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Abstract. Genetic Algorithms (GA) is a family of search algorithms based
on the mechanics of natural selection and biological evolution. They are
able to efficiently exploit historical information in the evolution process to
look for optimal solutions or approximate them for a given problem, achiev-
ing excellent performance in optimization problems that involve a large
set of dependent variables. Despite the excellent results of GAs, their use
may generate new problems. One of them is how to provide a good fitting
in the usually large number of parameters that must be tuned to allow a
good performance.

This paper describes a new platform that is able to extract the Regular
Expression that matches a set of examples, using a supervised learning
and agent-based framework. In order to do that, GA-based agents decom-
pose the GA execution in a distributed sequence of operations performed
by them. The platform has been applied to Language induction problem,
for that reason the experiments are focused on the extraction of the reg-
ular expression that matches a set of examples. Finally, the paper shows
the efficiency of the proposed platform (in terms of fitness value) applied
to three case studies: emails, phone numbers and URLs. Moreover, it is
described how the codification of the alphabet affects to the performance
of the platform.
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1. Introduction

Sometimes system administrators, programmers or the data mining community
need to retrieve some strings which satisfy a given pattern, for processing logs,
or detecting spam. Instead of review all the information to find those strings,
users can use some pattern matching tools. One of them is called Regular
Expressions, or regex [8]. Although they provide a powerful and flexible notation
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to define and retrieve patterns from text, the syntax and the grammatical rules
of these regex notations are not easy to use, and even to understand.

Language Induction [10, 20, 5] is a well known problem in Machine Learning
and it consists of learning a grammar from a set of samples. There are several
approaches from the Formal Languages and Theoretical Computer Science
perspectives [23], however it is still an open problem. A recent approach to lan-
guage induction is provided by the Evolutionary Computation community, where
regex are evolved by means of evolutionary algorithms like Genetic Program-
ming (GP) [15] or Genetic Algorithms (GAs) [19].

In this paper we present a method based on GA able to generate automati-
cally regex from a set of positive and negative samples and we propose a new
chromosome codification based on messy Genetic Algorithms (mGA) [11] and
crossover operators. To carry out with the experimental phase, an existing mul-
tiagent framework, named Searchy [3], is adapted to allow the implementation
of ours GA-based agents. This framework has a double goal. On one hand, to
reduce the execution time of the experiments and, on the other hand, to im-
prove the search capacity in the space problem considered, allowing agents to
find better solutions.

The paper is structured as follows. First, a review of Regex, Variable Length
Chromosomes, mGA and MAS is provided. Sections 3 and 4 present the codifi-
cation and crossover operators respectively. The agent-based framework used
in the experimentation is presented in section 5. Then, they are evaluated in
section 6. Finally, some conclusions and future research lines are outlined.

2. Introduction

The Intelligent Agents and Multi-Agent Systems (MAS) research fields have
experimented a growing interest from different research communities like Artifi-
cial Intelligence (AI), Software Engineering, Psychology, etc... Those research
fields try to solve two distinct goals.

The first goal is to define and design software programs (usually called
agents) which implement several characteristics like autonomy, proactiveness,
coordination, language communication, etc... This goal tries to obtain an adap-
tive and intelligent program which is able to provide the adequate request to the
inputs received from the environment [14].

The second goal is to create societies of agents. It is possible to coordinate
several of those agents to build complex societies. When considering those so-
cieties new issues arise, like social organization, cooperation, knowledge rep-
resentation, coordination, or negotiation. In this situation it is possible to speak
about Multi-Agent Systems and the previous problems can be studied within
different perspectives [16].

One of the aims of this paper is to study the use of a MAS within a GA frame-
work. The merger of those perspective is not a new research area. There are
some work related with this idea as [22, 17, 18, 9]. Nevertheless, the approach
taken on [17, 18, 9] is quite different from the one of this work. While the aim, in
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the cited work, is the use of a MAS that benefits from a Genetic Algorithm, in
this work the roles are interchanged, and Genetic Algorithm is benefited from
the MAS, to evolve regex.

