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Abstract. In software development, it is often desirable to reuse existing
software components. This has been recognized since 1968, when Dou-
glas Mcllroy of Bell Laboratories proposed basing the software industry
on reuse. Despite the failures in practice, many efforts have been made
to make this idea successful.
In this context, we address the problem of reusing annotated components
as a rigorous way of assuring the quality of the application under con-
struction. We introduce the concept of caller-based slicing as a way to
certify that the integration of an annotated component with a contract into
a legacy system will preserve the behavior of the former.
To complement the efforts done and the benefits of the slicing techniques,
there is also a need to find an efficient way to visualize the annotated com-
ponents and their slices. To take full profit of visualization, it is crucial to
combine the visualization of the control/data flow with the textual repre-
sentation of source code. To attain this objective, we extend the notion of
System Dependence Graph and slicing criterion.

Keywords: safety reuse, caller-based slicing, annotated system depen-
dency graph.

1. Introduction

Reuse is a very simple and natural concept, however in practice it is not so easy.
According to the literature, selection of reusable components has proven to be
a difficult task [9]. Sometimes this is due to the lack of maturity on supporting
tools that should easily find a component in a repository or library [11]. Also, non
experienced developers tend to reveal difficulties when describing the desired
component in technical terms. Most of the times, this happens because they
are not sure of what they want to find [11, 12]. Another barrier is concerned with
reasoning about component similarities in order to select the one that best fits
in the problem solution; usually this is an hard mental process [9].

Integration of reusable components has also proven to be a difficult task,
since the process of understanding and adapting components is difficult, even
for experienced developers [9]. Another challenge to component reuse is to
certify that the integration of such component in a legacy system is correct. This
is, to verify that the way the component is invoked will not lead to an incorrect
behavior.
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A strong demand for formal methods that help programmers to develop cor-
rect programs has been present in software engineering for some time now.
The Design by Contract (DbC) approach to software development [10] facilitates
modular verification and certified code reuse. The contract for a component (a
procedure) can be regarded as a form of enriched software documentation that
fully specifies the behavior of that component. So, a well-defined annotation can
give us most of the information needed to integrate a reusable component in a
new system, as it contains crucial information about some constraints safely
obtaining the correct behavior from the component.

In this context, we say that the annotations can be used to verify the validity
of every component’s invocation; in that way, we can guarantee that a correct
system will still be correct after the integration of that component. This is the
motivation for our research: to find a way to help on the safety reuse of compo-
nents.

This article introduces GamaPolarSlicer, a tool that we are currently develop-
ing to identify when an invocation is violating the component annotation, and
display, whenever possible, a diagnostic or guidelines to correct it. For such a
purpose, the tool implements the caller-based slicing algorithm, that takes into
account the calls of an annotated component to certify that it is being correctly
used.

The remainder of this paper is structured into 5 sections. Section 2 is de-
voted to basic concepts. In this section the theoretical foundation for GamaPo-
larSlicer is settle down; the notions of caller-based slicing and annotated system
dependence graph are defined. Section 3 gives a general overview of GamaP-
olarSlicer, introducing its architecture; each block on the diagram will be ex-
plained. Sub-section 4 complements the architecture discussing the decisions
taken to implement the tool and presenting the interface underdevelopment.
Section 5, also a central one, illustrates the main idea through a concrete exam-
ple. As to our knowledge we do not known any tool similar to GamaPolarSlicer, in
Section 6 we discuss related work concerned with the use of slicing technique
for annotated programs. Then the paper is closed in Section 7.

2. Basic Concepts

We consider that each procedure consists of a body of code, annotated with a
precondition and a postcondition that form the procedure specification, or con-
tract. The body may additionally be annotated with loop invariants. Occurrences
of variables in the precondition and postcondition of a procedure refer to their
values in the pre-state and post-state of execution of the procedure respectively.

2.1. Caller-based slicing

In this section, we briefly introduce our slicing algorithm.

Definition 1 (Annotated Slicing Criterion) An annotated slicing criterion of a
program P consists of a triple Ca = (a, Si, Vs), where a ∈ {α, δ} is an annotation
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of Pa (the annotated callee), Si correspond to the statement of P calling Pa and
Vs is a subset of the variables in P (the caller), that are the actual parameters
used in the call and constrained by α or δ.

