
DOI: 10.2298/CSIS101220005W

Animation of Tile-Based Games Automatically
Derived from Simulation Specifications

Jan Wolter, Bastian Cramer, and Uwe Kastens

University of Paderborn
Department of Computer Science

Fürstenallee 11, 33102 Paderborn, Germany
jwolter@mail.uni-paderborn.de, {bcramer, uwe}@uni-paderborn.de

Abstract. Visual Languages (VLs) are beneficial particularly for domain-
specific applications, since they can support ease of understanding by vi-
sual metaphors. If such a language has an execution semantics, compre-
hension of program execution may be supported by direct visualization.
This closes the gap between program depiction and execution.
To rapidly develop a VL with execution semantics a generator framework
is needed which incorporates the complex knowledge of simulating and
animating a VL on a high specification level.
In this paper we show how a fully playable tile-based game is specified
with our generator framework DEViL. We illustrate this on the famous Pac-
man1 game.
We claim that our simulation and animation approach is suitable for the
rapid development process. We show that the simulation of a VL is easily
reached even in complex scenarios and that the automatically generated
animation is mostly adequate, even for other kinds of VLs like diagram-
matic, iconic or graph based ones.

Keywords: visual languages, DEViL, simulation, animation, tile-based games,
pac-man

1. Introduction

A prominent representative of a visual language is the Unified Modeling Lan-
guage (UML) [10] which is often used in software engineering process. Even
smaller languages precoined for a specific domain are popular, because they
can use visual metaphors of the target domain. In general an instance of such
a visual language is used to produce source code of a different domain, e.g.
Java Code from an UML class diagram.

To gain acceptance in rapid prototyping, generator frameworks are used
which can generate graphical structure editors for such visual languages from
high-level specifications. These generators incorporate expert knowledge to
produce a complete development environment for a VL with all features known
from typical text editors like cut and paste, printing, drag and drop and so on.

1 Pac-man
R©

is a registered trademark of Namco.



Jan Wolter, Bastian Cramer, Uwe Kastens

Unfortunately there is still a gap between program depiction and the generated
code of that program. The programmer has to keep in mind what the program,
he just created, does when it is executed. This gap is known as the gulf of ex-
ecution [9]. Simulation and animation of the visual language instance can help
to narrow this gap. The execution semantics of a visual language (if it has one)
can be integrated into the visual language. Hence the VL instance is no longer
static. It can be simulated and smoothly animated. The user can ”see” his lan-
guage being executed before he generates code.

This helps to avoid mistakes at a very early stage and it supports program
comprehension which is a challenging task especially in languages where many
things happen in parallel.

The Development Environment for Visual Languages, DEViL, is a generator
framework for visual languages which produces graphical editors from declar-
ative high-level specifications. We extended it with simulation and animation
support for VLs whereas a smooth and challenging animation can be derived
automatically from a simple simulation specification. In this paper we want to
show that our simulation specification language is powerful to simulate even
complex behavior. We claim that the language helps in rapid prototyping, be-
cause simulation becomes an easy task due to powerful encapsulated concepts
like event driven simulation and the extension of the visual semantic model to
constitute a tailored simulation model. We will show that the automatically de-
rived animation is suitable in most situations.

We will demonstrate this on the famous Pac-man game. It has a playful
character, but it is also a challenging language for simulation, because of the
complex navigation concepts of the ”ghost” pawns in the game.

The paper is structured as follows: First we introduce the DEViL system and
its underlying specification concepts with particular attention to simulation and
animation. In Section 3 we give a brief description of the Pac-man game. In the
next section we present our Pac-man Editor with special attention to the strate-
gies of the ghost characters. Section 5 addresses related work and section 6
completes the exposition with a conclusion and a look at other implemented
languages.

2. The DEViL System

The DEViL framework generates syntax-directed graphical structure editors for
visual languages. The generated environments support all features of com-
monly used editors. Especially 2.5D views on the underlying semantic model
are supported. A more in depth look at the generator framework and its gener-
ated products with respect to usability can be found in [13].

DEViL has already been successfully used for projects with nameable com-
panies like Bosch [3], VW or SagemOrga [15]. The specification of this Pac-
man Game Editor was one of many bachelor resp. master-theses that used the
DEViL framework.

502 ComSIS Vol. 8, No. 2, Special Issue, May 2011



Animation of Tile-Based Games Derived from Simulation Specifications

The specification process to generate ”static” environments - environments
without simulation and animation support - is divided into three parts. As can
be seen later in this paper, simulation and animation support can be extended
easily by the reuse of components of some of these three specification steps.
Hence, an user of the DEViL system who can build visual development envi-
ronments, can extend a language with simulation and animation support with
reasonable effort.

