
UDC 004.413.4, DOI:10.2298/CSIS090923008L

ComSIS Vol. 7, No. 3, June 2010

Software Testing Optimization by Advanced

Quantitative Defect Management

Ljubomir Lazić

State University of Novi Pazar, Vuka Karadzica bb,
36 300 Novi Pazar, Serbia

llazic@np.ac.rs

Abstract. Software testing provides a means to reduce errors, cut
maintenance and overall software costs. Numerous software
development and testing methodologies, tools, and techniques have
emerged over the last few decades promising to enhance software
quality. While it can be argued that there has been some improvement
it is apparent that many of the techniques and tools are isolated to a
specific lifecycle phase or functional area. This paper presents a set of
best practice models and techniques integrated in optimized and
quantitatively managed software testing process (OptimalSQM),
expanding testing throughout the SDLC. Further, we explained how can
Quantitative Defect Management Model be enhanced to be practically
useful for determining which activities need to be addressed to improve
the degree of early and cost-effective software fault detection with
assured confidence is proposed. To enable software designers to
achieve a higher quality for their design, a better insight into quality
predictions for their design choices, test plans improvement using
Simulated Defect Removal Cost Savings model is offered in this paper.

Keywords: Software Testing; Defect Management; Optimization.

1. Introduction

This paper presents some research results of ongoing project [5-7]1, designed
to study software defect data as a means toward identifying where resources
should be allocated most effectively to provide the highest quality of software
product while reducing the overall cost of software testing. The software
development industry spends more than half of its budget on maintenance
related activities. Software testing provides a means to reduce errors, cut
maintenance and overall software costs. The importance of software testing
has been emphasized more and more, as the quality of software affects its

1 This work has been done within the project „Integrated and Optimized Software

Testing and Maintenance Process‟, supported in part by the Ministry of Science and
Technological Development of the Republic of Serbia under Project No. TR-13018.

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 460

benefit to companies significantly [1-4]. The identification and removal of
software defects constitutes the basis of the software testing process a fact
which inevitably places increased emphasis on defect related software
measurements. Early in the history of software development, testing was
confined to testing the finished code, but, testing is more of a quality control
mechanism. Avoidable rework consumes a large part of development
projects, i.e. 20-80 percent depending on the maturity of the organization and
the complexity of the products [9]. High amounts of avoidable rework
commonly occur when having many faults left to correct in late stages of a
project. In fact, research studies indicate that the cost of rework could be
decreased by up to 50 percent by finding more faults earlier [2, 5, 9].
Numerous software development and testing methodologies, tools, and
techniques have emerged over the last few decades promising to enhance
software quality. While it can be argued that there has been some
improvement it is apparent that many of the techniques and tools are isolated
to a specific lifecycle phase or functional area.

This paper focuses on software testing and the measurements which allow
for the quantitative evaluation of this critical software development process.
The software testing process requires practical measurements for the
quantification of all software testing phases. Software product quality and
software testing process (STP) improvement commence with addressing the
testing process in a quantitative manner [7]. The continuous monitoring of the
testing process allows for establishing an adequate level of confidence for the
release of software products and for the quantification of software risks,
elements which traditionally have plagued the software industry. The
mechanism for this study is development of a series of simulation models to
improve STP [7,8].

In this paper, Quality and Efficiency in Software Testing by our
OptimalSQM framework is described and its components defined and
exemplified. It also discusses practical applications of OptimalSQM and
research model for investigating its antecedents and impacts is presented.
OptimalSQM provide alignment between testing and development which has
been raised as an issue for successful systems development. Missing
however have been actionable how to methodologies for assessing and
enhancing such alignment [12,13,16]. This paper attempts to fill this gap by
describing a systematic methodology, a development-testing alignment
(DTA) methodology which posits that such alignment leads to beneficial
effects such as lower costs and shorter time of development, greater system
quality, fewer errors and a better relationship between the corporate IT units.

Systematic mechanisms for tying testing strategy and capabilities to
development strategies and capabilities are also discussed. This paper
presents a set of best practice models and techniques integrated in optimized
and quantitatively managed software testing process, expanding testing
throughout the SDLC. It includes best practice from Design of Experiments,
Modeling & Simulation, integrated practical software measurement, Six
Sigma strategy, Earned (Economic) Value Management (EVM) and Risk
Management (RM) methodology through simulation-based software testing

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 461

scenarios at various abstraction levels of the SUT to manage stable
(predictable and controllable) software testing process at lowest risk, at an
affordable price and time.

To enable software designers to achieve a higher quality for their design, a
better insight into quality predictions for their design choices, test plans
improvement using Simulated Defect Removal Cost Savings model is
offered in this paper. Much rather we aim to define a simulation method with
which it is possible to assist the test manager in evaluating test plan
alternatives and adjusting test process improvement decisions in a
systematic manner.

2. Need for Research

Cost to an organization (both in dollars and in image) is significant when
software defects are identified after installation at a client site. This project
intends to identify areas where improvements in software testing resource
allocations would provide added value to the organization.

Fig. 1. Average Cost Of Defect Removal [10]

This paper proposes a development-testing alignment (DTA) methodology
which posits that such alignment leads to beneficial effects such as lower
costs and shorter time of development, greater system quality, fewer errors
and a better relationship between the corporate IT units and customers in
business functions who have commissioned new systems (see Fig. 2).
Alignment models and measurements have been studied in other related
contexts [16] but never within corporate IT units and specifically between the

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 462

development and testing functions. The paper therefore decomposes DT
alignment into a series of aspects for the purpose of assessing and analyzing
each of the construct. These aspects are drawn from the overarching
framework developed initially from prior literature [8,16]. The DTA
methodology will allow IT managers to improve the effectiveness of testing
and development by both synergistically integrating testing in the
development process and by aligning the testing and development units in
terms of strategy and execution capability.

