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Abstract. The focus of this paper is on crafting a new visual language for
attribute grammars (AGs), and on the development of the associated pro-
gramming environment. We present a solution for rapid development of
VisualLISA editor using DEViL. DEViL uses traditional attribute gram-
mars, to specify the language’s syntax and semantics, extended by vi-
sual representations to be associated with grammar symbols. From these
specifications a visual programming environment is automatically gener-
ated. In our case, the environment allows us to edit a visual description
of an AG that is automatically translated into textual notations, including
an XML-based representation for attribute grammars (XAGra), and is in-
tended to be helpful for beginners and rapid development of small AGs.
XAGra allows us to use VisualLISA with other compiler-compiler tools.

Keywords: Attribute Grammar, Visual Languages, XML Dialect, DEViL,
VisualLISA, XAGra.

1. Introduction

An AG can be formally defined as the following tuple: AG = (G,A,R,C), where
G is a context-free grammar, A is the set of attributes, R is the set of eval-
uation rules, and C is the set of contextual conditions. Each attribute has a
type, and represents a specific property of a symbol X; we write X.a to in-
dicate that attribute a is an element of the set of attributes of X, denoted by
A(X). For each X (terminal or non-terminal), A(X) is divided into two disjoint
sets: the inherited and the synthesized attributes. Each R is a set of formulas,
like X.a = func(..., Y.b, ...), that define how to compute, in the precise con-
text of a production, the value of each attribute. Each C is a set of predicates,
pred(..., X.a, ...), describing the requirements that must be satisfied in the pre-
cise context of a production.
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As can be deduced from this complex definition of AGs they are not as easy
to specify as people would desire because there is a gap between the problem
solution (the desired output) and the source language that must be interpreted.
The user must take care on choosing the appropriate attributes and their eval-
uation rules. Since the beginning, the literature related with compilers presents
AGs using syntax trees decorated with attributes. So it is usual to sketch up
on paper trees with attributes representing an AG. This strategy allows the de-
velopers to imagine a global solution of the problem (in a higher abstraction
level) and to detect complex dependencies between attributes, symbols and
functions, avoiding spending time with syntax details. However, such informal
drawings require the designer to translate them manually into the input notation
of a compiler generator. The person who drew it must go through the translation
of the pencil strokes into the concrete syntax of the compiler generator. These
inconveniences make the developers avoid the usage of AGs and go through
non systematic ways to implement the languages and supporting tools. So, in
this paper, we develop a Visual Language (VL), as a meta-language to write
AGs, based on a previous conceptualization that we have proposed in [1]. The
idea of this VL is not only about having a nice visual depiction and then to trans-
late it into a target notation, but also about syntactic and semantic consistency
checks.

VLs and consequently the Visual Programming Languages (VPLs) aim at
offering the possibility to solve complex problems by describing their properties
or their behavior through graphical/iconic definitions [2]. Icons are used to be
composed in a space with two or more dimensions, defining sentences that are
formally accepted by parsers, where shape, color and relative position of the
icons are relevant issues. A visual programming language implies the existence
of a Visual Programming Environment (VPE) [3, 4], because its absence makes
the language useless. Commonly, a visual programming environment consists
of an editor, enriched by several tools to analyze, to process and to transform
the drawings.

The main idea of this work is the development of a VPE, named VisualLISA,
that assures the possibility of specifying AGs visually, and to translate them
into plain text specifications or, alternatively, into a universal XML representa-
tion designed to support generic AG specifications. The original objective of this
environment is to be used as front-end for LISA [5] system, diminishing the dif-
ficulties regarding the specification of AGs in LISA. However, the generality of
the environment enables its use with systems other than LISA.

The visual programming environment is automatically generated by DEViL,
our choice among many other tools studied; so, in this paper, the system is
introduced and its use explained. However, our objective in this paper is not
concerned with the discussion of compiler development tools, but show the be-
fits of using an effective one.

In section 2, related work is presented. In Section 3 and 4, VisualLISA lan-
guage and editor are informally described. In Section 5 the language is formally
specified, defining syntactic rules, semantic constraints and a valid translation
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scheme for both LISA (the first target), and XAGra notations. In Section 6, the
DEViL generator framework, used for the automatic generation of the visual
editor, will be presented. In Section 7, following the informal conception and its
formalization, using DEViL, the visual language and the editor implementation
is shown. An overview on how to use the editor to describe an AG, is given in
Section 8.

In Section 9, XAGra dialect is formally presented. Its main idea is to gen-
eralize the output of AG editing tools; instead of generating a description for
a specific compiler generator, the editor under development can produce this
general purpose dialect. Then to use this editor as a Front End (FE) for a spe-
cific generator, it is only necessary to resort to a simple translator to convert the
XML description into the specific notation of that CG. This approach raises the
usefulness of the editor, as it can be used as a FE for a larger range of grammar-
based generators. However, as its applicability does not end here, we introduce,
in Appendix A, XAGraAl, a tool that, based on XAGra specifications, performs
grammar analysis and transformations.

The paper is concluded in Section 10.

