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Abstract. Concurrent programs may suffer from concurrency anomalies
that may lead to erroneous and unpredictable program behaviors. To en-
sure program correctness, these anomalies must be diagnosed and cor-
rected. This paper addresses the detection of both low- and high-level
anomalies in the Transactional Memory setting. We propose a static anal-
ysis procedure and a framework to address Transactional Memory anoma-
lies. We start by dealing with the classic case of low-level dataraces, iden-
tifying concurrent accesses to shared memory cells that are not protected
within the scope of a memory transaction. Then, we address the case of
high-level dataraces, bringing the programmer’s attention to pairs of mem-
ory transactions that were misspecified and should have been combined
into a single transaction. Our framework was applied to a set of programs,
collected form different sources, containing well known low- and high-level
anomalies. The framework demonstrated to be accurate, confirming the
effectiveness of using static analysis techniques to precisely identify con-
currency anomalies in Transactional Memory programs.

Keywords: testing, verification, concurrency, software transactional mem-
ory, static analysis.

1. Introduction

Concurrent programming is inherently hard. The fact that more than one order-
ing of events may take place at runtime leads to an exponential growth in the
number of both valid and invalid program states. Programs with concurrency
errors may reach invalid states and expose unpredicted and anomalous behav-
iors. Thus, more than just convenient, tool based approaches tackling the auto-
matic verification and validation of programs are essential building-blocks in the
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process of developing correct concurrent programs. This paper addresses the
identification of both low- and high-level dataraces in the Transactional Mem-
ory [12,18,20,21] setting.

Data races are among the most notorious concurrency errors. A program
suffers from a low-level datarace, or simply datarace, when two threads concur-
rently access a shared variable with no concurrency control enforced, and at
least one of those accesses is an update. Low-level dataraces may be avoided
by synchronizing the conflicting threads, e.g., using locks, thus enforcing that
critical sections, program code blocks that are mutually exclusive, will not be
executed concurrently.

A program free from low-level dataraces may still exhibit concurrency anoma-
lies resulting from the a scope misspecification, where two or more correctly
synchronized critical sections should be merged into a single one to ensure the
program’s correctness. We shall call these errors high-level dataraces or high-
level anomalies. Likewise, low-level dataraces are also referred in this paper as
low-level anomalies.

Transactional Memory (TM) [11,19] is a promising approach that offers multi-
ple advantages for concurrent programming. In contrast to locks, which enforces
mutual exclusion, TM is neutral concerning the execution model, resorting in a
transactional monitor to establish the transactional properties at run-time. The
transactional monitor may opt to enforce mutual exclusion, as with locks, or to
allow transactions to execute concurrently, optimistically assuming they will not
conflict, and later aborting and restarting those that do conflict.

TM is inherently immune to some of the concurrency anomalies that are
common in lock-based programs, such as deadlocks. Data races are among
the anomalies that can still be observed. A transaction is only shielded against
another transaction, in the same way that a lock-protected critical section is only
protected from another critical section which holds a common lock. Therefore,
in the TM setting, non-transactional and transactional code may also compete
when accessing shared variables, leading to low-level dataraces. Likewise high-
level dataraces in lock-based programs, the misspecification of the scope of
two or more memory transactions may lead to high-level dataraces in the TM
setting.

There are several approaches for detecting low-level dataraces in lock-based
programs, both static [6, 9, 14], dynamic [8, 13, 16], and hybrid [17]. Likewise,
there are also some approaches for detecting high-level dataraces in lock-
based programs [3, 5, 10, 22, 24]. As locks relate to transactions, these works
on low- and high-level dataraces also relate to TM, but none of them targets
specifically this setting, which is in the core of our approach.

In Section 2, we discuss a process that enables the usage of a low-level
datarace detector meant for locks in a TM-based program. In Section 3 we pro-
pose a definition for high-level dataraces in the TM setting and address their
detection using static analysis, by conservatively extracting all possible concur-
rent execution traces of a program and searching for anomalies using a pattern-
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Fig. 1. Conditions for a datarace in Transactional and Locks.

based heuristic approach. We then discuss the related work in Section 4, fol-
lowed by the conclusions and future work in the last section.

2. Low-Level Dataraces in Transactional Memory

Locks enforce mutual exclusion between critical sections. If two critical sections
are protected by at least one common lock, then no two threads may execute
them at the same time. Transactional memory, on the other hand, does not
enforce mutual exclusion. Instead, two transactional code blocks may execute
concurrently, provided by the TM run-time with the guarantees of Isolation and
Atomicity. TM usually provides the serializability of transactions, ensuring that
if two memory transactions take place concurrently and both succeed, then its
final outcome is the same as if those two transactions were executed one after
the other. Violations of serializability usually lead to dataraces.