Fig. 2. Alignment model for testing and development (adapted from [13])

Organizations that engage in software development and testing benefit
significantly if their management team has tools to assist them in determining
the most effective use of financial resources that might result in the fewest
software errors in delivered systems [2-10,20-24]. To be most effective, this
tool needs to be developed after a thorough review of the specific
organization‟s testing data [17,24]. Once developed, the tool will identify the
specific phases and processes during the development life cycle where
additional resources would provide the best return on investment and highest
software quality. The use of this tool will provide a major reduction in the
number and severity of software defects that exist after software testing. It
will also reduce the overall cost of software testing by focusing on the
appropriate process for a specific organizational environment [7,9,17-19,24].

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 463

To summarize, the purpose of this research is to increase software quality
and reduce overall costs of software testing by focusing resources where they
provide the most value. According to Gartner [14], on average, 7% of
software functionality that was paid for is actually used, while 85% of IT
projects failing to meet objectives (32% being cancelled outright). Dhaliwal
and Onita [13] posit that many of these development failures are a result of
poorly executed development process. These employ either inadequate
development models or flawed implementation due, in part, to the lack of
proper testing and effective collaborative mechanisms between testers and
developers. These issues have not yet found a proper solution, due, in part,
to a lack of a methodology that would allow the analysis and correction of
software development processes. A review of the testing and development
literature reveals that relations between the development and testing
functions are lacking for projects of medium and large magnitude, where
testing is separate from the development activities [12,15].

2.1. Research Questions

Based on the outcome of the evaluation of related work conducted in the
previous subsection, the our project has identified some challenges to
address. The challenges can be broken down into five sub-questions to
address in this paper. The initial main research question that was posed for
the complete research in this project was:

RQ1 or Main Research Question: How can software testing be

performed efficiently and effectively i.e. Optimal, that is, do we have a
framework model targeted specific software testing domains or problem
classes described below in RQ2 to RQ5?

To be able to address the main research question several other research
questions needed to be answered first (RQ2–RQ5). The first question that
needed an answer, after the main research question was formulated, was:

RQ2: Which metric or set of metrics can assess effectiveness of test

detecting techniques and what is the potential in combining different software
testing techniques with respect to effectiveness (and to some extent
efficiency)?

The answer to this research question is to be found in Section 3 and 4
together with an analysis of how software testing is used in different types of
projects. To begin with, the research aimed at exploring the factor of defect
detection and removing effectiveness (DRE) during SDLC while later
focusing on early aspects of software cost of quality. In order to examine if
the current practice in software development projects was satisfactory for
developing software with sufficient quality and budget constraint, RQ3
evolved into:

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 464

RQ3: Which metric or set of metrics can identify and prioritize software
quality attributes, can assess cost of software quality management process in
a specific project i.e. how to optimize software quality to pay off investment in
STP improvement (ROI)?

To enable software designers to achieve a higher quality for their design, a
better insight into quality predictions for their design choices that evolved to
the RQ4:

RQ4: Which metric or set of metrics can identify and prioritize

improvements to achieve early and cost-effective software fault detection,
can assess the improvements potential of improving the degree of early and
cost-effective software fault detection?

A systematic model which enables to minimize the cost of switching
between test plan alternatives, when the current choice cannot fulfill the
quality constraints, is proposed in this paper as one answer to the RQ4. This
is main concern and contribution of this paper which is described in Section
5. New kinds of STP improvement is introduced and hence indirectly led to
Research Question 5:

RQ5: How should a software development organization apply the metric(s)

suggested above for assessing ongoing and finished projects with an
Dynamic Control Model view i.e. What are optimality and stability criteria of
very complex STP dynamics problem control?

Section 5 explain how can Quantitative Defect Management (QDM) Model
be enhanced (as one solution to RQ4) to be practically useful for determining
which activities need to be addressed to improve the degree of early and
cost-effective software fault detection with assured confidence, optimality and
stability criteria of very complex STP dynamics problem control which is
partially solved in our paper [19].

To be able to implement all proposed solutions, one must choose a

research methodology. Iterative approaches for improvement exist in the
quality management area. The PDCA (plan-do-check-act) or “Shewhart
Cycle”, the WV (or zigzag) framework and the DMAIC (define-measure-
analyze-improve-control) cycles are analogous methods to capture a generic
framework for the improvement of a process or system [1,3,8]. A similar
model, the “simulate-test-evaluate process” iterative experimentation cycle
was developed by the office of the US Secretary of Defense, called the
Simulation, Test and Evaluation Process (DoD STEP framework) to integrate
M&S into the test and evaluation process of the system/software under test
(SUT) [17]. Long design iteration loops with late feedback drive cost and
schedule overruns in SDP-STP requires further research of this stability
criteria of very complex STP dynamics problem control.

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 465

3. Integrated, quantitatively managed and optimized

software testing process - OptimalSQM solution

When design and testing activities are not coupled, the information testing
provides on product design is delivered at a wrong point in the process. This
late information is either not useful any more or shows design problems too
late, causing undesired late rework. Thus, iteration cycles should be kept
short and rapid.

To address the research questions stated above, multiple studies have
been conducted [5-8] about alignment between the development and testing
functions which can be defined as the strategic and operational fit between
the development and testing functions on components of strategy and
capabilities [13-16]. Since systems development as well as systems testing is
integral parts of the corporate technology acquisition strategy, they too have
to be aligned to ensure business success. In many organizations, there is a
gap, or misalignment, at the strategic and/or execution level, between the
development and testing groups as well as between individual testers and
developers. To correct these misalignments, this paper proposes a
methodology, grouped under the DTA model [13] that draws upon the
strategic alignment model initially proposed in [16]. This DTA model focuses
on the fit between the development and testing functions. A high level of
integration of business and IT plans facilitates communication and
collaboration [16]. Integration represents the level of linkage between
development and testing, while correspondence represents how closely their
capabilities mirror and complement each other. Varying levels of alignment
can either promote or hinder integration and correspondence. This is a
common characteristic of all alignment models in the literature as verified by
Dhaliwal, J. and Onita C. in their work [13]. Figure 2 details the key structural
and flow components of the DT alignment model for development and testing
within the corporate IT unit. This model decomposes the alignment of the
development and testing functions along three key flow dimensions: 1)
strategic alignment, 2) capabilities alignment, and 3) strategy-execution
alignment.

