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Abstract. Subtree matching is an important problem in Computer Sci-
ence on which a number of tasks, such as mechanical theorem prov-
ing, term-rewriting, symbolic computation and nonprocedural program-
ming languages are based on. A systematic approach to the construction
of subtree pattern matchers by deterministic pushdown automata, which
read subject trees in prefix and postfix notation, is presented. The method
is analogous to the construction of string pattern matchers: for a given
pattern, a nondeterministic pushdown automaton is created and is then
determinised. In addition, it is shown that the size of the resulting deter-
ministic pushdown automata directly corresponds to the size of the exist-
ing string pattern matchers based on finite automata.
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1. Introduction

The theory of formal string (or word) languages [2, 16, 24] and the theory of
formal tree languages [6, 8, 14] are important parts of the theory of formal lan-
guages [23]. While the models of computation of the theory of string languages
are finite automata, pushdown automata, linear bounded automata and Turing
machines, the most famous models of computation of the theory of tree lan-
guages are various kinds of tree automata [6, 8, 14]. Trees, however, can also
be seen as strings, for example in their prefix (also called preorder) or postfix
(also called postorder) notation. Recently it has been shown that the determin-
istic pushdown automaton (PDA) is an appropriate model of computation for
labelled, ordered, ranked trees in postfix notation and that the trees in post-
fix notation, acceptable by deterministic PDA, form a proper superclass of the
class of regular tree languages, which are accepted by finite tree automata [18].
⋆ This research has been partially supported by the Ministry of Education, Youth and

Sports under research program MSM 6840770014, and by the Czech Science Foun-
dation as project No. 201/09/0807.
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Trees represent one of the fundamental data structures used in Computer
Science and thus tree pattern matching, the process of finding occurrences
of subtrees in trees, is an important problem with many applications, such as
compiler code selection, interpretation of non-procedural languages or various
tree finding and tree replacement systems.

Tree pattern matching is often declared to be analogous to the problem of
string pattern matching [6]. One of the basic approaches used for string pattern
matching can be represented by finite automata constructed for the pattern,
which means that the pattern is preprocessed. Examples of these automata
are the string matching automata [9, 10, 22, 26]. Given a pattern P of size m,
the string matching automaton can be constructed for the pattern P in time lin-
ear to m. The constructed string matching automaton accepts the set of words
containing pattern P as a suffix, and thus it can find all occurrences of string
P in a given text T . The main advantage of this kind of finite automata is that
the deterministic string matching automaton can be constructed in time linear to
the size of the given pattern P , and the search phase is in time linear to the in-
put text. A generalization of the mentioned string matching problem can be the
string matching problem with multiple patterns [1, 22, 26]. Given a set of pat-
terns P = {p1, p2, . . . , pm}, the string matching automaton can be constructed
in time linear to the number of symbols of patterns in set P . The constructed
string matching automaton accepts the set of words having any of the patterns
in P as a suffix, and thus it can find all occurrences of strings p1, . . . , pm in a
given text T .

Although there are many tree pattern matching methods (see [5–7, 11, 15,
25] for these methods), they fail to present a simple and systematic approach
with a linear time searching phase which would also be directly analogous to
the basic string pattern matching method.

This paper, being an extended version of [12], presents a new kind of PDAs
for trees in prefix and postfix notations called subtree matching PDAs, which are
directly analogous to string matching automata and their properties. A subtree
matching PDA, constructed from a given tree s, can find all occurrences of
subtree s within a given tree t in time O(n), where n is the number of nodes of t.
Subtree matching, as with string matching, can also be generalized to subtree
matching with multiple patterns. Subtree matching PDAs can be constructed
from a set of trees P = {t1, t2, . . . , tm} in the same manner as string matching
automata, retaining their property of linear searching phase O(n), where n is
the number of nodes of the subject tree t.

Moreover, the presented subtree matching PDAs have the following two
other properties. First, they are input–driven PDAs [28], which means that each
pushdown operation is determined only by the input symbol. The input–driven
PDAs can be always determinised [28]. Second, their pushdown symbol alpha-
bets contain just one pushdown symbol and therefore their pushdown store can
be implemented by a single integer counter. This means that the presented
PDAs can be transformed to counter automata [4, 27], which is a weaker and
simpler model of computation than the PDA.
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The rest of the paper is organised as follows. Basic definitions are given in
section 2. Some properties of subtrees in prefix notation are discussed in the
third section. Sections 4 and 5 deal with the subtree matching PDA constructed
over a single and multiple patterns, respectively. Section 6 shows the dual prin-
ciple for the postfix notation and the last section is the conclusion.

2. Basic Notions

2.1. Ranked alphabet, tree, prefix notation, postfix notatio n, subtree
matching

We define notions on trees similarly as they are defined in [2, 6, 8, 14].
We denote the set of natural numbers by N. A ranked alphabet is a finite,

nonempty set of symbols, each of which has a unique nonnegative arity (or
rank). Given a ranked alphabet A, the arity of a symbol a ∈ A is denoted by
Arity(a). The set of symbols of arity p is denoted by Ap. Elements of arity
0, 1, 2, . . . , p are respectively called nullary (constants), unary, binary, . . . , p-ary
symbols. We assume that A contains at least one constant. In the examples
we use numbers at the end of identifiers for a short declaration of symbols with
arity. For instance, a2 is a short declaration of a binary symbol a.

Based on concepts from graph theory (see [2]), a labelled, ordered, ranked
tree over a ranked alphabet A can be defined as follows:

An ordered directed graph G is a pair (N,R), where N is a set of nodes
and R is a set of linearly ordered lists of edges such that each element of R is
of the form ((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N , n ≥ 0. This
element would indicate that, for node f , there are n edges leaving f , the first
entering node g1, the second entering node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node
f0 to node fn if there is an edge which leaves node fi−1 and enters node fi for
1 ≤ i ≤ n. A cycle is a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag
(dag stands for Directed Acyclic Graph) is an ordered directed graph that has
no cycle. Labelling of an ordered graph G = (A,R) is a mapping of A into a set
of labels. In the examples we use af for a short declaration of node f , labelled
by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R,
where g ∈ A. By analogy, in-degree of node f is the number of distinct pairs
(g, f) ∈ R, where g ∈ A.

A labelled, ordered, ranked and rooted tree t over a ranked alphabet A is an
ordered dag t = (N,R) with a special node r ∈ A called the root such that
(1) r has in-degree 0,
(2) all other nodes of t have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f 6= r,
(4) every node f ∈ N is labelled by a symbol a ∈ A and out-degree of af is
Arity(a).

Nodes labelled by nullary symbols (constants) are called leaves.

