
UDC 004.4, DOI: 10.2298/CSIS1002291P

Annotation Based Parser Generator*

Jaroslav Porubän1, Michal Forgáč1, Miroslav Sabo1, and Marek Běhálek2

1 Department of Computers and Informatics, Technical University of Košice,
Letná 9, 042 00 Košice, Slovak Republic

{Jaroslav.Poruban, Michal.Forgac, Miroslav.Sabo}@tuke.sk
2 Department of Computer Science, FEI VŠB Technical University of Ostrava,

17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
marek.behalek@vsb.cz

Abstract. The paper presents innovative parser construction method
and parser generator prototype which generates a computer language
parser directly from a set of annotated classes in contrast to standard
parser generators which specify concrete syntax of a computer language
using BNF notation. A language with textual concrete syntax is defined
upon the abstract syntax definition extended with annotations in the
presented approach. Annotations define instances of concrete syntax
patterns in a language. Abstract syntax of a language is inevitable input
of the parser generator as well as language’s concrete syntax pattern
definitions. The process of parser implementation is presented on the
concrete computer language – the Simple Arithmetic Language. The
paper summarizes results of the studies of implemented parser
generator and describes its role in the university courses.

Keywords: parser generator; annotated model; abstract syntax; model
to grammar transformation.

1. Introduction

Computer languages are crucial tools in the development of software
systems. By using computer languages we define the structure of a system
and its behavior. Today's common industry practice is to create a software
system as a composition of software artifacts written in more than one
computer language. Developers use different languages and paradigms
throughout the development of a software system according to a nature of
concrete subproblem and their preferences. Besides the general-purpose
programming languages (e. g. Java, C#) the domain-specific languages
(DSL) [1][2] have become popular in the last decade. Nowadays, DSLs have
their stable position in the development of software systems in many different

* This work is supported by APVV Grant No. SK-CZ-0095-07 – Cooperation in Design and

Implementation of Language Systems and by VEGA Grant No. 1/4073/07 – Aspect-oriented
Evolution of Complex Software System.

Jaroslav Porubän, Michal Forgáč, Miroslav Sabo, and Marek Běhálek

ComSIS Vol. 7, No. 2, Special Issue, April 2010 292

forms. Concerning abstraction level, it is possible to program closer to a
domain. Furthermore DSLs enables explicit separation of knowledge in the
system in natural structured form of domain. The growth of their popularity is
probably connected with the growth of XML technology and using of
standardized industry XML document parsers as a preferable option to the
construction of language specific processors. A developer with minimal
knowledge about language parsing is able to create a DSL with XML
compliant concrete syntax using tools like JAXB [3].

Computer languages come in many flavors – as well known GPLs, DSLs,
but also as APIs, ontologies [4], and even others. The one of the today’s
hottest research topics in the field of computer language development is the
tooling support. In the paper we concentrate on the parser generators for
DSLs. Even though the research in the field of computer languages has the
long history and parser generators for a textual language processing like
YACC [5], Bison [6], JavaCC [7] and ANTLR [8] have their stable position in
the computer language development the task of developing a computer
language is still an expert task. Cook et al. [9] conclude that implementing a
textual DSL by implementing its grammar can be a difficult and error-prone
task, requiring significant expertise in language design and the use of a
parser generator. Similarly, Mernik et al. [1] argue that DSL development is
hard, requiring both domain knowledge and language development expertise.
We present the novel method of a computer language design and
implementation in the paper – abstract syntax driven parser generation.

The rest of the paper has the following structure: In the section 2 we
present main ideas behind our approach to a computer language
development. The section 3 explains the method on example of simple but
extensible arithmetic language. Section 4 describes the parser generator
prototype –YAJCo. Section 5 summarizes the results of our experiments with
YAJCo parser generator. Section 6 compares our work with the state of the
art in the field of parser generators. The last section 7 concludes the paper
and outlines the possibilities for further research in the field of parser
generators and computer language development in general.

2. Abstract Syntax Directed Language Definition

This section sketches the main ideas behind the innovative approach to the
definition of a concrete syntax for a computer language with textual notation.
Contrary to traditional methods of parser generation (e. g. YACC, JavaCC),
we focus on the definition of abstract syntax rather than giving an excessive
concentration on concrete syntax (see Fig. 1). In our approach the abstract
syntax of a language is formally defined using standard classes well known
from object-oriented programming and metamodels. Kleppe argues for
concentrating on abstract syntax and metamodels when we define a
computer language in [10].

