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Abstract. Domain-specific languages (DSLs) are computer 
(programming, modeling, specification) languages devoted to solving 
problems in a specific domain. The development of a DSL includes the 
following phases: decision, analysis, design, implementation, testing, 
deployment, and maintenance. The least-known and least examined 
are analysis and design. Although various formal methodologies exist, 
domain analysis is still done informally most of the time. A common 
reason why formal methodologies are not used as often as they could 
be is that they are very demanding. Instead of developing a new, less 
complex methodology, we propose that domain analysis could be 
replaced with a previously existing analysis in another form. A 
particularly suitable form is the use of ontologies. This paper focuses 
on ontology-based domain analysis and how it can be incorporated into 
the DSL design phase. We will present the preliminary results of the 
Ontology2DSL framework, which can be used to help transform 
ontology to a DSL grammar incorporating concepts from a domain. 

Keywords: domain-specific language, domain analysis, ontology. 

1. Introduction 

Programming languages are used for human-computer interaction. 
Depending on the purpose of their use, programming language can be 
divided into general-purpose languages (GPLs) and domain-specific 
languages (DSLs) [1], [2], [3], [4]. GPLs, such as Java, C and C#, are 
designed to solve problems from any problem area. In contrast to GPLs, 
DSLs, such as Latex, SQL and BNF, are tailored to a specific application 
domain. 

When developing new software, a decision must be made as to which type 
of programming language will be used: GPL or DSL. The issue is further 
complicated if an appropriate DSL does not exist. Then, the decision 
becomes whether to start to develop with a GPL language or to start with the 
development of the required DSL and then develop the software system with 
it. Reasons for using a DSL are as follows: easier programming, re-use of 
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semantics, and the easier verification and programmability for end-users [1],  
[2]. However, using a DSL also has its disadvantages, such as high 
development costs [1], [5]. The key is to answer the question: »When to 
develop a DSL?« The simplest answer to this question is: a DSL should be 
developed whenever it is necessary to solve a problem that belongs to a 
problem family and when we expect that in the future more problems from 
the same problem family will appear. A more detailed response can be found 
in [1]. 

DSL development consists of the following phases: decision, analysis, 
design, implementation, testing, deployment and maintenance [1], [6], which 
are discussed in greater detail in Section 2. While the implementation phase 
has attracted a lot of researchers [5], some of the DSL development phases 
are less known and are not as closely examined (e.g. analysis, design). 

The knowledge of the problem domain and its definition is achieved at the 
domain analysis phase. Various methodologies for domain analysis have 
been developed. Examples of such methodologies include: DSSA (Domain 
Specific Software Architectures) [7], FODA (Feature-Oriented Domain 
Analysis) [8], and ODM (Organization Domain Modeling) [9]. Often, formal 
methodologies are not used due to complexity and the domain analysis is 
done informally. This has the consequence of complicating future DSL 
development. Even if the domain analysis is done with a formal 
methodology, there are not any clear guidelines on how the output from 
domain analysis can be used in a language design process. The outputs of 
domain analysis consist of domain-specific terminology, concepts, 
commonalities and variabilities. Variabilities would have been entries in the 
design of DSL, while terminology and concepts should be reflected in the 
DSL constructs, and commonalities could be incorporated into the DSL 
execution environment. Although it is known where the outputs of the domain 
analysis should be used, there is a need for clear instructions on how to make 
good use of the information, which are retrieved during the analysis phase, in 
the design stage of the DSL. 

To partially solve the aforementioned problems, we propose that domain 
analysis (hereinafter referred to as classic domain analysis (CDA)) be 
performed with the use of existing techniques from other fields of computer 
science. A particularly suitable one is the use of ontologies [10], [11], [12]. An 
ontology provides the vocabulary of a specialized domain. This vocabulary 
represents the domain objects, concepts and other entities. Some types of 
domain knowledge can be obtained from the relationships of the entities, as 
presented by the vocabulary. Ontologies in the CDA have already been used 
in [13]. Whereas Tairas et al. apply ontologies in the early stages of domain 
analysis to identify domain concepts; we propose that an ontology replace the 
CDA. They also investigated how ontologies contribute to the design of the 
language [13]. Ontologies in connection with DSL are also used by other 
authors. Miksa et al. applied ontology-enabled software engineering in the 
area of DSL engineering [14]. Guizzardi et al. proposed the use of an upper 
ontology (top-level ontology) [15] to design and evaluate domain concepts 
[16]. Walter et al. applied ontologies to describe DSL [17]. Bräuer and 
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Lochmann proposed an upper ontology to describe interoperability among 
DSLs [18]. 

The proposed solution of the first problem, the use of ontologies, has a 
significant effect on the second problem, related to CDA. It translates the 
problem »How to make good use of the information, retrieved during the 
analysis phase, in the design stage of the DSL?« into the problem »How to 
make good use of the information contained in an ontology in the design 
stage of a DSL?« This paper focuses on ontology-based domain analysis 
(OBDA) and how it can be incorporated into the DSL design phase. We will 
present the preliminary results of the Ontology2DSL framework, which can be 
used to help transform an ontology to a DSL grammar. 

