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Abstract. Emergence is a key element in the research of multi-agent
systems. Emergent properties provide higher level features to a system
formed of simpler individuals. So far, emergence has been studied mostly
through systems formed of reactive agents — that are easier to design and
implement. As computational power increases and even small devices
become more capable, cognitive agents become a promising solution for
more complex problems. This paper presents a multi-agent system that
uses cognitive agents and that is designed to manifest emergent prop-
erties: a data storage system that assures distribution and replication of
data as emergent properties, without the need for these features to be
controlled in a centralized way.
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1. Introduction

Although emergence and self-organization have been the subject of research
for a long time, it is only relatively recently that they have come to attention in
the field of multi-agent systems (MAS). Its role in MAS is crucial, as it is a con-
cept that fits perfectly with the agent-oriented paradigm and leads to important
advantages.

Several definitions of emergence exist [4] but none is yet generally accepted.
Many times emergence is defined by its effect — the spontaneous formation of
patterns in the structure or behaviour of certain systems.

In the context of a large number of agents, forming a complex system, emer-
gence offers the possibility of obtaining a higher level function or property by
using agents with lower level implementations. The use of emergence and self-
organization allows for a considerable reduction in the complexity needed for
the individual agents, therefore they can run on simpler and smaller devices.
Moreover, self-organization leads to properties like robustness, flexibility, adap-
tivity and scalability.

Many recent papers on emergence and multi-agent systems deal with emer-
gent properties and behaviour in systems formed of a large number of reactive
agents. Reactive agents are used because they are simple and need only very
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limited computational capacity, but emergent functions may be more complex
and the structure is robust [3, 20, 38].

Nowadays, the capabilities of even very basic computing devices have con-
siderably increased, allowing for a much more complex internal structure of
agents — the possibility to hold reasonable amounts of data and to have a more
nuanced behaviour. Cognitive agents have knowledge about the surrounding
environment, have goals they desire to fulfill, make plans and take action in or-
der to fulfill them. There is important research on emergence in cognitive agent
systems, but there is still much room for improvement.

One of the domains of application for agent-based self-organizing systems
is Ambient Intelligence (or Aml) [11]. Software agents (particularly cognitive
agents) are considered as a very adequate paradigm for Aml [28], due to the
properties of agents: autonomy, proactivity, reactivity, adaptivity and reasoning.
A system for Aml must deal with a great number of interconnected devices
(sensors, actuators, mobile phones, laptops, desktop computers, "smart” appli-
ances), and needs to assist the user with daily activities. Most times assistance
is performed by providing the user with interesting information. In the same time,
the system must be robust and resilient to failure, while being decentralized, so
an approach based on self-organization fits the requirements [6, 16, 17].

The purpose of this paper is to study emergent properties in a multi-agent
system formed of cognitive agents, that is, study how such a system should be
designed in order to obtain global, emergent, properties. The long-term goal
of this research is to apply the results to the design of a middleware for Ami
that facilitates the distribution of information through a network of devices, in a
self-organized manner.

A system of cognitive agents used for the storage of data has been designed
and implemented. While treating, at the time, a very specific case, this prototype
makes a good framework for the study of emergent properties. It was designed
with the purpose of manifesting emergent properties like uniform distribution
and availability of data. Individual agents were given local goals that do not
directly imply that the data is uniformly distributed or that data is not completely
lost. No agent has the capability to have a global image on the system or even
on a significant part of it. Knowledge of the agents is limited to beliefs about
their immediate or very close neighbours. Yet the system as a whole keeps
data well replicated and distributed.

This work presents the design of a system that satisfies the requirements
above, using techniques of self-organization and emergent properties. The pre-
sented experiments were performed not necessarily to show how the system
performs under heavy loads or if it is resilient to failure (although we expect it
to), but to show a kind of global behaviour that can be obtained by local inter-
action, in the context of using cognitive agents.