2.1. A Brief Introduction to Regular Expressions

Regular Expressions can be described as a particular kind of notation for de-
scribing sets of character strings. They provide a compact and expressive no-
tation for describing patterns of text. When a particular string is in the set de-
scribed by a regex, it is often said that the regex matches the string. Most of
those characters in the pattern simply match themselves in a target string, so
the regular expression ”www” matches that sequence of three letters wherever
it occurs in the target. However, very few characters are used in patterns as
meta-characters to indicate repetition (i.e. +), grouping (i.e. |), or positioning
(i.e. $). The powerful pattern matching facilities provided by regex in different
programming languages such as Perl, PHP, JavaScript, PCRE, Python, Ruby,
or Java have not been conveniently exploited by the programmers or the com-
puter scientists due the difficulty to write and understand the syntax, as well as
the semantic meaning of those regular expressions.

Following the basic wildcards from IEEE POSIX Basic Regular Expressions
(BRE) standard, and POSIX Extended Regular Expressions (ERE) notation,
four wildcards are considered in this work:

– Plus +. Repeats the previous item once or more. Greedy, so as many items
as possible will be matched before trying permutations with less matches
of the preceding item, up to the point where the preceding item is matched
only once.

– Start *. Repeats the previous item zero or more times. Greedy, so as many
items as possible will be matched before trying permutations with less matches
of the preceding item, up to the point where the preceding item is not
matched at all.

– Question mark ?: Makes the preceding item optional. Greedy, so the op-
tional item is included in the match if possible.

– Pipe |: Causes the regex engine to match either the part on the left side, or
the part on the right side. Can be strung together into a series of options.

An example might be useful to better understand regex. The regex pet only
match the string ”pet”, however if the plus symbol is introduced, pet+, the regex
matches strings ”pet” as well as ”pett” and ”petttt”. If the start symbol is used
instead of the plus, the regex pet* matches all the previous strings as well as
”pe”. If the question mark is used, the regex pet? only matches two strings,
”pe” and ”pet”. Finally, the regex ”pet|r” can match ”pet” and ”per”. It should be
noticed that meta-characters only affect the precedent character. In case it is
needed to affect a group of characters, a parenthesis should be used.

The study of extracting the regex that describes a given set of examples is
not new. Some authors have used Genetic Algorithm to perform this task [7],
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[12], [2], nevertheless this work is completely different due to the use of messy
Genetic Algorithm with a Multi Agent platform.

The following table, Table 1, shows an example of a regex that describes
a basic URL. This is a good example the regex contains all the wildcards ex-
plained in this section. Table lists some strings matched by the regex and some
other which are not recognized.

Regex (http(s)?|ftp)://(a-z)+(\.(a-z)+)*\.com
Recognize http://myweb.com

https://my.web.is.secure.com
ftp://webftp.com

Not Recognize http://myweb01.com
ftps://.com
ftp://WeBfTp.com
https://my..web.com

Table 1: Example of a regex and the strings that the regex matches and the
strings not recognized.

2.2. Variable Length Chromosomes and messy GA review

GAs are part of the Evolutionary Computation, a computing paradigm inspired
in the biological process of evolution. It can be considered as a stochastic
search algorithm that represents the solutions of a problem as chromosomes
using some codification. Chromosomes explore the search space through two
genetic operators: mutation and sexual reproduction (crossover). The metric of
how well a chromosome solves a problem is given by a fitness function. The
genetic material contained in the chromosome is named genotype meanwhile
the realization of such genetic material is referred as phenotype.

The number of variables involved in a GA problem is closely related to the
chromosome length. Sometimes it is possible to determine the number of pa-
rameters that certain problem requires, and therefore to determine the chro-
mosome length to introduce in the GA. However, there are many problems in
which such approach is not an adequate solution because it is not possible
to limit the size of the solution. The number of nodes in a neural network or
the size of an evolved program in GP [15] are not easy to set prior to the ex-
ecution of the algorithm. Of course, it is possible to set a maximum number
of variables. But this approach sets an arbitrary limitation to the complexity of
the solution. A more desirable solution is to use an algorithm able to adapt the
size of the chromosome dynamically. This is the goal of the Variable-Length
Genomes (VLGs) [13].

The main difference between fixed-length chromosomes and VLGs is the
crossover operator. The simplest crossover used in VLGs is cut and splice.
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Given two chromosomes (likely with different lengths), this crossover operator
selects a random point in each chromosome and use it to divide them in two
parts, then the parts are interchanged.