The organization of this paper is as follows. Section 2 presents the 
background information required for the understanding of this paper. Section 
3 is intended to demonstrate the similarities and variabilities between the 
CDA and OBDA. Section 4 presents the transformation rules used for the 
development of a DSL from an ontology, as well as the example of an 
ontology to a DSL transformation. Section 5 presents the framework 
Ontology2DSL and its architecture. The conclusion and future work are 
summarized in Section 6. 

2. Background 

2.1. DSL development phases 

In [1], the authors have identified the following DSL development phases: 
decision, analysis (CDA), design, implementation, and deployment. The 
additional phases are testing and maintenance. The maintenance phase was 
introduced in [6]. Fig. 1 presents these phases along with the input and output 
of every phase and examples of patterns for the individual phases. The 
decision phase provides the answer to the question of when to develop a 
DSL. Other phases focus on the question of how to develop it. DSL and GPL 
development processes have a few differences with respect to the phases of 
development, since the phases are identical. The differences are in the 
activities, approaches and techniques used in the individual phases. The 
difference is expressed in the greater diversity of the activities, approaches 
and techniques in DSL development. It should be taken into consideration 
that DSL development is not a simple sequential process. Often, the phases 
overlap one another. For instance, the design of the DSL is influenced by the 
decision on the implementation approach. In the following section, the DSL 
development phases are briefly discussed. 

Decision. It is often far from evident that a DSL might be useful or that 
developing a new one might be worthwhile. The concepts underlying a 
suitable DSL may emerge only after a lot of GPL programming has been 
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done. Decision patterns [1] describe situations (e.g., task automation, 
domain-specific Analysis, Verification, Optimization, Parallelization, and 
Transformation (AVOPT)) for which, in the past, developing a new DSL was 
fruitful. 

Domain analysis (CDA). The precondition of the design and 
implementation of a DSL is a detailed domain analysis. The goal of CDA is to 
select and define the domain of focus and collect appropriate domain 
information and integrate them into a coherent domain model; the result of 
CDA [19]. A representation of the domain system properties and their 
dependencies is the domain model. The properties are either common or 
variable, which is represented in the model along with the dependencies 
between the variable ones. Besides the development of the domain model, 
CDA also includes domain planning, identification and scoping. The inputs to 
the domain analysis are different sources of implicit and explicit domain 
knowledge. The information sources for the analysis are: technical literature, 
existing implementations, customer demands, expert advice, and current and 
future requirements [4]. An important note is the fact that the domain analysis 
process not only collects existing information. The systematic and organized 
collection of existing information enables and encourages the extension of 
information with new knowledge. In some cases, CDA can be informal, while 
in others it incorporates different methodologies. Methodologies differ based 
on the degree of formality, information extraction techniques or their 
products. We have listed the most known methodologies in the introduction. 
FODA has been proven as the most commonly used formal methodology in 
DSL development. The domain analysis can result in different DSLs. 
However, they all share essential information acquired in the domain analysis 
phase. 

Design. Language design includes the definition of constructs and 
language semantics. The semantics formalize the meaning of every construct 
in the language and the behavior not specified in the program. The 
approaches to the design of a DSL can be classified into two orthogonal 
dimensions: the relation between DSL and a computer language and the 
formality degree of the DSL description [1]. The first dimension refers to the 
exploitation of an existing language (GPL or DSL) or the invention of a new 
language. The most basic method for DSL construction is if the DSL is based 
on an existing language. The existing language can be: partially reused 
(piggyback pattern), limited (language specialization pattern) or extended 
(language extension pattern) [1]. The advantages of building a DSL on an 
existing language are: easier implementation and the familiarity of the 
development environment to users who are experienced with the existing 
language. If the connection between the DSL and an existing language does 
not exist, a new language must be developed from the beginning. The 
second dimension refers to the informal and formal design of the language. 
With informal design, the specification is usually in the natural language with 
optional program examples. When the design is formal, the specification is 
usually in the form of a well-known formal definition method (BNF for syntax 



Ontology Driven Development of Domain-Specific Languages 

ComSIS Vol. 8, No. 2, Special Issue, May 2011 321 

specification, attribute grammars, denotational semantics, or algebraic 
specifications for semantic specification). 
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Fig. 1. DSL development phases 

Implementation. Different approaches for DSL development can be used, 
such as: interpreter, compiler/application generator, embedding, 
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preprocessing, extensible compiler/interpreter, Commercial Off-The-Shelf 
(COTS), and hybrid. The approaches are presented in greater detail in [1]. 
Cleary we want to select the approach that requires the least effort during 
implementation and offers the greatest efficacy to the end user. The link 
between the implementation approaches, the effort of implementation and 
the efficacy to the end user is presented by the authors of [5].  

Testing. In this phase, a DSL evaluation is performed. As shown in the 
study [20], this phase is often skipped or relaxed by language developers. 
The skipping or relaxing of this phase is not desirable because it may lead to 
the development of inadequate languages. 