Definition 2 (Caller-based slicing) A caller-based slice of a program P on an
annotated slicing criterion Ca = (α, callf , Vs) is any subprogram P ′ that is ob-
tained from P by deleting zero or more statements in a two-pass algorithm:

1. a first step to execute a backward slicing with the traditional slicing criterion
C = (callf , Vs) retrieved from Ca — callf corresponds to the call statement
under consideration, and Vs corresponds to the set of variables present in
the invocation callf and intervening in the precondition formula (α) of f

2. a second step to check if the statements preceding the callf statement will
lead to the precondition satisfaction of the callee;

For the second step in the two-pass algorithm, in order to check which state-
ments are respecting or violating the precondition we are using abstract inter-
pretation, in particular symbolic execution.

According to the original idea of James King in [7], symbolic execution can
be described as “instead of supplying the normal inputs to a program (e.g. num-
bers) one supplies symbols representing arbitrary values. The execution pro-
ceeds as in a normal execution except that values may be symbolic formulas
over the input symbols.”

Using symbolic execution we will be able to propagate the precondition of
the function being called through the statements preceding the call statement.
In particular, to integrate symbolic execution with our system, we are thinking
in use JavaPathFinder [1]. JavaPathFinder is a tool than can perform program
execution with symbolic values. Moreover, JavaPathFinder can mix concrete and
symbolic execution, or switch between them. JavaPathFinder has been used for
finding counterexamples to safety properties and for test input generation.

The main goal of our caller-based slicing algorithm is to ease the use of
annotated components by discovering statements that are critical for the satis-
faction of the precondition or postcondition (i.e, that do not verify it, or whose
value can lead to the non-satisfaction) before or after calling an annotated pro-
cedure (a tracing call analysis of annotated procedures). In the work reported
here, we just deal with preconditions and statements before the call.

2.2. Annotated System Dependence Graph (SDGa)

In this section we present the definition of Annotated System Dependence
Graph, SDGa for short, that is the internal representation that supports our
slicing-based code analysis approach. We start with some preliminary defini-
tions.

Definition 3 (Procedure Dependence Graph) Given a procedure P, a Proce-
dure Dependence Graph, PDG, is a graph whose vertices are the individual
statements and predicates (used in the control statements) that constitute the
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body of P, and the edges represent control and data dependencies among the
vertices.

In the construction of the PDG, a special node, considered as a predicate,
is added to the vertex set: it is called the entry node and is decorated with the
procedure name.

A control dependence edge goes from a predicate node to a statement node
if that predicate affects the execution of the statement. A data dependence edge
goes from an assignment statement node to another node if the variable as-
signed at the source node is used (is referred to) in the target node.

Additionally to the natural vertices defined above, some extra assignment
nodes are included in the PDG linked by control edges to the entry node: we
include an assignment node for each formal input parameter, another one for
each formal output parameter, and another one for each returned value — these
nodes are connected to all the other by data edges as stated above. Moreover,
we proceed in a similar way for each call node; in that case we add assignment
nodes, linked by control edges to the call node, for each actual input/output
parameter (representing the value passing process associated with a procedure
call) and also a node to receive the returned values.

Definition 4 (System Dependence Graph) A System Dependence Graph, SDG,
is a collection of Procedure Dependence Graphs, PDGs, (one for the main pro-
gram, and one for each component procedure) connected together by two kind
of edges: control-flow edges that represent the dependence between the caller
and the callee (an edge goes from the call statement into the entry node of
the called procedure); and data-flow edges that represent parameter passing
and return values, connecting actualin,out parameter assignment nodes with
formalin,out parameter assignment nodes.

Definition 5 (Annotated System Dependence Graph) An Annotated System
Dependence Graph, SDGa, is a SDG in which some nodes of its constituent
PDGs are annotated nodes.

Definition 6 (Annotated Node) Given a PDG for an annotated procedure Pa,
an Annotated Node is a pair < Si, a > where Si is a statement or predicate
(control statement or entry node) in Pa, and a is its annotation: a pre-condition
α, a post-condition ω, or an invariant δ.