ComSIS Vol. 7, No. 2, Special Issue, April 2010 333
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Prefix notation pref(t) of a labelled, ordered, ranked and rooted tree t is
obtained by applying the following Step recursively, beginning at the root of t:
Step: Let this application of Step be node af . If af is a leaf, list a and halt.
If af is not a leaf, having direct descendants af1 , af2 , . . . , afn , then list a and
subsequently apply Step to af1 , af2 , . . . , afn in that order.
Postfix notation post(t) of t is formed by changing the last sentence of Step to
read “Apply Step to af1 , af2 , . . . , afn in that order and then list a.”

Example 1. Consider a tree t1 = ( {a21, a22, a03, a14, a05, a16, a07}, R ) over
A = {a2, a1, a0} , where R is a set of the following ordered sequences of pairs:

((a21, a22), (a21, a16)),
((a22, a03), (a22, a14)),
((a14, a05)),
((a16, a07))

The prefix and postfix notations of tree t1 are strings pref(t1) = a2 a2 a0 a1
a0 a1 a0 and post(t1) = a0 a0 a1 a2 a0 a1 a2, respectively. Trees can be repre-
sented graphically, and tree t1 is illustrated in Fig. 1. ⊓⊔

a05

a03 a14 a07

a22 a16

a21

pref(t1) = a2 a2 a0 a1 a0 a1 a0

Fig. 1. Tree t1 from Example 1 and its prefix notation

The number of nodes of a tree t is denoted by |t|.
The height of a tree t, denoted by Height(t), is defined as the maximal length

of a path from the root of t to a leaf of t.
A subtree p matches an object tree t at node n if p is equal to the subtree of

t rooted at n.

2.2. Alphabet, language, pushdown automaton

We define notions from the theory of string languages similarly as they are
defined in [2, 16].
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Let an alphabet be a finite nonempty set of symbols. A string x over a given
alphabet is a finite, possibly empty sequence of symbols. A language over an
alphabet A is a set of strings over A. Set A∗ denotes the set of all strings over
A including the empty string, denoted by ε. Set A+ is defined as A+ = A∗ \{ε}.
Similarly for string x ∈ A∗, xm, m ≥ 0, denotes the m-fold concatenation of x
with x0 = ε. Set x∗ is defined as x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm :
m ≥ 1}.

An (extended) nondeterministic pushdown automaton (nondeterministic
PDA) is a seven-tuple M = (Q,A, G, δ, q0, Z0, F ), where Q is a finite set of
states, A is the input alphabet, G is the pushdown store alphabet, δ is a map-
ping from Q× (A∪{ε})×G∗ into a set of finite subsets of Q×G∗, q0 ∈ Q is the
initial state, Z0 ∈ G is the initial content of the pushdown store, and F ⊆ Q is
the set of final (accepting) states. The triplet (q, w, x) ∈ Q×A∗×G∗ denotes the
configuration of a pushdown automaton. In this paper we will write the top of the
pushdown store x on its left hand side. The initial configuration of a pushdown
automaton is a triplet (q0, w, Z0) for the input string w ∈ A∗.

The relation ⊢M⊂ (Q×A∗ ×G∗)× (Q×A∗ ×G∗) is a transition of a push-
down automaton M . It holds that (q, aw, αβ) ⊢M (p, w, γβ) if (p, γ) ∈ δ(q, a, α).
The k-th power, transitive closure, and transitive and reflexive closure of the re-
lation ⊢M is denoted ⊢kM , ⊢+M , ⊢∗M , respectively. A pushdown automaton M is a
deterministic pushdown automaton (deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is not a suffix of β and β is

not a suffix of α.
3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix

of α.

A pushdown automaton is input–driven if its each pushdown operation is
determined only by the input symbol.
A language L accepted by a pushdown automaton M is defined in two distinct
ways:

1. Accepting by final state:

L(M) = {x : δ(q0, x, Z0) ⊢
∗
M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0) ⊢
∗
M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

If a PDA accepts the language by empty pushdown store then the set F of
final states may be the empty set. The subtree PDAs accept the languages by
empty pushdown store.

In the rest of the text, we use the following notation for labelling edges
when illustrating transition diagrams of various PDAs: For each transition rule
δ1(p, a, α) = (q, β) from the transition mapping δ of a PDA, we label its edge
leading from state p to state q by the triplet of the form a|α 7→ β.

For more details on pushdown automata see [2, 16].
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[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a2 a2 a0 a1 a0 a1 a0

a0, a1
a2

a1, a0

a2

a1
a0

a1
a0

a1
a1, a0

a2
a2

a2
a2

Fig. 2. Transition diagram of deterministic string matching automaton for pattern x =
a2 a2 a0 a1 a0 a1 a0 from Example 2

2.3. Examples of string matching automaton

Example 2. The transition diagram of the deterministic string matching automa-
ton constructed for string a2 a2 a0 a1 a0 a1 a0 is illustrated in Fig. 2. ⊓⊔

Example 3. The transition diagram of the deterministic string matching automa-
ton constructed for a set of strings P = {a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0} is
illustrated in Fig. 3. ⊓⊔

See [2, 9, 22] for definitions of finite automata and construction of the deter-
ministic string matching automaton.

3. Properties of subtrees in prefix notation

In this section we describe some general properties of the prefix notation of a
tree and of its subtrees. These properties are important for the construction of
the subtree matching PDA, which is described in the next two sections.

Example 4. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0
from Example 1, which is illustrated in Fig. 1. Tree t1 contains only subtrees
shown in Fig. 4.

Generally, for any tree, the following theorem holds.

Theorem 1. Given a tree t and its prefix notation pref(t), all subtrees of t in
prefix notation are substrings of pref(t).

Proof. By induction on the height of the subtree.
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0 0, 1

0, 1, 2 0, 3, 9 0, 4, 10 0, 5

0, 6 0, 7 0, 8

0, 9 0, 10

a2

a2

a0 a0 b0

b1

a0 a0

a0

a0

a0, b0, b1

b0

a2

b0

b1

b0, b1

a2

a0, b1

a2

a0, b0, b1

a2

a2

b0, b1

a2

b0, b1

a2

a0, b0, b1

b0, b1

a2
a0, b0, b1

a2

Fig. 3. Transition diagram of deterministic string matching automaton (Aho-Corasick) for
patterns {a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0}

1. If a subtree t′ has just one node a, where Arity(a) = 0, then Height(t′) = 0,
pref(t′) = a and the claim holds for that subtree.

2. Assume that the claim holds for subtrees t1, t2, . . . , tp, where p ≥ 1 and
Height(t1) ≤ m, Height(t2) ≤ m, . . ., Height(tp) ≤ m, m ≥ 0. We have
to prove that the claim holds also for each subtree t′ = at1t2 . . . tp, where
Arity(a) = p and Height(t′) = m+ 1:
As pref(t′) = a pref(t1) pref(t2) . . .pref(tp), the claim holds for the subtree
t′.