Annotation Based Parser Generator

ComSIS Vol. 7, No. 2, Special Issue, April 2010 293

Concrete
syntax

Traditional approach to a parser generation

Abstract
syntax Semantics

Presented approach to a parser generation

Semantics

Abstract
syntax

Concrete
syntax

Concrete
syntax

Traditional approach to a parser generation

Abstract
syntax SemanticsConcrete

syntax

Traditional approach to a parser generation

Abstract
syntax Semantics

Presented approach to a parser generation

Semantics

Abstract
syntax

Concrete
syntax

Presented approach to a parser generation

Semantics

Abstract
syntax

Concrete
syntax

Fig. 1. Comparing traditional and presented approaches to a computer language
parser generation

Language Developer
+ YAJCo Parser Generator

Tool Assistance

ParserParserParserParser

Abstract syntaxAbstract syntax

Expression

Number AddSub

1

1 1

1

Abstract syntaxAbstract syntax

Expression

Number AddSub

1

1 1

1

YAJCo Parser Generator

Concrete syntaxConcrete syntax

Abstract syntaxAbstract syntax
E x p r e s s io n

N u m b e r A d dS u b

1

1 1

1

@Operator @Token @Operator

@Parentheses

Concrete Syntax
Pattern Extensions

Concrete syntaxConcrete syntax

Abstract syntaxAbstract syntax
E x p r e s s io n

N u m b e r A d dS u b

1

1 1

1

@Operator @Token @Operator

@Parentheses

Concrete Syntax
Pattern Extensions

Fig. 2. Generating Language Parser using YAJCo’s parser generation approach

In our approach the language implementation begins with the concept
formalization in the form of abstract syntax. Language concepts are defined
as classes and relationships between them. Upon such defined abstract
syntax a developer defines both the concrete syntax through a set of source
code annotations and the language semantics through the object methods.
Annotations (called also attributes [11) are structured way of additional
knowledge incorporated directly into the source code. During the phase of
concrete syntax definition the parser generator assists a developer with
suggestions and hints for making the concrete syntax unambiguous. Fig. 2
shows the whole process of parser implementation using the described
approach. If the concrete syntax is unambiguously defined then parser
generator automatically generates the parser from annotated classes.

It is quite common to have multiple notations for one language. RELAX NG
[12] is an example of such a language with two different notations – XML

Jaroslav Porubän, Michal Forgáč, Miroslav Sabo, and Marek Běhálek

ComSIS Vol. 7, No. 2, Special Issue, April 2010 294

concrete syntax and compact concrete syntax. By using our approach
different notations of the same language can share both abstract syntax and
semantics. In some cases the evolution of concrete syntax does not require
the modification of abstract syntax and semantics at all. This means that other
notations of the same language are not affected by this type of language
evolution. For instance, Fig. 3 presents the language with four different
notations sharing the same abstract syntax and semantics. These notations
(concrete syntaxes) are textual notation, XML notation, in-memory object
notation and graphical notation. Concrete notations are interchangeable and
developer selects among them according to his preferences.

Abstract syntax

Semantics

Concrete syntax1
textual notation

Concrete syntax2
graphical notation

Concrete syntax3
XML notation

Concrete syntax4
object notation

Fig. 3. Computer language with multiple notations and shared abstract syntax and
semantics

3. SAL Example

This section presents our approach to a computer language definition using
annotated classes on the example of Simple Arithmetic Language (SAL). This
language expresses the arithmetic expressions with basic arithmetic binary
operations of addition and multiplication, and unary operation of arithmetic
negation. The expressions also contain integer numbers. The abstract syntax
of SAL can be formally defined using BNF as follows.

e, e1, e2 ∈Expression, n ∈ Number
e ::= Number n | UnaryMinus e | Add e1 e2 | Mul e1 e2

Variables e, e1, e2 are metavariables from the Expression syntactical

domain and n is the metavariable from the Number syntactical domain. The
infix form of arithmetic operation is intentionally omitted to avoid the confusion
with concrete syntax. Prefix names in productions (e. g. UnaryMinus, Mul) are
used just to uniquely name the productions for semantic equations.