To generate a structure editor for DEViL one first specifies the semantic
model of the visual language. This is done with DSSL (DEViL Structure Spec-
ification Language). The semantic model abstracts from the visual representa-
tion. It stores just the information necessary to describe the semantics of the
visual program. DSSL is inspired by an object oriented design with classes, in-
heritance, attributes and references. Fig. 1 shows a part of the specification of
the semantic model for our Pac-man Editor. DEViL can generate an editor with
a tree based structure manipulation view from this part of the specification.

� �
CLASS Tile {
columnRef: REF Column;
item: SUB Item?;

}
ABSTRACT CLASS Item {
name: VAL VLString;

}
CLASS Pacman INHERITS Item {
direction: VAL VLInt INIT "2";
angle: VAL VLInt INIT "0";
clockwise: VAL VLBoolean;

}�
Fig. 1. Part of the semantic model for the Pac-man Editor.

To obtain an advanced visual representation, the semantic model (created
with DSSL) is decorated with so called ”visual patterns”. Visual patterns define
how constructs of the structure tree should look like. E.g. one can specify that
some part of the structure tree should be laid out as the abstract concept ”list”
and aggregated nodes play the role of ”list elements”. Control attributes may
modify this layout, for instance the list could be constituted vertically instead of
horizontally. DEViL provides a huge library of precoined visual patterns with var-
ious possibilities to adapt their layout and appearance. A subset of this library
is for example ”sets, lists, trees, formulae or matrices”. Technically, symbols of
the semantic structure definition inherit from these visual patterns. The attribute
evaluator, generated by LIGA [4], of the underlying compiler generator frame-
work, Eli [5], computes the final graphical representation.

The last (optional) step of the specification process is the definition of a code
generator. Here, all of the tools of the Eli system to analyze the visual language
instance can be used. A more detailed description of the VL specification pro-
cess can be found in [14].

ComSIS Vol. 8, No. 2, Special Issue, May 2011 503



Jan Wolter, Bastian Cramer, Uwe Kastens

In order to separate concerns of specification, simulation and animation
have to be distinguished: simulation is the raw execution semantics of the vi-
sual language and animation is the smooth depiction of discrete execution of
VL programs. Some visual languages have a precisely defined execution se-
mantics, e.g. the firing of tokens in a Petri-net may be smoothly depicted by
animation. For other visual languages simulation and animation may require to
extend the semantic model to represent the simulation states or its graphical
representation.

The presented Pac-man Editor (Fig. 4) considered as a visual language has
a number of pawns that can be placed on a tile-based board which constitute
the playing field. The pawns are typed structure objects of this VL. The Pac-
man Editor has only four different pawns: ”wall”, ”ghost”, ”powerpill” and ”pac-
man”. Additionally, some structure objects are needed to represent the rows and
columns of the board. Hence, our Pac-man VL is a playground editor where the
user can create custom levels.

To specify a simulation for the Pac-man Editor we have to define the state
space and the state transitions. Both can be specified in our simulation specifi-
cation language DSIM.

� �
MODEL {
CLASS Tile {

OBJECT pill OF PowerPill: "THIS.item.CHILDREN[0]";
position: VAL VLPoint?;
diffVal: VAL VLInt INIT "0";
visited: VAL VLBoolean INIT "0";

}
CLASS Pacman {

OBJECT tile OF Tile: "THIS.PARENT.PARENT";
}

}�
(a) Simulation model.� �

EVENTS {
goGhost(Tile from, Tile to){

Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);

}
eatPacman(Tile from, Tile to){

IF(#[0]Root.sound == VLBoolean(1)){
vlPlaySound("pacmanDeath.wav");

}
REMOVE(to.item, FIRST);
Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);
FIRE gameLost(#[0]Root)@TIME_NOW + 1;

}
}�

(b) Events.

Fig. 2. Simulation model in DSIM and some events which can be scheduled in the sim-
ulation loop.

504 ComSIS Vol. 8, No. 2, Special Issue, May 2011



Animation of Tile-Based Games Derived from Simulation Specifications

Fig. 2 (a) shows the specification of the simulation model in DSIM. As can be
seen, we again reuse DSSL concepts and we can extend the semantic model
of the visual language to reach a new model that is suited for simulation. In
this case we extended the semantic model class Tile (see Fig. 1). We can
introduce new attributes that are needed for simulation purposes only or extend
our simulation model with so called path expressions to traverse the simulation
model tree at run time. Both model the state space for the simulation.