An early work in VLGs is the one developed by Goldberg with the messy
GA [11]. It is a variable-length, gene position independent representation. Ba-
sically, mGA decouples the position of the genes from the phenotype that they
represent and thus any gene can be placed anywhere within the chromosome.
It is done representing each bit with a tuple (locus, value) where the position,
or locus, of the bit is specified as well as its value. Common genetic operators
such as bit inversion mutation and cut and splice crossover are then applied to
the chromosome constructed in this way.

Codification in mGA may generate two special situations that must be han-
dled. Since the locus is coded within the allele, it might happen that not all
the genes are defined, generating a problem called underspecification. Original
mGA handles this situation by means of templates. A second problem arises
when there are several alleles coding the same gene, i.e., the overspecification.
mGA solves overspecification by means of a first-come-first-served philosophy.

mGA defines three phases: initialization, primordial and juxtapositional phase.
The initialization phase deals with the generation of the initial population that
feed the GA. It is composed by the set of all chromosomes of size k, where k
is the gene size. This algorithm generates an unnecessary number of individu-
als, so the second phase filters the individuals trying to select individuals with a
high density of good building blocks. The selected individuals are used then as
the initial population in the GA. The generational based evolution is done in the
juxtapositional phase.

3. Chromosome codification

There are a number of questions that must be answered in order to successfully
implement a GA. One of these questions is how to represent in the chromosome
the problem that is addressed. In this section three codifications able to repre-
sent a regex in a binary chromosome are presented: one based on a plain VLG
and two codifications inspired in mGA.

The lexical approach that we have adopted requires an alphabet Σ of atomic
regex xi such as Σ = {x0, x1, ..., xN}. Σ is constructed using the positive and
negative samples. Atomic regex are identified applying Lempel-Ziv law [25].
This law states that texts are not composed by a uniform distribution of tokens,
instead, a few tokens appear many times while many tokens have a reduced
weight in the text. We build tokens using a set of symbols to divide the samples
and then, those tokens that appear more times are selected to be part of the
alphabet. The second subset of Σ is composed by a fixed set of symbols. This
is an automatic and domain independent method that can be used with almost
any codification schema.

ComSIS Vol. 7, No. 3, June 2010 665



David F. Barrero et al.

3.1. Plain Variable-Length Genomes

Despite the inherent difficulty to determine a priori the length of the regex, it is
possible to imitate a VLG by means of an island model [1] with immigration of
individuals. It can take benefits of a parallel algorithm implemented with agents,
however the population must be increased and it imposes a maximum length
for the chromosomes. In this context selecting a codification able to deal with
VLG seems to be a natural solution.

A simple way to compose and evolve the set of atomic regex in Σ is the tra-
ditional VLG, a binary chromosome of arbitrary length that is recombined using
cut and splice, as it was described in sec. 2.2. The correspondence between
the genes and the atomic regex in Σ is done as follows. Each gene contains
lg bits that code an integer number i < 2lg , then the gene represents the ele-
ment ximodN of Σ. Initial population has chromosomes randomly created with
lengths uniformly distributed between a minimum chromosome length lmin and
a maximum length lmax. The rest of the paper will use the term plain VLG to
mean the codification schema described in this section.

3.2. Modified messy GA and biased messy GA

Plain VLG provides a simple variable-length genome coding, however variable-
length genomes usually present some problems. One of them is the tendency
to bloat the chromosome length, as Chu observed [4]. Another problem is the
genetic linkage, i.e., the tendency of some alleles to remain joint due, for exam-
ple, to crossover biases [21]. A solution to genetic linkage is mGA because it
decouples the position of the gene in the chromosome from its semantics. It is
still a simple codification and it seems to be a good choice to study how genetic
linkage affects the regex evolution in VLGs. However, some modifications are
needed in order to use mGA in the context of our work.

Like original mGA does, in our proposal genes are coded as (locus, value),
however value follows the same coding scheme as the one described in 3.1
instead of being a single bit. It represents a symbol xi ∈ Σ. We have integrated
the original mGA initialization and primordial phases into one phase that gener-
ates Σ from the data set using Lempel-Ziv law, following the same philosophy
that the used with VLG codification. With this approach there is no need to im-
plement the primordial phase because the building blocks are integrated in Σ.

