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Abstract. This article presents a case study of a theoretical multi-agent
system designed to clean up ecological disasters. It focuses on the inter-
actions within a heterogeneous team of agents, outlines their goals and
plans, and establishes the necessary distribution of information and com-
mitment throughout the team, including its sub-teams. These aspects of
teamwork are presented in the TEAMLOG formalism [20], based on multi-
modal logic, in which collective informational and motivational attitudes
are first-class citizens. Complex team attitudes are justified to be neces-
sary in the course of teamwork. The article shows how to make a bridge
between theoretical foundations of TEAMLOG and an application and illus-
trates how to tune TEAMLOG to the case study by establishing sufficient,
but still minimal levels for the team attitudes.

Keywords: TEAMLOG, motivational attitudes, multi-agent modelling.

1. Defining teamwork

When modeling complex automated systems it is often easier to think of them
as a collection of agents, each capable of making its own decisions, rather than
collections of modules with multiple, often unclear interdependencies. The no-
tion of agency that is essential in the field of multi-agent systems (MAS) allows
the designer to skip over the complexities of relationships between components,
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while still having the possibility to prove all required characteristics of the sys-
tem, for example liveness and correctness. One of the most advanced models
is the Belief-Desire-Intention (BDI) model of agency.

The BDI agent model comprises agents’ individual beliefs, goals, and inten-
tions. However, when a group of agents needs to work together in a planned and
coherent way, agents’ individual attitudes are not sufficient; the team needs to
present a collective attitude over and above individual ones. Therefore, when
constructing BDI systems, firstly a model of an agent as an individual, au-
fonomous entity [35] has to be constructed. Then, a key point is to organize
agents’ cooperation in a way allowing the achievement of their common goal,
while preserving, at least partly, their individual autonomy (see [31,28,42, 14,
16, 25, 34, 20] for some logical approaches to teamwork).

1.1. TeAMLOG applied

As a static, descriptive theory of collective motivational attitudes, TEAMLOG has
been formed on the basis of individual goals, beliefs and intentions of strictly
cooperative agents [14, 16, 22, 20]. It addresses the question what it means for
a group of agents to have a collective intention, and then a collective commit-
mentto achieve a common goal. While collective intention transforms a loosely-
coupled group into a strictly cooperating team, collective commitment leads to
team action, i.e., to coordinated realization of individual actions by committed
agents according to a plan. The social plan can be constructed from first princi-
ples, or may be chosen from a repository of pre-constructed plans. Both collec-
tive intentions and collective commitments allow to fully express the potential of
strictly cooperative teams [14, 16]. The bilateral and collective notions cannot
be viewed as a sort of sum of individual ones.

In this case study we focus on disaster response and, more specifically,
on decontamination of a certain polluted area. Our goal is to illustrate how to
adjust a multi-agent system model created using the TEAMLOG theory to this
specific use-case, with a focus on the theoretical performance of a potential im-
plementation. Our contribution is to show how the costly infinitary definitions of
collective attitudes can be reduced in a real-world situation, while maintaining
the team cohesion necessary to achieve the goals. Whence the title “TEAMLOG
in action” and the focus on full cooperation, also in a complex case, reflected in
agents’ individual, social (i.e. bilateral) and collective attitudes. Cases of com-
petition are explicitly excluded by TEAMLOG definitions.

A theory of individual and group beliefs has been formalized in terms of
epistemic logic [23, 32, 33]. General, common, and distributed knowledge and
belief were defined in terms of agents’ individual knowledge and belief. Different
axiom systems express various properties of knowledge and belief, while the
corresponding semantics naturally reflect these properties.

When modeling group attitudes, agents’ awareness about the overall sit-
uation needs to be taken into account. Awareness is understood here as a
limited form of consciousness: in a way typical for MAS, it refers to the state
of an agent’s beliefs about itself (intra-personal), about others (inter-personal)
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and about the environment (group awareness). Thus, various epistemic logics
and different gradations of group information (from distributed belief to common
knowledge) are adequate to formalize agents’ awareness [23, 16, 33].

In TEAMLOG, group awareness is naturally expressed in terms of common
belief (C-BELg), fully reflecting collective aspects of agents’ behavior. Due to
its infinitary flavor, this concept has a high complexity: its satisfiability problem
is EXPTIME-complete [22]. There are general ways to reduce the complexity by
restricting the language, by allowing only a small set of atomic propositions or
restricting the modal context in formulas, as proved in [22,21]. However, when
building MAS applications, it may be more profitable to use domain-specific
means to tailor TEAMLOG to the circumstances in question, calling for weaker
forms of awareness [18]. In this case study we will show how to adjust team
attitudes to ensure a lower complexity.

Collective intention constitutes a basis for preparing a plan, reflected finally
in collective commitment. Various versions of collective commitments are ap-
plicable in different situations, dependent on organizational structure, commu-
nicative and observational possibilities and so on. These cause differences in
agents’ awareness both with respect to the aspects of teamwork of which they
are aware, and the kind of awareness present within a team, ranging from dis-
tributed and individual belief, up to common knowledge. In this context, plan
representation is a separate issue. It is assumed that any method of describ-
ing plans is acceptable, as long as it states the sequences of actions to be
performed and allows us to project these actions onto individual agents. While
a formal definition of social plan is available in TEAMLOG, the syntax used in
the case study is considerably richer, and still very intuitive. It can easily be
translated into combinations of definitions presented in [19, 15].

1.2. From real-world data to teamwork

Formal approaches to multi-agent systems are concerned with equipping soft-
ware agents with functionalities for reasoning and acting. The starting point of
most of them is the layer of beliefs, in the case of TEAMLOG extended by goals,
intentions and commitments. These attitudes are usually represented in a sym-
bolic, qualitative way. However, one should view this as an idealization. After all,
agent attitudes originate from real-world data, gathered by a variety of sources
at the object level of the system. Mostly, the data is derived from sensors re-
sponsible for perception, but also from hardware, different software platforms,
and last but not least, from people observing their environment. The point is
that this information is inherently quantitative. Therefore one deals with a meta-
level duality: sensors provide quantitative characteristics, while reasoning tasks
performed at the meta-level require the use of symbolic representations and
inference mechanisms.