A practical application to the studied system would be, for instance, a net-
work of sensors in a building. The sensors have low computational capabilities
so their behavior must be simple and use little memory. They sense events in
the environment, like temperature or the presence of people. The system is
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completely decentralized, but information must be available for retrieval from
any of the sensing devices. Therefore, sensors aggregate their sensor infor-
mation into larger chunks of data and “insert” it into the system, which, by
using only local information and communication between neighbour sensors,
distribute the data and make it uniformly available throughout the building. This
is only an example. The system is generic and was built to fit a greater number
of possible applications.

The paper is organized as follows. Section 2 is dedicated to related work in
the field of emergence and multi-agent systems. Section 3 presents the main
topic of this paper: a cognitive multi-agent system designed to manifest emer-
gent properties. Section 4 describes the results obtained from experiments. The
last section is dedicated to conclusions.

2. Related Work

What we know is that emergence appears in the context of complex systems
[1] — systems composed of a large number of interacting individual entities.
Emergence needs two levels of perspective: the inferior, or micro level of the in-
dividual entities and the superior, or macro level of the whole system. A simple
definition is that "emergence is the concept of some new phenomenon arising
in a system that wasn't in the system’s specification to start with” [36]. A more
elaborated definition is that "a system exhibits emergence when there are co-
herent emergents at the macro-level that dynamically arise from the interactions
between the parts at the micro-level. Such emergents are novel with respect to
the individual parts of the system” [8]. An "emergent” is a notion that can repre-
sent a property, a structure or a behaviour that results from emergence.

The essence of emergence is not actually the novelty or the unexpected-
ness of the emergent — as these will fade at later experiments although the
emergents will stay the same — but the difference between the description of
the individual and the description of the emergent, from the point of view of an
observer [36,29]. If the minimal description of the individual is taken, it can-
not be used to describe the emergents resulting from the system, therefore the
emergent is considered as novel and, potentially, unexpected.

There are a few important features of emergence [8, 13, 18]:

— emergence occurs out of the interactions between the parts of a complex
system;

— emergence is defined in relation with two levels — it is manifested at the
higher level, arising from interactions at the lower level;

— the representation of the emergents cannot be reduced to the specification
of the individuals;

— emergents only arise after a certain time in which the system has evolved;

— once they occurred, emergents will maintain identity over time;

— emergents arise without any centralized or exterior control;
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— the emergent phenomenon is robust and flexible, i.e. it is not influenced by
damage on the system (even if the emergent is temporarily not observable,
it will arise again as the system evolves).

In the field of multi-agents systems, most examples that demonstrate emer-
gent properties use reactive agents [35]. This is because they are easier to
implement and control, and they are suitable for small devices with low com-
putational power. But, more than anything, systems of reactive agents are eas-
ier to predict and to design so that they will manifest self-organization or other
emergent properties. Notable examples of emergents in reactive agent systems
relate to the formation of a certain geometrical or geometry-related structure
or behaviour. Self-organization is reached by mechanisms that are usually in-
spired by nature and the behaviour of animal societies (generally insects) [22].

For example, "smart dust” uses attraction and repulsion forces and simple
leader election algorithms to dispose individuals in a circular shape, or in a
lobed shape, that is resilient to structural damage [3, 21, 38]; "spider” agents
roam through the pixels of an image and use stigmergy to mark the different ar-
eas of the image [5]; local behaviour can be used for the gathering of resources
in a single area [30], for the foraging of food or the transportation of loads [37];
in a very interesting example of dynamic self-organized behaviour, agents es-
tablish, by means of emergent coordination, traffic directions through narrow
corridors for the transportation of resources between two areas [25].

Although reactive agent systems may be very useful, there are many ad-
vantages that a cognitive agent has over a reactive agent. First, it is proactive.
Even if there are no signals, perceptions or stimuli from the environment, a cog-
nitive agent may act by itself, taking action according to its objectives. Second,
a cognitive agent is aware of its situation and may reason about it. It is aware
of what it is supposed to fulfill as final goal and is capable of making plans and
taking action towards the realization of its goal. The cognitive agent can use
its experience and information about the environment and the consequences of
past actions to develop a better plan every time a similar situation occurs.