2. Related Work

Despite of existing many other applications for AGs, they are commonly as-
sociated with the development of computer languages and related tools like
parsers, translators, compilers, and others. In this context, the language engi-
neers, started to develop tools to systematize and automatize the process of
defining AGs. So, several works on this area may be cited.

LISA [5, 6] is a compiler generator based on attribute grammars, developed
at University of Maribor at Slovenia. Its main objective is to generate a compiler
for a language. The compiler is created by the specification of a textual attribute
grammar. It automatically generates graphical and visualization tools [7] to in-
spect the written grammar, but it always need a textual specification of the AG.

In the same way, AnTLR [8], a powerful compiler generator, requires textual
specifications for the language grammar. This system provides online visualiza-
tion of the grammar productions but it does not provide any visualization about
the attributes neither the semantic rules of each production.

Other similar compiler generators like UltraGram [9] or ProGrammar [10]
also produce graphical tools to ease the understanding of the grammar. But still,
the input for these compiler generators is always a text-based specification.

The same happens in the visual languages generation area. DEViL [11],
a generator of visual programming languages and editors, takes advantage of
AGs to define these visual outcomes. But, despite of providing excellent and
usable results, the engineer needs to grasp a whole new syntax to define the
AG used to produce the visual language.

In [12], Ikezoe et al. present a systematic debugger for attribute grammars
integrated in a visual tool, and it provides visualizations of the grammar showing
the dependency between the symbols and the attributes. Although this is a
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useful tool, it is only used after constructing the AG, not being a good help to
map the mental construction of an AG into its specifications.

There are, indeed, several tools to support the specification and develop-
ment of AGs and their associated tools, however, and according to our knowl-
edge, acquired through years of research work on the area, there are no tools
that allow the specification of AGs using a visual notation.

3. VisualLISA - A Domain Specific Visual Language

For many years we have been thinking about and working with AGs. Inevitably
we created an abstract mental representation of how it can be regarded and
then sketched, for an easier comprehension and use. So we decided to im-
plement a framework that follows that representation. The conception of that
framework is described in this section.

3.1. The Language Conception

VisualLISA, as a new Domain Specific Visual Language (DSVL) for attribute
grammar specification, shall have an attractive and comprehensible layout, be-
sides the easiness of specifying the grammar model.

We think that a desirable way to draw an AG is to make it production ori-
ented, and from there design each production as a tree. The Right-Hand Side
(RHS) symbols should be connected, by means of a visible line, to the Left-
Hand Side (LHS) symbol. The attributes should be connected to the respective
symbols, using a connection line different from the one referred before, as both
have different purposes (see Figure 6). The rules to compute the values of
each attribute should exhibit the shape of a function with its arguments (input
attributes) and its results (the output attributes). Two kinds of functions should
be represented: the identity function (when we just want to copy values) or a
generic function (for other kind of computations). Often a production has a con-
siderable number of attributes and nontrivial computations. Therefore we think
that for visualization purposes, the layout of each production should work as
a reusable template to draw several computation rules. Hence, the rules are
drawn separated from each other, but associated to a production.

All these features can be seen in the following example, which gives a big
picture of how things get easier when dealing with the visual notation on a
real language. For this illustration we resort to LISS [13], which is a program-
ming language allowing the operation with atomic or structured integers values.
Moreover, it is fully specified using an AG, from where two semantic productions
are shown in Listing 1. For illustration purposes, some semantic rules from the
actual productions were dismissed.

Figure 3.1 shows the visual specification of production P1, taking advantage
of the production layout reuse feature, for rapid development and clarity. This
means that the user doesn’t have to draw the production each time he needs to
specify the computation of another attribute.
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Listing 1. One Production form LISS
1 P1 : Expr → Expr RelOp SingExp {
2 ( . . . )
3 Expr [ 1 ] . inRow = Expr [ 0 ] . inRow ;
4 Expr [ 1 ] . inCo l = Expr [ 0 ] . inCo l ;
5 SingExp . inRow = Expr [ 0 ] . inRow ;
6 ( . . )
7 Expr [ 0 ] . out = Expr [ 1 ] . out + RelOp . out + SingExp . out ;
8 }
9

10 P2 : SingExp → Term {
11 SingExp . out = Term . out ;
12 ( . . . )
13 }

(a)
(b)

Fig. 1. LISS production on VisualLISA, with associated semantic rules

This way, Figure 3.1 (a) we copy the values from the inherited attributes of
the LHS symbol to the symbols at RHS; and on another computation associated
with the same production (c.f. Figure 3.1 (b)), we assign a value to the LHS’s
out attribute using a function and the values of other attributes implied in the
production.

4. VisualLISA: The Environment

VisualLISA editor should be compliant with the idea of offering a nice and non
error-prone way of sketching the AG, as a first step; and an easy translation of
the model into a target language, as a second step. So, three main features are
highlighted: (i) syntax validation, (ii) semantics verification and (iii) code gen-
eration. The syntax validation restricts some spatial combinations among the
icons of the language. In order to avoid syntactic mistakes, the edition should be
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syntax-directed. The semantics verification copes with the static and dynamic
semantics of the language. Finally, the code generation feature generates code
from the drawings sketched up. The target code would be LISAsl or XAGra.
LISAsl specification generated is intended to be passed to LISA system in
a straightforward step. XAGra specification generated is intended to give the
system more versatility and further usage perspectives.