Research in the framework of TEAMLOG is structured along the lines de-
picted in Figure 1. The object-level information is assumed to be summarized in
queries returning Boolean values. This way it is possible to abstract from a va-
riety of formalisms and techniques applicable in the course of reasoning about

ComSIS Vol. 7, No. 3, June 2010 571



Barbara Dunin-Keplicz et al.

TEAMWORK
T . : T
E tuning reasoning E
f\ji SPECIFICATIONS i%
1, beliefs qgoals  intentions  commitments 7|,
Q A 4 4 4 4 A O‘
: queries returning Boolean values B
| \ | \
I — Sensor people
svstems platforms
databases
hardware

rerotr

REAL-WORLD DATA

Fig. 1. The object- and meta-level view on teamwork

real-world data. This abstraction is essential, since the focus of TEAMLOG is on
the meta-level, including formal specification and reasoning about teamwork.

This paper is structured into several sections. The first one introduces TEAM-
LoG and the problem in general terms. Next, in section 2, some definitions and
assumptions regarding the environment are presented, including an outline of
the interactions within a team and between sub-teams. This is followed in sec-
tion 3 by definitions of social plans to be executed. In section 4 we take a closer
look at the actions defined in our plan library and automated planning. In sec-
tion 5 the TEAMLOG theory is presented. In section 6 we explore the minimal
requirements for successful teamwork arising from the case study. Section 7
discusses related work, followed by a conclusion which sums up the article.

2. The case study: ecological disasters

Disaster management is a broad discipline related to dealing with and avoiding
risks [41]. This involves several important tasks: preparing for disaster before
it occurs, disaster response (e.g. emergency evacuation and decontamination),
and restoration after natural or human-made disasters have occurred. In gen-
eral, disaster management is the continuous process by which all individuals,
groups, and communities manage hazards in an effort to avoid or ameliorate the
impact of disasters resulting from them. Actions taken depend in part on per-
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ceptions of risk of those exposed [6]. Activities at each level (individual, group,
community) affect the other levels.

The case study deals with response to ecological disasters caused by spe-
cific poisons, by means of heterogeneous multi-agent teams. The use-case is
theoretical, in order to focus on those aspects of the problem that influence
team action. The teams work in situations where time is critical and resources
are scarce; it has been shown that teams consisting of software agents, robots
and humans are a good choice in such critical situations [30, 37]. The example
has been constructed by the authors, who took inspiration from the literature on
disaster response [6,41], heterogenous teams [30, 37], and unmanned aerial
vehicles [8, 7].

Here, the main goal (safe) of teamwork is maintaining a given region REG
safe or to return it to safety if it is in danger. The possible threats are two kinds of
poison, X; and X5, which are dangerous in high concentrations. The situation
when both toxins mix is extremely hazardous, because if their concentration
is high enough, they will react to form a chemical compound. This compound
(X1 @ X5), once created, may explode if temperature and air pressure are high.
Three functions f1, f2 and f; reflect the influence of temperature t(A), air pres-
sure p(A) and concentrations ¢;(A4) and c2(A) of poisons X; and X, at location
A on the possible danger level at that location. The function ranges are divided
into three intervals, as follows:

The first poison X;:

— safey iff f1(p(A),t(A),c1(A)) € [0,v1];

= riskyy iff f1(p(A),t(A),c1(A)) € (v1,m];

— dangerous iff f1(p(A),t(A),c1(A4)) € (n1,00);
The second poison X;:

— safe, iff f2(p(A),t(A),c2(A)) € [0,v2];

= risky, iff f2(p(A),t(A), c2(A)) € (v2, n2];

— dangerous, iff f2(p(A), t(A), c2(A)) € (n2, c0);
The chemical compound X; & X5 :

— safes iff f3(p(A),t(A), c1(A), c2(A)) € [0, vs3];

= riskys iff f3(p(A), t(A), c1(A), c2(A)) € (vs, ns);

— explosive iff f3(p(A),t(A), c1(A),ca(A)) € (n3,00);

The proposition safe is defined as safe := safe; A safe; A safe; and is also re-
ferred to as a goal. There are also thresholds ¢; and e3: when the concentration
of a poison X; exceeds ¢;, the respective function f; is computed.

2.1. Starting point: the agents

This model reflects cooperation between humans, software agents, robots, un-
manned aerial vehicles (UAVs) as discussed in [8, 7], and a helicopter steered
by a pilot.

The whole process is controlled by one coordinator, who initiates coopera-
tion, coordinates teamwork between different sub-teams of the full team G, is
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responsible for dividing the disaster zone into sectors and assigning a sub-team
to each sector to perform clean-up. Several sub-teams G, ... G, C G of similar
make-up work in parallel, aiming to prevent or neutralize a contamination. Each
of these sub-teams G; consists of:

— one UAV; - responsible to the coordinator for keeping assigned sectors
safe. This agent cannot carry a heavy load, but it carries a computer, there-
fore it has considerable computational capabilities for planning and is capa-
ble of observing and mapping the terrain;

— n; identical neutralizing robots T0biy ..., T0b;, - responsible to their UAV;
for cleaning up a zone.

Next to the sub-teams there is a rather independent member of G:

— one regular helicopter steered by the human pilot, who can independently
choose the order of cleaning up assigned areas, is directly accountable to
the coordinator and can communicate as an equal with the UAVs.

See Figure 2 for the team structure.

coordinator
® — direction of
/ \\ hierarchy
UAV; . .......... . UAVk . pilot
rob11 fobln1 rob,€1 robknk

Fig. 2. Hierarchical team structure of the ecological disaster management team G.

2.2. Cooperation between sub-teams

The entire disaster zone is divided into sectors by the coordinator, based on
terrain type, sub-team size, population density and hot spots known in advance
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(see Figure 3). Sub-teams are responsible for (possibly many) sectors. The
leader UAV; of a sub-team G, prepares a plan to keep its sectors safe. Each
plan is judged based on a fitting function fit, which takes into account:

available robots, including their current task, load, capacity and position;
whether the plan relies on the help from other sub-teams;

task priorities;

the minimum amount of time it takes to implement;

the minimum number of robots it requires.

aorON~

Fig. 3. Example terrain split, with base for robots B marked.
The darkest regions consist of water and are an obstacle to the cleanup robots.