Thus, the theorem holds. ⊓⊔

However, not every substring of a tree in prefix notation is its subtree in
prefix notation. This can be easily seen on the fact that for a given tree with n
nodes in prefix notation, there can be O(n2) distinct substrings but there is just
n subtrees – each node of the tree is the root of just one subtree. Just those
substrings which themselves are trees in prefix notation are those which are the
subtrees in prefix notation. This property is formalised by the following definition
and theorem.
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a0

a0 a1 a0

a2 a1

a2

pref(t) = a2 a2 a0 a1 a0 a1 a0

post(t) = a0 a0 a1 a2 a0 a1 a2

a0

a0 a1

a2

pref(t) = a2 a0 a1 a0

post(t) = a0 a0 a1 a2

a0

a1

pref(t) = a1 a0

post(t) = a0 a1

a0

pref(t) = a0

post(t) = a0

Fig. 4. All subtrees of tree t1 from Example 1, and their prefix and postfix notations

Definition 1. Let w = a1a2 . . . am, m ≥ 1, be a string over a ranked alphabet A.
Then, the arity checksum ac(w) = Arity(a1)+Arity(a2)+ . . .+Arity(am)−m+1=∑m

i=1 Arity(ai)−m+ 1.

Theorem 2. Let pref(t) and w be a tree t in prefix notation and a substring of
pref(t), respectively. Then, w is the prefix notation of a subtree of t, if and only
if ac(w) = 0, and ac(w1) ≥ 1 for each w1, where w = w1x, x 6= ε.

Proof. It is easy to see that for any two subtrees st1 and st2 it holds that pref(st1)
and pref(st2) are either two different strings or one is a substring of the other.
The former case occurs if the subtrees st1 and st2 are two different trees with
no shared part and the latter case occurs if one tree is a subtree of the other
tree. No partial overlapping of subtrees is possible in ranked ordered trees.
Moreover, for any two neighbouring subtrees it holds that their prefix notations
are two adjacent substrings.

– If: By induction on the height of a subtree st, where w = pref(st):
1. We assume that Heigth(st) = 1, which means we consider the case

w = a, where Arity(a) = 0. Then, ac(w) = 0. Thus, the claim holds for
the case Height(st) = 1.

2. Assume that the claim holds for the subtrees st1, st2, . . . , stp where
p ≥ 1, Height(st1) ≤ m, Height(st2) ≤ m, . . ., Height(stp) ≤ m and
ac(pref(st1)) = 0, ac(pref(st2)) = 0, . . ., ac(pref(stp)) = 0.
We are to prove that it holds also for a subtree of height m+1. Assume
w = a pref(st1) pref(st2) . . . pref(stp), where Arity(a) = p. Then
ac(w) = p+ac(pref(st1))+ac(pref(st2))+. . .+ac(pref(stp))−(p+1)+1 =
0 and ac(w1) ≥ 1 for each w1 , where w = w1x, x 6= ε.
Thus, the claim holds for the case Height(st) = m+ 1.

– Only if : Assume ac(w) = 0, and w = a1a2 . . . ak, where k ≥ 1, Arity(a1) = p.
Since ac(w1) ≥ 1 for each w1, where w = w1x, x 6= ε, none of the substrings
w1 can be a subtree in prefix notation. This means that the only possibility
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for ac(w) = 0 is that w is of the form w = a pref(t1) pref(t2) . . . pref(tp),
where p ≥ 0, and t1, t2 . . . tp are neighbouring subtrees. In such case,
ac(w) = p+ 0− (p+ 1) + 1 = 0.
No other possibility of the form of w for ac(w) = 0 is possible. Thus, the
claim holds.

Thus, the theorem holds. ⊓⊔

We note that in subtree matching PDAs, the arity checksum is computed by
pushdown operations, where the contents of the pushdown store represents the
corresponding arity checksum. For example, the empty pushdown store means
that the corresponding arity checksum is equal to 0.

4. Subtree Matching pushdown automaton

This section deals with the subtree matching PDA for trees in prefix notation:
algorithms and theorems are given and the subtree matching PDA and its con-
struction are demonstrated with an example.

Problem 1 (Subtree Matching). Given two trees s and t, find all occurrences of
tree s in tree t.

Definition 2. Let s and pref(s) be a tree and its prefix notation, respectively.
Given an input tree t, a subtree pushdown automaton constructed over pref(s)
accepts all matches of tree s in the input tree t by final state.

First, we start with a PDA which accepts the whole subject tree in prefix
notation. The construction of the PDA accepting a tree in prefix notation is de-
scribed by Alg. 1. The constructed PDA is deterministic.

Algorithm 1. Construction of a PDA accepting a tree t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, {n}).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition δ(i− 1, ai, S) =
(i, SArity(ai)), where S0 = ε. ⊓⊔

Example 5. The PDA constructed by Alg. 1, accepting the prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 of tree t1 from Example 1, is the deterministic
PDA Mp(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ1, 0, S, {n})), where the mapping δ1
is a set of the following transitions:
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0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

Fig. 5. Transition diagram of deterministic PDA Mp(t1) accepting tree t1 in prefix notation
pref(t1) = a2 a0 a2 a0 a0 a0 from Example 5

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS)
δ1(2, a0, S) = (3, ε)
δ1(3, a1, S) = (4, S)
δ1(4, a0, S) = (5, ε)
δ1(5, a1, S) = (6, S)
δ1(6, a0, S) = (7, ε)

The transition diagram of deterministic PDA Mp(t1) is illustrated in Fig. 5.
Fig. 6 shows the sequence of transitions (trace) performed by deterministic PDA
Mp(t1) for tree t1 in prefix notation. ⊓⊔

State Input Pushdown Store
0 a2 a2 a0 a1 a0 a1 a0 S

1 a2 a0 a1 a0 a1 a0 S S

2 a0 a1 a0 a1 a0 S S S

3 a1 a0 a1 a0 S S

4 a0 a1 a0 S S

5 a1 a0 S

6 a0 S

7 ε ε

accept

Fig. 6. Trace of deterministic PDA Mp(t1) from Example 5 for tree t1 in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0

Theorem 3. Let M = ({Q,A, {S}, δ, 0, S, F ) be an input–driven PDA whose
each transition from δ is of the form δ(q1, a, S) = (q2, S

i), where i = Arity(a).
Then, if (q3, w, S) ⊢+M (q4, ε, S

j), then j = ac(w).

Proof. By induction on the length of w:

1. Assume w = a. Then, (q3, a, S) ⊢M (q4, ε, S
j), where j = Arity(a) = ac(a).

Thus, the claim holds for the case w = a.
2. Assume that the claim holds for a string w = a1a2 . . . ak, where k ≥ 1. This

means that (q3, a1a2 . . . ak, S) ⊢kM (q4, ε, S
j), where j = ac(a1a2 . . . ak). We

have to prove that the claim holds also for w = a1a2 . . . ak a.
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It holds that (q3, a1a2 . . . aka, S) ⊢kM (q4, a, S
j) ⊢M (q5, ε, S

l), where l =
j+Arity(a)−1 = ac(w)+Arity(a)−1 = Arity(a1)+Arity(a2)+. . .+Arity(ak)−
k + 1 + Arity(a)− 1 = ac(a1a2 . . . aka).
Thus, the claim holds for the case w = a1a2 . . . ak a.