Consider the distinct situations that may lead to a low-level datarace be-
tween two lock-based synchronized threads:

1. None of the accesses are performed while holding a lock;
2. One of the accesses is performed holding no locks; or
3. Both accesses are performed while holding disjoint sets of locks.

When using locks, the user chooses which critical sections shall be mutually
exclusive by acquiring and holding the appropriate lock. In the TM setting, all
transactions are guaranteed to be atomic and isolated from all other concur-
rent transactions, which excludes the third case above. Hence, as illustrated in
Figure 1, the only two situations that may lead to low-level dataraces in TM are:

1. None of the accesses is performed in the scope of a transaction; or
2. Only one of the accesses is performed in the scope of a transaction.

Listing 1 illustrates cases of dataraces in both lock-based and transactional
memory programs (left and right columns respectively). In the lock-based case,
blocks A, B, and C, are assumed to execute concurrently. Likewise for the TM
case, where blocks W, X, and Y, are also assumed to execute concurrently.
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// A
synchronized (a) {

a.x = 0;
}
...
// B
print(a.x);
...
// C
synchronized (this) {

a.x++;
}

// W
atomic {

a.x = 0;
}
...
// X
print(a.x);
...
// Y
atomic {

a.x++;
}

Listing 1. Example of a low-level dataraces with locks (left) and with transactional mem-
ory (rigth)

The lock-based version has two different kinds of dataraces. Blocks A and B
have a no-lock conflict, as block B is accessing a.x without holding a lock. The
same applies to blocks C and B. Blocks A and C have a wrong-lock conflict, as
both are holding different locks and thus their concurrent accesses to a.x are
not protected. All the dataraces in the TM-based version are of a single type.
Blocks W and X have a data race resulting from the execution of block X outside
the scope of a transaction, and the same applies to blocks Y and X.

Our approach to identify low-level dataraces in TM programs resorts to their
similarities and relations to the low-level dataraces in lock-based programs, in-
terpreting the TM atomic blocks as if they were synchronized on a single global
lock and then apply techniques and tools used in the detection of dataraces in
lock-based programs. Hence, each of the scenarios of low-level datarace in TM
maps into an analogous scenarios in a single lock setting, as denoted by the
arrows in Figure 1, making this approach both sound and complete [21].

2.1. Detection Approach

Our approach to identify low-level dataraces in transactional memory programs
is depicted in Figure 2.

The TM Java program is processed with AJEX [7], an extension to Poly-
glot [15], that recognizes the keyword atomic as a new Java construct to de-
note a transactional memory code block and generates the corresponding Ab-
stract Syntax Tree (AST). The AST generates by AJEX is then traversed using
the Polyglot framework and the transactional blocks are replaced with blocks
synchronized on a single unused global lock. The definition of the new global
lock is added to the main class, if one exists, otherwise to another arbitrary
class. The identifier of the global lock has a fresh name inside the possess-
ing class and is a public static object. Figure 3 illustrates this transformation
process.
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Fig. 2. The low-level datarace detection procedure.

This automatic transformation process generates a Java compliant version
of the original TM-based program. This program is then fed to a lock-based
datarace detector. We used JChord [14] as a datarace detector, but other similar
tools could be used instead.

2.2. Experiments

In order to validate our approach for transforming TM programs to synchronized
single-lock programs, a set of validation tests have been carried out [21]. Some
of these tests are well-known erroneous programs intended to benchmark val-
idation tools like our own. Others were developed specifically to test our tool,
containing simple stub programs with dataraces. We also tested Lee-TM [2],
a renowned transactional memory benchmark. It was necessary to have two
versions of each test, one using locks and another using TM. This implies that
the existing tests meant for locks had to be manually rewritten using TM. We
succeeded in keeping the original semantics (and errors) in the TM versions of
the test programs, except for a small number of well identified cases.

Tests were carried out by initially running JChord on the lock-based version
of each test. The results were registered for future reference. Then, we applied
our approach to the TM versions of those tests, by transforming them into single
global-lock programs and feeding them to JChord. The results were again reg-
istered. For each test, the results for both executions of JChord — in the original
and transformed TM versions — were then compared. All the results obtained
fit into one of the following scenarios: for tests where the lock-based and TM-
based versions were strictly equivalent, the analysis results were equivalent as
well; when the TM and lock-based versions of a test would have slightly different
semantics, since some lock-based bugs could not be replicated using the TM
model, results were slightly different, but all those differences could be clearly
mapped to the semantic variations between the two versions.