The semantics of SAL is formally defined using Eval function which maps a
value from syntactic domain Expression to a value from semantic domain Z
(integers) and Value function which maps a value from syntactic domain
Number to a value from semantic domain Z.

Annotation Based Parser Generator

ComSIS Vol. 7, No. 2, Special Issue, April 2010 295

Eval : Expression → Z
Value : Number → Z
The semantic function Eval is defined by the following equations.
Eval [| Number n |] = Value [| n |]
Eval [| UnaryMinus e |] = – Eval [| e |]
Eval [| Add e1 e2 |] = Eval [| e1 |] + Eval [| e2 |]
Eval [| Mul e1 e2 |] = Eval [| e1 |] * Eval [| e2 |]
Certainly we can find many different notations for SAL. For example, we

can write down a sentence from SAL in the following notation using standard
symbols and the operator infix form.

1 + 2 * 7
In the Fig. 4, abstract syntax tree of the sentence above is depicted.

Number
1

Number
2

Number
7

Mul

Add

Number
1

Number
2

Number
7

Mul

Add

Fig. 4. The abstract syntax tree of the expression 1 + 2 * 7

From the Fig. 4 it is apparent that depicted abstract syntax tree contains
typed nodes corresponding to language concepts. The node types are Add,
Mul and Number. Add node represents the binary operation of addition. It
always has two child nodes respecting the nature of the binary operation of
addition. The Mul node represents multiplicative operation and the leaf node
Number represents an integer number. The Number node is attributed with
the notation of a number.

Unlike traditional approach, language definition will not start with the
definition of SAL’s concrete syntax written in BNF. According to our approach,
the object classes representing syntactic domains (language concept) are
created at first. These classes define the abstract syntax of the language and
also the semantics of the language as stated in the previous formal definition
of the SAL. The concrete syntax will be specified later using source code
annotations, expressing the concrete syntax patterns and their
correspondence to the abstract syntax concepts.

The main concept of the SAL is the Expression. It is pretty
straightforward because SAL is the language of expressions. On the other
side it is an abstract concept and it does not have concrete representation.
From the semantic point of view every expression can be evaluated to a
single integer value. This fact is denoted by semantic function eval of
Expression class.

Jaroslav Porubän, Michal Forgáč, Miroslav Sabo, and Marek Běhálek

ComSIS Vol. 7, No. 2, Special Issue, April 2010 296

abstract class Expression {
 //Semantic function – OOP method
 abstract int eval();
}
The Expression class is declared to be abstract because it only defines

the abstract concept of an expression from SAL and does not represent any
abstract syntax graph node. Next, the different types of expressions can be
incorporated into the SAL. The simplest form of an expression is a number
expression. Number has its notation and the value. Firstly we will focus is on
its value. The notation will be defined later during the definition of the concrete
syntax. It needs to be expressed that number is a simple expression as well.
This is done using “is-a” relationship, denoted with extends keyword in Java.
Corresponding semantic equations are denoted in the comments above the
methods. The code snippet below shows the class Number for integer
numbers.
class Number extends Expression {
 int value;

 //Eval [| Number n |] = Value [| n |]
 int eval() {
 return value;
 }
}

The unary operation of negation is defined in the following snippet of the
UnaryMinus class.
class UnaryMinus extends Expression {
 Expression expression;

 //Eval [| UnaryMinus e |] = – Eval [| e |]
 int eval() {
 return -expression.eval();
 }
}

Since the addition is a kind of arithmetic expression in SAL, the binary
operation of addition is defined in the class Add. Relationship “is-a” is
therefore used again.
class Add extends Expression {
 Expression expression1;
 Expression expression2;

 //Eval [| Add e1 e2 |] = Eval [| e1 |] + Eval [| e2 |]
 int eval() {
 return expression1.eval() + expression2.eval();
 }
}

Operation of multiplication is defined in the same style as binary operation
Add.

Annotation Based Parser Generator

ComSIS Vol. 7, No. 2, Special Issue, April 2010 297

The class diagram in the Fig. 5 shows the hierarchy of SAL classes. The
abstract syntax of arithmetic expression language has already been defined
as well as the semantic function Eval using the classic OOP notation. The
next step in the development of SAL is to define the concrete syntax for the
language. Concrete syntax will be used when expression (sentence) will be
stored in the textual form.