Thus, the theorem holds. ⊓⊔

The correctness of the deterministic PDA constructed by Alg. 1, which ac-
cepts trees in prefix notation, is described by the following lemma.

Lemma 1. Given a tree t and its prefix notation pref(t), the PDA Mp(t) =
({0, 1, 2, . . . , n},A, {S}, δ, 0, S, F ), where n = |t|, constructed by Alg. 1, accepts
pref(t).

Proof. By induction on the height of the tree t:

1. If tree t has just one node a, where Arity(a) = 0, then Height(t) = 0,
pref(t) = a, δ(0, a, S) = (1, ε) ∈ δ, (0, a, S) ⊢Mp(t) (1, ε, ε) and the claim
holds for that tree.

2. Assume that claim holds for trees t1, t2, . . . , tp, where p ≥ 1, Height(t1) ≤ m,
Height(t2) ≤ m, . . ., Height(tp) ≤ m, m ≥ 0.
We have to prove that the claim holds also for each tree t such that
pref(t) = a pref(t1)pref(t2) . . . pref(tp), Arity(a) = p, and Height(t) ≥ m+ 1:
Since δ(0, a, S) = (1, Sp) ∈ δ, and (0, a pref(t1)pref(t2) . . . pref(tp), S)
⊢Mp(t) (1, pref(t1)pref(t2) . . . pref(tp), Sp)
⊢∗Mp(t)

(i, pref(t2) . . .pref(tp), Sp−1)

⊢∗
Mp(t)

. . .

⊢∗
Mp(t)

(j, pref(tp), S)
⊢∗
Mp(t)

(k, ε, ε),
the claim holds for that tree.

Thus, the lemma holds. ⊓⊔

We present the construction of the deterministic subtree matching PDA for
trees in prefix notation. The construction consists of two steps. First, a nondeter-
ministic subtree matching PDA is constructed by Alg. 2. This nondeterministic
subtree matching PDA is an extension of the PDA accepting trees in prefix nota-
tion, which is constructed by Alg. 1. Second, the constructed nondeterministic
subtree matching PDA is transformed to the equivalent deterministic subtree
matching PDA. In spite of the fact that the determinisation of a nondeterministic
PDA is not possible generally, the constructed nondeterministic subtree match-
ing PDA is an input–driven PDA and therefore can be determinised [28].

Algorithm 2. Construction of a nondeterministic subtree matching PDA for a
tree t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
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0 1 2 3 4 5 6 7

a0|S 7→ ε
a1|S 7→ S
a2|S 7→ SS

a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

Fig. 7. Transition diagram of nondeterministic subtree matching PDA Mp(t1) for tree t1
in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 6

Output: Nondeterministic subtree matching PDA Mnps(t) = ({0, 1, 2, . . . , n},A,
{S}, δ, 0, S, {n}).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Alg. 1.
2. For each symbol a ∈ A create a new transition δ(0, a, S) = (0, SArity(a)),

where S0 = ε.

Example 6. The subtree matching PDA, constructed by Alg. 2 from tree t1 hav-
ing prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0, is the nondeterministic PDA
Mnps(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, {7})), where mapping δ2 is a
set of the following transitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (0, SS)
δ2(2, a0, S) = (3, ε) δ2(0, a1, S) = (0, S)
δ2(3, a1, S) = (4, S) δ2(0, a0, S) = (0, ε)
δ2(4, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε)

The transition diagram of the nondeterministic PDA Mnps(t1) is illustrated in
Fig. 7. ⊓⊔

Theorem 4. Given a tree t and its prefix notation pref(t), the PDA Mnps(t) con-
structed by Alg. 2 is a subtree matching PDA for pref(t).

Proof. According to Theorem 2, given an input tree t, each subtree in prefix
notation is a substring of pref(t). Since the PDA Mnps(s) has just states and
transitions equivalent to the states and transitions, respectively, of the string
matching automaton, the PDA Mnps(t) accepts all matches of subtree s in tree
t by final state. ⊓⊔

For the construction of deterministic subtree PDA, we use the transformation
described by Alg. 3. This transformation is based on the well known transfor-
mation of nondeterministic finite automaton to an equivalent deterministic one,
which constructs the states of the deterministic automaton as subsets of states

342 ComSIS Vol. 7, No. 2, Special Issue, April 2010



Subtree Matching by Pushdown Automata

of the nondeterministic automaton and selects only a set of accessible states
(i.e. subsets) [16]. Again, states of the resulting deterministic PDA correspond
to subsets of states of the original nondeterministic PDA.

Algorithm 3. Transformation of an input–driven nondeterministic PDA to an
equivalent deterministic PDA.
Input: Input–driven nondeterministic PDA Mnx(t) = ({0, 1, 2, . . . , n},A, {S}, δ,
0, S, F )
Output: Equivalent deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, qI , S, F ′).
Method:

1. Initially, Q′ = {{0}}, qI = {0} and {0} is an unmarked state.
2. (a) Select an unmarked state q′ from Q′.

(b) For each input symbol a ∈ A:
i. q′′ = {q : δ(p, a, α) = (q, β) for all p ∈ q′}.
ii. Add transition δ′(q′, a, S) = (q′′, SArity(a)).
iii. If q′′ /∈ Q then add q′′ to Q and set it as unmarked state.

(c) Set state q′ as marked.
3. Repeat step 2 until all states in Q′ are marked.
4. F ′ = { q′ | q′ ∈ Q′ ∧ q′ ∩ F 6= ∅ }. ⊓⊔

The deterministic subtree matching automaton Mdps(t) for a tree t with prefix
notation pref(t) is demonstrated by the following example.

Example 7. The deterministic subtree matching PDA for tree t1 in prefix nota-
tion pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 1 , which has been con-
structed by Alg. 3 from nondeterministic subtree matching PDA Mnps(t1) from
Example 6, is the deterministic PDA Mdps(t1) = ({[0], [0, 1], [0, 1, 2], [0, 3], [0, 4],
[0, 5], [0, 6], [0, 7]},A, {S}, δ3, [0], S, {[0, 7]}), where its transition diagram is illus-
trated in Fig. 9.

We note that the deterministic subtree matching PDA Mdps(t1) has a very
similar transition diagram to the deterministic string matching automaton con-
structed for pref(t1) [9, 22], as can be seen by comparing Figs. 2 and 9. The
only difference between the two types of automata are the pushdown opera-
tions appearing in the subtree matching PDA, which ensure the validity of the
input tree. The input tree is valid only if the pushdown store of the subtree PDA
is emptied after the last symbol from the prefix notation of the input tree is read.