The UAVs communicate and cooperate with one another. If performing tasks
requires more robots than are currently available in their own sub-team G;, its
leader UAV; can call for reinforcements from another UAV, for j < k,j # i.
Of course for UAV ; in question, fulfilling its own sub-team G;’s objectives has
priority over helping others from G;.

2.3. A bird’s-eye view on cases

To maintain the goal safe, the situation is monitored by the coordinator and the
UAVs on a regular basis with frequency freq. During situation recognition, in
the risky cases monitoring is performed twice as frequently. Depending on the
mixture and density of poisons in a location, some general cases followed by the
relevant procedures are established. All remedial actions are to be performed
relative to the contaminated area:
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Case safe: True — situation recognition

Case dangerous, : rain — liquid L, to be poured on the soil
normal or dry — liquid L, to be sprayed from the air

Case dangerous,: rain — solid S; to be spread, followed by
liquid catalyst K, to be poured
normal or dry — solid S; to be spread

Case explosive: before explosion — evacuation
after explosion — rescue action

3. Gilobal plans

While team planning is a very interesting problem, the algorithms for solving
it are exponential for most cases. For performance reasons it was decided to
use a pre-compiled plan library (consisting of plans devised by us) in the case
study. Please observe that while the existence of such a library simplifies plan-
ning, it doesn’t eliminate the need for it. Some actions (e.g. move) presented in
the plan library are complex, and can only be solved with specialized planning
techniques.

The ad-hoc notation representing high-level plans can easily be translated
into basic definitions introduced in [19, 15]. The only requirementin TEAMLOG is
that the plan describes the order of actions and their performers. Furthermore,
TEAMLOG doesn’t enforce any representation of time in plans. A sensible im-
plementation of a planner designed to work in a physical environment will have
to synchronize agents’ actions, but the specific representation of time is not an
issue at the level of abstraction used here. Clearly, the planner will be able to
obtain temporal dependencies between actions from the presented description.

In order to control the amount of interactions and decrease the time needed
to establish beliefs, we introduce a hierarchical team model. The coordinator
views a sub-team G; as a single entity, even though the UAVs manage the
work of many autonomous neutralizing robots. All agents are initially located
at a base B, which also houses chemicals required for decontamination. It
may interact with agents via communication protocols that would guarantee that
agents do not compete for resources such as decontaminants.

3.1. The social plan (Cleanup)

The global social plan for which the coordinator and UAVs are responsible, is
designed with respect to location A. It is a while-loop, in which observation is
interleaved with treatment of current dangers by level of priority, from most to
least dangerous. The goal (denoted as Clean) is to keep locations in a safe
state. All subplans mentioned in (Cleanup), namely ( Plan SR), ( Plan E'),
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(Plan D1R ), (Plan D1 N ), ( Plan D3R ), and ( Plan D, N ) are described more
precisely in the subsequent subsections.

begin
freq := a;
{freq - interval between two checks of the environment}
while true do
( Plan SR) {Assess the situation at A, with frequency freq}
if explosive then do ( Plan E ) end;
elif dangerous; and rain then do ( Plan D; R ) end;
elif dangerous; then do ( Plan D, N ) end;
elif dangerous. and rain then do ( Plan D2 R ) end;
elif dangerous, then do ( Plan D3N ) end;
elif risky, V risky, V riskys then freq := § end
else {safe situation} freq := a end;
end
end.

Here, a represents the default frequency of checking the environment. This
interval is shortened when a risky situation is encountered, to handle such a
case with more caution. Dividing the interval by 2 is done to make the example
specific; it is easy to adapt the plan to frequency adjustments applicable in a
real-world scenario.

3.2. The social plan (SR)

This plan performs situation recognition at location A. One of the UAVs, for
example UAV7, is responsible for monitoring. Alternatively, this task could be
assigned as a joint responsibility to UAV;, ..., UAV,. However, that solution
would require information fusion which is in general a very complex process.

begin
Cy = c1(A) {C1 is the measured concentration of poison X; at A}
Cy := c2(A) {C> is the measured concentration of poison X, at A}
T :=t(A) {T is the measured temperature at A}
P :=p(A) {P is the measured air pressure at A}
{Computation of the situation at A}
if Cy > ¢, then compute f,(C4, T, P) end;
if Cy > €5 then compute fo(Cs, T, P) end;
if C1 > €1 and Cy > €5 then compute f3(C1,Cs, T, P) end;
end.
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3.3. The social plan (E)

After an explosion, evacuation and rescue of people should take place. This
subject is discussed in many studies [6, 41, 30] and will not be elaborated here.
Instead, other subplans included in (Cleanup) are presented.

3.4. The social plan (D, R)

This plan is applicable when dangerous, occurs under weather condition rain.
Each UAV; may be allocated this social plan for a given location as decided by
the coordinator.

Goal 9 (Ly): to apply liquid L, on all areas contaminated with poison Xj.

{Assumption: One portion of L, neutralizes poison X at a single location.}

while contaminated-area # emptyset do

begin
A := calculate( UAV;, {rob;, });
{UAV; finds region A for rob;, to clean up}
get(rob;,, Ly, B); {rob;, retrieves a tank with liquid L, from location B}
path := get_path(UAV;, rob;,, B, A); {rob;, requests a path to follow}
move(rob;;, path); {rob;, moves from location B to location A}
pour(rob;;, Ly, A);
contaminated-area := contaminated-area \ A;
return_path := get_path(UAV;, rob;,, A, B);
move(rob;; , return_path);

end.

Here and in subsequent social plans, the assumption about needing a single
portion of a liquid (or of solid and catalyst, respectively) per location is meant
as an illustrative example. Functions computing the needed amounts of these
substances from the measured concentrations of poisons could be used in a
real-world case. It is also assumed that UAV; establishes priorities of locations
to be cleaned when planning the robots’ routes, taking into account that some
robots should start clearing certain paths such that other robots can then safely
traverse these.

3.5. The social plan (D, N)

This plan is applicable when dangerous; occurs under weather condition nor-
mal or dry. The spraying is usually performed by the pilot on request from one
of the UAVs. In the plan below, UAV stands for any of UAV7, ..., UAV,.

Goal 15 (Ls): to spray liquid L, on areas contaminated with poison X;.