Ricci et al. support the concept of cognitive stigmergy [32], that is inspired
from natural, reactive, self-organization (stigmergy, introduced by Grassé [14])
but is using cognitive agents and a more complex environment. The environ-
ment is composed of artifacts that agents are using and in relation to which
they make annotations. The usage of shared resources in the environment by
one agent driven by local goals influences the other agents that have access to
the resource, leading to feedback and eventually to organization. The research
shows encouraging results in applying the concepts from self-organizing reac-
tive architectures to cognitive agent systems.

Other studies of emergent behaviour in cognitive agents exist. Emergence of
norms in a social game is possible through social learning [15, 34]. Gleizes et al
show that local cooperative behaviour of cognitive agents can lead, by means of
emergence, to better system-wide results [12]. The study is continued, using the
AMAS (adaptive multi-agent system) technology as a framework that facilitates
emergent functions based on cooperation [7].
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However, the use of cognitive agents in self-organizing systems is still very
reduced. While, in the present, numerous real-life applications of self-organiza-
tion exist [27], they are based on reactive behaviour of the individual entities. It
is true that these systems are easier to verify and control, and it is also true that
even in reactive agent systems it is hard to find a good balance between explic-
itly designed behaviour and implicit, emergent behaviour [26], but the features
of reactive systems are limited by the absence of reasoning in agents.

Besides taking inspiration from biological systems, there is also another ap-
proach to the design of self-organization, that is used mostly in wireless sensor
networks. WSNs use simple individual units and, more importantly, need to con-
sume little power. This approach is also many times validated formally, not only
by simulation. It consists of different algorithms used for routing, resource allo-
cation, structure formation, synchronization, power conservation and resilience
[10,24]. Bernadas et al. demonstrate communication services based on this
type of self-organizing algorithms, with individual agents having a more com-
plex internal behaviour and manifesting features like proactivity and a certain
amount of reasoning [2]. A model for a self-organizing system for communi-
cation systems is proposed by Marinescu et al., using cognitive agents that
have local goals and specific available actions. The model is verified formally
and relevant results are shown [23]. However, these models address particular
concerns in the functionality of a system and are not very flexible. It is a con-
siderable problem to build a model that will address more than one concern at
a time, and in a generic manner [23, 24].

It is worth mentioning in this section the related work on holonic systems.
Holonic systems are based on entities that are, at the same time, wholes in
themselves and parts of larger wholes [19]. Self-organization is also present
in holonic multi-agent systems. Moreover, in holonic systems organization may
be present on multiple levels [33]. However, there is little relation between this
work and holonic systems. At present, our goal is to study emergence in a
system that works on a single level, but a closer look to holonic systems will be
considered for future work.

In this paper we present a multi-agent system that uses cognitive agents to
obtain emergent properties. In the design of the system we used techniques
from self-organizing reactive agent systems, but considering the cognitive fea-
tures of the agents. This resembles the work on cognitive stigmergy [32], but
uses direct interaction instead of stigmergic mechanisms. Different from other
works on emergence in cognitive agent systems, our work, while trying to re-
main generic, is focused on the exchange and distribution of information through
a multi-agent system. Our goal is not a function that needs to be calculated, nor
a certain well-defined result that must be obtained, but a behaviour that needs
to be achieved. And this by means of cognitive agents, because of the addi-
tional features they offer, which will not only favour a more adaptive behaviour
and the possibility to work at the semantic level, but will also reduce the quantity
of needed communication by having knowledge about and reasoning on their
environment.
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3. A Cognitive Multi-Agent System for the Distribution of
Data

An application has been developed and experiments have been performed in
order to demonstrate how emergents may arise in a system formed of cognitive
agents. The system that was designed models a network for the storage, repli-
cation and distribution of data. The purpose is to store pieces of data inserted
into the system and distribute them, as well as provide the user with the data
that is requested.