The differences between a traditional SDG and a SDGa are:

– Each procedure dependence graph (PDG) is decorated with a precondition
as well as with a postcondition in the entry node;

– The while nodes are also decorated with the loop invariant (or true, in case
of invariant absence);

– The call nodes include the pre- and postcondition of the procedure to be
called (or true, in case of absence); these annotations are retrieved from
the respective PDG and instantiated as explained below;

480 ComSIS Vol. 8, No. 2, Special Issue, May 2011



GammaPolarSlicer

We can take advantage from the call linkage dictionary present in the SDGa

(inherited from the underlying SDG) — the mapping between the variables present
in the call statement (the actual parameters) and the formal parameters of the
procedure — to associate the variables used in the calling statement with the
formal parameters involved in the annotations. Figure 1 shows an example of a
SDGa.

3. GamaPolarSlicer Architecture

As referred previously, our goal is to ease the process of incorporating an an-
notated component into an existent system. This integration should be smooth,
in the sense of that it should not turn a correct system into an incorrect one.

To assure this, there is the need to verify a set of conditions with respect to
the annotated component and its usage. It is necessary to:

– to verify the component correctness with the respect to its contract (us-
ing a traditional Verification Condition Generator, already incorporated in
GamaSlicer [5], available at http://gamaepl.di.uminho.pt/gamaslicer);

– to verify if the actual calling context preserves the precondition;
– to verify if the component is properly used in the actual context after the

call;
– Given a reusable component and a set of calling points, specify the compo-

nent body according to the concrete calling needs.

The whole process is a bit complex and was divided in a set of smaller
problems (divide and conquer ). The tool under discussion in this document will
only focus on the second item, working with preconditions and backward slicing.
Notice that the third and fourth conditions will be addressed by future projects.

The chosen architecture, designed to achieve the second condition, was
based on the classical structure of a language processor. Figure 2 shows the
defined GamaPolarSlicer architecture.

Source Code can be a Java project or only Java files to analyze by the tool.
Lexical Analysis, Syntactic Analysis, Syntactic Analysis: the Lexical layer

converts the input into symbols that will be later used in the identifiers table.
The Syntactic layer uses the result of the Lexical layer above and analyzes it
to identify the syntactic structure of it. The Semantic layer adds the semantic
information to the result from the Syntactic layer. It is in this layer that the
identifier table is built. These three layers, usually are always present in
language processors.

Invocations Repository is the data structure where all function calls processed
during the code analysis are stored. The contract verification will be applied
to each one of these calls and the slicing criterion of each one will consider
the parameters struct.

Annotated Components Repository is the data structure where all compo-
nents with a formal specification (precondition and postcondition at least)
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Fig. 1. SDGa for a program

482 ComSIS Vol. 8, No. 2, Special Issue, May 2011



GammaPolarSlicer

Fig. 2. GammaPolarSlicer Architecture
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are stored. All these components will be later used in the slicing process
in order to filter all the calls (from the invocation repository) defined without
any type of annotation. This repository has an important role when verifying
if the call respects the component contract.

Identifiers Table flags, always, an important role on the implementation of the
processor. All symbols and associated semantic processed during the code
analysis phase are stored here. It will be one of the backbones of all struc-
tures and of all stages of the tool process.

Annotated System Dependence Graph is the internal representation chosen
to support our slicing-based code analysis approach. Constructed during
the code analysis, this type of graph allows to associate formal annotations
, like preconditions, postconditions or even invariants, to the its nodes (see
Section 2.2).

Caller-based Slicing is the layer where the backward slicing is applied to each
annotated component call. It uses both invocations repository and anno-
tated components repository to extract the parameters to execute the slic-
ing for each invoked annotated component. The resulting slice is a SDGa

this a subgraph of the original SDGa, with all the statements relevant to the
particular call.

Contract Verification using the slice that resulted from the layer above, and
using the component contract, this layer analyzes every node on the slice
and verifies in all of them if there are guarantees that every annotation in
the contract is respected.

Output Report describes all contract violations found during the whole pro-
cess. All violations found are marked with the degree of relevance in order
to aid the user in the revision process. In the future, the tool will provide
some suggestions to solve these issues, and a graphic display of the viola-
tions over the SDGa.

4. GamaPolarSlicer Implementation

To address all the ideas, approaches and techniques presented in this paper, it
was necessary to choose the most suitable technologies and environments to
support the development.