{Assumption: One portion of L, neutralizes poison X; at a single location.}
{Assumption: The helicopter can transport & portions of liquid L.}

578 ComSIS Vol. 7, No. 3, June 2010



TEAMLOG in Action: a Case Study in Teamwork

while contaminated-area # emptyset do

begin
request( UAV , coordinator, pilot, ¥ (Ls));
confirm(pilot, UAV | coordinator,v¥(Ly));
request(pilot, UAV , list, k);
send(UAV, pilot, list,); {list; has at most k& contaminated areas}
upload (helicopter, Lo, |list,|); {pilot retrieves required amount of liquid Ly}
take-off (helicopter, B); {pilot takes off from location B}
do (plan-for-spraying(helicopter, Ly, list;));
{pilot sprays L, using his own invented plan}
confirm(pilot, UAV | done(plan-for-spraying(helicopter, Lo, list;));
contaminated-area := contaminated-area \ list;
landing(helicopter, B);
free(pilot, coordinator);

end.

3.6. The social plan (D, R)

This plan is applicable when dangerous, occurs under weather condition rain.
Goal ¥3(S1, K1): to spread solid S; on all areas contaminated with poison X,
followed by applying catalyst K; to all areas where S; is present.

{Assumption: One portion of S; and K; neutralize poison X, at a single loca-
tion.}

while contaminated-area # emptyset do

begin
A = calculate(UAV;, {rob;,, rob;, });
{ UAV; finds region for rob;, and rob;, to spread solid and catalyst,
respectively.}

begin_parallel {two main operations are done in parallel:

applying a solid to the area, and pouring a catalyst on it }
{a plan similar to (D; R), but using S;:}
get(rob;,, Sy, B); {rob;; retrieves a portion of solid S; from location B}
path := get_path(UAV;, rob;,;, B, A); {rob;, requests a path to follow}
move(rob;,, path); {rob;, moves from location B to location A}
pour(rob;;, Si, A);
return_path := get_path(UAV;, rob;,, A, B);
move(rob;; , return_path); '

get(rob;,, K1, B);

path = get_path(UAV;, rob;,, B, A);

move(rob;,, path);

wait_for(spread(Sy, A)); {rob;, waits for someone to spread S; in A}
pour(rob;,, K1, A);
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return_path := get_path(UAV , rob;,, A, B);
move(rob;,, return_path);
end_parallel
contaminated-area := contaminated-area \ A;
end.

The planner executed by UAV; computes the paths in such a way that the
robots’ movements are synchronized, so that they arrive in area A almost si-
multaneously.

3.7. Plan (D;N)

This plan, very similar to (D, R), is applicable when dangerous, occurs under
weather condition normal or dry. Each UAV; may be allocated (D,N) for a
given location as decided by the coordinator. Goal 11 (S;) is to apply solid S;
on all areas contaminated with poison Xs.

{Assumption: One portion of S; neutralizes poison X, at a single location.}

while contaminated-area # emptyset do

begin
A := calculate(UAV;, {rob;, }); { UAV; finds region A for rob;, to clean up}
get(rob;,, Sy, B); {rob;, retrieves a portion of solid S; from location B}
path := get_path(UAV;, rob;;, B, A); {rob;, requests a path to follow}
move(rob;,;, path); {rob;, moves from location B to location A}
pour(robij', 51, A4);
contaminated-areq := contaminated-area \ A;
return_path := get_path(UAV;, rob;;, A, B);
move(rob;, , return_path);

end.

The decontamination action is usually successful. Unfortunately, its effects
may not be immediately visible, therefore the plans don’t check contamination
levels right after applying chemicals.

Even though ( D1 R ), ( D1N ), ( D3R ), and { Do N ) do not contain explicit
actions to check the success of decontamination, such checks are part and
parcel of the main (Cleanup) plan, so the coordinator and UAVs can re-plan
accordingly if decontamination does not succeed.

4. Defining actions

The actions are defined using the standard STRIPS syntax and semantics:

1. Foreveryi € G, A; is the set of actions that agent ¢ is capable of performing;
2. Eachactiona € A = J,c Ai is atuple (a, 5,7, ), where:
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« is the set of all conditions that must be true for the action to be executable;

S is the set of all conditions that must be false for the action to be exe-
cutable;

~ is the set of all conditions that become true as a result of this action;

0 is the set of all conditions that become false as a result of this action.

4.1. Actions in the case study

Some actions are complex and require further planning. Definitions of the robots
actions are as follows:

— get(Ag, Ob, From) =
({at(Ag, From), at(Ob, From), available(Ob), capable_of lifting(Ag, Ob)},
0,{has(Ag, Ob)}, {available(Ob), at(Ob, From)})

— move(Ag, From, Direction) =
({at(Ag, From),in_direction(From, Direction, X ), can_enter(Ag, X)},
0,{at(Ag, X)}, {at(Ag, From)})

— wait_for(Cond) = (§,0, {Cond}, D)

— pour(Ag, Chem, Loc) =
({at(Ag, Loc), contains(Ob, Chem), has(Ag, Ob)}, 0,0, {has(Ag, Ob)})

The complex action move(Ag, From,To) results from planning performed
by agent Ag (it might request terrain information from its controlling UAV in
the process). It will be implemented as a series of atomic actions of the form
move(Ag, From, Direction).

Definitions of the pilot’s actions:

— upload(helicopter, Chem, Num) =
({at(helicopter, B)},
{airborne(helicopter)}, { has(helicopter, Chem, Num)}, ()
— take-off (helicopter, Loc) =
({at(helicopter, Loc)},
{airborne(helicopter)}, {airborne(helicopter)}, )
— landing(helicopter, Loc) =
({at(helicopter, Loc), airborne(helicopter)},
0,0, {airborne(helicopter)})
— plan-for-spraying(helicopter, Chem, list;) =
({has(helicopter, Chem, X), X > |list,|,
capable_of lifting(helicopter, Chem, |listy|), airborne(helicopter)},
0, {has(helicopter, Chem, X)}, {has(helicopter, Chem,Y),Y = X — |list;|})

Here plan-for-spraying(helicopter, Chem, list;) is considered an atomic ac-
tion by the planner, as the pilot is an independent agent planning for himself.
Notation |/ist;| stands for the length of /ist;.
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4.2. Plans and plan projections
A social plan is defined as a composition of simple social plan expressions.