The requirement that led the design of the system was to use local interac-
tion and local knowledge about the system in order to obtain global emergent
properties. The implementation was to be generic, without referring to a certain
domain of application, this way establishing a more general methodology for
building a system with emergent properties.

The presented experiments were performed with a set of agents placed on
a rectangular grid. Each agent can communicate only with its 8 neighbours.
Each agent has a limited capacity for the storage of data. The agents must
always have some capacity left, ready for data that might be injected from the
environment. However, agents must try to store as much data as possible, in
order to not waste the capacity of the system. The information stored in the
system (the information that is useful to the users) is represented as generic
pieces of data, or, in short, Data.

The desired emergent properties of the system are the replication of data,
uniform distribution and availability. This means that, after letting the system
evolve for some time, the following properties should exist: each piece of data
should be held by more than one agent; any (reasonably small) area of the grid
should contain copies of all pieces of data present in the system; if requested
to, any agent should be able to get hold of any piece of data, i.e. copies of all
pieces of data should exists in the proximity of any agent.

While the experimental setup is simple, the purpose of this research was to
show how a system should be designed in order to obtain emergent properties
like the ones specified. Even if the system is generic (not having requirements
related to a specific setup), there are still many challenges that arise from the full
distribution of the system and from the use of local knowledge and interactions:
the agents must not become overwhelmed with messages or with beliefs, nor
must they become unresponsive or lose all knowledge about them and their
surroundings. All that while keeping the behaviour basic enough to be efficient
on devices with limited capabilities.

To design agents that will lead, by means of local interaction, to global prop-
erties, we have followed ideas from previous work on systems with emergent
properties [3,4,9,21,22,38]. We apply these ideas to a system of cognitive
agents (as opposed to reactive agents), envisaging a behaviour that relates
to information, rather than more simple concepts. First, the emergent proper-
ties cannot be of different nature than the local capacities of the agent. For
example, if the agent can only move around, what we can expect as a global
behaviour of the system would be for the agents to form structures of a certain
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Fig. 1. Group of agents (named A to L), before (a) and after (b) the data transfers indi-
cated by the arrows. There are 6 data pieces in the system: D1 to D6.

shape [38]. Local behaviour should reflect the features of the global desired
behaviour. There should also be feedback, that will lead to the stabilization of
formed structures and to the dynamical equilibrium of the system [18].

In our design, a lot of inspiration has been taken from the human behaviour
(as it is with the design of software agents in general), providing the agents
with capabilities that will keep their knowledge bases, goal lists and message
queues at reasonable loads. In order to obtain data replication and distribution,
an agentis “curious” and, if capacity is available, it will be interested in and it will
request a copy of a piece of data it does not hold. In order to obtain variation and
uniformity in the data distribution pattern, an agent will "lose interest” in pieces
of data that are already held by most of the neighbour agents and may "forget”
them. In order for an agent to be able to get hold of pieces of data not held by
itself or any of the neighbours, agents will be able to collaborate for the common
goal of finding a certain piece of data that, since data is well distributed, cannot
be very far away. More on the implementation of these features is presented in
the description of the agent behaviour.

Figure 1 gives an example of a step in the functioning of a group of agents
in the system. In the presented state, there are still many agents that don’t have
any data. Consider, however, every agent has sufficient knowledge about his
vicinity. For example, agent I has the following beliefs about surrounding data:

(I has D1) (I has D2) (I has D4)

(J has D4) (J has D5)

(E has D4) (E has D2) (E has D3) (E has DG)

(F has D1) (F has D3)

(G has D5) (knows that from F)

Each agent that has less than 75% of its capacity full will ask for some piece
of data from one of its neighbours. Agent E will discard data D4, as both | and
J also have it (it has to discard something, so it will discard the data that is
most present in its vicinity). Supposing that agent K needs D2 (for example
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Fig. 2. The basic execution cycle of an agent. The main structural components involved
are the knowledge base (KB) and the list of available goals (Goal list)

because there is an external request for it) it will communicate its intentions to
its neighbours and J will collaborate with it and retrieve D2.