Expression

Add

Mul
UnaryMinus

-expression1

1

-expression1

1

-expression2

1

-expression2

1
-expression1

1

Number

Fig. 5. Classes and their hierarchy in the simple arithmetic language (SAL)

The specification of concrete syntax requires some additional information
about textual representation of the language concepts. In SAL it is:

• a number representation (notation),
• notation for operations,

• symbols for the operations of addition, multiplication and negation,
• the form of the notation, the priority and associativity of all operations.

The operations will be expressed in infix form using standard symbols +
and *. Unary operation of negation will be in the prefix form denoted with the
symbol -. The priority, associativity and symbols for the operations are listed
in Table 1. The integer numbers are written using standard decimal notation
with digits 0, 1, …, 9.

Table 1. Priority and associativity of SAL operators

Operator Priority Associativity
+ 1

(lowest)
left

* 2 left
- 3

(highest)
right

The class for integer numbers is augmented with concrete syntax source

annotations in the following code snippet.

Jaroslav Porubän, Michal Forgáč, Miroslav Sabo, and Marek Běhálek

ComSIS Vol. 7, No. 2, Special Issue, April 2010 298

class Number extends Expression {
 int value;

 Number(@Token("VALUE") long value) {
 this.value = value;
 }

 int eval() {
 return value;
 }
}
The @Token annotation with VALUE attribute defines the name of a regular

expression for the number notation. As seen on the snippet the class
constructor is augmented with the concrete syntax pattern. The regular
expression can be defined as follows.
@TokenDef(name = "VALUE", regexp = "[0-9]+")
The format of a regular expression depends on the syntax for definition of

regular expressions. The annotation @Token("VALUE") can even be
omitted because the name of token can be derived directly from the name of
the parameter (value in this case). The domain class for binary operation of
addition augmented with concrete syntax annotations is shown below.
class Add extends Expression {
 Expression expression1;
 Expression expression2;

 @Operator(
 associativity = Associativity.LEFT,
 priority = 1
)
 Add(Expression expression1,
 @Before("+")
 Expression expression2) {
 this.expression1 = expression1;
 this.expression2 = expression2;
 }

 int eval() {
 return expression1.eval() + expression2.eval();
 }
}
Concrete syntax for the operation of addition is defined in the class

constructor. Parameters of constructor define the rule of composition of the
operation. In the constructor body it can be observed that addition is
composed of two expressions in textual form. It is important to notice that
after the first expression (and before the second expression at the same time)
token + will follow.

Binary operation of multiplication is defined accordingly to the definition of
addition. The domain class for unary operation of arithmetic negation is

Annotation Based Parser Generator

ComSIS Vol. 7, No. 2, Special Issue, April 2010 299

augmented with concrete syntax annotations as shown in the code snippet
below.
class UnaryMinus extends Expression {
 Expression expression;

 @Operator(priority = 3)
 UnaryMinus(
 @Before("-")
 Expression expression) {
 this.expression = expression;
 }

 int eval() {
 return -expression.eval();
 }
}

As seen in the constructor the operation is defined as unary prefix

operation.
The last step in definition of the SAL’s concrete syntax is the definition for

parentheses. This can be achieved simply by using the annotation on abstract
class for expressions as shown below.
@Parentheses(left = "(", right = ")")
 abstract class Expression {
 //...
}
Finally the concrete syntax for the language has been defined. The

implemented YAJCo parser generator generates the language parser from
annotated classes. The concrete syntax of SAL is automatically derived from
these classes, their relationships and concrete syntax annotations. In the
current implementation of the YAJCo it is the following LL(1) context-free
grammar.
Expr1 ::= Expr2 {"+" Expr2}
Expr2 ::= Expr3 {"*" Expr3}
Expr3 ::= "-" Expr3 | Expr
Expr ::= Number | "(" Expr1 ")"
Number ::= [0-9]+

4. YAJCo Parser Generator

The main goal of the approach is not to create a new parsing technology
based on context-free grammars theory. The main idea is to integrate existing
technologies into the higher level abstraction in which the language developer
does not have to concentrate on concrete parsing technology but on the

Jaroslav Porubän, Michal Forgáč, Miroslav Sabo, and Marek Běhálek

ComSIS Vol. 7, No. 2, Special Issue, April 2010 300

language itself describing the concepts and relationships between them with
abstract syntax in mind. The main characteristics of the approach are:

• Orientation on abstract syntax and semantics of the language.
• Definition of the concrete syntax independent from a parsing technology.
• Automatic construction of abstract syntax tree from an input sentence.
• Automatic construction of references between concept instances.
• Error reporting in terms of language domain concepts.
• Separation of language concepts on implementation level (concept

types).
• Tool support for language evolution (concept refactoring).
As a proof of concept the parser generator YAJCo (Yet Another Java

Compiler cOmpiler) has been implemented. YAJCo generates language
parser from annotated classes. It is implemented as a standard Java
annotation processor which traverses through the source code of classes
looking for cocnrete syntax pattern annotations. YAJCo discovers relations
between classes. Two main relationships between classes used in the
definition of an abstract syntax are:

• “is-a” relationship,
• “has-a” relationship.
Together with corresponding BNF productions they are depicted in the Fig.

6.
Statement

IfWhile

Statement ::= If | While

Expression

While

1

Statement
1

While ::= Expression Statement
or
While ::= Statement Expression

A)

B)

Statement

IfWhile

Statement ::= If | While

Expression

While

1

Statement
1

While ::= Expression Statement
or
While ::= Statement Expression

A)

B)

Fig. 6. Abstract syntax relationships: A) “is-a” relationship, B) “has-a” relationship

The “is-a” relationship is used also in the definition of concrete syntax, but
the “has-a” relationship has following drawbacks when defining the concrete
syntax:

• Multiple notations for a single concept.
• Lack of natural ordering for member variables defined in a class (except

the order in a source code).
• Data type conversion between concrete and abstract syntax (e. g.

dropping the quotes from the string literal).
All these drawbacks can be eliminated by using class constructor notation

(or factory methods notation) for the definition of concrete syntax. This is the

Annotation Based Parser Generator

ComSIS Vol. 7, No. 2, Special Issue, April 2010 301

main reason why we annotate constructors and their parameters instead of
object fields as shown in the following example.
While(
 @Before({"while", "("})
 @After(")")
 Expression expr,
 Statement stmt) {…}

The previous example corresponds to the following BNF production of a
concrete syntax.
While ::= 'while' '('Expression ')' Statement

To define a transformation from abstract to concrete syntax a set of
concrete syntax annotation types has been created:

• Structural annotations – mark the concept as optional or set the
minimum and maximum number of occurrences - @Optional, @Range

• Token annotations – specify binding of lexical units to abstract syntax
concepts - @Before, @After, @Token, @Separator

• Language pattern annotations – identify common computer language
patterns
• Operators: @Operator, @Parentheses
• Identifiers and references: @Identifier, @References

• Parser configuration annotations - @Parser, @TokenDef, @Skip
Following print statement example presents the usage of some of the

annotations mentioned above.
class Print extends Statement {
 @Before("print")
 @After(";")
 Print(
 @Separator(",")
 @Range(minOccurs = 1)
 Expression[] expressions) { ... }
...
}

The corresponding print language concept has the following notation.
print expr1, ... , exprn;

The next example presents annotated C language if statement.
class If extends Statement {
 If(
 @Before({"if", "("})
 @After(")")
 Expression expression,
 Statement trueStatement,
 @Optional
 @Before("else")
 Statement falseStatement) {...}

Jaroslav Porubän, Michal Forgáč, Miroslav Sabo, and Marek Běhálek

ComSIS Vol. 7, No. 2, Special Issue, April 2010 302

...
}

Currently the JavaCC parser generator is used as the underlying parsing
technology. As an output YAJCo generates JavaCC grammar file augmented
with actions for constructing abstract syntax tree. Since the annotations are
independent of concrete parsing technology the output can also be generated
for other top-down or bottom-up parser generators (e. g. ANTLR [8]).

Finally the parser for SAL with tokens and blank characters is defined using
@Parser annotation as shown in the code snippet.