5. Specification of VisualLISA

The specification of VisualLISA bases on three main issues: i) the definition
of the underlying language’s syntax; ii) the language semantics and iii) the
description of the textual specifications into which the iconic compositions will
be translated.

5.1. Syntax

The Picture Layout Grammar (PLG) formalism [14], is an attribute grammar
to formally specify visual languages. It assumes the existence of pre-defined
terminal symbols and a set of spatial relation operators. Our acquaintance with
PLG formalism, from previous works, led us to use it to specify the syntax of
VisualLISA. Listings 2 present some rules of the language specification. For
the sake of space we only present the key rules of the specification; the missing
productions are comparable to those shown.

Figure 2 shows the concrete and connector icons used for VisualLISA
specifications. LeftSymbol is the LHS of a production, while NonTerminal and
Terminal are used to compose the RHS. The second line of icons in Figure 2
presents the several classes of attributes. Function and Identity, both repre-
senting operations, are used to compute the attribute values. The other icons
connect the concrete symbols with each other, to rig up the AG.

Listing 2. VisualLISA Partial Syntax Definition.

1 AG → conta ins (VIEW, ROOT)
2
3 VIEW → l a b e l s ( text , rectangle )
4
5 ROOT → l e f t t o (PRODS, SPECS)
6
7 SPECS → conta ins (VIEW,
8 over (LEXEMES, USER FUNCS) )
9

10 PRODS → group of (SEMPROD)
11
12 SEMPROD → conta ins (VIEW, l e f t t o (
13 group of ( group of (RULE ELEM) ) ,
14 group of (AG ELEM) ) )
15
16 AG ELEM → LEFT SYMBOL
17 | NON TERMINAL
18 | TERMINAL
19 | SYNT ATTRIBUTE
20 | INH ATTRIBUTE
21 | TREE BRANCH
22 | INT ATTRIBUTE
23 | SYNT CONNECTION
24 | INH CONNECTION
25 | INT CONNECTION

1 RULE ELEM → FUNCTION
2 | IDENTITY
3 | FUNCTION ARG
4 | FUNCTION OUT
5
6 TERMINAL → l a b e l s ( text , rectangle )
7
8 INT ATTRIBUTE → l a b e l s ( text , t r i ang le )
9

10 INT CONNECTION → po in ts f rom (
11 p o i n t s t o (
12 dash l ine ,
13 ∼INT ATTRIBUTE ) ,
14 ∼TERMINAL)
15
16 FUNCTION → over ( rectangle , text )
17
18 FUNCTION OUT → po in ts f rom (
19 p o i n t s t o ( arrow ,
20 ∼INH ATTRIBUTE ) ,
21 ∼FUNCTION)
22 | po in ts f rom (
23 p o i n t s t o ( arrow ,
24 ∼SYNT ATTRIBUTE) ,
25 ∼FUNCTION)
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LeftSymbol NonTerminal Terminal

SyntAttribute InhAttribute IntrinsicValueAttribute

Function SyntConnection InhConnection

IntrinsicValueConnection FunctionArg

FunctionOut Identity TreeBranch

Fig. 2. The Icons of VisualLISA

5.2. Semantics

In order to correctly specify an AG, many semantic constraints must hold. These
constraints are related with the attribute values that depend on the context in
which the associated symbols occur in a sentence. We separated these con-
straints into two major groups. One concerning the syntactic rules, Production
Constraints (PC), and another the respective computation rules, Computation
Rules Constraints (CRC).

The following statements are representative constraints of VisualLISA’s
semantic correctness, concerning the two groups identified before:

PC: The data type of an attribute X.a in a production, must be the same in
any production where X.a occurs.

CRC: The type of the target attribute and the return type of a function, when
they are connected by a FunctionOut symbol, must match.

The complete set of constraints can be seen in [9].

5.3. Translation

The translation (Ls → τ → Lt) is the transformation of a source language
into a target language. τ is a mapping between the productions of the Ls

(VisualLISA) and the fragments of Lt (LISAsl ∪ XAGra). These fragments
will be specified in this sub-section.

A Context Free Grammar (CFG) is a formal and robust way of representing
LISA specifications’ structure. Listing 3 presents that high-level CFG.
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Listing 3. LISA structure in a CFG.
1 p1 : LisaML → language i d { Body }
2 p2 : Body → Lexicon A t t r i b u t e s Product ions Methods
3 p3 : Lexicon → lexicon { LexBody }
4 p4 : LexBody → ( regName regExp )?
5 p5 : A t t r i b u t e s → at t r ibutes ( type symbol . attName ; ) ?
6 p6 : Product ions → rule i d { Der i va t i on } ;
7 p7 : De r i va t i on → symbol : : = Symbs compute { SemOperations }
8 p8 : Symbs → symbol+
9 p9 : | epsilon

10 p10 : SemOperations → symbol . attName = Operat ion ;
11 p11 : Operat ion → . . .
12 p12 : Methods → method i d { j avaDec la ra t i ons }

Reserved words, written in bold, enhance the main fragments in a LISA
sentence, making it more readable. The definition of smaller chunks, introduced
by each keyword, enables a more modular processing (code generation. . . )

Regarding the literature, there is not an XML standard notation for AGs. So
that, XAGra was defined using a schema. The whole structure of this schema
can be seen in detail in Section 9.