Fig. 8 shows the sequence of transitions (trace) performed by the deter-
ministic subtree PDA Mdps(t1) for an input tree t2 in prefix notation pref(t2) =
a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0. The accepting state is {0, 7}. Fig. 10
depicts the pattern subtree t1 and input tree t2. ⊓⊔

Theorem 5. Given a nondeterministic input–driven PDA Mnx(t) = (Q,A, {S},
δ, q0, S, F ), the deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, {q0}, S, F ′) which is
constructed by Alg. 3 is equivalent to PDA Mnx(t).
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State Input PDS
{0} a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 S

{0, 1} a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SS

{0, 1, 2} a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SSS

{0, 1, 2} a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SSSS

{0, 3} a1 a0 a1 a0 a1 a1 a2 a0 a0 SSS

{0, 4} a0 a1 a0 a1 a1 a2 a0 a0 SSS

{0, 5} a1 a0 a1 a1 a2 a0 a0 SS

{0, 6} a0 a1 a1 a2 a0 a0 SS

{0, 7} a1 a1 a2 a0 a0 match S

{0} a1 a2 a0 a0 S

{0} a2 a0 a0 S

{0, 1} a0 a0 SS

{0} a0 S

{0} ε ε

Fig. 8. Trace of deterministic subtree PDA Mdps(t1) from Example 7 for an input subtree
t2 in prefix notation pref(t2) = a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0

[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε
a1|S 7→ S a2|S 7→ SS

a2|S 7→ SS

a1|S 7→ S
a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a1|S 7→ S
a0|S 7→ ε

a2|S 7→ SS
a2|S 7→ SS

a2|S 7→ SS
a2|S 7→ SS

Fig. 9. Transition diagram of deterministic PDA Mdps(t1) for tree t1 in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 7
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Proof. First, we prove the following claim by induction on i:
(*): (q′1, w, S) ⊢

i
Mdx(t)

(q′2, ε, S
j) if and only if

q′2 = {p : (q, w, S) ⊢iMnx(t)
(p, ε, Sj) for some q ∈ q′1}.

1. Assume i=1.
– if : if (q′1, a, S) ⊢Mdx(t) (q

′
2, ε, S

j), then there exists a state q ∈ q′1, where
(q, a, S) ⊢Mnx(t) (p, ε, S

j), p ∈ q′2.
– only if : if (q, a, S) ⊢Mnx(t) (p, ε, β), then for each q′1 ∈ Q′, where q ∈ q′1,

it holds that (q′1, a, S) ⊢Mdx(t) (q
′
2, ε, S

j), where p ∈ q′2.
2. Assume that claim (*) holds for i = 1, 2, . . . , k, k ≥ 1.

This means that (q′1, w, S) ⊢
k
Mdx(t)

(q′2, ε, S
j) if and only if

q′2 = {p : (q, S, w) ⊢k
Mnx(t)

(p, ε, Sj) for some q ∈ q′1}. We have to prove that
claim (*) holds also for i = k + 1.

– if : if (q′1, w, S) ⊢
k
Mdx(t)

(q′2, a, S
l) ⊢Mdx(t) (q′3, ε, S

j) , then there exists a

state q ∈ q′2, where (q, a, Sl) ⊢Mnx(t) (p, ε, S
j), p ∈ q′3.

– only if : if (q0, pref(t), S) ⊢kMnx(t)
(q, a, Sl) ⊢Mnx(t) (p, ε, Sj), then for

each q′1 ∈ Q′, where q ∈ q′1, it holds that (q′1, a, S
l) ⊢Mdx(t) (q′2, ε, S

j),
where p ∈ q′2.

As a special case of claim (*), ({q0}, pref(t), S) ⊢iMdx(t)
(q′, ε, ε) if and only

if (q0, S, pref(t)) ⊢iMnx(t)
(q1, ε, ε). Thus, the theorem holds.

a0

a0 a1 a0

a2 a1

a2

pref(t1) = a2 a2 a0 a1 a0 a1 a0

post(t1) = a0 a0 a1 a2 a0 a1 a2

a0 a0 a0

a0 a1 a0 a2

a2 a1 a1

a2 a1

a2

pref(t2) = a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0

post(t2) = a0 a0 a1 a2 a0 a1 a2 a0 a0 a2 a1 a1 a2

Fig. 10. Trees t1 and t2 from Example 7 along with their prefix and postfix notations

Theorem 6. Given a tree t with n nodes in its prefix or postfix notation, the
deterministic subtree matching PDA Mpds(t) constructed by Alg. 2 and 3 is
made of exactly n+ 1 states, one pushdown symbol and |A|(n+ 1) transitions.
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Proof. Let Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, {n} be an automaton con-
structed from tree t with a prefix notation pref(t) = a1 a2 . . . an over ranked
alphabet A by Alg. 2. We will prove that this automaton is directly analogous to
the string matching automaton and accepts the same language if we ignore the
pushdown operations, which actually do not affect the process of determinisa-
tion as Mpds is an input–driven automaton. From Alg 2 and 3, Mnps(t) has tran-
sitions δ(0, a, S) = (0, SArity(a)) for all a ∈ A and δ(i − 1, ai, S) = (i, ε, SArity(ai)).
The proof is a mutual induction of the following n+ 1 statements:
(1) δ∗(0, w, S) = (0, ε, Sac(w)), w ∈ A∗.
(2) δ∗(0, w, S) = (1, ε, Sac(w)) if and only if w = w1a1, w1 ∈ A∗

(i) δ∗(0, w, S) = (i− 1, ε, Sac(w)) if and only if w = w1a1a2 . . . ai−1 , w1 ∈ A∗

1. Assume that |w| = 0, which means w = ε. Statement (1) holds, since
δ∗(0, ε, S) = (0, ε, S). Statements (i), 1 < i ≤ n+1, do not hold as δ∗(0, ε, S)
contains, from its basic definition, only (0, ε, S).

2. Assume w = w1a, where w1 ∈ Ak, that is |w1| = k and a ∈ A. We may
assume that statements (i) 1 < i ≤ n+ 1 hold for w1, and we need to prove
them for w. We assume the inductive hypothesis for k and prove it for k+1.
(a) There exists a series of transitions (0, w1, S) ⊢∗ (0, ε, Sac(w1)), since

δ(0, a, S) = (0, ε, SArity(a)) are transitions of automaton Mnps.Thus state-
ment (1) is proved for w.