Based on our study in [8], a methodology for achieving DT Alignment
through Collaborative Techniques & Technology, enables OptimalSQM to be
realised. The methodology is derived from a survey of the literature from
Strategic Alignment [13-16] Testing [1-4], [8-10] to Project Management and
Information Systems development methods [10-16]. To improve the reliability
and validity of this methodology, alignment case studies and field studies
were conducted and real life examples are given to improve the applicability
of the methodology. A list of techniques is also mapped onto each step of the
methodology.

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 466

3.1. Integrated and Optimized Software Testing Process (IOSTP)

framework - OptimalSQM solution

To answer the main research question (RQ1) we applied DTA model,
described above, in OptimalSQM framework which combine best practice
from Design of Experiments, Modeling & Simulation, integrated practical
software measurement, Six Sigma strategy, Earned (Economic) Value
Management (EVM) and Risk Management (RM) methodology through
simulation-based software testing scenarios at various abstraction levels of
the software under test (SUT) to manage stable (predictable and controllable)
software testing process at lowest risk, at an affordable price and time [8,9],
[17,18] as depicted in Fig. 3. Unlike conventional approaches to software
testing (e.g. structural and functional testing) which are applied to the
software under test without an explicit optimization goal, the IOSTP with
embedded Risk Based Optimized STP (RBOSTP) approach designs an
optimal testing strategy to achieve an explicit optimization goal, given a priori
[8,17]. This leads to an adaptive software testing strategy. A non-adaptive
software testing strategy specifies what test suite or what next test case
should be generated, e.g. random testing methods, whereas an adaptive
software testing strategy specifies what testing policy should be employed
next and thus, in turn, what test suite or test case should be generated next in
accordance with the new testing policy to maximize test activity efficacy and
efficiency subject to time-schedule and budget constraints.

Fig. 3. Integrated and optimized software testing process (IOSTP) framework, core
of OptimalSQM framework [17]

The use of state-of-the-art methods and tools for planning, information,
management, design, cost trade-off analysis, and modeling and simulation,
Six Sigma strategy significantly improves STP effectiveness as in Fig. 3
which graphically illustrates a generic IOSTP framework that makes core of
the OptimalSQM framework [17].

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 467

The main components of IOSTP with embedded RBOSTP approach to
STP:

 Integrate testing into the entire development process

 Implement test planning early in the life cycle via Simulation based
assessment of test scenarios

 Automate testing, where practical to increase testing efficiency

 Measure and manage testing process to maximize risk reduction

 Exploit Design of Experiments techniques (optimized design plans,
Orthogonal Arrays etc.)

 Apply Modeling and Simulation combined with Prototyping

 Continually improve testing process by pro-active, preventive (failure
mode analysis) Six Sigma DMAIC model

 Continually monitor Cost-Performance Trade-Offs (Risk-based
Optimization model, Economic Value and ROI driven STP).

In order to significantly improve software testing efficiency and
effectiveness for the detection and removal of requirements and design
defects in our framework of IOSTP, during 3 years of the IOSTP framework
deployment to STP of embedded-software critical system such as Automated
Target Tracking Radar System (ATTRS) [17], we calculated overall value
returned on each dollar invested i.e. ROI of 100:1 .

4. Optimum DDTs combination selection and optimization

study in OptimalSQM

The research question - RQ2 divided the research, as presented in this
paper, into two areas covering effectiveness in software testing techniques
(defect detection techniques – DDT) and efficiency in software testing with
development-testing alignment (DTA) methodology [5-9]. Such alignment
leads to beneficial effects such as lower costs and shorter time of
development, greater system quality, fewer errors and a better relationship
between the corporate IT unit and customers in business functions who have
commissioned new systems. To begin with RQ2, the research aimed at
exploring the factor of defect detection and removing effectiveness (DRE)
during SDLC is answered in our work [6]. Here is brief description of main
ideas of RQ2 answer.

4.1. Statement Of the Problem - Defect removal effectiveness

A key metric for measuring and benchmarking the software testing efficacy is
by measuring the percentage of possible defects removed from the product
at any point in time. Both a project and process metric – can measure
effectiveness of quality activities or the quality of a all over project by:

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 468

DRE = E/(E+D) (1)

Where E is the number of errors found before delivery to the end user, and
D is the number of errors found after delivery. The goal is to have DRE close
to 100%. The same approach is applied to every test phase denoted wit i as
shown on Fig. 4:

DREi = Ei / (Ei+ Ei+1) (2)

Where Ei is the number of errors found in a software engineering activity i,
and Ei+1 is the number of errors that were traceable to errors that were not
discovered in software engineering activity i. The goal is to have this DREi
approach to 100% as well i.e., errors are filtered out before they reach the
next activity. Projects that use the same team and the same development
processes can reasonably expect that the DRE from one project to the next
are similar. For example, if on the previous project, you removed 80% of the
possible requirements defects using inspections, then you can expect to
remove ~80% on the next project. Or if you know that your historical data
shows that you typically remove 90% before shipment, and for this project,
you‟ve used the same process, met the same kind of release criteria, and
have found 400 defects so far, then there probably are ~50 defects that you
will find after you release. How to combine Defect Detection Technique to
achieve high DRE, let say >85%, as a threshold for IOSTP required
effectiveness [2-5], is explained in this section, which describe optimum
combination of software defect detection techniques choices.

Fig. 4. Fault Injection and Fixing Model

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 469

Note that the defects discussed in this section include all severity levels,
ranging from severity 1: activity stoppers, down to severity 4. Obviously, it is
important to measure defect severity levels as well as recording numbers of
defects.