@Parser(
 className = "parser.expr.ExpressionParser",
 rootNode = "Expression",
 tokens = {
 @TokenDef(name = "VALUE", regexp = "[0-9]+")
 },
 skips = {
 @Skip(" "),
 @Skip("\t"),
 @Skip("\n")
 }
)

Language
Specification
Language

Specification

ParserParser

Parser Generator - YAJCo

Java
Annotation
Processor

Tokens,
white

characters

Tokens,
white

characters

JavaCC
JavaCC

Input
File

JavaCC
Input
File

generates generates

generates

uses

Annotated
Classes

Annotated
Classes

JavaCC
Parser

Classes

JavaCC
Parser

Classes

YAJCo
Parser
Class

YAJCo
Parser
Class

Language
Specification
Language

Specification

ParserParser

Parser Generator - YAJCo

Java
Annotation
Processor

Tokens,
white

characters

Tokens,
white

characters

JavaCC
JavaCC

Input
File

JavaCC
Input
File

generates generates

generates

uses

Annotated
Classes

Annotated
Classes

JavaCC
Parser

Classes

JavaCC
Parser

Classes

YAJCo
Parser
Class

YAJCo
Parser
Class

Fig. 7. Generating parser using YAJCo parser generator – YAJCo architecture
overview

Processing of annotated classes with developed parser generator YAJCo
is depicted in the Fig 7. After the generation of parser is complete it can be
simply embedded in any existing Java application. The following code snippet
is an example of embedding generated source code parser for SAL.
String expr = "1 + 2 * 7";
Expression expression = new
 ExpressionParser().parse(expr);
long result = expression.eval();

Annotation Based Parser Generator

ComSIS Vol. 7, No. 2, Special Issue, April 2010 303

5. Experiments

To explore the full potential of the implemented approach and YAJCo parser
generator we have implemented seven computer languages, each of them
having a different character:

• SAL – Simple Arithmetic Language,
• AL – Arithmetic Language,
• SIL – Structured Imperative Language,
• PIL – Procedural Imperative Language,
• GUIIL – Graphical User Interface Interaction Language,
• SML – State Machine Language,
• LAD – Language of Annotation Designator.
SAL [17] and AL languages are simple computer languages for expressing

the arithmetic expressions. AL has been created incrementally from the SAL
in a few evolutionary steps. In every step some new constructs have been
incorporated into the language. SIL and PIL languages are the
representatives of general-purpose programming languages. PIL is
procedural Pascal-like language. These languages are greatly inspired by
traditional university compiler course languages. On the other hand the last
three languages GUIIL, SML and LAD are DSL languages oriented to
concrete domains. GUIIL is the language which describes the recipes for
graphical user interface task automation. SML is classic DSL for state
machines description [9]. LAD is DSL language for expressing the annotation
constraints. All mentioned languages were successfully implemented using
YAJCo parser generator. During the implementation of these computer
languages we have also defined some metrics to measure the following
implementation characteristics:

• number of language concepts (defined by types - classes, interfaces,
enumerations),

• number of annotations in the implementation of language concepts
categorized by annotation types,

• comparison of annotated and unannotated language concepts,
• characteristics of generated source code (number of source lines of

code, number of characters).
The results of experiments are summarized in Table 2 According to our

measurements the most complex language is PIL. This language contains the
largest number of language concepts. From the point of view of the number of
language concepts the simplest languages are SML and GUIIL. According to
the results the most common language concept representation is a concrete
class. Interfaces and abstract classes are interchangeable by the choice of
language developer. The most common concrete syntax annotation used in
experimental languages is @Before. This is a reasonable outcome since the
annotation specifies the lexical symbol preceding a concept. It is natural to
specify the concept with leading keyword (e.g. if, while, procedure). The
interesting fact is that approximately 25% of language concept types contain
no annotation. It is the fulfillment of the one of our aims - to minimize the

Jaroslav Porubän, Michal Forgáč, Miroslav Sabo, and Marek Běhálek

ComSIS Vol. 7, No. 2, Special Issue, April 2010 304

number of used annotations. The results also show that the SML language is
considerably verbose. The average number of concrete syntax annotations
per concept type in SML is 2.5. The following part from the SML sentence
presents the level of verbosity of the SML language.