We could also narrow the semantic model of the visual language in our
simulation model. This can be done if parts of the semantic model of the visual
language are only needed for representation purposes and not for simulation.

� �
FOREACH ghost IN [Ghost] {
IF(ghost.strategy == VLInt(1)) {

Tile to = NEIGHBOUR_TILE(mapping, NEUMANN, ghost.tile, Pacman);
IF(NOTNULL(to) AND (ghost.eatable == VLBoolean(0))){

FIRE eatPacman(ghost.tile, to) @TIME_DIRECT;
}
ELSE {

IF(NOTNULL(#[0]Pacman)) {
Tile to = NEIGHBOUR_EMPTY_TILE_RANDOM(mapping, NEUMANN, ghost.tile);
IF(NOTNULL(to)) {
FIRE goGhost(ghost.tile, to) @TIME_DIRECT;

}
}

}
}

}�
Fig. 3. Part of the simulation loop.

Fig. 3 shows an excerpt of the behavior specification part of DSIM. Here the
simulation model can be inspected and events can be scheduled that modify an
instance of the simulation model. Hence we follow the event based approach
to simulation. Events are scheduled for an arbitrary time. Any event can trigger
arbitrary so called simulation modification actions. These actions modify the
simulation model and they constitute the interface to the animation framework.
The excerpt shows the behavior specification of the ghost pawns. They try to
eat Pac-man if it is located on a neighbour tile. If not, the ghost moves according
to its strategy to the next tile.

In DSIM the following simulation modification actions exist which also form
the interface to the animation part:

– REMOVE a structure object.
– INSERT a new structure object instance or insert a structure object, that

was removed before. The latter would yield a MOVE action.
– COPY a structure object.
– CHANGE VAL to change a primitive attribute or a reference.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 505



Jan Wolter, Bastian Cramer, Uwe Kastens

In Fig. 2 (b) some events with corresponding simulation modification actions
can be seen. The specific characteristics of the simulation modification actions
is that an animation can be automatically derived from such a specification.

The default animations triggered are: slow shrinking to invisibility of an ob-
ject that is removed, slow growing of an object that is newly inserted. Linear
moving (with optional easing) of a structurally moved object. Copied objects
move from their copy source to their destination while changing their trans-
parency value from invisible to visible. Since editors generated by DEViL are
syntax-directed structure editors, the creation or removal of structure objects
can have side effects to other structure objects with respect to their size or
position. These objects are automatically adapted smoothly, in that they are
morphed. Even colors of structure objects are adapted smoothly.

The default animation behaviour is sufficient for most automatically derived
animations as can be seen later. But, in some cases the default animation that
is automatically triggered is not what the animator of a visual language desires.
Here the animator can override the default behavior with so called animated
visual patterns (AVPs). The AVPs can be decorated like the visual patterns to a
structure object and tell the structure object in what way it is animated if a cer-
tain simulation modification action occurs. For instance if a token in a Petri-net is
removed it should not shrink to invisibility which is the standard animation. The
desired animation is to move the token to the fired transition, hence the used
AVP to override the default behavior for remove is AVPOnRemoveMove. We
have AVPs for changing size and transparency values of structure objects, for
moving, scaling, rotating and so on. All of them can be combined and adapted
to the needs of the animation.

A more detailed description of DEViL’s simulation and animation facilities
can be found in [2].

3. Pac-man

Pac-man is the most popular arcade computer game in the eighties of the last
century and it was originally developed by Toru Iwatani for the Namco company
in 1980. Because of the large degree of esteem different versions of the game
have been reprogrammed many times for several systems like home comput-
ers, game-consoles and recently even for the iPhone [8]. The game is very
interesting in terms of navigating a character around a structured playground,
accumulating points, avoiding and (in some cases) attacking non-player game
characters.

The classic version of Pac-man is an one-player game where the human
player routes the Pac-man around a maze with the goal to avoid the four ghost
characters and to eat as much pills as possible. Initially the pills are placed in
each walk-in field of the playground and will be eaten via the achievement of
the field by Pac-man. The overall four ghosts roam through the maze trying to
catch Pac-man. This is successful when a ghost achieves a tile in which Pac-
man is located. In this case Pac-man looses one of his initial three lives and the

506 ComSIS Vol. 8, No. 2, Special Issue, May 2011



Animation of Tile-Based Games Derived from Simulation Specifications

game restarts when Pac-man has just one life. Each of the four ghosts pursues
a different strategy to eat the Pac-man.

(a) Starting position of a Pac-man game. (b) A dynamic animation
object.