4.2. The optimum combination of software defect detection

techniques choices determination

Planning, managing, executing, and documenting testing as a key process
activity during all stages of development is an incredibly difficult process.
There is strong demand for software testing effectiveness and efficiency
increases. Software/System testing effectiveness is mainly measured by
percentage of defect detection and defect leakage (containment), i.e. late
defect discovery. Software testing efficiency is mainly measured by dollars
spent per defect found and hours spent per defect found. The first step of test
strategy definition is to decide what to test in the SDP process as described in
[3,20,23]. The requirements verification matrix method supports this goal by
cross-referencing each product requirement with suitable verification
methods (inspection, analysis, demonstration, or test), verification classes
(design proof, first article, or production), and special verification procedures
(e.g., Failure Mode and Effect Analysis, Design of Experiments, Finite
Element Method, etc.). Product requirements with high priority are the critical
requirements, where test planning has to concentrate its resources.

The process is a building block approach designed to build upon the
strengths and minimize the weakness of each testing technique and available
resources. Main task was to develop a versatile optimization model [8] for
assessing the cost, duration and effectiveness of alternative test scenario
through feasible series of experiments: software test method, field test,
through simulation, or through a combination, which represent sequence of
test events.

Such scenarios are invaluable for determining where testing resources
should be spent at the beginning of software development project. With an
optimized testing solution, you can create what-if scenarios to help users
understand the impact of changing risks, cycle attributes and requirements as
priorities change. This insight proves invaluable when a testing organization
is trying to determine the best way to balance quality with cost and schedule.
By understanding the impact of different factors on testing, IT managers can
identify the right balance.

We applied the End-to-End (E2E) Test strategy in our IOSTP framework
[6,17]. End-to-End Architecture Testing is essentially a "gray box" approach
to testing - a combination of the strengths of white box and black box testing.
In determining the best source of data to support analyses, IOSTP with
embedded RBOSTP considers credibility and cost of each test scenario i.e.
concept. Resources for simulations and software test events are weighed

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 470

against desired confidence levels and the limitations of both the resources
and the analysis methods.

Our study [6] focuses on rapid multidisciplinary analysis and evaluation-on-
a-DRE maximum-basis for DDT combination choices selection for each test
phase activities in an traditional SDP i.e. P1- software requirement, P2- High
level design, P3- Low Level Design, P4- code under test, P5- integration test,
P6- system under test and finally P7- Acceptance test. Recall section 4, in
our work [6], for Different Defect Detection Strategy and Techniques options,
together with critical STP variables performance characteristics (e.g. DRE,
cost, duration), in which we are studied to optimize design, development, test
and evaluation cost using orthogonal arrays for computer experiments. The
optimum combination of software defect detection techniques choices were
determined applying orthogonal arrays constructed for post mortem designed
experiment with collected defect data of a real project. First, we applied
adapted Borda voting method, on similar way, to rank all used Defect
Detection Techniques through software development life cycle from most-to-
least performance and quality characteristics of DDT in revealing software
faults (bugs, errors). In this way we reduced huge possible number of DDTs,
in particular, the DDT with the highest Borda Count is the best DDT according
to testers Performance and Quality multi-criteria assessment [6], the DDT
with the second highest count is the next DDT with highest score, and so forth
to only three most ranked DDT. According to testers assessment of 5 most
frequently used DDT in IOSTP [6,]: DDT1= Inspection – DBR, DDT2= PBR,
DDT3= CEG+BOR+MI, DDT4= M&S, DDT5= Hybrid (Category Partition,
Boundary value analysis, Path testing etc.) three of DDTs have the highest
rank 0 i.e. DDT1=DDT2=DDT4=0, then DDT3= CEG+BOR+MI is next ranked
and the last was DDT5. Because of that we will group those three DDT with
highest rank 0, call them Static Test Techniques – TT1 and treat all three
DDTs as one factor in optimization experiment applying Orthogonal Arrays as
Optimization Strategy. Next high Borda ranked DDT4= CEG+BOR+MI we
designate with TT2 and the last ranked DDT5 as TT3.

In this study, design of maximum DRE percentage of STP optimization
problem solving with best DDT choice combination in each phase P1 to P7 as
controlled variables values is determined by designed experiment plan using
orthogonal arrays designed for this computer experiment. Seven major test
phases - P1 to P7, for accounting maximum DRE percentage all over STP
fault injection and removal model (see Fig. 4, 7 and 8 below) for DDT
candidate selection in each test phase were determined. These were the
Static Test Techniques – TT1 (consisting of three DDTs as one factor in
optimization experiment applying Orthogonal Arrays as Optimization
Strategy), the TT2 i.e. DDT4= CEG+BOR+MI and TT3 – Hybrid Detection
Technique= DDT5 (consisting of Category Partition, Boundary value analysis,
Path testing etc.). The objective of this investigation was then to determine
the best combination of Test Techniques (TTi , i=1,2 and 3) options for the
seven major test phase activities sections optimized for maximum DRE
percentage under cost and time constraints [6,pages 1333-1335].

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 471

As the next step, least squares regression analysis is used to fit the second
order approximation model given by equation (3) to the DRE data in terms
of the seven design variables Pi , i=1 to 7. This parametric model accounts
for the response surface curvature (square terms) and two factor interactions
(cross terms):

DRE (%) = 111.71 - 2.58 *P1 + 1.22*P2 -1.95*P3 - 7.61*P4 - 0.69*P5 +
0.94*P6 -13.04*P7 - 0.36*P2

2
 + 1.46*P4

2
 + 0.79*P5

2
 - 0.36P6

2
 +

3.15*P7
2

(3)

Note that, in this response surface approximation model, the parameter
values for Pi design variables are restricted to 1 (TT1), or 2 (TT2), or 3 (TT3).
In Table 1, a Maximum DRE (%) value and corresponding Test Techniques
choices (TT1,TT2 and TT2) per test phase solution is given.