SP1 (a,i) is a (simple) social plan expression iff i € G Aa € A;
SP2 if o and g are social plan expressions and ¢ is any true/false statement
then:
- {«; B) is a (compound) social plan expression (sequential execution)
— {(«]|B) is a (compound) social plan expression (parallel execution)
— (if pthen do a end ) is a (compound) social plan expression (an if-then
statement)

The notation ¢ is used to refer to an empty plan:

- (0;8) = a
- (&) =
- (all§) = a
- (€]1B) =

(|f<pthendo§end>zg

A plan is written for roles to be adopted by agents. Each role has require-
ments assuring, for example, that a robot cannot assume the role of a pilot
(since it is not capable of flying a helicopter). A plan projection for agent i can
be understood as the individual view of the plan, where some of the roles have
been adopted by agent i. An agent i’s projection of a social plan P (denoted
P|;) is defined as:

~ {a.i)]; = {a,i) iffi =
—{a i), = &iffi A
= (o s = (els; Bl
— {allB): = {alilI8)

- (if pthendo aend)|; = (if p thendo a|; end )

A projection of a social plan P for a group G of agents can be defined in a
similar fashion, using i € G instead of i = j.

4.3. Plan projections in the case study

Agents naturally commit to their controlling UAV which acts as a ‘middle man-
ager’ on behalf of the coordinator. Each UAV is committed to the coordinator
with regard to the task of keeping all assigned regions in a safe state.

Each agent has its own projection of the overall plan.

— The coordinator is aware of the (Cleanup) plan in the context of all regions;

— UAVs need a projection of the (Cleanup) plan in all areas to which they are
assigned;

— Robots need to have a projection of the (Cleanup) plan only regarding ac-
tions which they may take part in.

Projections for the pilot are not considered here, since he works indepen-
dently.
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5. TEAMLOG: a logical theory for teamwork

Due to the space limit, only the relevant fragment of TEAMLOG will be presented
here. For extensive explanation and discussion see [14—16, 20].

5.1. Beliefs in TEAMLOG

For the individual part, a standard K D45,, system for n agents has been adopted,
governing the individual belief operator BEL, as explained in [23]. Additionally,
for group beliefs, with a group G C {1,...,n}, as in [23]:

C1 E-BELg(p) < \;cq BEL(i, ) (general belief: “everyone believes”)

More general iterated form for k > 2:
E-BEL{ (p) <+ E-BEL, 1 (E-BELG()), where E-BEL (¢) = E-BELg ()

A very strong and heavily used notion in TEAMLOG is that of common belief.
C-BEL¢(y) - “it is common belief in the group G that ¢ is true”:

C2 C-BEL¢(¢) +» E-BELg (¢ A C-BELg(p))
RC1 From ¢ — E-BEL¢ (¢ A @) infer ¢ — C-BELq(v) (induction)

Common belief is a very powerful notion. For example, if C-BEL¢(y) holds
then C-BEL¢(v) holds as well with ¢ being any logical consequence of ¢. This
ensures that agents reach the same conclusions from ¢ and commonly believe
in them.

5.2. Tuning collective attitudes

Collective notions from TEAMLOG ensure the calibration of agents’ awareness.
In this case study the strength of collective attitudes is adjusted to a specific
domain, while group attitudes are set at the minimal level ensuring effective
team operation. In general, the question regarding the level of awareness about
each specific aspect of teamwork needs to be addressed.

Instances of awarenessg in TEAMLOG definitions can be anything from 0,
through individual beliefs, different levels of E-BELE., to common belief C-BEL.
Stronger levels of belief require increased communication to ensure their proper
propagation. It has been argued that in ideal teamwork, awareness¢ is taken to
be C-BEL¢ [14]. Assuming that the communication medium is perfect, it is pos-
sible to attain this. In practical implementations in an asynchronous, uncertain
medium, common knowledge (C-KNOW/) has been proven to be impossible
to achieve [29], and common belief (C-BEL¢) only under extremely restricted
constraints [17]. Alternatively, in realistic circumstances, one can apply commu-
nication protocols that establish ever higher approximations of common belief
within a group [4,2]. These protocols are less efficient because the required
number of messages passed back and forth between the initiator and other
agents grows linearly with the desired level of iteration. However, the underly-
ing assumptions are much easier to guarantee.
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5.3. Intentions in TEAMLOG

For the individual intention INT, the TEAMLOG axioms comprise the system
KD, including the intention consistency axiom D. In addition, the system de-
veloper may choose whether to add negative introspection of intentions (see [14]).

It is certainly not sufficient that all members of the team G have the associ-
ated individual intention INT(, ¢) to achieve ¢, i.e. a general intention. To ex-
clude competition, all agents should intend all members to have the associated
individual intention, as well as the intention that all members have the individual
intention, and so on; this is called a mutual intention (M-INT ¢ (¢)). Furthermore,
all team members are aware of this mutual intention: awarenessg(M-INTg(p)).
Please note that team members remain autonomous in maintaining their other
motivational attitudes, and may compete about other issues.

M1 E-INTq(p) <+ A;c INT(4, ) (general intention: “everyone intends”)

E-INT’é is also defined iteratively, similarly to higher-order general beliefs, for
k> 2:

M1’ E-INTE () +» E-INTE H(E-INT¢(p)), where E-INT (¢) = E-INTo(y)
Mutual and collective intentions are governed by:

M2 M-INT¢(p) > E-INT¢ (e A M-INT¢(p)) (mutual intention)
RM1 From ¢ — E-INT¢ (¢ A ¢) infer ¢ — M-INT () (induction)
M3 C-INT¢(p) <> M-INT¢(p) A awarenessq(M-INT(p)) (collective intention)

5.4. Collective commitment in TEAMLOG

After a group is constituted via collective intention, a collective commitment
between the team members needs to be established. While a collective inten-
tion is an inspiration for team activity, the plan-based collective commitment
expresses the case-specific details provided by planning and action allocation.
It is reflected in bilateral commitments towards individual actions. A bilateral
commitment from agent ¢ towards agent j to perform action « is represented
as COMM(4, 4, «). In this article, bilateral commitment is viewed as a primitive
notion, but see [16] for its characterization and governing axiom.