Fig. 4. Screenshots of our Pac-man game.

Besides the normal pills in each tile there are four powerpills which are lo-
cated near each corner of a maze. When Pac-man eats a powerpill he gets
a special score and is able to eat ghosts on his part. In this case all ghosts
change their color to blue for few moments, reverse their direction, and usually
move more slowly. If Pac-man eats a ghost, he gets a special score and the
ghost resurrects in the middle of the maze after a few moments. In addition to
the previously seen options there is one more possibility to increment the score:
sometimes a symbol of a fruit appears at a random position of the maze, which
also gives the chance to get extra points.

The game ends when all pills have been eaten or Pac-man has lost all of
his lives. In the former case the player reaches a new level which is more diffi-
cult than the previous one. This can be achieved for example by faster moving
ghosts.

Fig. 4 (a) shows a playground of a Pac-man game, which has been build
with our Pac-man Editor. Besides the Pac-man the figure shows three different
ghosts, wall items and powerpills.

4. Pac-man Editor

Our Pac-man Editor is structured as a multi document interface (MDI) and offers
the ability to create user-defined playgrounds for Pac-man games. The user
has the option to insert different items to the playground, e.g. Pac-man, ghosts,
powerpills or wall items. It is also possible to expand the playground by adding

ComSIS Vol. 8, No. 2, Special Issue, May 2011 507



Jan Wolter, Bastian Cramer, Uwe Kastens

rows and columns. A playground which is constructed in such a way allows to
play Pac-man as mentioned above.

The specification of the semantic model was the first task to implement this
editor. The most important part of the semantic model is the matrix structure.
An object of the matrix class is associated with an arbitrary number of columns
and rows. Each row owns several tiles, which includes in turn an item or not.
The item is an abstract class and the concrete subclasses are either Wall-item,
Pac-man, Ghost or Powerpill.

To realize a correct semantic playground it is essential to avoid more than
one Pac-man or a game without Pac-man. Hence, the DEViL System provides
the ability to specify consistency constraints on various levels. E.g. cardinalities
in the semantic model or specialized callback functions which can navigate the
structure tree. All these checks are automatically performed before simulation.
Hence, only a correct Pac-man game instance can be simulated.

Besides the consistency constraints the language designer can implement
initialization functions for each class of the semantic structure. Such a func-
tion is a callback function and will be automatically called by the system, if a
new object has been created. We used this, for example, to realize a default
playground dimension of 10× 10 tiles.

4.1. Strategies

With our editor it is possible to allot one of overall three different strategies to
each ghost. We draw our inspiration with respect to the strategies of Repenning
[12]:

Random The ghost roams randomly through the maze. At each step it evalu-
ates the walk-in fields in the von Neumann neighbourhood [17] and chooses
one randomly.

Incremental Approach The ghost tries to move closer to the Pac-man. At each
step it evaluates the empty neighbour tiles and selects the closest one in
euclidean sense.

Hill-climbing Due to the fact that the incremental approach does not permit
the overcoming of walls, the strategy of hill-climbing affords this. To achieve
this goal, diffusion values are used for each tile. These are used to spread
the ”scent” of the Pac-man in the maze. The value represents the closeness
of a ghost to Pac-man. The largest value gets the tile in which Pac-man is
allocated. Starting from this tile, the value is distributed to all walk-in fields
of the playground. Every tile which is not accessible, e.g. a tile with a wall
item, gets a negative diffusion value. At each step of the game the ghost
selects the tile which has the largest diffusion value. Due to the fact that
the diffusion values must be recalculated at each step, this brings the ghost
closer to Pac-man. Fig. 5 illustrates the allocation of diffusion values and
the way a ghost must go to get Pac-man.

508 ComSIS Vol. 8, No. 2, Special Issue, May 2011



Animation of Tile-Based Games Derived from Simulation Specifications

993 994 995 996 997 996 995 994 993

992 996 997 998 997 992

999 998 997 991

996 997 998 999 1000 999 998 990

995 989

994 993 992 991 990 989 988 987 988

Fig. 5. Distribution of diffusion values to apply hill-climbing.

A closer look to the implementation of the hill-climbing strategy is available
in the next section. Amongst other things we describe the implementation of
ghost strategies in DSIM.

4.2. Simulation

The user interaction via keyboard is essential for the Pac-man game. The DEViL
System provides the ability to define arbitrary keyboard events which can be
processed in the simulation.