Initial mGA and revised versions of the algorithm such as fast mGA [6],
do not generate the initial population randomly. There is rather a slight control
about how to initialize them, as it was described in sec. 2.2. We propose also a
modification of the initialization. Given a random number l uniformly distributed
between lmin and lmax, a chromosome with l/lg genes is created. value is filled
with a random value that codes an atomic regex following the same mechanism
than plain VLG, while locus takes a value from 0 to l/lg − 1.

A second modification to the mGA named biased messy GA (bmGA) is also
proposed. The biased messy GA instead of initializing the loci field with posi-
tions from 0 to l/lg − 1, they are initialized with a biased loci, and thus their
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values range from bias to l/lg + bias − 1, where bias can take several values.
However, we have used bias = 2l

locus

/2, i.e., alleles begin to be placed in the
middle position.

4. Recombination operators

The main role of the crossover is to recombine good chunks of chromosomes
generating offspring [24] with better genetic information. Some authors have
argued that the crossover performs better when it recombines two similar chro-
mosomes [13], however this point is controversial and there are not a general
consensus in the GA community. In the context of regex evolution, the disrup-
tive properties is crossover is a main issue because of the rough nature of the
fitness, a very small difference in the chromosome might lead to a dramatic
change in the fitness. Following these ideas it seems natural to hypothesize
that using a less destructive crossover operator will increase the performance
of the GA in regex evolution.

The goal of the new crossover mechanism is to use the knowledge about
the codification to recombine chromosomes in a less destructive way compared
with the cut and splice crossover. Crossover is not directly performed with the
chromosomes, instead an intermediate table is constructed. Our crossover pro-
posal is divided in five phases as described.

1. Integer chromosomes construction. Alleles in the chromosomes (including
their loci and values) are transformed into an integer representation. The
order in which the alleles appear is respected.

2. Intermediate table construction. The intermediate table is a table composed
by three columns and as many rows as the sum of not underspecified genes
in the chromosomes. One column contains the sorted loci while the latter
two columns contain each one the values (if any) defined for such locus.

3. Crossover. The intermediate table can be seen as two chromosomes, and
thus any traditional crossover operators (one point, two points and uniform
crossover) can be applied just interchanging the values of the chromosomes
columns in the table.

4. Recombined integer chromosomes construction. Two integer chromosomes
are constructed using the recombined intermediate table, it is the inverse
operation of the phase two. It should be noticed that because of the lack of
genetic linkage the position of the alleles is irrelevant for the crossover and
thus their position can be changed without loss of relevant information.

5. Recombined binary chromosomes construction. The integer chromosomes
are representated with a binary codification.

An example of modified one-point crossover is shown in Fig. 1. Two chro-
mosomes are recombined in the example. Both use seven bits to code each
gene, divided in three bits for the locus and four bits for the value. Chromosome
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Fig. 1: Modified one point crossover example

A is composed by four alleles and chromosome B is composed by five alleles.
Chromosome A and B present overspecification as well as underspecification.
The intermediate table is constructed and, as it can be seen in the figure, un-
derspecified genes correspond to empty cells. On the other hand, overspecified
genes correspond to cells with several sorted values. A random point is used
to interchange cells in the table, generating the recombined chromosomes. Any
other traditional crossover mechanism may also be applied.

5. The GA evaluation framework

Due to the high number of GA runs that must be performed and the parallel na-
ture of the GA, the set of experiments were run in a MAS that decomposes the
GA evolution in a sequence of operations performed by different agents. This
MAS has been deployed using the Searchy platform [3]. In this way the exper-
imentation can be divided into different simple operations that are composed
and executed in parallel, increasing the performance and the search capability
of the algorithm.

There are six roles defined in the MAS: control, population, crossover, fit-
ness evaluation, codification and alphabet agent. Each role is implemented us-
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ing a specialized agent and there are several agents to implement crossover
and codification. A description of each role is briefly presented.

1. Control Agent. It is responsible for the execution of the experiment, and
has to fulfill some tasks, such as the initialization of Population Agents and
control the execution of the experiments. It also gathers measures from the
populations and generate statistics, averaging the measures of all the GA
executions.

2. Population Agent. This agent contains a population of individuals repre-
sented by a binary chromosome. It also performs the generational evolution
of the population using the services provided by the crossover, fitness eval-
uation and coding agents services.

3. Crossover Agent. A crossover agent is an agent that performs a crossover
between two chromosomes. Actually, there are four different crossover agents
that implement the four crossover operators under study. Cut and splice
crossover can be performed in any codification under study while modified
one, two and any point crossover requires a mGA or bmGA.