Deployment. In this phase, DSLs and applications constructed with them 
are used. 

Maintenance. In this phase, the DSL is updated to reflect new 
requirements.   

The number of phases and their individual complexity result in the 
discovery of high costs when developing a new DSL. DSL development 
requires domain knowledge and language expertise [1], [5]. These are the 
main reasons why DSLs are not so often used for solving software 
engineering problems. The development cost is seen as the greatest 
disadvantage of DSLs [5]. 

The main goal of the presented research is to investigate if the classic 
domain analysis (CDA) phase can be adequately replaced with an already 
existing domain knowledge and representation (e.g., ontology). In this 
manner the DSL development cost could be minimized. 

2.2. Ontology 

There are many definitions of ontologies in existing literature and one of the 
most commonly used definitions is that of Studer et al. They defined an 
ontology as follows: »An ontology is a formal, explicit specification of a 
shared conceptualization.« [12]. The meaning of the Studer et al. definition is 
detailed in [21]. Formal refers to the fact that it is machine readable. The 
specification is explicit because it summarizes the concepts, properties and 
relations between concepts. Furthermore, the shared conceptualization 
contains knowledge that a group of experts has agreed upon. 
Conceptualization refers to the fact that it incorporates the target domain 
completely. 

Ontologies are commonly encoded using ontology languages. Ontology 
languages allow for the acquisition of knowledge about specific domains and 
often include rules that allow the processing of knowledge in existing 
ontologies. Ontology languages can be divided into two major groups: 
traditional (i.e. Flogic, Ontolingua) and web-based languages (i.e. RDF(S), 
OWL) [22]. Recently, a new group of languages, rule-based (i.e. RuleML, 
SWRL) [23], has emerged. These languages differ in their purpose and in 
their expressive power. The main requirements for an ontology language are:  
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a well-defined syntax, well-defined semantics, efficient reasoning support, 
sufficient expressive power and convenience of expression [21]. 

3. Comparison of CDA and OBDA  

Subsection 3.1 presents the FODA methodology with which the domain 
analysis is performed. Subsection 3.2 introduces the ontology language 
OWL. The examples in both subsections are for the case of a home robot 
[24]. Subsection 3.3. compares the information obtained through FODA and 
through ontology domain analysis. 

3.1. FODA 

FODA is a CDA method that was developed by the Software Engineering 
Institute [19]. It is known for its models and feature modeling. In FODA, a 
feature is an end-user characteristic of a system. A FODA process consists of 
two phases: context analysis and domain modeling. The goal of context 
analysis is to determine the boundaries (scope) of the analyzed domain. The 
purpose of domain modeling is to develop a domain model. The FODA 
domain modeling phase is comprised of the following steps: information 
analysis, features analysis, and operational analysis. The main goal of 
information analysis is to capture domain knowledge in the form of domain 
entities and the links between them. The result of information analysis is the 
information model. The result of feature analysis is a feature model, which is 
presented below. An operational analysis results in the operational model. It 
represents how the application works and covers the links between objects in 
the informational model and the features in the feature model. An important 
product from the phase of domain modeling is the domain dictionary. It 
defines the terminology used in the domain and it also includes textual 
definitions of domain concepts and features. 

A feature model consists of the following: 
– The Feature diagram (FD) represents a hierarchical decomposition of   

features and their kinds (mandatory, alternative, and optional feature). 
Mandatory features are those that each system must have in the domain. 
Alternative features are features that a system can only possess one at a 
time. Optional features are features that a system may or may not have. A 
system can also have more than one feature at a time. These features are 
called or-features. Features are also classified as atomic or composite. 
Whereas atomic features cannot be further subdivided into other features, 
composite features are defined in terms of other features. The root node of 
the diagram represents a concept and the remaining nodes represent 
features. An example of a feature diagram is shown in Fig. 2. 

– Feature definitions describe all features (semantics). 
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– Composition rules for features describe which combinations are valid or 
invalid. 

– Rationale for features represents the reasons for choosing a feature. 

HomeRobot

Command

Task

Commodity

Mandatory

Optional

Or

Alternative

Location

Close Check BringSwitchOn

Food&Drink Appliance HauseholdEquipment

bedRoomlivingRoom kitchen

Characteristics

SensorPowerSourceLocomotionMechanism

camerapowerCableBattery

liIon niCd

wheeled walking

moveTo take moveBack

juice beer sweets door windowtv videoCamera
... ... ...

audio

 

Fig. 2. Feature Diagram for a concept of a HomeRobot 

Fig. 2 represents a simple FD of a HomeRobot. The root node of the 
diagram, HomeRobot, represents a concept; the remaining nodes represent 
its features. Whereas mandatory features are indicated by a filled circle, 
optional features are indicated by an empty circle. Alternative and or-features 
are both indicated by a triangle, the former with an empty one and the latter 
with a filled triangle. The names of atomic features are written in lower-case 
while the composite features are written with their first letter in upper-case. 
Every house robot has individual characteristics and executes some 
commands. Every house robot has to have a PowerSource, uses some 
sensors for its locomotion and moves in a particular manner. Every robot can 
have multiple power sources but only one mechanism of motion. Every robot 
performs tasks, which are comprised of subtasks. The robot executes one 
order per location, every task is focused on an item, while some tasks focus 
on multiple items at the same time. 