We used the simulation model to add particular attributes which are neces-
sarily needed for the simulation. An extract is given in Fig. 2 (a). We extend the
Pac-man class with a tile attribute, which allows the access of the tile in which
Pac-man is located, from the context of a Pac-man object. Besides others, we
had extended the tile class with an attribute which stores the diffusion value of a
tile. This is needed to realize the hill-climbing strategy. Keep in mind, that these
attributes only exist in the simulation model, not in the semantic model of the
Pac-man VL.

In the event block we specified events, which can be scheduled at an arbi-
trary simulation time in the loop block. Hence, our simulator follows an event
driven approach. We had implemented overall 16 different events. Fig. 6 shows
two events. The coordinatePacman event gets the Pac-man instance and a
direction to move to. It checks, whether a powerpill or a ghost is in the way. If so
Pac-man tries to eat the ghost resp. the powerpill. If there is nothing to eat Pac-
man just walks to the next tile, the goPacman event is called. This event again
calls two events to increment the score and to compute the rotation, which is
needed for the animation. Finally the Pac-man pawn is removed from the actual
tile and inserted to the tile in the desired direction. This yields a MOVE action for
the Pac-man pawn.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 509



Jan Wolter, Bastian Cramer, Uwe Kastens� �
coordinatePacman(Pacman pacman, VLInt direction){
Tile go = NEIGHBOUR_TILE(default, NEUMANN, pacman.tile, PowerPill);
IF(NOTNULL(go)){

FIRE eatPowerpill(pacman.tile, go, pacman, direction) @TIME_DIRECT;
} ELSE {

go = NEIGHBOUR_TILE(default, NEUMANN, pacman.tile, Ghost);
IF(NOTNULL(go)){

FIRE eatGhost(pacman.tile, go, pacman, direction) @TIME_DIRECT;
}ELSE{

go = NEIGHBOUR_TILE(default, pacman.tile, direction);
IF(NOTNULL(go) AND (SIZE(go.item) == VLInt(0))){

FIRE goPacman(pacman.tile, go, pacman, direction) @TIME_DIRECT;
}

}
}

}

goPacman(Tile from, Tile to, Pacman p, VLInt d){
FIRE incrementScore(#[0]Score, 1) @ TIME_DIRECT;
FIRE computeRotation(p,d) @ TIME_DIRECT;
Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);

}�
Fig. 6. Coordination of the Pac-man pawn.

In each simulation step we have to compute the diffusion value for the hill-
climbing strategy. This is done by a call of a C function. The function computes
the value via a simple breadth-first search. Afterwards the ghost has to pick the
target tile which has the largest diffusion value. To get a specific neighbour, we
extended the simulation language such that we can access structure objects (of
a specific type) in the neighbourhood of a given tile. All editors generated with
DEViL that make use of tiling have the same underlying model. Due to this fact
we could identify a subset of tile-access functions which are often needed and
generalize these functions. This lead to a decrease of hand written C-code.

Fig. 7 shows some neighbour access functions. The first function counts
the ghosts in Moore neighbourhood [16] of the Pac-man. A computation of the
neighbour tile in south direction of a ghost shows the second function. The last
function returns a random tile in von Neumann neighbourhood of Pac-man.

� �
NEIGHBOUR_COUNT(mapping, MOORE, pacman.tile, Ghost);
NEIGHBOUR_TILE(mapping, ghost.tile, S);
NEIGHBOUR_TILE_RANDOM(mapping, NEUMANN, pacman.tile);�

Fig. 7. Exemplary neighbour access functions.

510 ComSIS Vol. 8, No. 2, Special Issue, May 2011



Animation of Tile-Based Games Derived from Simulation Specifications

4.3. Animation

The default animation which is automatically derived from the simulation speci-
fication is almost adequate. A ghost and the Pac-man move fast from the start
tile to the target tile in each simulation step. This is the case, because the an-
imation framework interprets the modification actions REMOVE and INSERT as
a moving animation. Furthermore the Pac-man shrinks to invisibility when he is
caught by a ghost.

But Pac-man looks in the desired viewing direction until he has accessed
the target tile. It would be nicer if Pac-man rotates to the desired viewing di-
rection in the start tile before he moves to the target tile. Now the idea is to
override the default behaviour for Pac-man. All animations are typed over their
simulation modification action. Hence, we need to override the default anima-
tion pattern MOVE, because the Pac-man is moved (REMOVEd and INSERTed)
on the playground. We do it with the specification in Fig. 8 (a). We use the
animated visual patterns OnMoveRotate and OnMoveMove. OnMoveRotate
rotates a structure object if it is moved. Hence, we have to override the angle
and rotate attributes. The angle and rotate attributes are stored in the ”pacman”
class (see Fig. 1) and will be computed via the computeRotation event in each
simulation step. In addition we override the duration attribute to specify the du-
ration of the rotate operation. In this configuration the rotation and the move
are scheduled at the same simulation time, but we want the animation of the
rotation to appear before the animation of the move. Hence the OnMoveMove
animation must be animated after the OnMoveRotate animation. Hence, we
have to assign the value 2 to the time attribute. Furthermore we override the
duration attribute to indicate the duration time for a move operation. As can be
seen, besides the simulation time, we have an animation time which defines
an order of the animations and which can easily be adapted to gain a desired
animation.