The system is using cognitive agents and the implementation is based on
the Beliefs-Desires-Intentions model [31]. There are several reasons for using
cognitive agents. First, considering our long-term Aml-related goal, there is an
obvious necessity for the agents to be cognitive, so that they are capable to ag-
gregate and reason on the information that they hold. But, more important than
that, cognitive agents are more capable and can act better in many situations
[32]. If their behaviour is flexible, they can even run on resource-constrained
devices. Although the behaviour of a cognitive agent system may be harder to
control and to predict, the use of cognitive agents can bring many advantages
in the future, and the study of emergence in such a system is vital for future
research.

The structure of an agent is presented in Figure 2. The working cycle of
an agent is straightforward: the agent processes the messages that it receives
(there are no other types of perceptions — new data is also inserted into the sys-
tem as messages); revises its beliefs and its current available goals; chooses
a goal and makes a plan for it; executes the actions in the current plan. Details
about these steps and the structures involved are given in the sections below.

3.1. Agent Beliefs
The information in the agent’s knowledge base (KB) is stored in Facts. In gen-

eral, a Fact can be either a basic, atomic notion (like Agent or Data) or a re-
lationship between two other facts. The resulting structure is a concept map,
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is directly connected to

agent 1 agent 3

knows
about

agent 4

Fig. 3. Example content for an agent’s knowledge base (here, the knowledge base of the
agent called agent-1). Several relationships are present: knows about, is connected to,
has, knows. This is only an example and actual agent knowledge bases rise to a greater
number of facts.

formed of basic notions and relationships between them. At this point in the de-
velopment of the system, a simplified approach is used, and a Fact may have
one of these forms:

(Agent, knows about, Agent)

(Agent, is directly connected to, Agent)

(Agent, has, Data)

(Agent, has, Goal)

(Agent, knows, Fact)

Note that the last definition is recursive, and the recursion must end with
one of the other four forms. Most Facts are of the last three types. Considering
the structure of Goals (described in the next section) and the agent behaviour,
most facts will refer, in the end, to a piece of Data.

An example is presented in Figure 3. We consider that the displayed facts
are in the knowledge base of the agent named agent-1. Relationships of the
type "knows” link the agent to all facts that it has: the agents that it knows about,
the facts that it knows and what it knows about the knowledge of other agents.
Actually, the "knows” relationship between the agent and a fact is equivalent
to the fact belonging to the agent’s knowledge base, so there is no need to
represent it explicitly.

Agents may also know about other agent’s goals, so that it is possible for
them to cooperate for the realization of goals. Data are pieces of information
that are not further represented as facts, and that are considered as atomic.

This concept-map-like structure allows agents to represent partial informa-
tion on the system. It is also possible for agents to easily attach new information
(also represented as a concept map) to their knowledge base, or to send only
parts of their knowledge base to other agents. This representation was chosen
because it is flexible but also does not consume much space. Even if the pre-
sented structure allows very long chains and graphs of (Agent, knows, Fact)
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relationships, the behaviour of the agent has been designed so that informa-
tion about farther agents will be discarded sooner. Moreover, forgetting may be
flexible according to the agent’s KB capacity.

3.2. Agent Goals

Following the ideas presented above, and taking inspiration from existing stud-
ies of emergent properties in reactive agent systems, the goals of the agents
have been designed so that they will be local but will, however, reflect the spirit
of the desired global emergents. According to this policy, goals of an agent are
of the following types (in parenthesis — the name of the type in the internal
representation):

— Get interesting data that the agent knows about and fulfill external requests,
if any (GET).

— Maintain capacity free, ready for potential data injected from the exterior
(FREE).

— Inform neighbour agents about new data (/INFORM).