Table 1. Maximum DRE (%) value and corresponding Test Techniques choices per
test phase solution [6, page 1335]

P1 P2 P3 P4 P5 P6 P7
DRE
[%]

TT1 TT2 TT1 TT1 TT3 TT2 TT2 94.3

At these levels, the IOSTP DRE was predicted to be 94.03 % using a

second order prediction model (3). As a next step, a verification analysis was
performed. The DRE (%) of an IOSTP calculated from these test techniques
choices, according to the post-mortem real project data using optimized DDT
choices from Table 1, we computed DRE (%) to be 93.43 % . Difference is
0.6%=94.03%-93.43% that is acceptable to validate our prediction model for
DRE (%) in equation (3) for optimal DDT combination choice given in Table
1.

Optimal combination of DDT choices per phase P given in Table 1 made
increase of about 6 %, compared to un-optimized DDTs combination per
each test phase we used in our real project in which we achieved DRE of
87.43 % in our case study.

5. Advanced Quantitative Defect Management (AQDM)

Model

The investment in software quality, particularly in software testing, like any
investment has an immediate cost, with an expected net payback. There is
where Quality Cost Analysis could be used as effective tool to make them
understand the ROI. In our paper [19], we defined techniques to analyze and
interpret return on the testing investment (ROTI) values: Financial ROI and
Schedule Benefits as one possible answer to RQ3 based on our studies
[5,18,19] i.e. which metric or set of metrics can identify and prioritize software

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 472

quality attributes, can assess cost of software quality management process in
a specific project i.e. how to optimize software quality?

In our work [19] we proposed a model that traces design decisions and the
possible alternatives. With this model it is possible to minimize the cost of
switching between design alternatives, when the current choice cannot fulfill
the quality constraints.

5.1. Faults-Slip-Through (FST) Model

The partial answer to RQ5 can be found in our work [19], too. In this section
we explain how can Quantitative Defect Management (QDM) Model be
enhanced (as answer to RQ4) to be practically useful for determining which
activities need to be addressed to improve the degree of early and cost-
effective software fault detection with assured confidence.

The main objective of the case study presented in this section was to
investigate how fault statistics could be used for removing unnecessary
rework in the software development process. This was achieved through a
measure called Faults-Slip-Through (FST) [9, Section 2], i.e. the measure tells
which faults that would have been more cost-effective to find in earlier
phases.

5.2. The defect containment measure

An error in an activity of development phase Pi (i=1 to N) is made that causes
a failure (see Fig. 10-13). The failure leads to a reported anomaly. When the
reported anomaly is analyzed, the fault(s) causing the failure is found and
corrected. Rework is about revising an existing piece of software or related
artifact. Therefore, a typical rework activity is to correct reported anomalies.
Rework can be divided into two primary types of corrective work [9]:

 Avoidable rework is work that would not have been needed if the
previous work would have been correct, complete, and consistent. Such
rework consists of the effort spent on detecting and fixing software
difficulties that could have been discovered earlier or avoided altogether
[2,5].

 Unavoidable rework is work that could not have been avoided because
the developers were not aware of or could not foresee the change when
developing the software, e.g. changed user requirements or
environmental constraints [9].

This section describes the selected method for how to achieve the
objectives stated in the previous section. The method can be divided into the
following three steps:
1. Determine which faults that should have been avoided or at least found

earlier,
2. Determine the average cost of finding faults in different phases,

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 473

3. Determine the improvement potential from the results in (1) and (2).
The three sub-sections below describe how to perform each of the three

steps.

5.3. The raw defect containment data

This section is dedicated to a model for assessing a plan for SQA defect-
removal effectiveness and cost. The model, a multiple filtering model as
shown on Fig. 4, is based on data acquired from a survey of defect origins,
percentages of defect removal achieved by various quality assurance
activities, and the defect-removal costs incurred at the various development
phases. The model enables quantitative comparison of quality assurance
policies as realized in quality assurance plans. The application of the
proposed model is based on three types of data, described under the
following headings from [1, pages 135-142].

5.4. Defects removal improvement potential

Fig. 5. Example of Fault Latency and FST

As previously mentioned, FST measurement was used for determining this,
i.e. it evaluates whether each fault slipped through the phase where it should
have been found or not. The main difference between FST measurement and
other related measurements is when a fault is introduced in a certain phase
but it is not efficient to find in the same phase. For example, a certain test
technique might be required to simulate the behaviour of the function. Then it
is not a fault slippage. Figure 5, further, illustrates this difference. A
consequence of how FST is measured, a definition must be created to
support the measurement, i.e. a definition that specifies which faults that

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 474

should be found in which phase. To be able to specify this, the organization
must first determine what should be tested in which phase. Therefore, this
can be seen as test strategy work. Thus, experienced developers, testers and
managers should be involved in the creation of the definition. The results of
the case study in Section 5.5 further exemplify how to create such a
definition.

When having all the faults categorized, the next step is to estimate the
cost of finding faults in different phases. From the measure, the improvement
potential of different parts of the development process is estimated by
calculating the cost of the faults that slipped through the phase where they
should have been found (see Fig. 12 and 13 below). The usefulness of the
method was demonstrated by applying it on two completed development
projects [1] and [2]. The results determined that the implementation phase
had the largest improvement potential since it caused the largest FST cost to
later phases, i.e. from 56 to 87 percent of the total improvement potential in
the two studied project scenarios. It is assumed that the filtering effectiveness
of accumulated defects of each quality assurance activity is not less than
40% (i.e., an activity removes at least 40% of the incoming defects). Typical
average defect filtering effectiveness rates for the various quality assurance
activities, by development phase, based on Galin, D. [1] and 11. Boehm, B.
et al [11], are listed in Table 2.

Data collected about development project costs show that the cost of
removal of detected defects varies by development phase, while costs rise
substantially as the development process proceeds. For example, removal of
a design defect detected in the design phase may require an investment of
2.5 working days; removal of the same defect may require 40 working days
during the acceptance tests. Estimates of effectiveness of software quality
assurance tools and relative costs of defect removal are provided by
McConnell [10]. Although defect removal data are quite rare, professionals
agree that the proportional costs of defect removal have remained constant
since the surveys conducted in the 1970s and 1980s. Instead of average per
phase defect removal cost we propose average relative defect-removal costs
injected in phase Pi (i=1 to 7) and detected and removed latter in downstream
phases Pj ,

j>i up to the operation phase (j=7) as shown in Table 3.