As an example, consider the Lee-TM benchmark. By running JChord in the
original lock-based version, we identified 52 dataraces. A careful analysis of
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private boolean hasSpaceLeft() { 
    atomic { return (list.size() < MAX_SIZE); } 
} 
private void store(Object obj) { 
    atomic { list.add(obj); } 
} 

public Object GLOCK; 
 
private boolean hasSpaceLeft() { 
    synchronized (GLOCK) { return (list.size() < MAX_SIZE); } 
} 
private void store(Object obj) { 
    synchronized (GLOCK) { list.add(obj); } 
} 

Fig. 3. Transformation of transactions into code blocks synchronized in a global lock.

these dataraces proved them all to be either false positives or, although con-
firmed, harmless. Running JChord in the single-lock version resulting from our
automatic transformation process, we identified 48 dataraces, all with a direct
correspondence to the dataraces observed in the original lock-based version.
The remaining 4 dataraces correspond to wrong-lock situations, which do not
exist in TM.

3. High-level Dataraces

A program that is free from low-level dataraces may still suffer from concur-
rency errors. Unlike low-level dataraces, high-level dataraces do not result from
unsynchronized accesses to shared variables, but rather from a combination of
multiple synchronized accesses, which may lead to incorrect behaviors if exe-
cuted in a specific order.

As an example, consider the program in Listing 2, showing a bounded data
structure whose size cannot go beyond MAX_SIZE. All accesses to the list
fields are safely enclosed inside transactions, therefore no low-level datarace
exists. But there is nonetheless a high-level datarace.

In the function attemptToStore(), a thread always checks for available
room before storing an item in the queue. However, between the executions of
hasSpaceLeft() and store(), the list may be filled by another concurrent
thread executing the same code, leaving no space left; thus, the first thread
would now be adding an element to an already full list. Both method calls to
hasSpaceLeft() and store() should have been executed inside the same
transaction. This was not the case, thus leading to a high-level datarace.

In the following sections we will discuss the conditions that may trigger high-
level anomalies, propose a possible categorization of those anomalies, and
present our approach for their identification.
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private boolean hasSpaceLeft() {
atomic { return (this.list.size() < MAX_SIZE); }

}

private synchronized void store(Object obj) {
atomic { this.list.add(obj); }

}

public void attemptToStore(Object obj) {
if (this.hasSpaceLeft()) {

// list may become full!
this.store(obj);

}
}

Listing 2. Example of a High-level Anomaly

3.1. Thread Atomicity

High-level anomalies are related to sets of transactions involving different threads,
which leave the program in an inconsistent state when executed in a specific
order. This happens because two or more of the transactions executed by one
thread are somehow related, making assumptions about each other (e.g., as-
suming success), but there is a scheduling in which another thread issues a
concurrent transaction which breaks that assumption. The simplest way to solve
this problem is to merge those related transactions into a single one. Further-
more, through empirical observation, it seems that many of such anomalies
involve only three transactions. Two consecutive transactions from one thread
and a third transaction from another thread, that when scheduled to run be-
tween the other two, causes an anomaly.

Without further information from the developer intention on the program se-
mantics, at compile time it is not possible to infer all the relations among transac-
tions. It is possible, however, to identify transactions that may or will affect other
transactions, and use this information to identify potential high-level anomalies.

Consider a coordinate pair object shared between multiple threads. Assume
that a thread T1 issues a transaction t1.1 to read value x, and then issues trans-
action t1.2 to read y. In between them, thread T2 could issue transaction t2.1
which sets both values to 0, and so thread T1 would have read values corre-
sponding to the old x and new y (zero), when it is likely that both read opera-
tions were meant to read one single instant, i.e., either both before or after t2.1.
In this scenario, the final outcome is not equivalent to a situation in which both
read operations were ran without interleaving. The property of a set of threads
whose interleavings are guaranteed to be equivalent to their sequential execu-
tion is called thread atomicity [24], and will be further discussed in Section 4. It
is common to pursue thread atomicity as being a correctness criterion.
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Fig. 4. An unserializable pattern which does not appear to be anomalous.