Apart from that, the agent will also respond to requests for data from neigh-
bour agents, if it has the requested data. This is done before treating any other
types of messages, as it does not require any reasoning and is a reactive be-
haviour.

Goals are represented as pairs of the form (Goal_type, Object), where the
element Object may be the description of a piece of data (its identifier), in the
case of GET, or a fact about a piece of data, in the case of INFORM.

The goal to free capacity has no Object and is activated when the free ca-
pacity reaches a percentage of the total capacity below a certain threshold. In
the experiments presented in this paper, this threshold was 25%. As the pieces
of data had equal size, and an agent had a maximum capacity of 4 pieces of
data, 25% was chosen as a tradeoff between appropriate use of an agent’s
capacity and always having room for one more piece of data.

When the used capacity of an agent is under 75% (free capacity is over
25%), it will choose to get a piece of data that is held by a neighbour but not by
itself. In order to support the replication of data, it will choose the least well rep-
resented in the vicinity (i.e. present in the least number of copies in neighbour
agents).

3.3. Agent Behaviour

The types of goals that are presented above will be instantiated according to
the beliefs of the agent. For example, the first type of goal (called GET) may be
instantiated as (GET, D3), meaning that the agent has the goal to get hold of
data D3.

Instantiated goals are generated permanently, based on the information that
the agent receives, and they are put in the list of available goals. This list is
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sorted according to the importance of the goals. Importance is primarily com-
puted depending on the type of the goal. FREE is the most important type.
Then INFORM and GET follow. This way, facts about Data will spread first, and
then the Data itself will spread. Between different INFORM and GET goals,
more important are the goals referring to Data that is closer (i.e. the chain of
Agent knows Agent knows...Agent has Data is shorter). From the Goal list the
most important goal will be chosen and a plan will be built with actions that the
agent expects would lead to the desired result.
In order to fulfill its goals, an agent has the following available actions:

— Send a request for data to a neighbour.

— Discard a piece of data.

— Send a message to a neighbour, containing relevant information (for exam-
ple that the sending agent has a new piece of data), in the form of facts.

— Send a message to a neighbour, containing a goal of the sending agent,
also in the form of a fact.

Say, for example, that agent A needs to get data D3. If the agent knows
that any of the neighbours have the data, i.e. it has a belief (Agent, has, D3),
where Agent is a neighbour, then it will send a direct request for data D3. If
Agent is not a neighbour, but A knows that Agent is a neighbour of B, and B
is a neighbour of A, it will plan to first send a message containing information
about its goal (GET, D3) to B, and then put the plan in wait. Eventually it will
be informed that B has acquired data D3. If that doesn’t happen in a certain
amount of time, A will contact B and other neighbours and send them its goal.
Finally, in the case when A does not know of any agent holding data D3, it will
send the message containing its goal to all the neighbours.

The behaviour of an agent, i.e. the stages that an agent goes through during
a step of the system’s evolution, is described below:

— Receive data from and send data to neighbour agents. Data is transmitted
only as a response to previous requests. These operations are simple and
need no reasoning, and that is why they are handled separately and before
any other decision is made.

— Revise beliefs. This is done based on information received from the other
agents. Duplicate facts are found and removed. Also, circular facts are iden-
tified and discarded.

— Check waiting plans for completion (was the goal achieved?). In the case
of completion the plan is discarded. Most plans are discarded immediately
after all actions are completed. Plans waiting longer than that exist only for
goals of type GET.

— Make plans. Take the goal with the highest importance. If there is no plan
for it, make a plan composed of the actions needed to be taken and put it in
the list of ongoing plans.

— Execute plans. Take the plan associated with the most important goal and
execute its next action. If there are no more actions to be performed, move
the plan to the list of waiting plans. It will be checked for completion in the
next cycle.
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— Fade memory. Discard old facts and facts that refer to data that is further
away (calculated as described above). To prevent the Goal list from over-
loading, unimportant goals are also discarded.