5.5. Collective commitment schema

A flexible tuning schema for collective commitments is presented in [16]. In sum-
mary, group G has a collective commitment to achieve goal ¢ based on social
plan P (C-COMMg¢ p(y)) iff all of the following hold (in the corresponding def-
inition below, parts between curly brackets may or may not be present): The
group mutually intends ¢ (with or without being aware of this); moreover, suc-
cessful execution of social plan P leads to ¢ (cons(p, P)) (again, with or without
the group being aware of this); and finally, for every action « from plan P, there
is one agent in the group who is bilaterally committed to another agent in the
group to fulfil that action (COMM(4, j, o)) (with or without the group being aware
of this):
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C-COMMg, p(p) <> M-INTg(p) A {awarenessqg(M-INTa(p))} A
cons(p, P) A {awarenessg(cons(v, P))} A
Nacp \/i,jeG COMM(i, j, a) A {awarenessa (N e p \/i,jeG COMM(4, j,@))}

Strong collective commitment Different types of collective commitments re-
lated to different organizational structures and environments have been intro-
duced in terms of a ‘tuning machine’ [16]. One instantiation of the above scheme
is the strong collective commitment [16]. In this case, the team knows the overall
goal, collectively believes that the social plan is correct (C-BEL¢g/(cons(y, P)))
and that things are under control. However, team members do not need to know
exactly who is responsible for each task.

Strong collective commitment is applicable in teams with no collective re-
sponsibility:

S-COMMg, p(¢p) <> C-INT¢(p) A cons(p, P) A
awarenessg(cons(p, P)) A N\yep Vi jea COMM(G, j, ) A
awareness(\,ep Vi jeq COMM(I, j, a))

Weak collective commitment In weak collective commitment [16], the team
knows the overall goal, but doesn’t know the details of the plan: there is no
collective awareness of the plan’s correctness, even though actions have been
appropriately allocated.

Weak collective commitment is applicable in teams with a dedicated planner,
who takes care of the proper planning reflected in cons(y, P):

W-COMMg, p(p) <> C-INT¢(p) A cons(p, P) A
Nacp \/i,jeG COMM(4, j, o) A\ awarenessg(/\,cp vz’,jeG COMM(3, j, @)

Team commitment A further weakening of the group commitment results in
the team commitment [16]. This case differs from weak collective commitment
including solely obligatory elements of collective commitment, without the team
being aware of them. Therefore, agents can’t infer if any action they take will
result in completion of plan P.

Team commitment is applicable in teams where agents only receive orders
and don’t help each other unless specifically told what to do.

T-COMMg p(p) <> C-INTg(p) A cons(p, P) A /\aeP Vi,jeG COMM(4, j, @)

6. Adjusting the TEAMLOG notions to the case study

6.1. C-COMDM on the sub-team level

Within a sub-team G, the UAV; has the highest level of awareness as it knows
the entire (Cleanup) plan for a particular region. There is no need for others to
know the details of that plan.

The strength of the collective commitment depends on the assumptions re-
garding cooperation between cleanup robots. There are two possible scenarios:
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— Robots help one another only when their UAV orders them to.
In this case, robots from G; need a quite limited awareness of the plan. For
example, they need to know the partially instantiated subplans applicable
in dangerous situations ((D1R), (D3R) or (DsN)). In the relevant weather
conditions, they may need to carry out one of these subplans for a region
assigned by the UAV;. This UAV; also assigns roles to robots, who do not
know the shares of others. Thus, feam commitment is sufficient on the sub-
team level.

— Robots help each other voluntarily.
In this case, they will also need to be aware about the partially instantiated
plans of nearby robots from G; in order to assist and assume a role that one
of its colleagues fails to perform. With regard to the (Cleanup) plan, this cor-
responds to weak collective commitment on the sub-team level. In addition,
it requires A ,cp V,,.neq, EBELG, (COMM(m, n, a)). That specific belief is
necessary if agents are to pitch in for one another.

6.2. C-COMDMg on the team level

In team G the coordinator has the highest awareness; for example, it is in
charge of the global planning, as explained in section 2.2. The UAVs in its
team only need to know their projection of the overall plan, and believe that the
entire plan has been shared among them. The coordinator knows both the plan
and action allocation. The coordinator, the pilot and and all UAVs are aware
that cons(safe, Cleanup) holds.

With regard to the (Cleanup) plan, this corresponds to strong collective com-
mitment on the top team level, where all UAVs and the pilot make social com-
mitments to the coordinator. Taking G’ = { coordinator, pilot, UAV 1, ..., UAV .}
and putting the awarenessg: dial at common belief, we have:

S-COMMgr cleanup(safe) <+ C-INT g (safe) A cons(safe, Cleanup) A
C-BEL¢ (cons(safe, Cleanup)) A
Naecicanup Vieqr COMM(i, coordinator, ) A
C-BEL¢' (Asecicanup Viear COMM(i, coordinator, v))

The dialogues taking place between the coordinator and its direct subordi-
nates during the creation of collective commitments ensure that the necessary
awareness is established (see [20, Chapter 8]).

6.3. Organization structure: who is socially committed to whom?

Commitments in the team follow the organizational structure of Figure 2. The
coordinator is socially committed to achieving the overall goal, with respect to
the main social plan. Other agents are committed to their projection of that plan.
The coordinator is committed towards itself and towards the relevant control
authority, for example, the national environmental agency for which it works.
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Each UAV,; fori = 1,...,k is committed towards the coordinator with re-
spect to achieving its part of the plan, namely keeping specified regions safe.
The robots in G; for i = 1,..., k commit to perform their share to their lead-

ing UAV ;, which has the power to uncommit them. There is a clear hierarchy
where the coordinator is the leader of the team G as a whole, while the UAVs
are ‘middle-managers’ of sub-teams. The UAVs also sometimes commit to a
colleague UAV when some of their robots are temporarily delegated to the
other’s sub-team.

The human pilot has a somewhat special role in that he does not manage
any sub-team. Instead, he directly commits to the coordinator, or sometimes to
UAVs if they request his assistance.

6.4. Minimal levels of group intention and awareness

What are the minimal levels of awareness and group intention needed for the
agents on both sub-team and team levels?

The robots - two cases are applicable

1. They act only individually; this is the most limited (and economical) case;

2. They perform a limited form of cooperation, for example, they work together
to clean up areas faster (e.g., by suitably combining the application of clean-
ing solids and catalysts), or pitch in for other robots when these turn out to
be unable to perform their share of labor.