6. DEViL - A Tool for Automatic Generation of Visual
Programming Environments

We searched for VPE generators like MetaEdit+ [15], but their commercial na-
ture was not viable for an academic research. Also, we experimented VLDesk [16],
Tiger [17], Atom3 [18] and other similar tools, however none of them gave us
the flexibility that DEViL offered, as described below.

The DEViL system generates editors for visual languages from high-level
specifications. DEViL (Development Environment for Visual Languages) has
been developed at the University of Paderborn in Germany and is used in many
nameable industrial and educational projects.

The editors generated by DEViL offer syntax-directed editing and all fea-
tures of commonly used editors like multi-document environment, copy-and-
paste, printing, save and load of examples. Usability of the generated editors
and DEViL itself can be found in [11]. DEViL is based on the compiler genera-
tor framework Eli [19], hence all of Eli’s features can be used as well. Specially
the semantic analysis module can be used to verify a visual language instance
and to produce a source-to-source translation.

To specify an editor in DEViL we have to define the semantic model of the
visual language at first. It is defined by the domain specific language DEViL
Structure Specification Language (DSSL) which is inspired by object-oriented
languages and offers classes, inheritance, aggregation and the definition of at-
tributes. The next specification step is to define a concrete graphical represen-
tation for the visual language. It is done by attaching so called visual patterns
to the semantic model of the VL specified in DSSL. Classes and attributes of
DSSL inherit from these visual patterns. Visual patterns [20] describe in what
way parts of the syntax tree of the VL are represented graphically, e.g. we can
model that some part should be represented as a “set” or as a “matrix”. DEViL
offers a huge library of precoined patterns like formulae, lists, tables or image
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primitives. All visual patterns can be adapted through control attributes. E.g.
we can define paddings or colors of all graphical primitives. Technically visual
patterns are decorated to the syntax tree by specifying some easy inheritance
rules in a DSL called LIDO.

To analyse the visual language, DEViL offers several ways. The first one re-
sults from the fact that editors generated by DEViL are syntax directed. Hence,
the user cannot construct wrong instances of the VL It is limited by its syntax
and cardinalities expressed in DSSL. Another way is to define check rules e.g.
to check the range of an integer attribute or to do a simple name analysis on a
name attribute. To navigate through the structure tree of the VL, DEViL offers
so called path expressions which are inspired by XPath. They can be used in
a small simple DSL to reach every node in the tree. After analysis, DEViL can
generate code from the VL instance. This is done with the help of Eli which
offers unparsers, template mechanism (Pattern-based Text Generator — PTG)
and the well-known attribute evaluators from compiler construction.

7. Implementation of VisualLISA

To implement VisualLISA, we could have followed a non systematic way, re-
sorting to usual software development methods. But our know-how on compiler
construction led us to reuse the systematic generative approach followed in that
area. In this case, the implementation process will be supported by the formal
specification made in Section 5, and automated by the VPE chosen, DEViL.
Adopting the standard compiler construction process to the DEViL usage pe-
culiarities, we will follow a four-step process: i) Abstract Syntax Specification; ii)
Interaction and Layout Definition; iii) Semantics Implementation; and iv) Code
Generation.

7.1. Abstract Syntax

The specification of the abstract syntax of VisualLISA, in DEViL, follows an
object-oriented notation, as referred previously. This means that the nontermi-
nal symbols of the grammar are defined modularly: the symbols can be seen
as classes and the attributes of the symbols as class attributes.

The syntax of the visual language is determined by the relations among their
symbols. Therefore, for an high level representation of the language’s syntax,
a class diagram can be used. This diagram should meet the structure of the
PLG model in Figure 2. The final specification for the language is then an easy
manual process of converting the diagram into DSSL. Figure 3 shows a small
example of the diagram and the resultant specification.

There are two types of classes in this notation: concrete and abstract. The
concrete classes are used to produce a syntax tree, which is manipulated in the
other steps of the environment implementation. The abstract classes, besides
the normal inheritance properties can be used to define syntactic constraints.
These classes generate the syntax-directed editor.
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1CLASS Root {
2name : VAL VLStr ing ;
3semprods : SUB Semprod∗;
4defs : SUB D e f i n i t i o n s ! ;
5l i b r a r y : SUB L i b r a r y ? ;
6}

Fig. 3. Class Diagram and Respective DEViL Notation

In order to make possible the specification of separated computation rules
reusing the same layout of a production, we used DEViL’s concept of coupled
structures [21]. It couples the syntactic structure of two structure tree — for
VisualLISA we used the structure of symbol Semprod, which is used to model
a production. In practice, it means that the layout defined for a production is
replicated whenever a computation rule is defined, maintaining both models
synchronized all the time.