(b) We now prove statements i, where 1 < i ≤ n+ 1:
– If: Assume that w1 = w2a1a2 . . . ai−2, where w2 ∈ A∗ and a =

ai−1. By statement (i − 1) applied to w1, we know from our induc-
tion hypothesis that there exists a series of transitions (0, w1, S) ⊢∗

(i − 2, ε, Sac(w1)). Since for all 1 ≤ j ≤ n there exists a transi-
tion δ(j − 1, aj, S) = (j, SArity(aj)), we conclude that δ∗(0, w, S) =
(i − 1, ε, Sac(w)).

– Only if: Suppose there exists a series of transitions (0, w, S) ⊢∗

(i− 1, ε, Sac(w)). From the inductive assumption we know that there
exists a series of transitions (0, w1, S) ⊢∗ (i− 2, ε, Sac(w1)). By state-
ment (i− 1) applied to w1, we know that w1 = w2a1a2 . . . ai−2. Thus
w = w2a1a2 . . . ai−1, and we have proved statement (i).

Thus, from statements 1, . . . , n+1, if we ignore the pushdown operations, Mpds

accepts the language L = {w.pref(t)}, where w ∈ A∗. Since the subtree match-
ing PDA is directly analogous to the string matching automaton, we can use the
proof from [10, 22] for space and time complexities. ⊓⊔

Theorem 7. Given an input tree t with n nodes, the searching phase of the
deterministic subtree matching automaton constructed by Algs. 2 and 3 isO(n).

Proof. The searching phase consists of reading tree t once, symbol by symbol
from left to right. The appropriate transition is taken each time a symbol is read,
resulting in exactly n transitions. Each transition consumes a constant time be-
cause the time of each pushdown operation is limited by the maximal arity of
nodes. Occurrences of the subtree to find are matched by transitions leading to
the final states. ⊓⊔
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Finally, we note that trees having structure pref(t) = (a1)n−1a0 represent
strings. The deterministic subtree matching PDA for such trees has the same
number of states and transitions as the deterministic string matching automaton
constructed for pref(t) and accepts the same language.

5. Multiple subtree matching

In this section we present a generalization of Problem 1. We deal with the con-
struction of subtree matching PDA over a finite set of trees. The whole concept
is demonstrated with an example.

Problem 2 (Multiple Subtree Matching). Given a tree t and a set of m trees
P = {t1, t2, . . . , tm}, find all occurrences of trees t1, t2, . . . , tm in tree t.

Definition 3. Let P = {t1, t2, . . . , tm} be a set of m trees and pref(ti), 1 ≤ i ≤ m
be the prefix notation of the i-th tree in P . Given an input tree t, a subtree
pushdown automaton constructed over set P accepts all matches of subtrees
t1, t2, . . . , tm in the input tree t by final state.

Similarly as in Section 4, our method begins with a PDA which accepts trees
t1, t2, . . . , tm in their prefix notation. The construction of this PDA is described
by Alg. 4

Algorithm 4. Construction of a PDA accepting a set of trees P = {t1, t2, . . . , tm}
in their prefix notation.
Input: A set of trees P = {t1, t2, . . . , tm} over a ranked alphabet A; prefix nota-
tion pref(ti) = a1a2 . . . ani

, 1 ≤ i ≤ m, ni ≥ 1.
Output: PDA Mp(P ) = ({0, 1, 2, . . . , q},A, {S}, δ, 0, S, F ).
Method:

1. Let q ← 0 and F ← ∅
2. For each tree ti = ai1 ai2 . . . ai|ti|, 1 ≤ i ≤ m, do

(a) Let l← 0
(b) For j = 1 to |ti| do

i. If the transition δ(l, aij , S) is not defined then
A. Let q ← q + 1

B. Create a transition δ(l, aij , S)← (q, SArity(ai
j))

C. Let l ← q
ii. Else if transition δ(l, aij, S) is defined

A. l← p where (p, γ)← δ(l, aj , S)
(c) F ← F ∪ {l}

Example 8. Consider a set of trees P = {t1, t2, t3}, with their prefix notations
being pref(t1) = a2 a2 a0 a0 b0, pref(t2) = a2 b1 a0 a0 and pref(t3) = a2 a0 a0.
The deterministic PDA constructed by Alg. 4 accepting the prefix notation of
trees in P is Mp(P ) = ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A, {S}, δ1, 0, S, {5, 8, 10})),
where mapping δ1 is a set of the following transitions:
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0 1

2 3 4 5

6 7 8

9 10

a2|S 7→ SS

a2|S 7→ SS
a0|S 7→ ε a0|S 7→ ε b0|S 7→ ε

b1|S 7→ S

a0|S 7→ ε a0|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε

Fig. 11. Transition diagram of deterministic PDA Mp(P ) accepting the trees with prefix
notation {a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0} from Example 8

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS)
δ1(2, a0, S) = (3, ε)
δ1(3, a0, S) = (4, ε)
δ1(4, b0, S) = (5, ε)
δ1(1, b1, S) = (6, S)
δ1(6, a0, S) = (7, ε)
δ1(7, a0, S) = (8, ε)
δ1(1, a0, S) = (9, ε)
δ1(9, a0, S) = (10, ε)

The transition diagram of deterministic PDA Mp(P ) is illustrated in Fig. 11.
Fig. 12 shows the sequence of transitions (trace) performed by deterministic

PDA Mp(P ) for trees t1, t2, t3 ∈ P in prefix notation. ⊓⊔

The correctness of the deterministic PDA constructed by Alg. 4, which ac-
cepts trees in prefix notation, is described by the following lemma.

Lemma 2. Given a set of k trees P = {t1, t2, . . . , tm} and their prefix notation
pref(ti), 1 ≤ i ≤ m, the PDA Mp(P ) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, F ), where
1 + min(|t1|, |t2|, . . . , |tm|) ≤ n ≤ 1 +

∑k

j=1 |tj |, constructed by Alg. 4 accepts
pref(ti), where 1 ≤ ti ≤ m.

Proof. By induction on the height of trees t1, t2, . . . , tm:

1. If trees t1, t2, . . . , tm have just one node, a1, a2, . . . , ak respectively, where
Arity(ai) = 0, for all 1 ≤ i ≤ k, then Height(ti) = 0, pref(ti) = ai, δ(0, ai, S) =
(i, ε) ∈ δ, (0, ai, S) ⊢Mp(P ) (i, ε, ε) for all 1 ≤ i ≤ k and the claim holds.
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State Input Pushdown Store
0 a2 a2 a0 a0 b0 S

1 a2 a0 a0 b0 S S

2 a0 a0 b0 S S S

3 a0 b0 S S

4 b0 S

5 ε ε

accept
0 a2 b1 a0 a0 S

1 b1 a0 a0 S S

6 a0 a0 S S

7 a0 S

8 ε ε

accept
0 a2 a0 a0 S

1 a0 a0 S S

9 a0 S

10 ε ε

accept

Fig. 12. Trace of deterministic PDA Mp(P ) from Example 8 for trees in prefix notation
{a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0}