Feature models are not only represented in the visual form of FDs but also 
in textual form. Van Deursen and Klint have proposed the feature description 
language (FDL) for the textual representation. The FDL definition constitutes 
the feature definitions followed by a colon (“:”) and the features expression. 
Possible feature expression forms are presented in [25]. FDL exceeds the 
graphic feature diagram in terms of expressive power and is appropriate for 
automatic processing. The FD for a home robot in FDL is shown in Fig. 3. 
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HomeRobot: all ( Command, Characteristics )

Command: all ( Task, Location, Commodity )

Characteristics : all ( LocomotionMechanism, 

PowerSource, Sensor )

Task: one-of ( Close, SwitchOn, Check, Bring )

Bring: all ( moveTo, take, moveBack )

Location: one-of ( livingRoom, bedRoom, kitchen )

Commodity: one-of ( Food&Drink, Appliance,    

                    HauseholdEquipment )

Food&Drink: more-of ( juice, beer, sweets )

Appliance: one-of ( tv, videoCamera )

HauseholdEquipment : one-of ( door, window )

LocomotionMechanism: one-of ( wheeled, walking )

PowerSource: more-of ( Battery, powerCable )

Sensor : more-of ( camera, audio )

Battery: one-of ( liIon, niCd )

 

Fig. 3. FD for the home robot in FDL 

An important role of the FDs is to describe the variability of the 
programming system. The number of all possible configurations per system 
can be calculated with the use of variability rules, as presented in [25]. 

Constraints, which are intended for variability reduction, are an optional 
component of the FDs. The constraints are enforced with satisfaction rules 
[25]. The constraints are of two types [25]: diagram constraints and user 
constraints. The former include the “A1 requires A2” (if the feature A1 is 
presented, then feature A2 should also be presented) and “A1 excludes A2” 
(if feature A1 is presented, then feature A2 should not be presented) 
constraints, while the latter include the “include A” (feature A should be 
present) and “exclude A” (feature A should not be present) constraints. 

3.2. OWL 

OWL is the most commonly used ontology language. It was created on the 
basis of RDFS [10], [11]. It has three sublanguages; OWL Full, OWL DL, and 
OWL Lite [10], [11], [21]. These sublanguages have different levels of 
expressiveness. Whereas OWL Full is the most expressive, OWL Lite is the 
least expressive. Only OWL-DL allows automated reasoning. 

The three components of OWL are: classes, properties, and individuals. 
Classes are interpreted as sets that contain individuals. Classes may be 

organized into a hierarchy. This means that a class can subsume other 
classes or it can be subsumed by other classes. The consequence of the 
subsumption relation is inheritance. Inheritance refers to the inheritance of 
properties, which the children inherit from their parents. Whereas some 
ontologies only allow single inheritance, most ontologies, like OWL, allow 
multiple inheritance. OWL defines two special classes called „Thing“ and 
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„Nothing“. Class Thing is the most general class and it is the superclass of 
every class that is included in the ontology. Class Nothing is empty and it is 
the subclass of every included class. The class hierarchy of the Home robot 
ontology (HRO) is represented by Fig. 4. HRO is based on [24]. The main 
functionalities of the robot are comprised of common household tasks, such 
as checking if the window is closed. HRO formalizes terms for three classes: 
locations, items and tasks. The locations are physical places where tasks are 
performed. Items are part of the tasks in the manner that the same action is 
performed on them or with them. The tasks are the actions being performed. 
Each task is comprised of subtasks. For the HRO annotation we used the 
OWL-DL, a sublanguage of the Ontology Web Language (OWL). The tool 
used for the creation of the ontology was Protégé [26], [27].  

The second component, the properties, is a binary relation. OWL defines 
two main kinds of properties: object properties and datatype properties. 
Whereas object properties relate objects to other objects, datatype properties 
relate an object to datatype values. OWL supports XML schema primitive 
datatypes.  

The third component, the individuals, is the basic component of an 
ontology. They represent objects in the domain of discourse. They can be 
concrete individuals (i.e. animals, airplanes, and people) as well as abstract 
individuals (i.e. words and numbers). 

3.3. Comparison 

Both analysis incorporate a concept vocabulary, enable the display of 
property and class hierarchies, and provide a constraint mechanism (see 
Table 1). The CDA uses this mechanism for variability reduction while the 
OBDA uses it for the description of class properties. Both types of analysis 
describe semantics and are machine readable.  