The animation framework offers the possibility to animate objects which
are not part of the semantic model (so called dynamic objects). If Pac-man is
caught, we have used this feature to display a skull (see Fig. 4 (b)). For such a
purpose it is only necessary to use the provided visual patterns as described in
Fig. 8 (b). The visual pattern CreateDynamicObject reacts to a modification
action and offers the possibility to add a drawing. As seen in Fig. 8 (b) we over-
ride the modification action attribute to react to a remove action. Furthermore,
we override the drawing attribute to add the skull drawing. In order that the skull
moves bottom-up from the position of the Pac-man, we had used the pattern
MoveDynamicObject. We also had used the pattern OnRemoveShrink to
show the skull temporary.

The specification of an animation in DEViL is straight forward: first specify
a simulation, then derive the animation automatically. Hence the animation is
a formal mapping of its simulation part. At last, animations can be adapted by
overriding the default animations through the application of a huge declarative
animation pattern library.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 511



Jan Wolter, Bastian Cramer, Uwe Kastens� �
SYMBOL pacmView_Pacman INHERITS VPContainerElement, VPForm,

AVPOnMoveRotate, AVPOnMoveMove, AVPOnRemoveShrink
COMPUTE
SYNT.drawing = ADDROF(PacmanDrawing);
SYNT.onMoveRotateAngle = THIS.pers_angle;
SYNT.onMoveRotateClockwise = THIS.pers_clockwise;
SYNT.onMoveRotateDuration = 600;
SYNT.onMoveMoveRaiseDisplayOrder = 1;
SYNT.onMoveMoveAnimationTime = 2;
SYNT.onMoveMoveDuration = 900;
SYNT.onRemoveShrinkAnimationTime = 10;

END;�
(a) Mapping of AVPs with control attributes to override default animation.� �

SYMBOL pacmView_Pacman INHERITS AVPCreateDynamicObject,
AVPMoveDynamicObject

COMPUTE
SYNT.createDynamicObjectModificationAction = REMOVE;
SYNT.createDynamicObjectDrawing = ADDROF(SkullDrawing);
SYNT.createDynamicObjectPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,10))));

SYNT.moveDynamicObjectDuration = 8000;
SYNT.moveDynamicObjectStartPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,10))));
SYNT.moveDynamicObjectEndPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,60))));
END;�

(b) Creating a dynamic animation object and moving it.

Fig. 8. Animation of Pac-man.

5. Related Work

The Agentsheets system [11] can generate tile based simulations and games.
The specification process is fully graphical and rule based. Agentsheets uses
the programming by demonstration paradigm. In the rules one can access
neighbour tiles through the help of icons with specific arrows. This is the vi-
sual variant of our neighbour access functions. Agentsheets is restricted to tile
based simulation whereas our system can also handle diagrammatic or iconic
visualizations.

In the area of generator frameworks for visual language environments the
GenGed [1] system makes use of graph transformation and visual rewrite rules
to specify simulation. To store the simulation state, rules must be extended.
This is similar to our simulation model which can extend the semantic model of
a VL. GenGed uses a formal mapping between simulation and animation. This
is comparable to our simulation modification actions which trigger default ani-
mations. They are the interface between simulation and animation framework.
Smooth and complex animations can not be specified with GenGed.

512 ComSIS Vol. 8, No. 2, Special Issue, May 2011



Animation of Tile-Based Games Derived from Simulation Specifications

The DiaGen [6] system also uses graph transformation to specify a visual
language. Some editors already support simulation and animation. Interesting
is that every animation step is a state of the underlying graph transformation
system whereas we interpolate between two adjacent simulation model states.