Table 2. Results from the implementation of experimental languages using YAJCo
parser generator

Types SAL AL SIL PIL GUIIL SML LAD
Concrete class 6 11 30 42 4 6 26

Abstract class 1 3 2 3 1 7

Interface 2

Enumeration 1 1

Total 7 14 33 47 5 6 34

Annotation SAL AL SIL PIL GUIIL SML LAD

After 1 9 13 1 1 13

Before 5 10 28 37 2 8 23

Operator 5 10 17 27 8

Optional 1 1 1 1 3

Parentheses 1 1 1 1 2

Range 3 2 2

Separator 3 2 1 5

Token 2 3 2

Total 11 22 64 81 5 15 58

Category SAL AL SIL PIL GUIIL SML LAD

Number of annotated
types 6 11 25 39 2 4 23

Number of types without
annotation 1 3 8 8 3 2 10

Average number of
annotations per type 1.57 1.57 1.94 1.72 1.00 2.50 1.71

Ratio of unannotated
types to all types 0.14 0.21 0.24 0.17 0.60 0.33 0.29

Characteristics SAL AL SIL PIL GUIIL SML LAD

Number of lexical units 8 16 37 40 7 11 37

Number of BNF rules 5 7 24 27 5 6 29

Number of source lines of
code generated by YAJCo 128 187 570 655 124 168 693

Number of characters
generated by YAJCo 2458 3775 15912 17554 2854 4245 19559

Number of source lines of
code generated by

1487 1603 2567 2580 1516 1843 3849

Annotation Based Parser Generator

ComSIS Vol. 7, No. 2, Special Issue, April 2010 305

JavaCC

Number of characters
generated by JavaCC 42103 45370 78450 78687 43869 52950 114002

transition from Ready to Running when water_high

The average usage of concrete syntax annotation per one concept type in
all languages is less than 2. The main goal of the metrics definition was the
measurement of a language complexity based on abstract syntax since
abstract syntax directly defines concepts from a domain.

The successful implementation of experimental languages proves the
viability of YAJCo parser generator. That was the main reason why we
decided to incorporate the tool in the university master course concerning
DSL implementation and model driven software development. More than 30
students have successfully used the YAJCo parser generator as a part of
their projects.

6. Related Works

Currently there are a lot of parser generators for various programming
languages [5][6]. Classic parser generators like JavaCC [7] generate the
parser as a single huge class ignoring the concept of composition of language
concepts and concentrating on the concrete syntax of a language. These
tools are still greatly inspired by procedural nature of YACC-like tools. The
concrete syntax is specified in DSL of parser generator. It is usually a
language for writing the context free grammar enriched with constructs for
language semantics definition. During language development the developer is
often dealing with the type of parsing algorithm which is supported by
selected parser generator (e. g. LL, LR, LALR) and his decisions are forced
by the type of grammar supported by the tool. Even JJTree, a tool provided by
JavaCC for generating the abstract syntax tree from the textual
representation, is still driven by the point of view of concrete syntax grammar
rather than abstract syntax language concept. Consequently, changes made
to grammar must be also reflected in the representation of abstract syntax
nodes in programming languages. The semi-automatic refactoring of
generator’s DSL is still missing.

On the other side, there is a notable growth in the field of language
workbenches [13] on the market. MDSD [14] tools like Microsoft Visual Studio
DSL Tools (software factories representative [15]) are being incorporated into
the programming IDEs. The primary orientation of these tools is graphical
notation of computer languages. However, the special support for textual
language notation is not provided.

Authors in [16] propose another approach to mapping from abstract syntax
to concrete and back. Their solution is based on complex language rather
than concrete syntax patterns.

Jaroslav Porubän, Michal Forgáč, Miroslav Sabo, and Marek Běhálek

ComSIS Vol. 7, No. 2, Special Issue, April 2010 306

7. Conclusion

In the paper we have presented solution for generating parsers for textual
languages. The language itself is specified by a set of annotated classes.
Annotations extend the classes with additional information required for
specification of concrete syntax, for example keywords and operator
notations. The developer can start with the definition of abstract syntax and
continue with creation of language in incremental way using the standard
refactoring tools. In proposed solution there is only one form of definition of
abstract syntax graph nodes – by the classes. The grammar is derived
directly from the source code of annotated domain classes. Even the
examples are written in object-oriented programming language Java our
solution is not strictly connected to Java language and can be easily ported to
any other object-oriented language supporting the attribute-oriented
programming. We believe that our solution can simplify the development of
textual software languages.