The improvement potential (IP) is determined by calculating the
difference between the cost of faults in relation to what the fault cost would
have been if none of them would have had slipped through the phase where
they were supposed to be found. Figure 6. provides the elements of matrix,
with corresponding formulas, for making such a calculation and the
improvement potential can be calculated in a two-dimensional matrix. The
formulae for calculating the improvement potential for each cell IPir is:

),(*),(___),(*),(___ iiAverCDRriPinfaultsNoirAverCDRriPinfaultsNoIPir 

for i=1 to 7, and r  i correspond to a cell in phase removed/originated matrix.
AverCDR(r,i) is average cost of faults originated in i and removed in r as

shown in Table 3. IPi total and IPi are calculated by summarizing the

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 475

corresponding row/column. In order to demonstrate how to use and interpret
the matrix, Figure 12 provides an example calculation by applying the
previous formula on the values in the table in the Fig. 10. The most
interesting cells are those in the rightmost column that summarizes the total
cost of faults in relation to fault belonging and the bottom row that
summarizes the total unnecessary cost of faults in relation to phase found.
For example, the largest improvement potential is in the LL Design test

phase, i.e. the phase triggered 30661 [cu] of unnecessary costs in later
phases due to a large FST from faults injected in Requirement phase.
Therefore, the primary usage of the values is to serve as input to an
expected ROI calculation when prioritizing possible improvement actions
according to formula:

ROI= (CostToFixOld - CostToFixNew) /CostToFixOld=39.2%.

5.5. Qunatitative Defect Removal Model

The model is based on the following assumptions:
■ The development process is linear and sequential, following the waterfall

model of CMM Level 5. Software size is aproximately 100FP (1 injected
defect/FP) i.e. for Java implementation about 50KLOC of source code [4].

Fig. 6. Matrix Formula for Calculation of Improvement Potential

■ A number of “new” defects are introduced in each development phase.
For their distributions, see Fig. 8 and 9.

■ Review and test software quality assurance activities serve as filters,
removing a percentage of the entering defects and letting the rest pass tothe
next development phase. For example, if the number of incoming defects is

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 476

30, and the filtering efficiency is 60%, then 18 defects will beremoved, while
12 defects will remain and pass to be detected by the next quality assurance
activity. Typical filtering effectiveness rates for the Standard quality
assurance activities are shown in Table 2.

Table 2. Average filtering (defect removal - DR) effectiveness by Standard quality
assurance activities plan, adapted from [1, pages 136-138]

No. Quality assurance activity Defect removal
effectiveness

Average Cost of
removing a
detected defect
(cost units)

1 Requirement specification review 50% 1
2 Design review 50% 2.5
3 Unit test – code 50% 6.5
4 Integration test 50% 16
5 Documentation review 50% 16
6 System test 50% 40
7 Operation phase 100% 110

■ At each phase, the incoming defects are the sum of defects not removed

by the former quality assurance activity together with the “new” defects
introduced (created) in the current development phase.

■ The cost of defect removal is calculated for each quality assurance
activity by multiplying the number of defects removed by the relative cost of
removing a defect (see Table 3, 3

rd
 column).

■ The remaining defects, unfortunately passed to the customer, will be
detected by him or her. In these circumstances, full removal entails the
heaviest of defect-removal costs. In this model, each of the quality assurance
activities is represented by a filter unit, as shown for Design in Fig. 7. The
model presents the following quantities:

■ POD = Phase Originated Defects (from Fig. 8)

■ PD = Passed Defects (from former phase or former quality assurance
activity)

■ %FE = % of Filtering Effectiveness (also termed % screening
effectiveness) (from Table 2)

■ RD = Removed Defects

■ CDR = Average Cost of Defect Removal (from Table 2)

■ TRC = Total Removal Cost: TRC = RD ×CDR.

The illustration in Fig. 8 of the model applies to a standard quality
assurance plan (“standard defects filtering system”) that is composed of six
quality assurance activities (six filters), as shown in Table 2.

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 477

Table 3. Representative average relative defect-removal costs and fixing multiplier
because FST

No. Quality
assurance
activity

Average
Cost
of DR
[cost
units]

Fixing
multi-
plier
(CM)
P1→
P7

Fixing
multi-
plier
(CM)
P2→
P7

Fixing
multi-
plier
(CM)
P3→
P7

Fixing
multi-
plier
(CM)
P4→
P7

Fixing
multi-
plier
(CM)
P5→
P7

Fixing
multi-
plier
(CM)
P6→
P7

1 Requir.
specification
review

1 1

2 Design
review

2.5 5 1

3 Unit test –
code

6.5 10 2 1

4 Integration
test

16 50 10 5 1

5 Documenta-
tion review

16 130 26 13 3 1

6 System test 40 368 64 37 7 3 1

7 Operation
phase

110 400 75 40 20 15 10

A comprehensive quality assurance (QA) plan (“comprehensive defects

filtering system”) achieves the following:
(1) Adds two quality assurance activities, so that the two are performed in

the design phase as well as in the coding phase;
(2) Improves the “filtering” effectiveness of other quality assurance

activities. The comprehensive quality assurance plan can be characterized as
shown in Table 4.

The main conclusions drawn from the comparison are:
(1) The standard plan successfully removes only 57.6% (28.8 defects out of

50) of the defects originated in the requirements and design phase,
compared to 92.0% (46 defects out of 50) for the comprehensive plan,
before coding begins.

(2) The comprehensive plan, as a whole, is much more economical than the
standard plan as it saves 41% of total resources invested in defect
removal, compared to the standard plan.

(3) Compared to the standard plan, the comprehensive plan makes a greater
contribution to customer satisfaction by drastically reducing the rate of
defects detected during regular operations (from 6.9 % to 3 %).
The comparison also supports the belief that additional investments in

quality assurance activities yield substantial savings in defect removal costs.
Alternative models dealing with the cumulative effects of several
qualityassurance activities are discussed by [2,5,9] as described below. A

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 478

process-oriented illustration of the comprehensive quality assurance plan and
model of the process of removing 100 defects is provided in Fig. 9. A
comparison of the outcomes of the standard software quality plan versus the
comprehensive plan is revealing as shown in Table 5.

