanliness, the right feature set, and properly sized sliding windows is often
more beneficial than adopting excessively complicated models.

For the future work, test the relative data-vs-model benefits on datasets from regions
with markedly different traffic dynamics—such as cities with extreme weather (snowy
or monsoon climates), high urban density, or rapidly developing suburbs—to assess the
robustness and transferability of our “data over complexity” principle. On the other hand,
given the demonstrated importance of accurate TTP for promoting sustainable mobility,
we propose the following future directions for designing more accurate TTP algorithms
that directly support sustainability goals:

1. Dynamic and Context-Aware Feature Engineering for Sustainable Routing: Fu-
ture algorithms could incorporate adaptive feature selection mechanisms sensitive
to real-time traffic conditions, weather patterns, and unusual events (e.g., accidents,
large-scale gatherings). Such dynamic feature engineering approaches would enhance
prediction reliability, enabling intelligent transportation systems to proactively allevi-
ate congestion and lower emissions by directing traffic flows to more efficient routes
during peak congestion periods or adverse weather conditions.
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2. Hybrid Attention-based Models for Eco-Friendly Commuting Decisions: Inte-
grating attention mechanisms (such as Transformer-based models or attention-enhanced
GRU) with interpretable gradient-boosting methods could allow models to dynami-
cally identify critical factors that most influence travel time variability. By clearly
understanding these influential time intervals or external factors, city planners and
travelers can make informed commuting decisions, effectively supporting eco-driving
behavior, reducing fuel consumption, and lowering greenhouse gas emissions.

3. Real-Time Spatiotemporal Graph Models for Enhanced Public Transport Effi-
ciency: Developing advanced graph-based neural network algorithms (e.g., enhanced
Temporal Graph Convolutional Networks, T-GCN) that integrate real-time multi-
modal data (traffic sensors, GPS trajectories, social media incident reports, dynamic
weather updates) could substantially improve prediction accuracy. Such improve-
ments would directly support efficient scheduling and management of public trans-
portation, reduce unnecessary idling times, and enhance reliability, thereby encour-
aging commuters to prefer public transit options over private vehicles.

In summary, future TTP algorithm research should explicitly integrate these predictive
enhancements with sustainable mobility goals. Improved accuracy in TTP will reduce
vehicle idling and emissions, optimize route planning, foster eco-friendly driving habits,
and boost the reliability of public transit services. Consequently, such advancements will
directly contribute to sustainable urban mobility, enhancing environmental outcomes and
public well-being.
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