References

1. Mernik, M., Heering, J., Sloane, A. M.: When and How to Develop Domain-
Specific Languages. ACM Computing Surveys, Vol. 37, No. 4, 316–344. (2005)

2. Pereira, M. J. V., Mernik, M., da Cruz, D., Henriques, P. R.: Program
Comprehension for Domain-Specific Languages. ComSIS, Vol. 5, No. 2. (2008)

3. Ort, E., Mehta, B.: Java Architecture for XML Binding. Sun Microsystems, [Online].
Available: http://java.sun.com/developer/technicalArticles/WebServices/jaxb
(current November 2009)

4. Návrat, P., Bieliková, M., Chudá, D., Rozinajová, V.: Intelligent Information
Processing in Semantically Enriched Web. Lecture Notes in Computer Science,
Vol. 5722/2009, 331-340. (2009)

5. Johnson, S. C.: YACC: Yet Another Compiler-Compiler. Unix Programmer's
Manual Volume 2b. (1979)

6. Donnelly, C., Stallman, R.: Bison: The Yacc-compatible Parser Generator. (2006).
7. Java Compiler Compiler – The Java Parser Generator, (2009). [Online]. Available:

https://javacc.dev.java.net (current November 2009)
8. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages,

Pragmatic Bookshelf, 376 pp. (2007)
9. Cook, S., Jones, G., Kent, S., Wills, A. C.: Domain-Specific Development with

Visual Studio DSL Tools. Addison-Wesley Professional, 576 pp. (2007)
10. Kleppe, A. G.: A Language Description is More than a Metamodel. In: Fourth

International Workshop on Software Language Engineering, 1 Oct 2007, Nashville,
USA.

11. Cepa, V.: Attribute Enabled Software Development, VDM Verlag, 216 p. (2007)
12. van der Vlist, E.: Relax NG. O'Reilly Media, 304 pp. (2003)
13. Fowler, M.: Language Workbenches: The Killer-App for Domain Specific

Languages? (2005) [Online]. (current November 2009) Available:
http://www.martinfowler.com/articles/languageWorkbench.html

14. Stahl, T., Voelter, M.:Model-Driven Software Development: Technology,
Engineering, Management. Wiley, 444 p. (2006)

Annotation Based Parser Generator

ComSIS Vol. 7, No. 2, Special Issue, April 2010 307

15. Greenfield, J., Short, K., Cook, S., Kent, S., Crupi, J.: Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. Wiley,
500 p. (2004)

16. Muller, P. A., Fondement, F., Fleurey, F., Hassenforder, M., Schneckenburger, R.,
Gérard, S., Jézéquel, J. M.: Model-Driven Analysis and Synthesis of Textual
Concrete Syntax. Journal on Software and Systems Modeling (SoSyM), Volume 7
(4), Springer, 423-441. (2008)

17. Kollár, J., Václavík, P., Wassermann, Ľ.: Data driven Executable Language Model.
In Proceedings of the International Multiconference on Computer Science and
Information Technology, Mragowo, Poland, IEEE Computer Society Press, 667-
675. (2009), ISSN 1896-7094.

Jaroslav Porubän is Associate professor at Department of Computers and
Informatics, Technical university of Košice, Slovakia. He received his MSc. in
Computer Science in 2000 and his PhD. in Computer Science in 2004. Since
2003 he is the member of the Department of Computers and Informatics at
Technical University of Košice. He was involved in the research of profiling
tools for process functional programming language. Currently the main
subject of his research is the computer language engineering concentrating
on design and implementation of domain-specific languages and computer
language composition and evolution.

Michal Forgáč is Assistant professor at Department of Computers and
Informatics, Technical university of Košice, Slovakia. He received his MSc. in
2006 and his PhD. in Computer Science in 2009. Since 2009 he is the
member of the Department of Computers and Informatics at Technical
University of Košice. His scientific research is focused on the software
evolution, software language engineering and adaptation of complex software
systems.

Miroslav Sabo is doctoral student at Department of Computers and
Informatics, Technical University of Košice, Slovakia. He received his MSc. in
Computer Science in 2008. The subject of his research is the utilization of
generative methods in development and evolution of software systems in
permanently changing environment.

Marek Běhálek is Assistant professor at Department of Computer Science,
FEI VŠB Technical University of Ostrava, Czech Republic. He received his
MSc. in 2002. Since 2004 he is the member of the Department of Computer
Science at Technical University of Ostrava. His scientific research is focused
on programming languages, their evolution and application. Currently he is
developing a tool for modeling of embedded systems based on functional
programming paradigm.

Received: November 16, 2009; Accepted: December 25, 2009.