Fig. 7. A filter unit for defect-removal effectiveness: example (100 defects) from [1]

Table 4. Average filtering (defect removal) effectiveness by Comprehensive quality
assurance activities plan [1, page 140]

No. Quality assurance activity Defect removal
effectiveness

Cost in [cu] of
removing a
detected defect

1 Requirement specification review 60% 1
2 Design inspection 70% 2.5
3 Design review 60% 2.5
4 Code inspection 70% 6.5
5 Unit test – code 40% 6.5
6 Integration test 60% 16
7 Documentation review 60% 16
8 System test 60% 40
9 Operation phase 100% 110

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 479

Table 5. Comparison of the standard and comprehensive QA plans [1, page 142]

No. Quality assurance
activity

Standad plan Comprehensive plan

 Percentage of
removed
defects

Cost of
removing a
detected
defect
(cost units)

Percentage
of
removed
defects

Cost of
removing a
detected
defect
(cost units)

1 Requirement
specification
review

7.5% 7.5 9% 9

2 Design inspection - - 28.7% 71.8
3 Design review 21.3% 53.2 7.4% 18.5
4 Code inspection - - 24.4% 158.6
5 Unit test – code 25..6% 166.4 4.2% 27.3
6 Integration test 17.8% 284.8 9.8% 156.8
7 Documentation

review
13.9% 222.4 9.9% 158.4

8 System test 7.0% 280 4% 160
 Total for internal

QA activities
93.1% 1014.3 97.4% 760.4

 Defects detected
during operation

6.9% 759 2.6% 286

 Total 100.0% 1773.3 100.0% 1046.4

5.6. Simulation results of AQDM improvement

Unlike conventional approaches to software testing which are applied to the
software under test without an explicit optimization goal, as described above,
the OptimalSQM approach designs an optimal testing strategy to achieve an
explicit optimization goal, given a priori [5,6]. Improvement of original project
data from [2] given in Fig. 10 (Note: original Defect Removal Efficiency [%],
shown on Fig. 11 is less then Standard quality assurance activities plan,
Scenario 1 in Table 2).

Also, comprehensive quality assurance plan (Scenario 2) which is realised
through feasible series of experiments: software test method, field test,
through simulation, or through a combination, represent new test sequence
determined by Simulated Defect Removal Cost Savings model.

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 480

Fig. 8. DRE and costs of Standard QA plan and model of the process of removing
100 defects [1, page 139]

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 481

Fig. 9. DRE of Comprehensive QA plan and model of the process of removing 100
defects [1]

The Simulated Defect Removal Cost Savings model, uses net savings
approach that is calculated using this formula:

)(* 11PrPr1 rrrrrr CMCMFSTIPNS  
, r=1..6.

For the given large (~11300 FP, Java implementation about 600KLOC of
source code) project example from [2], and for original data of process defect
removal effectiveness given in Fig. 11, and simulated calculations of two
Scenarios 1 and 2 are shown in Fig. 12, Fig.13 and Fig. 14.

Calculated Matrix of Improvement Potential calculation for Scenario 2 is

given in Fig 12. From Fig. 13 and 14, we can easy find maximal

improvement potential point to be in phase P3.

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 482

Fig. 10. Original Software Process Defect Containment Matrix [2]

Fig. 11. Software Defect Containment Percentage Matrix – PCE

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 483

Fig. 12. Matrix with Calculation of Improvement Potential for Scenario 1

Fig. 13. Calculated Defect Containment Percentage Matrix – for original and anlized
scenarios 1 and 2

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 484

Fig. 14. Graph with calculation of Improvement Potential in [cu] for Scenario 1 and 2

We described ind this section, as answer to the RQ4 and RQ5, a Software
Quality Optimization strategy of OptimalSQM framework, which is a
continuous, iterative process throughout the application lifecycle resulting in
zero-defect software that delivers value from the moment it goes live, with
Simulated Defect Removal Cost Savings model.

6. Conclusion

The initial main research question that was posed for the complete research
in this project was: How can software testing be performed efficiently and
effectively i.e. Optimal, that is, do we have a framework model targeted
specific software testing domains or problem classes described in the paper?
To be able to address the main research question several other research
questions needed to be answered first (RQ2–RQ5). Thus, since this project is
based upon the main research question, it was worthwhile taking the time to
examine the current practice in different projects and see how software
quality is measured and, especially, software testing was practiced [1-8] as
we described in Section 2. In Section 3 and 4 we described our OptimalSQM
framework which presents a set of best practice models and techniques
integrated in optimized and quantitatively managed software testing process
(OptimalSQM), expanding testing throughout the SDLC. In Section 5, we
explained how can Advanced Quantitative Defect Management (AQDM)
Model be enhanced (as answer to RQ4 and RQ5) is practically useful for
determining which activities need to be addressed to improve the degree of
early and cost-effective software fault detection. To enable software

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 485

designers to achieve a higher quality for their design, a better insight into
quality predictions for their design choices, test plans improvement using
Simulated Defect Removal Cost Savings model is offered in paper.

Finally, this paper presents and validates a method for measuring the
efficiency of the software test process to achieve early and cost-effective
software fault detection. That is, it determines how fault statistics can be used
for assessing a test process and then quantify the improvement potential of
changing the process. The described method assesses a software
development organization through the following three steps:

1. Determine which faults that could have been avoided or at least
found earlier, i.e. FST.

2. Determine the average cost of faults found in different phases.
3. Determine the improvement potential from the metrics obtained in (1)

and (2), i.e. measure the cost of not finding the faults in the right
phase.