7.2. Interaction and Layout

The implementation of this part, in DEViL, consists of the definition of views.
A view can be seen as a window with a dock and an editing area where the
language icons are used to specify the drawing.

VisualLISA Editor is based on four views: rootView, to create a list of
productions; prodsView, to model the production layout; rulesView, to specify
the semantic rules reusing the production layout and defsView, to declare global
definitions of the grammar.

At first the buttons of the dock, used to drag structure-objects into the edition
area, are defined. Then the visual shape of the symbols of the grammar for the
respective view are defined. Figure 4 shows parts of view definitions and the
respective results in the editor. The code on the left side of Figure 4 defines the
view, the buttons and the behavior of the buttons. The default action is the in-
sertion of a symbol in the editing area. The bluish rectangular image represents
the button resultant from that code.

1 VIEW rootView ROOT Root{
2 BUTTON IMAGE ” img : : btnProd ”
3 INSERTS Semprod
4 INFO ” Product ion ” ;
5 }

1SYMBOL pview NonTerminal
2INHERITS VPForm
3COMPUTE
4SYNT. drawing =
5ADDROF( ntDrawing ) ;
6END;

Fig. 4. Parts of View Definitions and Respective Visual Outcomes

274 ComSIS Vol. 7, No. 2, Special Issue, April 2010



VisualLISA: A Visual Environment to Develop Attribute Grammars

Symbol NonTerminal is represented by the orange oval in Figure 4. The
code on the right reveals the semantic computation to define the shape of that
symbol. Shape and other visual aspects of the tree-grammar symbols are au-
tomatically defined associating, by inheritance, visual patterns.

7.3. Semantics

As long as VisualLISA is defined by an AG, the contextual conditions could be
checked using the traditional approach. DEViL is very flexible and offers some
other ways to implement this verification module. The approach used to develop
VisualLISA, is completely focused on the contexts of the generated syntax
tree. DEViL offers a tree-walker, that traverses the tree and for a given context
— a symbol of that tree — executes a verification code (callback-functions),
returning an error whenever it occurs. With this approach it is easy to define
data-structures helping the verification process. This approach is very similar to
the generic AG approach, but instead of attributes and semantic rules, it uses
variables which are assigned by the result of queries on the tree of the model.

Listing 4 shows the code for the implementation of a constraint defined
in [22].

Listing 4. Implementation of Constraint: “Every NonTerminal specified in the
grammar must be root of one production”

1 c h e c k u t i l : : addCheck Semprod {
2 set n [ l l e n g t h [ c : : g e t L i s t {$obj . grammarElements .CHILDREN[ LeftSymbol ]} ] ]
3 set symbName [ c : : get {$obj . name .VALUE}]
4 i f { $n == 0 } {
5 return ” Product ion ’$symbName ’ must have one Root symbol ! ”
6 } e l s e i f {$n > 1} {
7 return ” Product ion ’$symbName ’ must have only one Root symbol ! ”
8 }
9 return ” ”

10 }

A considerable amount of the constraints defined in Section 5.2 were verified
resorting to the Identifier Table, which is a well known strategy in language
processing for that purpose.

7.4. Code Generation

The last step of the implementation, concerning the translation of the visual AG
into LISA or XAGra, can be done using the AG underlying the visual language
(as usual in language processing). For this task, DEViL supports i) powerful
mechanisms to ease the semantic rules definition; ii) facilities to extend the
semantic rules by using functions and iii) a template language (PTG of Eli
system) incorporation to structure out the output code.

The use of patterns (templates) is not mandatory. But, as seen in the formal
definition of LISA and XAGra notation (Section 5.3), both of them have static
parts which do not vary from specification to specification. Hence templates are
very handy here. Even with templates, the translation of the visual AG into text
is not an easy task. Some problems arise from the fact that there is not a notion
of order in a visual specification. We used auxiliary functions to sort the RHS
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symbols by regarding their disposition over an imaginary X-axe. Based on this
approach we also solved issues like the numbering of repeated symbols in the
production definition.

The templates (invoked like functions) and the auxiliary functions, together
with other specific entities, were assembled into semantic rules in order to de-
fine the translation module. One module was defined for each target notation.
New translation modules can be added, to support new target notations.

8. AG Specification in VisualLISA

Figure 5 shows the editor look and feel, presenting the four views of our editor.

Fig. 5. VisualLISA Editor Environment

To specify an attribute grammar the user starts by declaring the productions
(in rootView) and rigging them up by dragging the symbols from the dock to the
editing area (in prodsView), as commonly done in VPEs. The combination of
the symbols is almost automatic, since the editing is syntax-directed. When the
production is specified, and the attributes are already attached to the symbols,
the next step is to define the computation rules. Once again, the user drags
the symbols from the dock, in rulesView, to the editing area, and compounds
the computations by linking attributes to each other using functions. Sometimes
it is necessary to resort to user-defined functions that should be described in
defsView. In addition, he can import packages, define new data-types or define
global lexemes.
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As example we present a simple AG , called Students Grammar, used to
process a list of students, described by their names and ages. The objective of
this AG is to sum the ages of all the students. This grammar can be textually
defined as shown in Listing 5.