Both cases will be considered separately while investigating group attitudes
of different types of agents involved in achieving a maintenance goal to keep
the region safe.

The level of intention

1. In case 1, the robots need a general intention E-INT;, about the goals.

2. In case 2, E-INTéi will be enough to allow forming two-robot teams that
are not competitive internally. (But see [14] for a counter-example showing
that a two-level intention is not sufficient to preclude competition among
two-agent coalitions). If agents are supposed to be strictly cooperative, a
two-level definition is also sufficient for larger teams: all agents intend to
achieve the goal in cooperation with the others included in their team.

Although robots sometimes individually compete for resources, in our field of
application where fast real-time team reaction to dangers is needed, we opt for
strictly cooperative robots that use fixed protocols to load up on resources. The
cleanup robots do not communicate with robots from other teams, and therefore
do not need to have any beliefs, intentions and commitments regarding them.
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The level of belief

1. In case 1, to act individually each robot i needs an individual belief about
every group intention (BEL(i, E-INT¢(¢))). This way, a general belief
E-BEL¢(E-INT¢(¢)) is in place and it suffices. Moreover, each robot in G;
should believe that the distribution of labor by means of bilateral commit-
ments is done properly (E-BELg,(A,cp \/n,mGGi COMM(n, m, «))). This
allows deliberation on actions of other robots from the same team. It may
also prevent robots from doing all the work by themselves.

2. In case 2, E-BELéi will be enough to allow deliberation about other robots’
intentions and beliefs (especially E-BEL, (E-INTZ, (¢))). To see this, one
may consider a pair of robots. With E-BELéi, both robots have the same
intention (E-INT¢, ()), believe they have the same intention (the first-order
belief E-BEL¢, (E-INT¢, (¢))), and believe that the other believes this (the
second-order belief E-BEL¢, (E-BELg, (E-INT¢, (¢))). Therefore, the robots
can reason about the beliefs and intentions of their partner.

In both cases, it is assumed that the robots are incapable of forming coali-
tions of cardinality > 2. This allows us to build a sufficiently strong collective
intention based on a low degree of nesting of general intentions [13]. In case 2,
the robots will also need to be aware of plan projections of their neighbours, in
order to be able to notice when they can help.

The UAVs The UAVs must sometimes work with one another. This requires
at least E-BELZ of other UAVs’ intentions.

The level of intention - sub-team level Within each sub-team G; consisting of
an UAV and robots, UAV; must make sure that all agents are motivated to do
their tasks. Therefore:

— incase 1, INT(UAV,;,E-INT¢, (¢)) is required with respect to the sub-team
intention E-INT¢, (¢),

— incase 2, INT(UAV,;,E-INT%, (¢)) is required with respect to the sub-team
intention E-INTéi(go). The UAV,’s intention is that all the robots in its team
not only do their work, but also have the intention of helping each other in
two-robot teams.

The level of belief - sub-team level Within each sub-team G, consisting of UAV;
and robots T0bjy ..., T0b;, the UAV; has the highest level of awareness, and
acts as a coordinator. In order to facilitate this (make plans and reason cor-
rectly), it will require one level of belief more than its agents:

— in case 1, BEL(UAV;,E-BEL¢, (E-INT¢, (¢))) is required with respect to
the sub-team intention E-INT¢, (¢) as well as:
BEL( UAVZ’ E-BELGL (/\aGCleanup \/i,jEGi COMM(% j7 a)))’
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— in case 2 BEL(UAV,;,E-BELZ, (E-INTZ, (¢))) is required with respect to
the sub-team intention E-INTZ, () as well as:
BEL(UAV ;, E-BELZ, (Avccieanup Vi jea, COMM(i, j, ))).

The level of intention - team level There are situations when two UAVs create
coalitions of cardinality < 2. In order not to be competitive internally, all UAVs
must have at least E-INTZ () with respect to every goal .

The level of belief - team level Cooperation between UAVs requires at least
E-BELZ of other UAVs’ intentions.

The coordinator The role of coordinator is to manage the team as a whole
(see Figure 2), including all sub-teams and the pilot. Therefore he needs to
know not only the global plan but also all the subplans.

The level of intention Similarly as in the relation of a UAV viz-a-viz its robots,
the coordinator has one level of intention more than the UAVs it manages,
therefore INT(coordinator, B-INT%(y)) is required.

The level of belief One extra level of belief allows the coordinator introspection
and reasoning about the joint effort of all UAVs. Therefore, since teams are co-
operative in a limited way, BEL(coordinator, E-BELZ (E-INT%(¢))) is required
with respect to every group intention E-INTZ (). Again, an analogical level of
awareness is required with regard to distribution of bilateral commitments:
BEL(coordinator, E-BELE (A e creanup Vi jec COMM(i, j, @))).

Commands from the coordinator overrule temporary contracts between sub-
teams. The coordinator does not only know the plan, but also keeps track of all
relevant environmental conditions. It is assumed that even in the safe situation,
the robots, the UAVs and the pilot are prepared to take action at any moment.

The pilot The pilot's own awareness about the team level is similar to the
UAVs’, except that he usually does not need precise awareness about the
robots’ actions. Additionally, as a human team member he has a special po-
sition and we do not want to impose on him a straight-jacket of awareness from
others. The only exception is that the coordinator is aware of the pilot’s share of
labor and his commitments and if applicable, some UAVs are aware of actions
the pilot commits to perform for them.

6.5. Complexity of the language without collective attitudes

It seems that in the environmental case study, the language used is richer than
propositional modal logic due to the use of continuous ranges, functions, and
a theoretically unlimited number of agents and teams. Fortunately, most of the
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relevant part can be reduced to a fixed finite number of propositional atoms
(that may be combined and be the subject of attitudes), based on finitely many
predicates and constants, as follows:

a fixed number of relevant environmental states;

a fixed number of pre-named locations;

a fixed finite number of agents and teams;

a fixed finite number of other objects (liquids, solids, catalyst, helicopter);
a fixed number of relevant thresholds ni, nq, ns, €1, €s.