In order to keep the system in constant change (away from static equilib-
rium), which is one of the factors that leads to self-organization [18], when there
are no more available goals the agent will "lose interest” in a piece of data, the
one that is present in a greater number of copies in the neighbours (at least ac-
cording to the agent’s beliefs) and it will discard it. Note that even if an agent will
lose interest in data, he is able to regain interest in that data when the data will
become more rare in its vicinity. This, of course, leads to a constant movement
of data through the system, but is also a necessity for dynamic equilibrium,
which in turn helps maintain a robust decentralized system.

Being a complex system (experiments were performed on a system com-
posed of 400 agents), and all agents acting locally, it is clear that the system as
a whole will behave, many times, unpredictably. That is why there are several
tweaks that had to be performed, across many experiments, in order for the
system to function as expected, so that agents do not become overwhelmed
with messages, or with available goals, or with useless facts in their KB. These
tweaks were implemented in the agents’ policies.

First, there must exist a good balance between how fast the agent can learn
new knowledge and revise its beliefs and how often an agent broadcasts its
own knowledge and intentions to its neighbours. If an agent broadcasts all its
knowledge each time it learns something new, all agents will be flooded with
messages they don’t have time to process. If the agents broadcast their knowl-
edge too rarely, this might result in the agents having outdated beliefs about
their neighbours.

Another element that needs good balance is the rate at which an agent
forgets. If an agent forgets too quickly, it might have already forgotten some
important information at the time it is supposed to be using it. If an agent forgets
too slowly, it will have a lot of information that is outdated and of no use anymore.

It is arguable that these tweaks will always depend on the exact application
the system is used for, but it is true that in order to achieve self-organization
and coherent emergent properties, any complex system must be in a delicate
balance between fixed, static equilibrium and chaotic behaviour, so this sort of
tuning will still be necessary (the system is not self-tuning).

4. Results and Discussion

Many experiments were carried out throughout the development of the system,
first for assuring that the agents were not overwhelmed by messages and ac-
tions to perform, second for the actual study of the evolution of the system. The
presented experiments involved a square grid of 400 agents, the pieces of data
in the system were of equal size, and each agent had a capacity of 4 pieces of
data. As said before, data is generic, and is characterized only by an identifier.

654 ComSIS Vol. 7, No. 3, June 2010



Emergent Properties in Cognitive MAS

Fig. 4. The distribution of one piece of data after 150 steps, in a system with agents of
capacity 4 in the context of a total number of pieces of data of: (a) 3, (b) 4, (c) 6, (d) 8.
The simultaneous distributions of 6 pieces of data after 150 steps (e).

The resulting pseudo-stable distributions of data were monitored, but also the
dynamic evolution of the system. The purpose of the experiments was to obtain
a system that distributes data uniformly throughout the system, while using only
local knowledge and interactions.

The system was implemented as a Java application. The execution of the
agents is synchronous — at any moment of time all agents are executing the n*”
step of their evolution. Besides the objectives stated above, one other objective
was to make the system run as fast as possible, making the behaviour of indi-
vidual agents more efficient. This also lead to lower simulation times and the
possibility to perform more experiments. A typical experiment lasted 200-250
steps in the multi-agent system’s time and about 15 seconds in real time on a
machine with an Intel Core 2 Duo 3.33GHz CPU, with 2GB of RAM memory.

Figure 4 (a-d) presents, in several cases, the resulting distribution of a cer-
tain piece of data inserted into the system. What changes between the four
distributions is the number of other pieces of data that also exist in the system.

In the first case (Figure 4(a)) there are only 2 other pieces of data in the
system, of equal size. The system is at 75% capacity, so normally all agents
should have all three pieces of data. The image reflects that, however, because
the system is intentionally unstable, and agents have the ability to forget, there
are some agents that do not have the piece of data that was monitored.

In the following two cases (Figure 4(b, c)), featuring other 3, respectively 5
pieces of data in the system, the resulting distribution becomes more scarce,
but nevertheless uniform. In the last case (Figure 4(d)) the distribution is less
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Fig.5. The distribution of a certain piece of data over several steps of the system’s
evolution, in a system already holding 4 other pieces of data.