Listing 5. Students Grammar
1 P1 : Students → Student Students {Students0 . sum = Student . age + Students1 . sum}
2 P2 : Students → Student {Students . sum = Student . age}
3 P3 : Student → name age {Student . age = age . value}

Figures 6 and 7 show the three productions that constitute the grammar.
In Figure 6, the attributes are associated with the symbols of the production.

Moreover, the production has a semantic rule that computes the value of the
LHS’s attribute, sum, by adding the value of the attributes in the RHS symbols,
sum and age, using an inline function named SumAges

Fig. 6. Specification of production P1 with associated semantics

In Figure 7 (a), the identity function is used to copy the value of the attribute
age to the attribute sum. In Figure 7 (b), the third production, makes use of
terminal symbols and associated intrinsic values. The computation rule, in this
production, is based on the conversion of the textual value of the age into an
integer.

When the grammar is completely specified and semantically correct, code
can be generated. Figure 8 shows, in LISA and XAGra notations, the code
generated for production P1 in Figure 6.

9. XAGra- An XML dialect for Attribute Grammars

In this section is defined an XML dialect to cope with attribute grammars. We
called it XAGra, which stands for XML dialect for Attribute Grammars.
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(a)
(b)

Fig. 7. Specification of Productions P2 and P3, (a) and (b) respectively, with associated
semantic rules.

(a) (b)

Fig. 8. Code Generated for LISA (a) and XAGra (b) specifications.
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XAGra denotes the abstract representation of an AG. The notation defined
here, is mainly based on the definition of AG presented in the Introduction, but
it also borrows parts from the notations inherent to various AG-based compiler
generator tools.

One of the standardized ways to define a new XML dialect is the creation
of a schema, using the standard XML Schema Definition (XSD) language. For
the sake of space, the integral textual definition of XAGra’s schema is not pre-
sented, and for reasons of visibility and readability, the complete drawing of the
schema is broken into several important sub-parts. Figures 9 to 13 are used to
support the explanation of the dialect.

XAGra’s root element was defined as attributeGrammar. This element
has a single attribute, name, whose objective is to store the name of the gram-
mar, or the language that the grammar defines; and is a sequence of several
elements. These elements represent components of the formal definition of an
AG, incremented with extra parts related to the usage of AG-based compiler
generators.

Table 1 defines a relation of inclusion between the XAGra notation elements
and the components that constitute the formal definition of an AG, which is re-
covered next:

AG = (T,N, S, P,A,R,C, T )

Table 1. Derivation of XAGra Notation From the Formal Definition of AG

XAGra Element ⊇ AG Components
symbols T,N, S

attributesDecl A

semanticProds P,R,C, T
importations ∅

functions ∅

The relations depicted in Table 1 give an overview about the information that
each element of XAGra notation will store. The following sections will describe
with more detail such elements and the information they store.

Listing 6 presents a fragment of a grammar that computes the age of a set of
students. This example is used to compare the concrete notation of a compiler
generator to the XML fragments that are shown in the sequent figures.

Next sections present a complete description of the elements of XAGra
scheme. However, the importations and functions elements are skipped, be-
cause their structure is simple and similar to the other parts shown.

9.1. Element symbols

Figure 9 presents the schema for the element symbols. As the name suggests,
this element contains the declaration of the grammar’s vocabulary.
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Listing 6. Example of Students Grammar
1 language StudentsGra {
2 l e x i con{
3 Name [A−Z ] [ a−z ]+
4 . . .
5 }
6 a t t r i b u t e s
7 i n t STUDENTS.sum;
8 . . .
9 r u l e Students 1 {

10 STUDENTS : : = STUDENT STUDENTS compute {
11 STUDENTS.sum = STUDENTS[ 1 ] . sum + STUDENT. age ;
12 } ;
13 }
14 . . .
15 method u s e r D e f i n i t i o n s {
16 impor t java . u t i l . A r r a y L i s t
17 p u b l i c i n t sum( i n t x , i n t y ){
18 r e t u r n x+y ;
19 }
20 }
21 }

1 <symbols>
2 <t e rm ina l s>
3 <t e rm ina l id="name">[A−Z ] [ a−z ]+</ t e rm ina l>
4 </ t e rm ina l s>
5 <nontermina ls>
6 <nontermina l id="students" />
7 </ nontermina ls>
8 <s t a r t n t="students" />
9 </ symbols>

Fig. 9. XAGra Schema – Element Symbols: definition and example
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It is composed of a sequence of three elements: terminals, nontermi-
nals and start.

The element terminals is a sequence of zero or more elements named
terminal, which, in its turn, has one attribute, id, used to store the name
of a terminal symbol. This attribute is an identifier, hence any instance of it,
must be different from the others, and must be always instantiated. Besides the
information kept on the attribute, this element has a textual content where the
respective Regular Expression (RE) can be declared.