3.2. Anomaly Patterns in Transactional Memory Programs

Since full thread atomicity may be too restrictive, thus triggering too many false
positive scenarios, we opted for a more relaxed semantic that allows a restricted
number of atomicity violations. As an example of an atomicity violation which in
principle is not an error, consider the example in Figure 4, where each rect-
angle corresponds to a transactional code block. The second operation in T1

will be retrieving the results written by T2. In order for this set of threads to be
serializable, and thus thread atomic, all possible interleavings would have to be
equivalent to the scenario in which the read immediately follows the write of the
same thread.

However, given the specific context of TM and the set of operations pre-
sented in Figure 4, it seems unintuitive that this particular set would contain an
error. The read operation is retrieving a, and it seems unlikely that an operation
will be performed based on the value written before by the same thread, as it
would possibly be already outdated. The only error scenario involving this par-
ticular setup would be the case in which after the read, the first thread would
do a set of operations that depend on both, the value just read and the value
previously written and assuming them to be equal.

We propose a framework for detecting a configurable set of patterns, and
we opted to include only those most likely will result in concurrency anomalies.
Out of all the patterns that incur in atomicity violations, we have isolated three
highly suspicious patterns which describe possible high-level anomalies. These
patterns are summarized in Figure 5 (with x 6= y).

Read–write–Read or RwR — Non-atomic global read. A thread reads a global
state in two or more separate transactions, and the global state was changed
by another thread meanwhile. If the first thread makes assumptions based
on that state, it will most probably be a high-level anomaly.

Write–read–Write or WrW — Non-atomic global write. This is the opposite
scenario from above. A thread is changing the global shared state in multi-
ple separate transactions. Other thread reading the global state will observe
this state as inconsistent.

Read–write–Write or RwW — Non-atomic compare-and-swap. In this pattern
a thread checks a variable value, and based on that value it changes the
state of the variable. If the variable was changed meanwhile, the update will
probably may not make sense anymore.

Anomalies between two consecutive transactions can be defined a triple of
transactions (T1, T2, T3), such that the execution of T2 by one thread interferes
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Fig. 5. Common anomalous access patterns.

with the normal execution of T1—T3 by another thread. It is common for a pro-
gram to have multiple anomalies A = (T1, T2, T3) and A′ = (T1, T

′
2, T3). Even

though these anomalies are of different nature, they reflect the lack of atom-
icity between the same pair of transactions. We define a main anomaly as a
triple (T1, S, T2) were S is the set of transactions that interfere with the expected
execution of T1—T3.

In the following, we will present our approach for statically matching suspi-
cious patterns against the program source code, and will report on the experi-
ments that assess the applicability and effectiveness of these patterns.

3.3. Symbolic Execution of Transactional Memory Programs

To detect high-level anomalies in TM programs, we perform a symbolic execu-
tion of the program and generate a set of possible execution traces of the trans-
actional code. From these traces, we generate the set of possible interleavings
of transactional code blocks and check if there are matches with any of the
patterns identified in Section 3.2. Our approach for the detection of high-level
anomalies in TM programs was also implemented resorting to the Polyglot [15]
framework and AJEX [7].

The thread traces are obtained by performing a symbolic execution of the
given program. When the program to be analyzed is loaded, all class declara-
tions that contain main thread methods are retrieved. This includes classes
that have a execution entry point such as a main() method, and classes
that inherit from java.lang.Thread or java.lang.Runnable containing
a run() method declaration. Hence, we obtain a list of all thread bootstrap
methods. Statements in these thread methods are then analyzed. Whenever a
transactional code block is found, it is added to the current trace, together with
the full list of read and write operations of that transaction.
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<?xml version="1.0" encoding="UTF-8"?>
<classes>
<class id="a.package.AClass">
<method id="doThings(Object, Object)">
<changes>this</changes> <!-- Target object may change -->
<changes>1</changes> <!-- First argument may change -->

</method>
</class>

</classes>

Listing 3. Example of the XML file that specified access to unavailable methods.

To find out the read and write operations of a method call, we in-line the
called code, i.e., we replace the method call with the body of the target method,
so that the transactions performed by that method are still seen as being per-
formed by the current thread. Care must be taken not to perform infinite in-
linings when in the presence of recursive methods.

In real world programs much code is already compiled, and the original
source code is unavailable (this includes Java standard libraries). It may also
happen that a program calls native methods, that may not be analyzed by our
tool. When these cases arises our tools issues a warning, with the full qualified
signature of the method it cannot analyze. With this information the user can
build a database of the accesses performed by methods whose source code is
not available. This is performed with an XML file as illustrated in Listing 3.