To address the design-by-contract approach we decide to use the Java Mod-
eling Language (JML) 1. JML is a formal behavior interface specification lan-
guage, based on design-by-contract paradigm, that allows code annotations in
Java programs [8]. JML is quite useful as it allows to describe how the code
should behave when running it. Also it allows the specification of the syntac-
tic interface [8]. Preconditions, postconditions and invariants are examples of
formal specifications that JML provides.

1 http://www.cs.ucf.edu/ leavens/JML/
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As the goal of the tool is not to create a development environment but to
support one, our first thought was to implement it as an Eclipse 2 plugin. The
major reasons that led to this decision were:

– the large community and support. Eclipse is one of the most popular frame-
works to develop Java applications and thus a perfect tool to test our goal;

– the fact that it includes a great environment to develop new plugins. The
Plugin Development Environment (PDE) 3 that allows a faster and intuitive
way to develop Eclipse plugins;

– the built-in support for JML, freeing us from checking the validity of such
annotations.

After the first days of the development process we realized that Java has a
limitation regarding the number of bytes per class (only allows 65535 bytes per
class). This limitation prevented us of continue the work with Java because the
parser we were generating for Java/JML grammar exceeded this limit of bytes.
This led us to abandon the idea of the Eclipse plugin and implement GamaPo-
larSlicer using Windows Forms and C# (under .NET framework). Figure 3 shows
the current interface of GamaPolarSlicer.

4.1. Tool Workflow

As depicted in the architecture (see Figure 2), our tool is divided in a set of
phases where each one solves a particular task. In this section we will explain
how these phases interact with each other and how data flows between them.

The tool begins analyzing the source code (Java code/JML annotations) in
order to extract all symbols and to construct all data structures. In order to ease
the slicing process it is mandatory to have an appropriate data structure to
support this type of techniques. For this job we have chosen the SDGa(SDGa)
(see Section 2.2). Using all the gathered information during the code analysis
we are able to construct this graph.

The graph and the Identifier Table construction are made once for each input
file processed. At the end of these steps, the system will have a set of Identifier
Tables and a set of SDGa. The union between all the SDGa will result in the SDGa

for the entire source code. The same happens to the set of Identifier Table.
After building all the data structures, the backward slicing is then applied to

a component invocation and the resulting slices together with the component
contract are used to verify if its call respects the contract. These steps are
applied to the set of calls resulting of the intersection between the Invocation
Repository and the Annotated Components Repository.

During this process (depicted in the Figure 4), if a violation is found, a textual
report is issued. Also a graphic report can be selected. This graphic report uses
the constructed SDGa.

2 http://www.eclipse.org/
3 http://www.eclipse.org/pde/

ComSIS Vol. 8, No. 2, Special Issue, May 2011 485



Sérgio Areias et al.

Fig. 3. Interface of GamaPolarSlicer prototype
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Fig. 4. Tool Workflow

4.2. Contract Verification Strategies

As already shown, the contract verification is applied upon the slices that result
from the caller-based slicing process. This implies the verification of all state-
ments on the slices to check possible violations. Depending on the statement
type, there are a few critical verifications that need to be made. For readable
purposes, we will use the following notation in the remainder of this paper:

– Call refers to the function invocation for which we want to apply the contract
verification;

– Caller is the component where the call occurs;
– Callee is the component invoked.

Please consider the example 1 with two annotated components, where one
of the components invokes the other.

On the notes in red, we can see that one of the parameters of the call we
want to verify is also a parameter on the caller. As the verification is only made
on caller (as standalone component), there is no way to verify the value of the
parameter at the beginning. This lead us to the first critical verification, precon-
dition versus precondition.

Precondition vs Precondition When the call and the caller share a parameter
we decided to certify it value using the caller precondition. Doing this, we have
three possible cases:

1. the caller has an annotation for the parameter and the callee does not;

ComSIS Vol. 8, No. 2, Special Issue, May 2011 487



Sérgio Areias et al.