Table 1.  Comparison of CDA and OBDA  

Property  FD + FDL OWL ontology 
Concept vocabulary Features names Name Class or property 
Hierarchy Feature diagram Class hierarchy 
Constraints FDL constraints Restrictions 
Rationale FD rationale properties   No 
Objects 
Possible combinations 
Reasoning support 
Machine readable 
Tools 
Semantics 
Query support 

No   
Variability rules (FDL) 
No 
Yes 
Yes 
Yes 
No 

Individuals 
No  
Reasoners (i.e. FaCT++) 
Yes 
Yes (i.e. Protege) 
Yes 
Yes (DL Query) 
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Fig. 4. Class hierarchy of a Home robot ontology 
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The CDA differs from OBDA in its capability to record the reasons for the 
use of a particular property (rationale) and the calculation of all possibilities. 
OBDA, on the other hand, provides the existence of objects, reasoning and 
querying. Numerous tools are available for it and ontologies are created 
across diverse research areas and are therefore available for use. 

The comparison shows that OBDA is capable of most of what the CDA is 
capable of doing. The advantages of an ontology are reasoning and querying, 
because they enable the validation of an ontology. A valid ontology 
significantly reduces or prevents errors in DSL development. Semantics, 
which are inherently defined with the ontology, are also of great use when 
developing language semantics. Existing tools provide easy access to the 
ontology and enable efficient information extraction procedures. It is also a 
very important fact that ontologies are present in different areas of research. 
This provides the method for elimination of the domain analysis phase in DSL 
development and might significantly reduce the time needed for language 
development. 

The comparison leads to the conclusion that the CDA can indeed be 
replaced with OBDA, primarily because the ODBA provides everything 
needed for DSL development and also adds new capabilities.  

4. Designing the DSL grammar 

While the previous chapter shows that OBDA is appropriate for DSL 
development, this chapter demonstrates the process of grammar [28] 
construction from an OWL ontology. Section 4.1 introduces the rules used in 
the transformation from an ontology to its corresponding grammar. Section 
4.2, however, is the application example which demonstrates the usage of 
the rules presented in 4.1. 

4.1. Transformation rules 

The input in the transformation is a data structure named the ontology data 
structure (ODS), which carries the data extracted from the OWL document. 
The result of the transformation is again a custom data structure, in this case 
the grammar data structure (GDS). GDS is a formal annotation of the 
resulting grammar. 

With regard to the effect the transformation has on the ODS, the rules can 
be divided into the following two groups: (1) rules that do not affect the ODS 
and (2) rules that do affect and alter it. The results of the former can only be 
observed on the GSD, while the results of the latter are identifiable on both 
ODS and GDS. The rules that affect ODS can be used to alter the ontology.  
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The rules that do not alter the primary data structure: 

1. NN(C)R 11   ( R - rule, C - class, 1N  - nonterminal, N  - set of 

nonterminals). Rule 1R  is used to convert class C  into nonterminal 1N .  

An application example for rule 1R  can be seen in chapter 3.2, step 1. 

2. TT(C)R 12   ( 1T  - terminal, T  - set of terminals).  Rule 2R  is used 

to convert class C  into terminal 1T . The user can, if necessary, change 

the name of terminal 1T . Name changes must be recorded in the 

dictionary. 

3.  "C" :: CP(C)R N3   ( NC  - class name, P  - set of productions, 

G  - grammar (  PS,N,T,G )). Rule 3R  is used to add production 

into the grammar G . An application example for the rule 3R  can be 

seen in chapter 3.2, step 2. 

4.  21214 C :: CP)C ,(CR  . Rule 4R  is used to add production into 

the grammar G .  

5.   Dn1n  21D5 CL...CC ,type|C | ... |C | C:: CP type),CL (C,R 

  TCL(CH)C if DD  ( L  - list, CH  - class hierarchy, DCL  - list 

of disjoint classes [17], DC  - disjoint class, type - string, integer, …). 

The rule 5R  accepts the following inputs: class C , list of disjoint classes 

DCL  and type. The inputs DCL and type are optional. In any case, at 

least one of them must be present. If the inputs C  and DCL  exist  we 

are talking about the rule 5aR .  If inputs C  and type exist we are talking 

about the rule 5bR . If all three inputs exist we are talking about the rule 

5cR . Rule 5aR  is used to add a production in the form 

n  21 C | ... |C | C:: C   into grammar G . Rule 5cR  is an extension of rule 

5aR  and is used to add productions in the form 

type|C | ... |C | C:: C n  21  into grammar G . A precondition for the 

successful transformation is that the children are disjointed; otherwise the 

resulting grammar is not a context free grammar. Classes from DCL  that 
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are also leafs of the class diagram, are transformed, with the use of rule 

3R  to the set of terminals T . Rule 5bR  is used to add productions in the 

form type:: C   into grammar G . The rule enables grammar 

generalization, as described by class C , and the associated part of 

ontology. Each rule is used according to the bottom up principle; first on 

the lower of the class hierarchy levels, followed by the higher classes. An 

application example for the rules 5aR  and 5cR
 
can be seen in chapter 

3.2, step 2. 

6.     C  :: SP  LAC PL)C( |   PL ifPL) (C,R6   

( PL  - parent list, S  - start symbol, LAC  - list of anonymous classes). 