Additional challenges derive from disjunctions in the program control flow.
When there are multiple possible execution flows, such as with if-else or switch
statements, the current trace must still represent all possible executions. In-
stead of having numerous alternative traces for the same thread, a special dis-
junction node is added to the trace, symbolizing a disjunction point, where the
execution can follow one of the multiple alternative paths. Thus, the trace actu-
ally takes the form of a tree representing all the transactional blocks in all the
possible execution paths for a thread.

Finally, we also have to deal with loop structures in the input program. This
is solved by considering the representative scenarios of the execution of loops.
The trace tree only considers the cases in which the loop is not executed or
is executed twice. We need to consider zero executions of the loop body, for
the case in which the transaction that precedes and the one that follows the
loop are both involved in an anomaly. When considering two executions of the
loop we cover three different cases: when a transaction that precedes the loop
is involved in an anomaly with a transaction in the loop; when a transaction in
the loop is involved in an anomaly with the transaction that follows the loop;
and when a transaction in the loop is involved in an anomaly with itself in the
next iteration of the loop. It is not necessary to check for a single execution of
the loop as two loop unrolls generate a super-set of the cases generated by a
single loop unroll. It is also not necessary to consider more than two consecutive
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Table 1. Experimental results summary.

Test Total Total Correct False Missed
Name Anomalies Warnings Warnings Warnings Anomalies

Connection [5] 2 3 2 1 0

Coordinates’03 [3] 2 7 2 5 0
Local Variable [3] 1 1 1 0 0
NASA [3] 1 1 1 0 0

Coordinates’04 [4] 1 2 1 1 0
Buffer [4] 0 1 0 1 0
Double-Check [4] 0 1 0 1 0

StringBuffer [10] 1 1 1 0 0

Account [23] 1 1 1 0 0
Jigsaw [23] 1 2 1 1 0
Over-reporting [23] 0 1 0 1 0
Under-reporting [23] 1 1 1 0 0

Allocate Vector [1] 1 2 1 1 0

Knight Moves [21] 1 1 1 0 0
Arithmetic Database [21] 1 2 2 0 1*

Total 14 27 15 12 1
* This anomaly was partially detected.

executions, since all the anomalies detected with three or more expansions of
the loop body are duplicates of those detected with just two expansions.

3.4. Validation of the Approach

We ran a total of 15 tests for detecting high-level anomalies in TM programs.
Many of those tests consist of small programs taken from the literature [3, 4,
5, 10, 23] with well studied high-level anomalies. The Allocate Vector test was
taken from the IBM concurrency benchmark repository [1]. We also developed
two of the tests [21]. All the 15 test programs were analyzed with success by
our tool.

We measure the effectiveness of our high-level datarace detector by the
number of main anomalies reported, as defined in Section 3.2. This metric is
better than the regular, pattern specific, anomaly count, since it reflects the
number of spots that lack inter-transaction atomicity. It is also more meaningful
for the user since it point our the transactions that should be merged.

The results are summarized in Table 1. In a total of 14 anomalies present in
these programs, 13 were correctly pointed out.
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In the Arithmetic Database test our tool indicates two anomalies; these
anomalies are part of a larger anomaly which was not detected as a whole.
This program performs four transactions that should be merged in a single one.
Since our detection approach is based on the most common case of anomalies
between a pair of adjacent transactions, we fail to see the lack of atomicity of
these four transactions. It is also worth noticing that two specific cases of the
anomaly were reported.

In addition to the correctly detected anomalies, there were also 12 false
positives (45% of total warnings). We group the causes for these imprecisions
in 4 different categories.

Out of these 12 false warnings, 2 were due to redundant read operations:
when reading object.field, we consider that two readings are actually be-
ing performed, one to object and another to field. It makes no sense for
two instances of this statement to be involved in an anomaly. It is possible to
eliminate these false positives by tailoring the analysis and consider only one
read operation in the access to field.

Another 4 false positives are related to cases for which additional semantic
information would have to be provided by the software developer or somehow
inferred. These false warnings could be eliminated with the aid of other available
techniques, such as points-to and may-happen-in-parallel analyses.

Two other false positives could be eliminated by refining the definition of
the anomaly patterns described in Section 3.2. For example, an RwR anomaly
could be ignored if the last transaction reads both values involved.

Finally, 4 false warnings which are matched by our anomaly patterns are
definite false positives. Further study would be necessary to adapt the anomaly
patterns in order to leave out these correct accesses, without compromising the
precision of the detector. If we fix all the previous false positives but these last
four, we will be able to reduce the percentage of false positives from 45% to
15%, which is much better than what can be observed in related works.