Example 1 Precondition violation
1: / ∗@ behavior
2: @ requires a > 0;
3: @ ensures pot = ab;
4: @ ∗ /
5: public int sqr(int a, int b) {
6: int pot = 1, i;
7: for(i=0;i¡b;i++) {
8: pot = mult(a, pot);
9: }

10: return pot;
11: }
12: / ∗@ behavior
13: @ requires c > 10 && d > 0;
14: @ ensures pot = c ∗ d;
15: @ ∗ /
16: public int mult(int c, int d) {
17: int res = c ∗ d;
18: return res;
19: }

2. the caller does not have an annotation for the parameter and the callee
does;

3. both, the caller and the callee, have an annotation for the parameter.

In the first case, it is obvious that does not change anything. If the callee
does not have an annotation for the parameter then it means the parameter
can assume any value.

The second case brings ambiguity to the problem. If the caller does not have
an annotation for the parameter, then there is no way to guarantee that its value
will respect the clause on the call contract. Even if after the verification of all
statements, the value respects the clause, that value will always be dependent
of the value received as parameter on the caller.

The third case, and the most complex one, gives us chance to predict a value
for the parameter on the call moment. With the annotation we can calculate or
predict the set of values the parameter can take during the execution of the
method. To do this we have created an object with a set of flags that tell us
what type of value we have and the range of values that can take.

Please consider that we have the following annotation:

requires x>0 && x<200

After processing this annotation, the object will have the flags for values
higher than, lower than and between activated. The between flag is activated
when the annotation contains a closed interval.
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These flags also help us to make comparisons between annotations. We
can compare preconditions with preconditions and even preconditions with post-
conditions. The last one is very important to the second critical verification.

Precondition vs Postcondition Most of all pieces of source code have func-
tion calls. When the call of these functions affects the value of a parameter on
the call that we are trying to verify, then forces the verification of their postcon-
dition (if defined). This is what we will discuss in this section.

When we found a statement with a function call in the slice result, we verify
if the invoked component exists on the loaded source code. If it is an external
component, like one included from an imported library, then we have no way to
guarantee that the program will work correctly after this point.

During the review process of one of our papers we received a question
that raised questions for another issue. The question was, ”(. . . ) depends on
the (human) reader’s knowledge that an input function might not have return
a positive integer (or even any number); but how does the slicer knows this?”
(the given example was using integers). When we identify a call to an external
function, we add an entry on the output report with a warning, alerting to the fact
that a few verifications must be make in order to guarantee that all calls, to an
annotated component, that receive value as parameter, will have the contract
respected. We recognize this type of functions using all the data structures
constructed during the analysis process. If a call is found in a slicing result,
but has no entry on the identifier table, then is considered a call to an external
function.

Everything discussed until now in this section happen when found a call to
an external function. But how about, when the function is on the identifier table
and on the repositories? When this happen we have three possible cases:

1. the call we are verifying the contract has no annotation for the parameter
with the resulting value of the function call;

2. the found call has no postcondition and the call we are verifying has an
annotation for the parameter with the resulting value of the function call;

3. the found call has postcondition and the call we are verifying has an anno-
tation for the parameter with the resulting value of the function call;

In the first case, the result of the found call makes no difference as the
parameter has no restrictions of value.

The second case will generate a warning message as we are not able to
predict the values of the parameter making impossible to guarantee that the
contract will be respected.

The last case force the calculation of the possible values, to be used on the
next iterations, using the postcondition. All the information is stored in the ob-
jects already seen. These objects are later used to compare the postcondition
and precondition annotations regarding a particular parameter in order to find
contract violations.
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Values vs Precondition This last critical verification occurs every time during
of the verification of the statements on the slicing result. Each time the parame-
ter suffers a change, the values it can take must be recalculated. This may look
easier than it really is.

If we have an assignment it is pretty easy to calculate the new value but if
we have the same assignment inside an if block, for example, the complexity
increases significantly. We must assure that both values (if the condition is true
and if it is not) are used to compare with the call precondition.

Having all this in consideration, we decided to use a flexible list in order to
store the list of values the parameter can accept. Every time we found a new
path in the code to reach the call we are verifying, we create a new entry on
the list with the calculated value. The way we have defined the object, seen in
section 4.2, also allow us to compare values with annotations.

In case of violations, these comparisons always lead to error messages. At
this point we are able to find contract violations without any doubts so there is
no reason to generate warning messages.

4.3. Tool Views

The assessement made to other tools, developed under our group, have shown
that a variety of views are in some way needed to work with the tool, and give a
better understanding of its results. Following this, the tool provides four different
types of views: the Code View, the Identifier Table View, the SDGa View and the
Slicing View.