406: 3849 313:239 199:127 198:187 246: 208

Fig.6. Each graph corresponds to a piece of data in the system, and represents the
evolution of the number of facts about that piece of data (over the whole system), since
the beginning of the system’s evolution to the current step (step 200). Every image also
contains a quantitative indication of the maximum value of the graph as well as the
current value.

uniform (there is a total of 8 pieces of data in the system), but still the data is in
a range of 3 agents from any agent.

It is also interesting to follow how the distribution of one piece of data evolves
as the system runs. Figure 5 shows the distribution of a piece of data injected
in a system already holding other pieces of data. The distribution grows fairly
slow, and no solid distributions are found.

Figure 6 presents the evolution over time of the number of facts (over the
whole system) about the 5 pieces of data in the system. This number is slightly
larger than the number of agents actually having that data. On these graphs one
can easily follow the way the agents become interested in data and then lose in-
terest and forget many of the facts regarding it. Observe that facts about the dif-
ferent pieces of data do not exist in equal numbers throughout the system. That
is due to the fact that this is a complex system. Feedback and non-deterministic
behaviour result in outcomes that are not fully predictable. However, the num-
bers are well in the same order of magnitude and considering the little amount
of knowledge that each agent has, the distributions are very uniform.

It is relevant to note that the distributions that are displayed in the figures
are never stable. The "holes” in the distributions — the agents that do not hold
the data — change all the time, as they lose interest, forget, and become inter-
ested again. This instability is also shown in Figure 6, where the curves are not
smooth, but present many small spikes.

Although all the examples presented here involve the same number of a-
gents, this number can be changed easily and the system scales with no prob-
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lem, as every agent interacts only with and has knowledge only about its close
vicinity.

What is important to point out is that very good distributions are obtained
although none of the agents has that as an objective. Moreover, agents are not
capable of measuring in any way the distribution of the data in the system, nor
do they have any perception on the global state of the system. Their objectives
are local and mostly selfish, but a coherent global result is obtained, which is an
emergent property. As shown in the previous section, the system and the agents
have been specifically designed to produce the emergents, by expressing the
desired global result at the local scale of the individual.

The developed system makes a good platform for the study of emergent
properties in a relatively simple cognitive agent system. Over the experiments,
many monitoring tools have been developed, as following in detail the behaviour
and evolution of a system formed by so many agents is not an easy task.

Although the designed system is still very simple, there are important differ-
ences between the implemented agents and reactive agents. It must be pointed
out that the agents reason permanently about what data they should get and
what they should keep. A simple form of collaboration has been implemented
— agents are able to share goals. Reactive agents would not have been able
to have beliefs about their neighbours and would not have been able to reason
about what action would be best in the context.

5. Conclusion

Emergence is an essential notion in the field of multi-agent systems. It provides
the possibility of obtaining a more complex outcome from a system formed of
individuals of lower complexity. Although there are many recent studies con-
cerning emergence, there is yet no clear methodology on how to specifically
design a system so that it would manifest emergence. Moreover, most imple-
mentations use reactive agents, that have limited or no cognitive or planning
abilities.

The paper presents a cognitive multi-agent system in which the agents’ in-
teractions allow the emergence of specific properties required for solving the
problem. The system has been designed with the purpose of manifesting emer-
gent properties: the agents have been given local goals that naturally lead to
the global, desired, goal of the system.

As future work, the system will be improved, so that the emergents will be
more nuanced. Data and facts will have certain context measures relating to
their domains of interest and to their importance. Agents will also be able to
have interests in particular domains. New tools for monitoring the system will
be developed and the configuration of the network will be able to change — the
agents that an agent communicates with will change over time, in order to simu-
late agent mobility and changes in the environment. Closer to the requirements
in Ambient Intelligence, different agents will be able to have different capabili-
ties, different storage capacity and different computing power.
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