6. Conclusion

The specification of the Pac-man editor is a straight forward task. Table 1 shows
that we needed 220 LOC for the whole simulation part including all ghost strate-
gies and 400 LOC for hand written C-code. The other specs part needs only 236
LOC. The second column of the table shows a decrease of total LOC from 883
to 646 LOC. This is because of the neighbour access functions we had gener-
alized. This reduced the LOC of C-code nearly by 250 LOC and we need only
7 additional LOC in the simulation specification to realize the mapping between
concrete and generalized matrix structure. The 156 LOC of C-code is just a
simple tile initialization function for the hill-climbing strategy. The automatically
derived animation is sufficient to play the game. The 27 LOC are just syntactic
sugar.

Table 1. Distribution of the specification complexity.

LOC LOC with access fct. generated LOC

simulation 220 227

87.504
animation 27 27

C-code 400 156

other specs. 236 236

883 646 87.504

The DSIM language with its narrow interface to the animation and its con-
structs tailored for the simulation of visual languages has already been ap-
proved in other VLs with execution semantics like Petri-nets, a Datapath simu-
lation, electronic circuits and even the game Ludo. Table 2 shows the amount
of LOC for simulation and animation part of already implemented editors. The
examples in line two and three are based on the Petri-net simulation shown
in line one. They show the simulation of the well-known dining philosophers
and a simulation of a signal light of a four-way-crossing. Both are structurally
coupled to the Petri-net with DEViL’s internal declarative coupling mechanism.
A simulation of the Petri-net automatically triggers synchronization functions in
the philosophers resp. signal-light view. The simulator detects these triggerings
and calls the animation framework. Hence, additional specification amount is
not needed.

As can be seen in Table 2 the automatically triggered animation is mostly
sufficient. We need to adapt the animation only in simulations where animations

ComSIS Vol. 8, No. 2, Special Issue, May 2011 513



Jan Wolter, Bastian Cramer, Uwe Kastens

Table 2. Simulation and Animation LOC of other VLs.

Simulation Coupling Animation Anim. syntactic sugar

Petri-nets 29 4 0

Dining-Philosophers 29 95 4 0

Signal-Lights 29 57 4 0

Logo 211 3 3

Game of Life 39 0 0

Ludo 338 0 0

Statecharts 78 2 0

Bubblesort 13 0 0

Quicksort 93 0 0

Heapsort 225 0 0

CPU Datapath 263 160 0

Washing bay 35 0 0

Electronic circuits 99 109 0

DTM 96 9 9

Monitor 162 1 0

Sokoban 157 10 0

LR(1)-Parser 199 0 0

Traffic simulation 3372 26 6

depend on the context of their structure objects. E.g. this is the case in our CPU
datapath simulation where an animation of an instruction is different whether it
is located in an instruction decoder, in an accumulator or somewhere else.

The already implemented VLs have a very diverse appearance: we have
diagrammatic, iconic and graph based depictions.

We just finished a visual language for traffic simulation. It is also a tile-bases
VL and can simulate behaviour of cars following the well-known traffic simula-
tion model of Nagel and Schreckenberg [7]. The language supports user de-
fined rules, traffic analyses, the definition of routes and driver profiles. All in all
we specified more than 3000 LOC for the simulation part. Hence the language
is one of the most complex examples and it proves DEViL’s ability to support
large simulations and team work, because it was specified in a students project
with 10 participants and a workload of one year.

We implemented about 19 different languages with simulation and animation
support up to now. The overall simulation specification amount is 5500 LOC. For
the animation we only needed about 350 LOC. Hence the standard animation
is mostly sufficient and only needs few adaption.

514 ComSIS Vol. 8, No. 2, Special Issue, May 2011



Animation of Tile-Based Games Derived from Simulation Specifications

Interesting extensions to our system would be semantic zooming, camera
views or even isometric views. Here also a pattern based approach is imagin-
able.

Also outstanding is a visual language for DSIM and an usability study.

References

1. Bardohl, R.: GenGed: A generic graphical editor for visual languages based on al-
gebraic graph grammars. In: 1998 IEEE Symp. on Visual Lang. pp. 48–55 (Sep
1998)

2. Cramer, B., Kastens, U.: Animation automatically generated from simulation speci-
fications. In: VLHCC ’09: Proceedings of the 2009 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). pp. 157–164. IEEE Computer
Society, Washington, DC, USA (2009)

3. Cramer, B., Klassen, D., Kastens, U.: Entwicklung und Evaluierung einer
domänenspezifischen Sprache für SPS-Schrittketten. In: Fahland, D., Sadilek,
D.A., Scheidgen, M., Weileder, S. (eds.) DSML. CEUR Workshop Proceedings,
vol. 324, pp. 59–73. CEUR-WS.org (2008), http://dblp.uni-trier.de/db/
conf/dsml/dsml2008.html#CramerKK08