4. Fitness Evaluation Agent. This is an agent that, given a string regex is able
to evaluate its extraction capabilities using a training set. It should be no-
ticed that since it takes a string as input, this agent in not affected by the
chromosome codification.

5. Codification Agent. The codification generates the phenotype associated
to a given chromosome, i.e., it transforms a chromosome into a string that
contains a regex. This regex is used by the Population Agent prior to eval-
uate any individual’s fitness. There are two codification agents, the Plain
VLG Coding Agent and the mGA Coding Agent. Since the only difference
between mGA and bmGA is the initialization of the populations there is no
need to use a bmGA Coding Agent.

6. Alphabet Agent. The alphabet agent takes as input the set of positive exam-
ples and using the Lempel-Ziv law identifies a set of tokens that are used to
generate the atomic regex alphabet. The alphabet is used by the Codifica-
tion Agents to generate the string regex.

Fig. 2 depicts the MAS architecture. First, the Control Agent (1) initializes
several Population Agents (2) and associate each population with a Crossover
Agent (3) and a Codification Agent (4). In this way each Population Agent con-
tains an experiment involving a certain crossover operator and codification.
Once the Population Agents have been initialized they evolve their populations
for a number of generations, then they return to the Control Agent several mea-
sures. The Control Agent repeats this process a given number of times and
then averages the measures.

The Alphabet Agent (5) reads the positive examples and generates the al-
phabet once, then it is provided to the Coding Agents which set a correspon-
dence between each element in the alphabet and the codification used in the
genome. It should be noticed that no agent with the exception of the Coding
Agents need to know how the chromosome is coded, they manipulate the chro-
mosome as a sequence of bits. The only agent that does not require a binary
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Fig. 2: MAS architecture used in the evaluation of the proposed crossover
operators and codifications.

chromosome is the Fitness Agent (6) because it receives the regex in form of
string, instead of a binary chromosome.

6. Experimental study

This section describes the behaviour and extraction capabilities of the coding
and crossover mechanisms described in sections 3 and 4 using a MAS.

6.1. Experimental setup

Experiments have been carried out in three phases: parameter tuning, codifi-
cation and genetic regex. In the first one, several GA runs are performed with
different parameters to select the optimum parameters in order to use them in
the remaining experiments. Then the codification (VLG, mGA and bmGA) and
genetic operators (modified one-point, two-points and uniform crossover) pre-
sented in this paper are studied.

Three case studies are used in the experiments where regex able to extract
emails, phone numbers and URLs are evolved. These are three well known
problems in data mining literature. Each case study uses a dataset with positive
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examples that have been divided into a training set and a testing set. Meanwhile
the negative examples are shared among the study cases. Due to the stochastic
nature of the GAs, each experiment has been run one hundred times, and the
data has been averaged.

The fitness evaluation that has been used in all the experiments can take
values from 0 to 1, where 1 is the maximum fitness that any chromosome can
achieve. The calculus of the fitness is performed as follows. For each positive
example the proportion of extracted characters is calculated. Then, the fitness
is calculated subtracting the average proportion of false positives in the negative
example set to the average of the characters correctly extracted. In this way, the
maximum fitness that a chromosome can achieve is one, and it happens when
the phenotype has extracted correctly all the elements of positive examples
while no element of the negative examples has been matched. Let us name it
as ideal individual. Then, an ideal individual is able to extract correctly all the
elements of positive examples while no element of the negative examples is
matched.

6.2. Experimental results

The first experimental phase is a study about the behaviour of the algorithms
under study under different parameter settings, whose aim is to select the GA
parameters. Results are shown in Table 2. Optimum parameter values are sim-
ilar for all the investigated algorithms with one notable exception, the mutation
probability. Algorithms that use cut and splice crossover operator (VLG and
bmGA cs) have an optimum mutation probability around one order of magni-
tude lower than the others algorithms (bmGA with any form of our proposed
crossover). The higher disruptive capabilities of cut and splice operator com-
pared to the proposed crossover operator may explain this difference. Parame-
ters shown in Table 2 are the ones used along the rest of the experimentation
described in this paper.