The element nonterminals has similar structure. The difference lays on
the fact that it represents a sequence of zero or more elements nonterminal
which have no textual content. The attribute id has the same purpose as the
attribute with the same name in the element terminal.

Finally, the element start has a single attribute named nt. This attribute
is used to refer the nonterminal (already defined in the XAGra specification),
correspondent to the start symbol (or Axiom) of the AG.

9.2. Element attributesDecl

This element is composed of a sequence of zero or more elements dec-
laration. For the sake of readability, Figure 10 only depicts the structure
of the element declaration, which is a sequence of one or more elements
attribute. This one has three mandatory attributes: i) id – stores the name
of the attribute being declared. Any kind of text can be used to define it, but it
is always better to use the following notation: X.a, where X is the name of a
symbol in T ∪N and a is the name of an attribute in A(X) . As it is an identifier, it
must be different from all other identifiers on the specification; ii) type – stores
the data type of the current attribute value and iii) class – defines the class of
the attribute. It must be one of: InhAttribute, SyntAttribute and IntrinsicValueAt-
tribute.

1 <a t t r i b u t e s D e c l>
2 <d e c l a r a t i o n>
3 <a t t r i b u t e id="students.sum" type="int" class="SyntAttribute" />
4 </ d e c l a r a t i o n>
5 </ a t t r i b u t e s D e c l>

Fig. 10. XAGra Schema – Element Attribute Declarations: definition and example
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9.3. Element semanticProds

The element semanticProds represents the structure to define productions
and associated semantic rules in XAGra specifications. This structure is com-
posed of a sequence of zero or more elements semanticProd. Each seman-
ticProd has one single attribute, name, used to store the mandatory name of
the production, as an identifier.

Element semanticProd has three direct descendants: lhs, rhs, com-
putation, whose structure is explained in the next paragraphs and that are
depicted in Figures 11, 12 and 13.

Element lhs (Figure 11) is used to refer to the nonterminal symbol on the
LHS of the production. This element has a single attribute, nt, to refer to an
existent nonterminal.

1 <l hs n t="students" />

Fig. 11. XAGra Schema – Element Semantic Productions: LHS definition and example

Element rhs (Figure 12), stores the nonterminals on the RHS of a produc-
tion. It is composed of a sequence of zero or more elements element. For
this purpose, each element, has a single attribute, symbol, which is manda-
tory and represents a reference to a terminal or nonterminal symbol, already
instantiated in the initial symbols structure.

1 <rhs>
2 <element symbol="student" />
3 <element symbol="students" />
4 </ rhs>

Fig. 12. XAGra Schema – Element Semantic Productions: RHS definition and example

Element computation (Figure 13) is the last child of the element seman-
ticProds. It represents an hard concept of AGs: the semantic rules.

This element has one attribute, name, used to give a name to the compu-
tation being declared. This attribute, despite being mandatory, is not a unique
identifier: different computations can have equal names.

The structure of computation represents a pure abstraction of what is a
semantic rule in an AG definition: the attribute to which a value is assigned, and
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1 <computat ion name="getTheSum">
2 <ass ignedA t t r i bu te a t t ="students.sum" p o s i t i o n ="0" />
3 <opera t ion returnType="int">
4 <argument a t t ="student.age" p o s i t i o n ="1" />
5 <argument a t t ="students.sum" p o s i t i o n ="2" />
6 <modus> $1 + $2 </ modus>
7 </ opera t ion>
8 </ computat ion>

Fig. 13. XAGra Schema – Element Semantic Productions: Computation definition
and example

the operation that computes this value. Thus, the element computation has
two children: the elements assignedAttribute and operation.

Element assignedAttribute is composed of two mandatory attributes:
att, which is used to refer to an attribute; and position, which is a number
that identifies the position of the symbol associated to the attribute in the list
of elements of the production. That is, if the attribute is connected to the LHS,
then the value for position must be 0. If the associated symbol belongs to the
RHS, then its value should correspond to the position that the symbol occupies
in the RHS sequence of symbols, starting with 1.

The element operation aggregates a sequence of zero or more elements
argument and a single element modus. In addition to the elements, it has an
attribute, returnType, used to store the data type of the value returned by the
operation.

Elements argument are, in all aspects, equal to the assignedAttribute
element. Each one has two attributes with the same name and the same se-
mantic value underlaying, therefore they are used to refer to previous declared
attributes. The difference is on the fact that this time, the attributes referenced
are those used to compute the value in the operation.

The last element, modus4, which is a simple text field to write the expression
used to compute the value. Somehow, in this element’s text, a reference to the
argument attributes should be made. An example (and the convention estab-
lished) is using $x, where x > 0 is the position of the attribute in the sequence
of arguments.

4 modus is a latin expression for way (of computing something, in our case)
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Aside the importations and the functions parts, the XAGra’s schema is now
completely defined and explained, revealing the universality needed to store
any AG for any AG-based compiler generator.

Next section briefly presents XAGraAl, demonstrating one interesting ap-
plicability of the XAGra dialect.