2. Assume that the claim holds for trees t11, t
1
2, . . . , t

1
p1
, t21, t

2
2, . . . , t

2
p2
, . . . , tk1 , t

k
2 ,

. . . , tkpk
where pi ≥ 1 for all 1 ≤ i ≤ k, Height(ti1) ≤ m, Height(ti2) ≤ m, . . .,

Height(tip) ≤ m, m ≥ 0, for all 1 ≤ i ≤ k.
We have to prove that the claim holds also for each tree ti, 1 ≤ i ≤ k, such
that
pref(ti) = ai pref(ti1)pref(ti2) . . .pref(tipi

), Arity(ai) = pi, and Height(ti) ≥
m+ 1:
Since δ(0, ai, S) = (i, Sp) ∈ δ, and (0, a pref(ti1)pref(ti2) . . . pref(tipi

), S)

⊢Mp(ti) (i, pref(ti1)pref(ti2) . . . pref(tipi
), Sp)

⊢∗Mp(ti)
(ji, pref(ti2) . . . pref(tipi

), Spi−1)

⊢∗
Mp(ti)

. . .

⊢∗
Mp(ti)

(ℓi, pref(tipi
), S)

⊢∗
Mp(ti)

(f i, ε, ε)

the claim holds for that tree.

Thus, the lemma holds. ⊓⊔

The deterministic subtree matching PDA for multiple tree patterns in prefix
notation can be constructed in a similar fashion to the subtree matching PDA for
a single pattern. First, the PDA accepting a set of trees in their prefix notations,
constructed by Alg. 4, is used to construct a nondeterministic subtree matching
PDA by Alg. 5. The constructed nondeterministic subtree matching PDA is then
transformed to the equivalent deterministic subtree matching PDA.
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0 1

2 3 4 5

6 7 8

9 10

a2|S 7→ SS

a2|S 7→ SS
a0|S 7→ ε a0|S 7→ ε b0|S 7→ ε

b1|S 7→ S

a0|S 7→ ε a0|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε

a2|S 7→ SS
b1|S 7→ S
b0|S 7→ ε
a0|S 7→ ε

Fig. 13. Transition diagram of nondeterministic subtree matching PDA Mp(P ) con-
structed over trees in set P from Example 9

Algorithm 5. Construction of a nondeterministic subtree matching PDA for a
set of trees P = {t1, t2, . . . , tm} in their prefix notation.
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Nondeterministic subtree matching PDA Mnps(t) = (Q,A, {S}, δ, 0, S,
F ).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) = (Q,A, {S}, δ, 0, S, F ) by Alg. 4.
2. For each symbol a ∈ A create a new transition δ(0, a, S) = (0, SArity(a)),

where S0 = ε.
⊓⊔

Example 9. The subtree matching PDA constructed by Alg. 2 over the set of
trees P from Example 8 is the nondeterministic PDA Mnps(P ) = ({0, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10},A, {S}, δ2, 0, S, {5, 8, 10})), where mapping δ2 is a set of the follow-
ing transitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (0, SS)
δ2(2, a0, S) = (3, ε) δ2(0, b1, S) = (0, S)
δ2(3, a0, S) = (4, ε) δ2(0, b0, S) = (0, ε)
δ2(4, b0, S) = (5, ε) δ2(0, a0, S) = (0, ε)
δ2(1, b1, S) = (6, S)
δ2(6, a0, S) = (7, ε)
δ2(7, a0, S) = (8, ε)
δ2(1, a0, S) = (9, ε)
δ2(9, a0, S) = (10, ε)
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0 0, 1

0, 1, 2 0, 3, 9 0, 4, 10 0, 5

0, 6 0, 7 0, 8

0, 9 0, 10

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a0|S 7→ ε b0|S 7→ ε

b1|S 7→ S

a0|S 7→ ε a0|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε
b0|S 7→ ε
b1|S 7→ S

b0|S 7→ ε

a2|S 7→ SS

b0|S 7→ ε

b1|S 7→ S

b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

a0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

a0|S 7→ ε
b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

a2|S 7→ SS

b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

a0|S 7→ ε
b0|S 7→ ε
b1|S 7→ S

b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SSa0|S 7→ ε
b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

Fig. 14. Transition diagram of deterministic PDA Mdps(P ) constructed over trees in set
P from Example 10

The transition diagram of nondeterministic PDA Mnps(P ) is illustrated in
Fig. 13. ⊓⊔

Theorem 8. Given a set of m trees P = {t1, t2, . . . , tm} and their prefix nota-
tion pref(ti), 1 ≤ i ≤ m, the PDA Mnps(P ) constructed by Alg. 5 is a subtree
matching PDA for tree patterns t1, t2, . . . , tm.

Proof. According to Theorem 2, given an input tree t, each subtree in prefix no-
tation is a substring of pref(t). Since the PDA Mnps(P ) has just states and tran-
sitions equivalent to the states and transitions, respectively, of the Aho-Corasick
string matching automaton , the PDA Mnps(P ) accepts all matches of subtrees
t1, t2, . . . , tm in tree t by final state. ⊓⊔

For the construction of deterministic subtree PDA, we use the transformation
described by Alg. 3 from Section 4.

The deterministic subtree matching automaton Mdps(P ) for a set of trees
P = {t1, t2, . . . , tm} with prefix notations pref(ti), 1 ≤ i ≤ k is demonstrated by
the following example.

Example 10. The deterministic subtree matching PDA for the set of trees P
from Example 8, constructed by Alg. 3 from the nondeterministic subtree match-
ing PDA Mnps(P ) from Example 9, is Mdps(P ) = ({[0], [0, 1], [0, 1, 2], [0, 3, 9],
[0, 4, 10], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10]},A, {S}, δ3, [0], S, {[0, 4, 10], [0, 5],
[0, 8], [0, 10]}), with its transition diagram illustrated in Fig. 14.
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We note that the deterministic subtree matching PDA Mdps(P ) has a very
similar transition diagram to the Aho-Corasick string matching automaton con-
structed for the strings representing the prefix notations of trees in set P from
Example 8 (see also [1, 9, 22]), as can be seen by comparing Figs. 4 and 14.

Fig. 15 shows the sequence of transitions (trace) performed by the de-
terministic subtree PDA Mdps(P ) for the input tree t having prefix notation
pref(t) = a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0. The final states are
{[0, 4, 10], [0, 5], [0, 8], [0, 10]}. Fig. 16 depicts the pattern subtrees from set P
and the input tree t. ⊓⊔

State Input PDS
{0} a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 S

{0, 1} a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SS

{0, 1, 2} a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SSS

{0, 1, 2} a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SSSS

{0, 3, 9} a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SSS

{0, 4, 10} a2 a2 a0 a0 b0 a2 b1 a0 a0 match SS

{0, 1} a2 a0 a0 b0 a2 b1 a0 a0 SSS

{0, 1, 2} a0 a0 b0 a2 b1 a0 a0 SSSS

{0, 3, 9} a0 b0 a2 b1 a0 a0 SSS

{0, 4, 10} b0 a2 b1 a0 a0 match SS

{0, 5} a2 b1 a0 a0 match S

{0, 1} b1 a0 a0 SS

{0, 6} a0 a0 SS

{0, 7} a0 S

{0, 8} ε match ε

Fig. 15. Trace of deterministic subtree PDA Mdps(P ) from Example 10 for tree t2 in prefix
notation pref(t) = a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0.