The practical applicability of the method was determined by applying it on
two industrial software development projects. In the studied projects, potential
improvements were foremost identified in the the largest improvement
potential is in the LL Design test phase, i.e. the phase triggered 30661 [cu]
of unnecessary costs in later phases due to a large FST from faults injected
in Requirement phase. Therefore, the primary usage of the values is to serve
as input to an expected ROI calculation according to given formula, when
prioritizing possible improvement actions we can improve DRE cost for
ROI=39.2%. That is, the LL Design phase inserted, or did not capture faults
present at least, too many faults that slipped through to later phases.

References

1. Galin, D.: Software Quality Assurance:From theory to implementation, Pearson
Education Limited, ISBN 0201 70945 7, pp. 135-142. (2004)

2. Frost and, A., Campo,M.: Advancing Defect Containment to Quantitative Defect

Man, CrossTalk, December. pp. 24-28, (2007)
3. Lim, S. So, Y, Cha, S. D. and Kwon, Y. R.: “An Empirical Study on Software

Error Detection: Voting, Instrumentation, and Fagan Inspection,” Proceedings of
the Asia-Pacific Software Engineering Conference, IEEE Computer Society
Press, Dec. (1995)

4. Jones, C.: Estimating Software Costs. 2nd edition. McGraw-Hill, New
York.(2007)

5. Lazić, Lj.,Mastorakis, N.:Cost Effective Software Test Metrics, WSEAS
TRANSACTIONS on COMPUTERS , Issue 6, Volume 7, June. pp. 599-619,
(2008)

6. Lazić, Lj., Mastorakis, N.:Orthogonal Array application for optimal combination
of software defect detection techniques choices, WSEAS TRANSACTIONS on
COMPUTERS, Issue 8, Volume 7, pp.1319-1336, August.(2008)

7. Lazić, Lj., Mastorakis, N.:Optimizing Test Process Action Plans by Simulated
Defect Removal Cost Savings, 11th WSEAS Int.Conf. on AUTOMATIC

Ljubomir Lazić

ComSIS Vol. 7, No. 3, June 2010 486

CONTROL, MODELLING & SIMULATION (ACMOS'09), Istanbul, Turkey, May
30,pp. 280-287, June 1.(2009)

8. Lazić, Lj.: The Integrated and Optimized Software Testing Process. PhD Thesis,
School of Electrical Engineering, Belgrade, Serbia.(2007)

9. Lars-Ola D.: Early and Cost-Effective Software Fault Detection, PhD Thesis,
Blekinge Institute of Technology, SWEDEN, Section 2.(2007)

10. McConnell, S. :Professional Software Development, Addison Wesley, ISBN 0-
321-19367-9.(2004)

11. Boehm, B. , Abts, C., Brown, A., Chulani,S., Clark, B.,Horowitz,E., Madachy,R.,
D. Reifer,D., Steece,B.: Software Cost Estimation with COCOMO II, Prentice
Hall.(2000)

12. Cohen, C. F., Birkin, S. J., Garfield, M. J. and Webb, H. W.:Management
Conflict in Software Testing. Communications of the ACM, 47(1),pp. 76-81.
(2004)

13. Dhaliwal, J., Onita C., A framework for aligning Testing and Development,
Proceedings of the Workshop on Advances & Innovations in Systems Testing.
(2007)

14. Hunter and Blosch:Managing the New IT Risks”. Gartner.(2003)
15. Pettichord, B. :Testers and Developers Think Differently: Understanding and

Utilizing the Diverse Traits of Key Players on your Team. Software Testing &
Quality Engineering, 2(1), pp. 42-45. (2000)

16. Sabherwal, Hirschheim and Goles:Information systems – business strategy
alignment: The dynamics of alignment: Insights form a punctuated equilibrium
model. Strategic information management: Challenges and strategies in
managing information systems, (Galliers and Leidner, Eds), Butterworh-
Heinemann, Oxford pp 311-346. (2003)

17. Lazić Lj., Velasević, D.:Applying simulation and design of experiments to the
embedded software testing process. STVR, Volume 14, Issue 4, John Willey &
Sons, Ltd., p257-282. (2004)

18. Popovic S, and Lazic, Lj.:Orthogonal Array And Virtualization As A Method For
Improvement Configuration Testing, Proceedings of 1st IEEE Eastern European
Regional Conference on the Engineering of Computer Based Systems - ECBS-
EERC 2009, Novi Sad, pp.148-149. (2009)

19. Lazić, Lj. , Kolašinac, A., Avdić, Dž.:The Software Quality Economics Model for
Software Project Optimization. WSEAS TRANSACTIONS on COMPUTERS,
Issue 1, Volume 8, pp.21-47.(January 2009)

20. Morasca, S., Serra-Capizzano, S.: On the analytical comparison of testing
techniques. In: International Symposium on Software Testing and Analysis
(ISSTA „04). Association for Computing Machinery, Boston, Massachusetts,
USA, pp. 154–164. (2004)

21. Houston, D., Keats, B.:Cost of Software Quality: A Means of Promoting
Software Process Improvement, Quality Engineering, 10:3, pp. 563-573, March.
(1998)

22. Müller, M.:About the Return on Investment of Test-Driven Development",
ICSE'03, Portland, Oregon. (2003)

23. Chen, T., Kuo, F, Merkel,R.: On the statistical properties of testing effectiveness
measures. The Journal of Systems and Software 79,pp. 591–601. (2006)

24. Wang, Q. et al.:Estimating Fixing Effort and Schedule based on Defect
Injection Distribution, Softw. Process Improve. Pract.; 13: pp.35–50. (2008)

Software Testing Optimization by Advanced Quantitative Defect Management

ComSIS Vol. 7, No. 3, June 2010 487

Ljubomir Lazić is an assistant professor of software engineering and
computer science at State University of Novi Pazar, Serbia. He received the
Ph.D. degree in electrotechnics from School of Electrical Engineering,
Belgrade University in 2007. He was a Post-Doctoral Researcher at The
WSEAS (The World Scientific and Engineering Academy and Society) of
computer science from 2009 to 2010. So far, he has authored over 50
research papers. His current research interests are optimal software project
management.

Received: September 23, 2009; Accepted: May 26, 2010.