Rule 6R  is used to define grammar start symbols. Class C  is a possible 

grammar start symbol in the case that its parent list PL  is empty or if all 

classes from PL  are anonymous classes. Grammars can have more 

than one start symbol. An application example for the rule 6R  can be 

seen in chapter 3.2, step 5.   

The rules that affect and alter the primary data structure: 

7.    ? , *,O ,(NC) typeTrans:: CP  NC) O, (C,R7   ( O  - 

operator). Rule 7R  is used to formalize the number of repetitions of 

some classes. The rule accepts the following inputs: class C , operator 

O , which defines the number of repetitions of some class and the new 

class NC . The rule is carried out in three steps. In the first step, the 

children of class C are assigned to class NC  ( Child(C)  Child(NC)  ). 

In the second step, the children of class C  are removed 

( ds(C)RemoveChil ). In the third step the production is formalized. An 

application example for rule 7R  can be seen in chapter 3.2, step 6.  

8.  RLR8 T Nc T :: CP  NC) ,T ,T (C,R
L

  ( LT  - left terminal, DT  - 

right terminal). Rule 8R  is used to enrich the syntax. Either the left or the 

right terminal can be omitted. The rule is carried out in three steps. In the 

first step, the children of class C are assigned to the class NC  

( Child(C)  Child(NC)  ). In the second step, the children of class C  
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are removed ( ds(C)RemoveChil ). In the third step, the production is 

formalized. An application example for rule 8R  can be seen in chapter 

3.2, step 7.  

9.  2M1M219some C T NC::CP NC),T,C,(CR   ( MT  - middle 

terminal). Rule some9R  is used to formalize productions which describe 

restrictions (some). The rule accepts the following inputs: class 1C  to 

which the restriction refers, class 2C  which determines the possible 

values of class 1C , the middle terminal  MT  and the new class NC . 

The rule is carried out in three steps. In the first step, the children of class 

1C are assigned to class NC  ( Child(C)  Child(NC)  ). In the second 

step the children of class 1C  are removed ( )ds(CRemoveChil 1 ). In the 

third step the production is formalized.  

10.   LofCs;...CC C ,...CC C::   CPLofCs) C, (R n21n  2 110 

  TCL(LofCs)C if ii  ( LofCs  - list of classes) 

The rule 10R  accepts the following inputs: class C and a list of classes 

LofCs . Rule 10R  is used to add a production in the form 

n  21 C  ... C  C:: C   into the grammar G . Classes from LofCs  that are 

also leafs of the class diagram, are transformed, with the use of rule 3R  

to the set of terminals T . The rule is used on the first level. The class 

Thing is ignored in the transformation. An application example for rule 

10R  can be seen in chapter 3.2, step 4. 

This chapter lists some of the rules necessary for the transformation of an 
onotology into a DSL grammar.  

4.2. Ontology to DSL transformation: Home robot example 

The prerequisite of the Ontology to DSL transformation (Ontology2DSL) is a 
proper understanding of the target ontology. The language designer must 
understand what the ontology describes and why it was designed. Moreover, 
the language designer needs to know what the DSL requirements are, and 
what the purpose of the DSL is. In most cases, the DSL requirements and the 
ontology do not overlap in all concepts. A single ontology, for instance the 
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HRO, can be used to develop many different DSLs. We continue with the 
examination of the DSL used for the home robot. The robot is tasked with 
performing various chores on different locations in the household. 

The transformation requires a list of ontology classes and a collection of 
individually disjoint classes. All the required data was obtained from the OWL 
document. During the transformation, we also relied on the class hierarchy 
presented in Fig. 4.  

 
Classes. Commodity, Food&Drink, Juice, Sweets, Beer, 
Appliance, TV, VideoCamera, HauseholdEquipment, Door, 

Window, Task, Close, Bring, Check, SwitchOn, Robot,  

Location, BedRoom, LivingRoom, Kitchen. 

(Class Thing and other classes from Fig. 4, which are not mentioned in the 
above list, are ignored in the transformation.) 
Disjoint classes. 
– Food&Drink, Appliance and HauseholdEquipment 

– Juice, Sweets and Beer 

– TV and VideoCamera  

– Door and Window 

– Close, Check, Bring and SwitchOn 

– Robot, Commodity, Location and Task 

– BedRoom, LivingRoom and Kitchen 

 
Step 1. In the first step, all classes are converted into nonterminals.  
R1(Robot) 

N = {Robot} 

Rule 1R in this step is used on all the classes and results in the following set 

of nonterminals N . 
N = {Commodity, Food&Drink, Juice, Sweets, Beer,  

     Appliance, TV, VideoCamera, HauseholdEquipment,  

     Door, Window, Task, Close, Bring, Check, SwitchOn,  

     Robot, Location, BedRoom, LivingRoom, Kitchen} 

 
Step 2. The transformation is continued on the lowest, third, level. It is 

performed with the rules 3R , 5aR ,  and 5cR .  