The user has access to the Code view (Figure 5) as the default view where
has access to the source code that will be used as input in the verification. The
Java code is highlighted using scintillaNet 4 library to improve its readability. This
is a library that can be imported by Visual Studio, that provides us a special text
box where we can define all the color definitions we want to highlight our code.

The Identifier Table view shows the information collected for all symbols in
the selected class. The information can be filtered in order to visualize only the
details of the symbols in a particular method selected by the user. Figure 6
shows the identifier table of an entire class.

The SDGa view shows all the control flow dependencies and data flow de-
pendencies present on the source code. In order to help to visualize which
contracts and statements are being violated, we display the SDGa with such
entities colored in red. The Figure 7 shows the representation of a graph by the
tool.

The Slicing view (Figure 8) was included to show the result of an interme-
diate calculation. As the slicing isolates the statements relevant to a particular
call (the statement that we are interested to our work), then will probably ease
in the understanding and correctness of any error found during the verification.

4 http://scintillanet.codeplex.com/
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Fig. 5. GamaPolarSlicer Code View
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Fig. 6. GamaPolarSlicer Identifier Table View

Fig. 7. GamaPolarSlicer SDGa View
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Fig. 8. GamaPolarSlicer Slicing View
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5. An illustrative example

To illustrate what we intended to achieve, please consider the Example 2 listed
below that computes the maximum difference among student ages in a class.
This component reuses other two: the annotated component Min, defined in
Example 3, that returns the lowest of two positive integers (Figure 5 shows the
view of the code provided by GamaPolarSlicer); and Max, defined in Example 4,
that returns the greatest positive integer.

Example 2 DiffAge
1: public int DiffAge() {
2: int min = System.Int32.MaxValue;
3: int max = System.Int32.MinValue;
4: int diff;
5:
6: System.out.print(”Number of elements: ”);
7: int num = System.in.read();
8: int[] a = new int[num];
9: for(int i=0; i¡num; i++) {

10: a[i] = System.in.read();
11: }
12:
13: for(int i=0; i¡a.Length; i++) {
14: max = Max(a[i],max);
15: min = Min(a[i],min);
16: }
17:
18: diff = max - min;
19: System.out.println(”The gap between max and min age is ” + diff);
20: return diff;
21: }

Example 3 Min
/ ∗@ requires x ≥ 0 && y ≥ 0
@ ensures (x > y)? \result == x : \result == y
@ ∗ /
1: public int Min(int x, int y) {
2: int res;
3: res = x− y;
4: return ((res < 0)? x : y);
5: }
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Example 4 Max
/ ∗@ requires x ≥ 0 && y ≥ 0
@ ensures (x > y)? \result == y : \result == x
@ ∗ /
1: public int Max(int x, int y) {
2: int res;
3: res = x− y;
4: return ((res > 0)? x : y);
5: }

Let us consider that we want to analyze the Min invocation present in the
DiffAge component.

Our slicing criterion will be: Ca = (x ≥ 0&&y ≥ 0,Min, {a[i],min})
In the second step, a backward slicing process is performed taking into ac-

count the variables present in Vs. Then, using the obtained slices, the detection
of contract violations starts. For that, the precondition is back propagate (using
symbolic execution) along the slice to verify if it is preserved after each state-
ment. Observing the slice for the variable a[i], listed in the example 5 below,
it can not be guaranteed that all integer elements are greater than zero; so a
potential precondition violation is detected.

Example 5 Backward Slicing for a[i]

i n t [ ] a = new i n t [num ] ;
f o r ( i n t i =0; i<num; i ++) {

a [ i ] = System . i n . read ( ) ;
}
f o r ( i n t i =0; i<a . Length ; i ++) {

max = Max( a [ i ] ,max ) ;
min = Min ( a [ i ] , min ) ;

}

The third step consists in the notification of all the contract violations de-
tected. In the example above, the user will receive a warning (Figure 9 shows
the output report from GamaPolarSlicer) alerting to the possible invocation of Min
with negative numbers (what does not respect the precondition).