4. Kastens, U.: An attribute grammar system in a compiler construction environment.
In: Proceedings of the International Summer School on Attribute Grammars, Appli-
cation and Systems. Lecture Notes in Computer Science, vol. 545, pp. 380–400.
Springer Verlag (1991)

5. Kastens, U., Pfahler, P., Jung, M.: The Eli system. In: Koskimies, K. (ed.) Proceed-
ings of 7th International Conference on Compiler Construction CC’98. pp. 294–297.
No. 1383 in Lecture Notes in Computer Science, Springer Verlag (Mar 1998)

6. Minas, M.: Concepts and realization of a diagram editor generator based
on hypergraph transformation. Science of Computer Programming 44(2), 157–
180 (Aug 2002), http://www.elsevier.com/gej-ng/10/39/21/86/49/
29/abstract.html

7. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Jour-
nal de Physique I 2, 2221–2229 (Dec 1992)

8. Namco Games: Pacman for iPhone. http://www.appsafari.com/games/2741/pacman-
for-iphone/ (2008), [Online; accessed 16-December-2010]

9. Norman, D.A., Draper, S.W.: User Centered System Design; New Perspectives on
Human-Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA (1986)

10. Object Management Group: Unified Modeling Language (UML), version 2.2 (2009),
http://www.omg.org/technology/documents/formal/uml.htm

11. Repenning, A.: AgentSheets
R©

: an Interactive Simulation Environment with End-
User Programmable Agents. In: Interaction 2000, Tokyo, Japan (2000)

12. Repenning, A.: Collaborative Diffusion: Programming Antiobjects. In: OOPSLA
2006, ACM SIGPLAN International Conference on Object-Oriented Programming
Systems, Languages, and Applications, (Portland, Oregon, 2006). IEEE Press
(2006)

13. Schmidt, C., Cramer, B., Kastens, U.: Usability evaluation of a system for implemen-
tation of visual languages. In: Symposium on Visual Languages and Human-Centric
Computing. pp. 231–238. IEEE Computer Society Press, Coeur d’Alne, Idaho, USA
(Sep 2007)

ComSIS Vol. 8, No. 2, Special Issue, May 2011 515



Jan Wolter, Bastian Cramer, Uwe Kastens

14. Schmidt, C., Kastens, U., Cramer, B.: Using DEViL for implementation of domain-
specific visual languages. In: Proceedings of the 1st Workshop on Domain-Specific
Program Development. Nantes, France (Jul 2006), http://ag-kastens.upb.
de/paper/dspd2006-devil.pdf

15. Schmidt, C., Pfahler, P., Kastens, U., Fischer, C., Gmbh, O.K.: Simtelligence
designer/j: A visual language to specify sim toolkit applications. In: Proceed-
ings of the Second Workshop on Domain Specific Visual Languages (OOP-
SLA 2002 (2002), http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.2.9269

16. Wikipedia, The Free Encyclopedia: Moore neighborhood.
http://en.wikipedia.org/wiki/Moore neighborhood (2010), [Online; accessed 16-
December-2010]

17. Wikipedia, The Free Encyclopedia: Von Neumann neighborhood.
http://en.wikipedia.org/wiki/Von Neumann neighborhood (2010), [Online; accessed
16-December-2010]

Jan Wolter received his bachelor degree in Computer Science from the Uni-
versity of Paderborn, Germany in 2009. He spent one year student assistant
in the area of visual languages. Currently he is working on his master thesis
concerning a concept to implement visual three-dimensional languages.

Bastian Cramer received his Ph.D. in Computer Science from the University
of Paderborn in 2010. He joined the research group ”Programming Languages
and Compilers” of Prof. Kastens at the same university. His research focus is
the generation of software from specifications and especially the generation of
environments for visual domain specific languages. He has several years of
experience in language design in corporation with the automotive industry. In
his Ph.D. thesis he evaluated the possibilities of simulation and animation of
visual languages.

Uwe Kastens graduated as a ”Diplom-Informatiker” in 1972 at the University
of Karlsruhe, Germany. In 1976 he received his doctorate in Computer Science
from that University. Since 1982 he has been a Professor of Practical Computer
Science at the University of Paderborn, Germany. His major research areas are
methods and tools for language implementation, domain-specific languages,
and program analysis. Since 1988 he has been a member of the IFIP Work-
ing Group 2.4 (System Implementation Languages, Software Implementation
Technology) and was its chairman from 1991 to 1996.

Received: December 20, 2010; Accepted: February 16, 2011.

516 ComSIS Vol. 8, No. 2, Special Issue, May 2011