4. Related Work

Low-level datarace detection, either by observing a program’s execution (dy-
namic approach) or its specification (static approach) has been an area of in-
tense research [6,8,9,13,14,16,17]. We are unaware of any work that specifi-
cally targets the detection of low-level dataraces in the TM setting. However, we
have shown that current algorithms and tools, which are intended for use with
lock-based mechanisms, may as well be applied to transformed TM programs.

There are some relevant works on high-level anomaly detection that, al-
though not targeting the TM setting, share some principles and features with
our own work. One of the earliest works on the subject is the one by Wang and
Stoller [24]. They introduce the concept of thread atomicity, with atomicity hav-
ing a different meaning than the one stated in the ACID properties provided by
TM systems. In this case, thread atomicity is more related to serializability, and
it means that any concurrent execution of a set of threads must be equivalent
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to some sequential execution of the same set of threads. Wang and Stoller pro-
vide two algorithms for dynamically (i.e., at runtime) finding atomicity violations.
Other authors have based on this work to develop other approaches [5,10]. Our
approach, being less strict than the one from Wang and Stoller [24], tends to be
more precise and generates much less false positives.

An attempt to provide a more accurate definition of anomalies is the work on
High-Level Dataraces (HLDRs) by Artho et. al [3]. Informally, an HLDR in this
context refers to variables that are related and should be accessed together, but
there is some thread that does not access that variable set atomically. This is
different from thread atomicity, which considers the interaction between trans-
actions, without regard for relations between variables.

Because HLDR is concerned with sets of related variables, some atomicity
violations are not regarded as anomalies, such as those concerning only to one
variable. On the other hand, it is possible that an HLDR does not incur in an
atomicity violation. This work is in some way related to ours, in that it attempts to
increase the precision of thread atomicity by reducing the false positives cases.
However, while our approach is to simply disregard some atomicity violations as
safe, the work by Artho founds a new definition, which still exhibits some false
positives, and also introduces some false negatives. This work is also related
to our in that they both automatically infer data relationships and do not require
processing user annotations which state those relationships.

A different approach has been taken by Vaziri et. al [22]. Their work fo-
cuses on a static pattern matching approach. The patterns reflect each of all
the possible situations that may lead to an atomicity violation. The anomalies
are detected based on sets of variables that should be handled as a whole.
To this end, the user must explicitly declare the sets of values that are related.
This work is similar to ours in that both approaches are static, and both follow
a pattern-matching scheme. However, our approach is intended to be applied
to existing programs, and so it assumes that any set of variables may be re-
lated. Contrarily, the work by Vaziri demands that the user explicitly declares
which sets of variables are meant to be treated atomically, and so it can trigger
anomalies on all atomicity violations, without too many false positives.

5. Concluding Remarks

In this paper we proposed to detect low-level dataraces in transactional mem-
ory programs by explore the correspondence between low-level dataraces in
these programs with equivalent low-level dataraces in lock-based programs.
We proposed to convert all memory transactions in a program into synchro-
nized blocks, all synchronizing in a single global lock. This was achieved with
static analysis of the source code and a source-to-source transformation.

Application of this technique to well known test programs proved to be effec-
tive in the detection of low-level anomalies in transactional memory programs.

We have analyzed common criteria for reporting high-level anomalies, and
attempted to provide a more useful criteria by defining three anomaly pat-
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terns. A new approach to static detection of high-level concurrency anomalies
in Transactional Memory programs was defined and implemented. This new
approach works by conservatively tracing transactions and matching the inter-
ference between each consecutive pair of transactions against a set of well
defined anomaly patterns. Our approach raises false positives, although at an
acceptable level; and well known techniques can be applied to prune the false
warnings to and even lower level. When compared with the existing reports from
literature, these results are, in general, considerably better. We may therefore
conclude that our conservative tracing of transactions is a reasonable indica-
tor of the behavior of a program, since our results rival with those of dynamic
approaches.

The developed framework can be improved by further refining the error
patterns. The addition of points-to and may-happen-in-parallel analyses would
help to improve the tool by reducing the number of states to be analyzed. Other
improvements could be achieved by enabling the analysis of standard or un-
available methods, and by solving the issue of redundant read accesses.

Our approach is novel because it is based in static analysis; it extracts con-
servative trace trees aiming at reducing the number of states to be analyzed;
and it detects anomalies using a heuristic based in a set of suspicious patterns
believed to be anomalous.
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