The only possible source of unbounded complexity is the use of continuous
intervals and real-valued functions f1, fs, f3, fit appearing in Section 2. Recall
that the architecture proposed in Section 1.2 allows us to query external en-
tities. These concern data stored in databases and sensed from the environ-
ment, which are represented in the lower layer of the system. For example, the
functions fi1, f2, f3 and fit are part of this lower layer. Therefore, even though
the underlying structures are represented by first-order formulas, one extracts
only propositional information from them to use in the upper layer of proposi-
tional TEAMLOG reasoning. In fact, one can obtain answers true or false about
queries such as

Fs(p(A),H(A), c1(A), e2(A)) € (vs,ns)?

from the lower layer, without needing to resort to a first-order language in the
upper layer of the system.

7. Discussion of related approaches

One of the most influential theories of teamwork is the one of Wooldridge and
Jennings [42]. The actual formal frameworks of their papers is quite different
from ours. Wooldridge and Jennings define joint commitment towards ¢ in a
more dynamic way than collective intentions defined in TEAMLOG: according
to [42], initially the agents do not believe ¢, and subsequently have ¢ as a goal
until the termination condition is satisfied, including (as conventions) conditions
on the agents to turn their eventual beliefs that termination is warranted into
common beliefs. Subsequently, they define having a joint intention to do « as
“having a joint commitment that « will happen next, and then o happens next”.
In contrast, agreeing with [5], we view collective commitments as stronger than
collective intentions, and base the collective commitment on a specific social
plan meant to realize the collective intention.

The emphasis on establishing appropriate collective attitudes for teamwork
is shared with the SharedPlans approach of Grosz and Kraus [28, 27]. Never-
theless, the intentional component in their definition of collective plans is weaker
than our collective intention: Grosz and Kraus’ agents involved in a collective
plan have individual intentions towards the overall goal and a common be-
lief about these intentions; intentions with respect to the other agents play a
part only at the level of individual sub-actions of the collective plan. We stress,
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however, that team members’ intentions about their colleagues’ motivation to
achieve the overall goal play an important role in keeping the team on track
even if their plan has to be changed radically due to a changing environment.

Similarly to [28, 27], Rao, Georgeff and Sonenberg [36] use a much weaker
definition of joint intention than our collective intention: theirs is only one-level,
being defined as “everyone has the individual intention, and there is a common
belief about this”. Thus, their definition does not preclude cases of coercion
and competition. We have shown in the case study that, even though the full
infinitary flavor of collective intention is not always needed, even among truly
cooperative agents effective teamwork in disaster response demands at least a
second level of general intentions (see section 6.4).

Another theory of teamwork, by Levesque, Cohen and Nunes [31], does
incorporate higher-level intentions in its joint intention. Also, common belief is
an integral part of a group’s intention in both [31, 36], which may be problematic
because creating common beliefs is costly in terms of communication and often
impossible if the communication medium is untrustworthy [17, 4, 2]. Problematic
communication was one of the reasons for restricting to minimal levels of belief
in section 6.4. Additionally, in contrast to TEAMLOG, Levesque and colleagues
assume a homogeneous group and the absence of social structure. Accounting
for a group’s social structure is crucial in a theory of teamwork, and in fact it is
employed in our investigation of collective commitments in the case study.

Some approaches to collective commitments introduce other aspects, not
treated here. For example, Aldewereld et al. add constraints about goal adop-
tion and achievement to their definitions of joint motivational attitudes [1]. We
have chosen to incorporate solely vital aspects of the defined attitudes, leav-
ing room for any case-specific extensions. If needed, these extensions may be
added by extra axioms. Note that in contrast to approaches such as [42, 31], our
collective commitment is not iron-clad: it may vary in order to adapt to changing
circumstances, in such a way that the collective intention on which it is based
can still be reached.

In the logical MAS literature some phenomena such as the dynamics of atti-
tude revision during reconfiguration have received scant attention (but see [38,
39]). Our notion of collective commitment ensures efficiency of reconfiguration
in two ways. Unlike in [42], our approach to group commitments is formalized in
a non-recursive way. This allows for a straightforward revision. Next, because
only social commitments to individual actions appear, it often suffices to revise
just some of them. That way it is possible to avoid involving the whole team in
replanning. Thus, teamwork axioms may serve a system designer as a high-
level specification at design-time. During run-time, formal verification methods
may be applied to check the correctness of the system behavior.

In conclusion, our logical theory TEAMLOG has been developed against the
background of Bratman’s four criteria for shared cooperative activity [3]:

— mutual responsiveness;

— commitment to the joint activity;

— commitment to mutual support;

— formation of subplans that mesh with one another.
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Kraus and colleagues [25] apply an illuminating comparison in the light of Brat-
man’s criteria to six approaches to teamwork, including an early version of
TEAMLOG [14] and some of those theories mentioned above [42,28,27,31,
36] as well as [26]. They base their analysis on a very simple example of co-
operation, where two agents move an object together. It would be interesting to
compare all six theories on a complex time-critical example such as the present
disaster management case study, but this would require a book-length study
and is out of the scope of this paper.

8. Conclusion

In the case study we have shown how to implement teamwork within a strictly
cooperative, but still heterogenous group of agents in TEAMLOG. The hetero-
geneity is taken seriously here, as advocated in [24]. Natural differences in
agents’ shares, opportunities and capabilities when acting together, have been
reflected in different levels of agents’ awareness about various aspects of their
behaviour. The study dealt especially with cooperation and coordination. Hav-
ing very generic definitions of common motivational and informational attitudes
in TEAMLOG, it is challenging to choose the proper level of their complexity.
We have shown that this is possible, by illustrating how to tailor complex defini-
tions of intentions and commitments to a specific environment. Our focus was
on building beliefs, intentions and, finally, commitments of all agents involved in
teamwork on an adequate, but still minimal level. Therefore, even though not all
aspects of teamwork have been shown, a bridge between theory and practice
of teamwork has been constructed for this exemplary application, under the as-
sumptions of fully cooperative agents and a hierarchical organization. It would
be interesting to investigate the influence of relaxing both assumptions as well
as to incorporate the dynamics of team dialogue and reconfiguration in the case
study, according to the dynamic theory TEAMLOG%" [20, Chapters 5,6,8].

Future work will be to embed TEAMLOG into a form of approximate reason-
ing suitable for modeling perception. Similarity-based approximate reasoning,
with its intuitive semantics compatible with that of TEAMLOG, is a promising
candidate [9, 12,10, 11].
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