R5c(Food&Drink, {Juice, Sweets, Beer}, string) 

R3(Juice) 

R3(Sweets) 

R3(Beer) 

R5a(Appliance {TV, VideoCamera}) 

R3(TV) 

R3(VideoCamera) 

R5a(HauseholdEquipment {Door, Window}) 

R3(Door) 

R3(Window) 
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T = {»juice«, »sweets«, »beer«, »TV«, »videoCamera«,  

     »door«, »window«} 

P = { Food&Drink ::= Juice | Sweets | Beer | string 

Juice ::= »juice« 

Sweets ::= »sweets«  

Beer ::= »beer« 

Appliance ::= TV | VideoCamera 

TV ::= »TV«  

VideoCamera ::= »videoCamera«  

HauseholdEquipment ::= Door | Window 

Door ::= »door«  

Window ::= »window«} 

 
Step 3. The transformation is continued on the second level. The rules used 

are 3R  and 5aR .  

R5a(Commodity, {Food&Drink, Appliance, 

    HouseholdEquipment}) 

R3(Food&Drink) 

R3(Appliance) 

R3(HouseholdEquipment) 

R5a(Location, {BedRoom, LivingRoom, Kitchen}) 

R3(BedRoom) 

R3(LivingRoom) 

R3(Kitchen) 

R5a(Task, {Close, Check, Bring, SwitchOn}) 

R3(Close) 

R3(Check) 

R3(Bring) 

R3(SwitchOn) 

 

T = {…, »food&Drink«, »appliance«, »householdEquipment«,     

     »bedRoom«, »livingRoom«, »kitchen«, »close«,  

     »check«, »bring«, »switchOn«} 

P = { …, Commodity ::= Food&Drink | Appliance |    

              HouseholdEquipment 

Food&Drink ::= »food&Drink«  

Appliance ::= »appliance«  

HouseholdEquipment ::= »householdEquipment«  

Location ::= BedRoom | LivingRoom | Kitchen 

BedRoom ::= »bedRoom«  

LivingRoom ::= »livingRoom«  

Kitchen ::= »kitchen«  

Task ::= Close | Bring | Check | SwitchOn 

Close ::= »close«  

Check ::= »check« 

Bring ::= »bring«  

SwitchOn ::= »switchOn«} 
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Step 4. The first level is transformed with the 10R rule.  

R10(Robot, {Task, Commodity, Location}) 

T = {…, »Task«, »Commodity«, »Location«} 

P = {…, Robot ::= Task Commodity Location} 

 
Step 5. In the next step, all possible grammar start symbols are extracted.  
R6(Commodity, {}) 

R6(Task, {}) 

R6(Robot, {}) 

R6(Location, {}) 

R5a(S, {Commodity, Task, Robot, Location}) 

S = {Commodity, Task, Robot, Location } 

P = {…, S ::= Commodity | Task | Robot | Location}  

 
Step 6. In the next step, rule 7R  is used. Strikethrough production is 

eliminated from the set of production. 
R7(Commodity, +, Commodities) 

P = { …, Commodity :: = Food&Drink | Appliance |  

                        HauseholdEquipment  

      Commodity::= Commodities
+ 

      Commodities ::= Food&Drink | Appliance |     

      HouseholdEquipment} 

 
Step 7. In the last step the syntax is enriched. Strikethrough productions are 
eliminated from the set of production. 
R8(Location, {»from«| »in«}, {}, LocationE) 

LocationE:: = {»from«| »in«} Location 

P = { …, S ::= Robot | Commodity | Location | Task 

Robot ::= Task Commodity Location 

S ::= Robot | Commodity | LocationE | Task 

Robot ::= Task Commodity LocationE} 

 
Obtained grammar: 
P = { Robot ::= Task Commodity LocationE 

 

Task ::= Close | Check | Bring | SwitchOn 

Close ::= »close« 

Check ::= »check« 

Bring ::= »bring« 

SwitchOn ::= »switchOn« 

 

Commodity::= Commodities
+ 

Commodities ::= Food&Drink | Appliance |  

                HouseholdEquipment 
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Food&Drink ::= Juice | Sweets | Beer | string  

Food&Drink ::= »food&Drink«  

Juice ::= »juice« 

Sweets ::= »sweets«  

Beer ::= »beer« 

Appliance ::= TV | VideoCamera 

Appliance ::= »appliance«  

TV ::= »TV«  

VideoCamera ::= »videoCamera«  

HouseholdEquipment ::= Door| Window 

HouseholdEquipment ::= »householdEquipment«  

Door ::= »door«  

Window ::= »window« 

 

Location ::= BedRoom | LivingRoom | Kitchen 

BedRoom ::= »bedRoom«  

LivingRoom ::= »livingRoom« 

Kitchen ::= »kitchen«  

LocationE :: = {»from«| »in«} Location} 

 
Program examples:  

close door in bedRoom 

check window in kitchen 

switchOn TV in livingRoom 

bring beer chips from kitchen 

 