A second set of experiments were executed to study the performance of the
three described codifications. In order to obtain comparable results, a cut and
splice recombination operator has been used in all the experiments belonging to
this second experimental stage. The three case studies yield similar experimen-
tal results, as can be seen in Fig. 3. Results suggest that plain VLGA achieves
higher best fitness, however Fig. 3(b) shows, in generation 60, a slightly higher
fitness for bmGA. In any case, plain VLG increases its best fitness faster than
messy codifications due to its smaller chromosome: plain VLG does not need
to codify the locus.

Compared to mGA, bmGA performs slightly better, specially in the phone
numbers case study (see Fig. 3(b)). The better performance of bmGA com-
pared to mGA in our experiments can be explained by the dynamics of the con-
struction of the phenotype. Using a pure mGA, the first position of an atomic
regex is 0, and thus the regex cannot be expanded to the left because there is
no natural number lower than 0. BmGA places the first regex in bias and thus by
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Table 2: Parameters for the experiments carried out using a basic VLG (VLG),
bmGA with cut and splice crossover (mbGA cs), bmGA with modified
one-point, two-points and uniform crossovers (bmGA one, bmGA two and
bmGA uni)
Settings VLG bmGA cs bmGA

one
bmGA
two

bmGA uni

Mutation probability (Pmut) 0.005 0.002 0.02 0.01 0.015
Population size (n) 50 50 50 50 50
Tournament size (t) 3 3 3 3 3
Min. chromosome length
(lmin)

4 9 9 9 9

Max. chromosome length
(lmax)

40 90 90 90 90

Gene length (lg) 4 9 9 9 9
Loci length (lloci) - 5 5 5 5
Values length (lvalues) - 4 4 4 4
Crossover probability (P c) - - - - 0.3

Table 3: Comparison of crossover operators for email regex induction: Cut and
splice crossover (cs), modified one-point (one), two-points (two) and uniform
crossovers (uni).

cs one two uni
Best fitness 0.96 0.94 0.9 0.94
Avg. fitness 0.58 0.42 0.58 0.46
Prob. ideal 0.86 0.78 0.64 0.77

Table 4: Comparison of crossover operators for phone number regex
induction: Cut and splice crossover (cs), modified one-point (one), two-points
(two) and uniform crossovers (uni).

cs one two uni
Best fitness 0.99 0.97 0.95 0.98
Avg. fitness 0.58 0.43 0.6 0.43
Prob. ideal 0.90 0.77 0.66 0.80
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Fig. 3: Comparison of codifications in regex evolution. Best individual and
average fitness are shown.

means of mutation and crossover regex can grow to the left, avoiding premature
convergence.

The third group of experiments deals with the empirical study of several
crossover mechanisms for messy algorithms. Experiments showed that bmGA
performs better than mGA, and therefore bmGA is used in this section to com-
pare several crossover operators, including cut and splice and the proposed
operators described in sec. 4. Tables 3 and 4 show the best fitness, mean fit-
ness and probability of finding an ideal individual for both case studies being
investigated. Results show that the crossover operator has a limited effect in
the fitness. Cut and splice seems to outperform the other operators, however it
would be desirable to use hypothesis contrast to proof it.

The evolution of best and average fitness for the crossover operators under
study are depicted in Fig. 4 for the three study cases: email (a), phone num-
ber (b) and URL evolution (c). It can be seen that the crossover operator has a
limited effect the in fitness evolution, cut and splice performs slightly better that
the other operators, however there is a small difference. The operator that per-
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Fig. 4: Dynamics of fitness for crossover operators under study with a bmGA
codification.

forms worse is the two points crossover operator, while there is no substantial
difference between the modified one-point and uniform crossover.

7. Conclusions and future work

We have presented a method to generate regular expressions using supervised
learning and an agent based testing framework. The distributed testing frame-
work used has been a satisfactory approach due to the enhanced performance
and easy composition of tasks involved in the GA. Additionally a brief empiri-
cal analysis of how different codifications and crossover mechanism influence
the evolution of regex has been presented. The set of experiments carried out
showed that the best performance is achieved with a direct codification of the
alphabet using a plain VLG.

These results leads us to conclude that there are some intrinsic limitations
in the evolution of regex regardless of the codification and crossover operator
used. The main one is the linear nature of GAs that incited us to use a lexico-
graphical codification of regex, there is not a trivial way to code regex operators
that affect a groups of characters or nested operators. From this point of view, it
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seems that the use of pure GAs to evolve grammars and languages has serious
constrains.
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