10. Conclusion

After many years working in specification and implementation of compilers sup-
ported by Attribute Grammars, it became clear that a modular and reusable
approach to AG development is highly recommendable and necessary. On the
other hand, the work on program comprehension tools emphasized the impor-
tance of software/data visualization. The combination of those two areas of R&D
with a third one, the development of Visual Languages, gave rise to the proposal
of creating a VL for AGs, since there are no other tools allowing it, according to
our knowledge. The obligation to write text-based AG specifications imposed by
several compiler generator tools and the habitual way of sketching AGs on paper
in the form of a decorated tree, shortening the gap to the mental representation
of an AG, reinforced the appropriateness of that proposal.

In this paper we introduced VisualLISA, a new Domain Specific Visual
Language, which enables the specification of AGs in a visual manner and the
translation of that visual AG into LISA or XAGra (an XML notation to support
generic AG specifications). XAGra allows us to use this visual editor with other
compiler-compiler tools.

We were mainly concerned with the design of the language, its formal and
automatic implementation. In this phase of our project we neither focused on
the usability of the language nor on its scalability. We focused on the spec-
ification, aiming at showing the formal work behind the visual outcome, and
on the implementation of the underlying environment to specify AGs. At this
point we highlighted the use of DEViL in order to create the desired environ-
ment, through a systematic approach of development. Also, an example was
presented to show the steps to build an AG with VisualLISA.

In the future, it is our objective to perform at least, two experimental studies
involving VisualLISA: one to assess the usability of the language regarding
the visual vs textual approaches for developing AGs; and another one to test
the scalability of the language and environment, regarding the hypothesis that
it was created to cope with small AGs. We are also interested in assessing
the comprehension of AGs; maybe VisualLISA would be very handy on this
matter, working as AGs visualizer.

Concerning the applicability of XAGra, we can translate it into the specific
notation of any compiler generator tool. We call XAGra loader to the pro-
gram that performs this translation. As future work, the following translators
are planed: XAGra into LISA (a traditional LR parser generator); XAGra into
AntLR (an LL parser generator, based on an extended BNF grammar); XAGra
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into Eli (an LR parser generator with special constructors). Finally, a translator
from XAGra to Yacc could be a challenging project.

Also, we developed a Grammar Analyzer and Transformation tool, XAGraAl.
that takes as input an AG written in XAGra. Thus, the implementation of this tool
shows the applicability of XAGra as a universal and multi-purpose AG specifi-
cation language.
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5. Mernik, M., Lenič, M., Avdičaušević, E., Žumer, V.: LISA: An interactive environment
for programming language development. Compiler Construction (2002) 1–4
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A. XAGraAl: A grammar analyzer based on XAGra

In this section we give a brief introduction to XAGraAl, a Grammar Analyzer
and Transformation tool that computes dependencies among symbols, gram-
mar metrics, and grammar slices for a given criterion; moreover, XAGraAl can
also derive, from the original, shorter grammars combining slices or removing
unitary productions (similar to re-factoring a program). XAGraAl takes as input
an AG written in XAGra.

XAGraAl is a platform independent tool, developed using Java. Java Archi-
tecture for XML Binding (JAXB) [23] and Java API for XML Processing (JAXP) [24]
were used to process the input.

While parsing a XAGra grammar using JAXB, XAGraAl builds the identi-
fiers table (IdTab) where it collects all grammar symbols and attributes; each
identifier is associated with all its characteristics extracted or inferred from the
source document. The identifiers table — that can be pretty-printed in HTML —
complemented by the dependence graph (DG) — also printable using Dot and
GraphViz — constitute the core of the tool. Traversing those internal represen-
tation structures, it is possible to implement the other XAGraAl functionalities:

– Metrics, to assess grammar quality;
– Slicing, to ease the analysis producing sub-grammars focussed in a specific

symbol or attribute;
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– Re-factoring, to optimize grammars generating smaller and more efficient
versions.

Metrics are organized in three groups of assessment parameters:

– Size metrics, that measure the number of symbols, productions, and so on
(grammar and parser sizes);

– Form metrics, that describe the recursion pattern and measure the depen-
dencies between symbols (the grammar complexity);

– Lexicographic metrics, that qualify the clearness/readablity of grammar iden-
tifiers, based on a domain ontology.

Slicing operation builds partial grammar with the elements that derive in zero
or more steps on the criterion (backward slicing), or that are reachable from the
criterion (forward slicing). The criterion can be either a symbol or an attribute.
Slices are usually presented as paths over the dependence graphs. Figures 14
(a) and (b) illustrate a forward and a backward slice w.r.t the symbol age.

(a) (b) (c)

Fig. 14. Slices with respect to symbol age: (a) Forward slice; (b) Backward slice and (c)
Combination of Forward and Backward slices

Re-factoring is a not so usual functionality that transforms the original gram-
mar into a minimal one, removing all the useless productions. Another trans-
formation also provided is the generation of a new grammar combining forward
and backward slices with respect to the same symbol (see Figure 14 (c)).

Built in a similar way, GraAL [25] accepts as input a grammar written in
AntLR 3 and produces the same outputs. However, XAGraAl beats GraAL in
terms of generality as it consumes a grammar written in XML.
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