5. Ontology2DSL 

The Ontology2DSL framework enables automated grammar construction as 
well as one or more programs from a target ontology. The framework accepts 
an OWL document as an input, parses it and uses the information retrieved 
to create and fill internal data structures. Then a transformation pattern, 
annotated with the proper rule execution order, is applied over the data 
structures and the corresponding grammar and programs are constructed. 
The resulting grammar, acquired fully automatically, is then inspected by a 
DSL engineer in order to verify it and find any irregularities. If any 
irregularities are found, they are tasked with their resolution with regard to the 
source and type. The engineer can either correct the constructed grammar, 
programs or the transformation pattern (i.e. change the order in which the 
rules are applied or construct new rules and include them in the pattern). The 
framework then rebuilds the grammar and programs as required. The rebuild 
process can utilize a new transformation pattern on an old ontology, an old 
pattern on a new ontology, or a new pattern on a new ontology. The process 
is repeated until the DSL engineer can no longer find any irregularities. The 
framework also has the option of constructing in sequential steps instead of 
the fully automated method. In that case, the engineer can execute each rule 
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individually and can, at any time, return to a previous step if the result proves 
to be unsatisfactory. This method allows for complete control over the 
grammar and the resulting program’s construction process. The final (correct) 
grammar can later be used by the DSL engineer for the development of DSL 
tools. The latter are developed with the use of language development tools, 
such as LISA [29] or VisualLISA [30]. The development of DSL tools from an  
ontology is a process demonstrated in the workflow of Fig. 5. 

 

 

Fig. 5. Ontology2DSL workflow 

5.1. Architecture of the framework 

The architecture of the Ontology2DSL framework, shown in Fig. 6 is 
comprised of the following:  

 
– OWL parser. The parser is tasked with the parsing of OWL documents 

and the filling of the data structure with the retrieved data. The data 
structure is composed of the following individual data structure types: a 
class tree, an object properties tree, a datatype properties tree, a list of 
anonymous classes, a list of disjoint classes, a list of instances and a list of 
ID's of all the ontology building blocks in the aforementioned lists. Part of 
the data structure for the HRO is presented in Fig. 7. The building of 
hierarchy objects (trees) and lists is done with a sequential scan of the 
OWL document. Each retrieved element is added to an appropriate list and 
is assigned all the necessary information. A check is also performed to 
determine if the new element possesses any new information that should 
be assigned to other elements. In instances where the new element has 
some information that is important for the elements that have not yet been 
added to any of the trees or lists, that information is cached until the 
required elements are not added to the data structure. 
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– Rule reader. The reader is tasked with the sequential read operations on 
the rules list. The reader forwards each rule to the rule execution and 
transaction logger components.  
 

– Rule execution component (REC) is used for the execution of individual 
rules. The necessary data for the execution is retrieved automatically by 
REC from the data structure. After a rule is executed, REC refreshes the 
data structure if the rule execution result requires it. Also, the set of 
grammar elements are refreshed and parts of the code are written out. The 
element set of the grammar in the final result becomes the final grammar 
and the code parts become the programs that represent the final output of 
the Ontology2DSL framework.  
 

– Transaction logger.  After the execution of every rule, the system’s 
current state is logged by the transaction logger. The logger stores the 
entire content of the data structure, the last executed rule, the output of the 
rule execution component and the current grammar and program parts. 
 
 

 

Fig. 6. Architecture of the framework  
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Fig. 7. An excerpt of the data structure for HRO  

6. Conclusion and future work 

In this paper, we focused on the presentation of a new design methodology 
that enables the development of a language grammar based on the OBDA. 
The limitations of the CDA have been examined and a replacement in the 
form of an OBDA has been proposed. Both analyses have been presented 
and compared for similarities and differences. Grammar development, based 
on the OBDA, and the Ontology2DSL framework were also briefly presented.  

The results of the comparison between both analyses show that the OBDA 
is comparable to the CDA and also provides some additional information that 
can be used to specify language behavior. As such, it is also suitable as an 
alternative to CDA for grammar development. The framework Ontology2DSL 
is still under development. The current version is composed of all of the basic 
components: an OWL parser, a rule reader, REC and a transaction logger. As 
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opposed to other components that are fully developed, REC is not fully 
developed, as it does not yet construct code fragments. The framework in the 
current development phase can only be used to construct grammar. 
Additionally, in the current version, a DSL engineer cannot add custom rules 
and create custom transformation patterns. In the future, we intend to fully 
develop the Ontology2DSL framework. We will also focus on validating the 
developed grammar and the use of previously unused information (i.e. for 
semantics development) that was acquired with an OBDA. The results of our 
research work will also include the transformation of the developed DSL to a 
form that is compatible with compiler generators, such as LISA [29] or 
VisualLISA [30]. Our future work also encompasses empirical studies to 
evaluate the success of our methodology and to compare it with the existing 
methodologies. One of our future activities, to complete the methodology 
Ontology2DSL, will be an evaluation of DSLs. As shown in study [20], this 
activity is often underestimated by language developers. There is a plan to 
support this activity with a tool based on a questionnaire similar to [31] which 
will further improve the language.  
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