6. Related Work

In this section we review the published work on the area of slicing annotated
programs, as those contributions actually motivate the present proposal.
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Fig. 9. GamaPolarSlicer Output Report

In [4], Comuzzi et al present a variant of program slicing called p-slice or
predicate slice, using Dijkstra’s weakest preconditions (wp) to determine which
statements will affect a specific predicate. Slicing rules for assignment, condi-
tional, and repetition statements were developed. They presented also an algo-
rithm to compute the minimum slice.

In [3], Chung et al present a slicing technique that takes the specification
into account. They argue that the information present in the specification helps
to produce more precise slices by removing statements that are not relevant
to the specification for the slice. Their technique is based on the weakest pre-
condition (the same present in p-slice) and strongest post-condition — they
present algorithms for both slicing strategies, backward and forward.

Comuzzi et al [4], and Chung et al [3], provide algorithms for code analysis
enabling to identify suspicious commands (commands that do not contribute to
the postcondition validity).

In [6], Harman et al propose a generalization of conditioned slicing called
pre/post conditioned slicing. The basic idea is to use the pre-condition and the
negation of the post-condition in the conditioned slicing, combining both for-
ward and backward conditioning. This type of program slicing is based on the
following rule: “Statements are removed if they cannot lead to the satisfaction of
the negation of the post condition, when executed in an initial state which satis-
fies the pre-condition”. In case of a program which correctly implements the pre-
and post-condition, all statements from the program will be removed. Otherwise,
those statements that do not respect the conditions are left, corresponding to
statements that potentially break the conditions (are either incorrect or which
are innocent but cannot be detected to be so by slicing). The result of this work
can be applied as a correctness verification for the annotated procedure.
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7. Conclusion

As can be seen in section 5, the motivation for our research is to apply slicing,
a well known technique in the area of source code analysis, to create a tool that
aids programmers to build safety programs reusing annotated procedures.

The tool under construction, GamaPolarSlicer, was described in Section 3.
Its architecture relies upon the traditional compiler structure; on one hand, this
enables the automatic generation of the tool core blocks, from the language at-
tribute grammar; on the other hand, it follows an approach in which our research
team has a large knowhow (apart from many DSL compilers, we developed a
lot of Program Comprehension tools: Alma, Alma2, WebAppViewer, BORS, and
SVS). The new and complementary blocks of GamaPolarSlicer implement slice
and graph-traversal algorithms that have a sound basis, as described in Sec-
tion 2; this allows us to be confident in there straight-forward implementation.

At the moment, the tool is capable to apply the Caller-based Slicing to a pro-
gram and compute precise slices. Also the computed slices are displayed by
the tool to ease the comprehension of the program by the developer, allowing
him to focus on the relevant aspects of the program. This tool is also very useful
on the program comprehension on its general.

One of our goals was to check if it was possible to do a contract verification
with low computing effort and reasonable precision. This was successfully ac-
complished but we still need more empirical studies so that we can strengthen
our conclusions regarding its efficiency and reliability.

The tool still presents some limitations in the contract verification process.
Expand it in order to process annotations regarding any Java data type does
not appear to be an easy job and can make the tool to become less accurate.

GamaPolarSlicer will be included in Gama project (for more details see http:
//gamaepl.di.uminho.pt/gama/index.html). This project aims at mix-
ing specification-based slicing algorithms with program verification algorithms to
analyze annotated programs developed under Contract-base Design approach.
GamaSlicer is the first tool built under this project for intra-procedural analysis
that is available at http://gamaepl.di.uminho.pt/gamaslicer/.

To test the behaviour of our algorithms and the tool output and performance,
we selected a collection of diversified programs (medium size and medium com-
plexity). As the objective of that phase was to verify the correctness of the al-
gorithms and its coverage, we were exclusively concerned with the variety of
the test cases concerning call paths and the kind of contract annotations. After
that phase, that finished successfully, we will be concerned with scalability. For
that purpose, a new collection of tests of large size will be used to measure
the performance degeneration. We are aware that the biggest difficulty we will
face is to find in the industrial or academic worlds huge programs with annota-
tions, but we need to obtain them (even generating the test cases) to fully test
GamaPolarSlicer.

Although reuse was not the topic of the paper (just some considerations
were drawn in the Introduction), reuse is the main motivation for GamaPolarSlicer
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development. We are preparing an experiment to assess the validity of our pro-
posal and the usefulness of the tool [2].
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