Theorem 9. Given a set of m trees P = {t1, t2, . . . , tm} over a ranked alphabet
A, the deterministic subtree matching PDA Mpds(P ) is constructed by Alg. 5
and 3 in time Θ(|A|s), requires Θ(|A|s) storage, where s =

∑m

i=1 |ti|, and its
pushdown store alphabet consists of one symbol.

Proof. Since the subtree matching PDA for multiple patterns is directly analo-
gous to the Aho-Corasick string matching automaton (this can be proved from
proof of Theorem 6), we can use the proof from [1] and [26]. ⊓⊔

Theorem 10. Given an input tree t with n nodes, the searching phase of the
deterministic subtree matching automaton constructed by Algs. 2 and 3 over a
set of m trees P is O(n).

Proof. The searching phase consists of reading tree t once, symbol by symbol
from left to right. The appropriate transition is taken each time a symbol is read,

352 ComSIS Vol. 7, No. 2, Special Issue, April 2010



Subtree Matching by Pushdown Automata

a0 a0

a2 b0

a2

pref(t) = a2 a2 a0 a0 b0

post(t) = a0 a0 a2 b0 a2

a0

b1 a0

a2

pref(t) = a2 b1 a0 a0

post(t) = a0 b1 a0 a2

a0 a0

a2

pref(t) = a2 a0 a0

post(t) = a0 a0 a2

a0 a0

a0 a0 a2 b0 a0

a2 a2 b1 a0

a2 a2

a2

pref(t) = a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0

post(t) = a0 a0 a2 a0 a0 a2 b0 a2 a2 a0 b1 a0 a2 a2

Fig. 16. Pattern subtrees from set P and the input tree from Example 10 along with their
prefix and postfix notations

resulting in exactly n transitions. Each transition consumes a constant time be-
cause the time of each pushdown operation is limited by the maximal arity of
nodes. Occurrences of the subtree to find are matched by transitions leading to
the final states. ⊓⊔

6. Subtree matching in postfix notation

In this section we show the dual principle for the postfix notation. Theorems
11 and 12 present the direct analogy of properties of the prefix and postfix
notations. Theorem 13 is analogous to Theorem 3.

Theorem 11. Given a tree t and its postfix notation post(t), all subtrees of t in
postfix notation are substrings of post(t).

Theorem 12. Let post(t) and w be a tree t in postfix notation and a substring
of post(t), respectively. Then, w is the postfix notation of a subtree of t, if and
only if ac(w) = 0, and ac(w1) ≤ −1 for each w1, where w = xw1, x 6= ε.
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0 1 2 3 4 5 6 7

a0|ε 7→ S
a1|S 7→ S
a2|SS 7→ S

a0|ε 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S

Fig. 17. Transition diagram of nondeterministic subtree matching PDA Mp(t1) for tree t1
in postfix notation post(t1) = a0 a0 a1 a2 a0 a1 a2 from Example 6

Theorem 13. Let M = ({Q,A, {S}, δ, 0, S, F ) be an input–driven PDA whose
each transition from δ is of the form δ(q1, a, S

i) = (q2, S), where i = Arity(a).
Then, if (q3, w, ε) ⊢+M (q4, ε, S

j), then j = −ac(w) + 1.

From the above Theorems, we can easily transform Algorithms 1-5 to work
with the postfix notation of trees. The only change required is in the pushdown
operations. All transitions of the form δ(q, a, S) = (p, SArity(ai)) must be changed
to the form δ(q, a, SArity(ai)) = (p, S). The subtree matching PDA also requires
no initial pushdown store symbol, while after processing a valid tree in postfix
notation, the pushdown store contains a single symbol ’S’.

Fig. 17 illustrates the nondeterministic subtree matching PDA Mp(t1) con-
structed from the postfix notation of the tree from Example 6.

Fig. 18 illustrates the deterministic subtree matching PDA Mdps(t1) con-
structed from the postfix notation of the tree from Example 6.

[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a0|ε 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S

a0|ε 7→ S
a1|S 7→ S a2|SS 7→ S

a2|SS 7→ S

a1|S 7→ S
a0|ε 7→ S

a1|S 7→ S

a0|ε 7→ S

a1|S 7→ S

a0|ε 7→ S

a1|S 7→ S

a1|S 7→ S
a0|ε 7→ S

a2|SS 7→ S
a2|SS 7→ S

a2|SS 7→ S
a2|SS 7→ S

Fig. 18. Transition diagram of deterministic PDA Mdps(t1) for tree t1 in postfix notation
post(t1) = a0 a0 a1 a2 a0 a1 a2 from Example 7
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7. Conclusion

We have introduced a new kind of pushdown automata: subtree matching PDAs
for trees in prefix and postfix notations. These pushdown automata are in their
properties analogous to string matching automata, which are widely used in
stringology [9, 10, 22, 26].

Regarding specific tree algorithms whose model of computation is the stan-
dard deterministic pushdown automaton, we have recently introduced princi-
ples of other three new algorithms. First, the tree pattern matching PDA [13,
21] which is an extension of the subtree matching PDA presented in this paper.
Second, the subtree and tree pattern PDAs, which represent a complete index
of a given tree by preprocessing it. Searching for all occurrences of a subtree or
a tree pattern of size m is then performed in time linear to m and not depending
on the size of the preprocessed tree [17, 19, 21]. These automata representing
indexes of trees are analogous in their properties to the string suffix and factor
automata [9, 10, 22, 26]. Third, a method on how to find all repeats of connected
subgraphs in trees with the use of subtree or tree pattern PDAs [21, 20]. More
details on these results and related information can also be found on [3].
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8. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Ti-

son, S., Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (2007), release October, 12th 2007

9. Crochemore, M., Hancart, C.: Automata for matching patterns. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2 Linear Modeling: Back-
ground and Application, chap. 9, pp. 399–462. Springer–Verlag, Berlin (1997)

10. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific, New Jersey
(1994)

11. Dubiner, M., Galil, Z., Magen, E.: Faster tree pattern matching. J. ACM 41(2), 205–
213 (1994)
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J., Žďárek, J. (eds.) Proceedings of the Prague Stringology Conference 2009. pp.
160–172. Czech Technical University in Prague, Czech Republic (2009), available
on: http://www.stringology.org/event/2009
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