
DOI: 10.2298/CSIS101231019C

Ontology Driven Development of Domain-Specific

Languages

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

Faculty of Electrical Engineering and Computer Science, Smetanova 17,
2000 Maribor, Slovenia

{ines.ceh, matej.crepinsek, tomaz.kosar, marjan.mernik}@uni-mb.si

Abstract. Domain-specific languages (DSLs) are computer
(programming, modeling, specification) languages devoted to solving
problems in a specific domain. The development of a DSL includes the
following phases: decision, analysis, design, implementation, testing,
deployment, and maintenance. The least-known and least examined
are analysis and design. Although various formal methodologies exist,
domain analysis is still done informally most of the time. A common
reason why formal methodologies are not used as often as they could
be is that they are very demanding. Instead of developing a new, less
complex methodology, we propose that domain analysis could be
replaced with a previously existing analysis in another form. A
particularly suitable form is the use of ontologies. This paper focuses
on ontology-based domain analysis and how it can be incorporated into
the DSL design phase. We will present the preliminary results of the
Ontology2DSL framework, which can be used to help transform
ontology to a DSL grammar incorporating concepts from a domain.

Keywords: domain-specific language, domain analysis, ontology.

1. Introduction

Programming languages are used for human-computer interaction.
Depending on the purpose of their use, programming language can be
divided into general-purpose languages (GPLs) and domain-specific
languages (DSLs) [1], [2], [3], [4]. GPLs, such as Java, C and C#, are
designed to solve problems from any problem area. In contrast to GPLs,
DSLs, such as Latex, SQL and BNF, are tailored to a specific application
domain.

When developing new software, a decision must be made as to which type
of programming language will be used: GPL or DSL. The issue is further
complicated if an appropriate DSL does not exist. Then, the decision
becomes whether to start to develop with a GPL language or to start with the
development of the required DSL and then develop the software system with
it. Reasons for using a DSL are as follows: easier programming, re-use of

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 318

semantics, and the easier verification and programmability for end-users [1],
[2]. However, using a DSL also has its disadvantages, such as high
development costs [1], [5]. The key is to answer the question: »When to
develop a DSL?« The simplest answer to this question is: a DSL should be
developed whenever it is necessary to solve a problem that belongs to a
problem family and when we expect that in the future more problems from
the same problem family will appear. A more detailed response can be found
in [1].

DSL development consists of the following phases: decision, analysis,
design, implementation, testing, deployment and maintenance [1], [6], which
are discussed in greater detail in Section 2. While the implementation phase
has attracted a lot of researchers [5], some of the DSL development phases
are less known and are not as closely examined (e.g. analysis, design).

The knowledge of the problem domain and its definition is achieved at the
domain analysis phase. Various methodologies for domain analysis have
been developed. Examples of such methodologies include: DSSA (Domain
Specific Software Architectures) [7], FODA (Feature-Oriented Domain
Analysis) [8], and ODM (Organization Domain Modeling) [9]. Often, formal
methodologies are not used due to complexity and the domain analysis is
done informally. This has the consequence of complicating future DSL
development. Even if the domain analysis is done with a formal
methodology, there are not any clear guidelines on how the output from
domain analysis can be used in a language design process. The outputs of
domain analysis consist of domain-specific terminology, concepts,
commonalities and variabilities. Variabilities would have been entries in the
design of DSL, while terminology and concepts should be reflected in the
DSL constructs, and commonalities could be incorporated into the DSL
execution environment. Although it is known where the outputs of the domain
analysis should be used, there is a need for clear instructions on how to make
good use of the information, which are retrieved during the analysis phase, in
the design stage of the DSL.

To partially solve the aforementioned problems, we propose that domain
analysis (hereinafter referred to as classic domain analysis (CDA)) be
performed with the use of existing techniques from other fields of computer
science. A particularly suitable one is the use of ontologies [10], [11], [12]. An
ontology provides the vocabulary of a specialized domain. This vocabulary
represents the domain objects, concepts and other entities. Some types of
domain knowledge can be obtained from the relationships of the entities, as
presented by the vocabulary. Ontologies in the CDA have already been used
in [13]. Whereas Tairas et al. apply ontologies in the early stages of domain
analysis to identify domain concepts; we propose that an ontology replace the
CDA. They also investigated how ontologies contribute to the design of the
language [13]. Ontologies in connection with DSL are also used by other
authors. Miksa et al. applied ontology-enabled software engineering in the
area of DSL engineering [14]. Guizzardi et al. proposed the use of an upper
ontology (top-level ontology) [15] to design and evaluate domain concepts
[16]. Walter et al. applied ontologies to describe DSL [17]. Bräuer and

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 319

Lochmann proposed an upper ontology to describe interoperability among
DSLs [18].

The proposed solution of the first problem, the use of ontologies, has a
significant effect on the second problem, related to CDA. It translates the
problem »How to make good use of the information, retrieved during the
analysis phase, in the design stage of the DSL?« into the problem »How to
make good use of the information contained in an ontology in the design
stage of a DSL?« This paper focuses on ontology-based domain analysis
(OBDA) and how it can be incorporated into the DSL design phase. We will
present the preliminary results of the Ontology2DSL framework, which can be
used to help transform an ontology to a DSL grammar.

The organization of this paper is as follows. Section 2 presents the
background information required for the understanding of this paper. Section
3 is intended to demonstrate the similarities and variabilities between the
CDA and OBDA. Section 4 presents the transformation rules used for the
development of a DSL from an ontology, as well as the example of an
ontology to a DSL transformation. Section 5 presents the framework
Ontology2DSL and its architecture. The conclusion and future work are
summarized in Section 6.

2. Background

2.1. DSL development phases

In [1], the authors have identified the following DSL development phases:
decision, analysis (CDA), design, implementation, and deployment. The
additional phases are testing and maintenance. The maintenance phase was
introduced in [6]. Fig. 1 presents these phases along with the input and output
of every phase and examples of patterns for the individual phases. The
decision phase provides the answer to the question of when to develop a
DSL. Other phases focus on the question of how to develop it. DSL and GPL
development processes have a few differences with respect to the phases of
development, since the phases are identical. The differences are in the
activities, approaches and techniques used in the individual phases. The
difference is expressed in the greater diversity of the activities, approaches
and techniques in DSL development. It should be taken into consideration
that DSL development is not a simple sequential process. Often, the phases
overlap one another. For instance, the design of the DSL is influenced by the
decision on the implementation approach. In the following section, the DSL
development phases are briefly discussed.

Decision. It is often far from evident that a DSL might be useful or that
developing a new one might be worthwhile. The concepts underlying a
suitable DSL may emerge only after a lot of GPL programming has been

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 320

done. Decision patterns [1] describe situations (e.g., task automation,
domain-specific Analysis, Verification, Optimization, Parallelization, and
Transformation (AVOPT)) for which, in the past, developing a new DSL was
fruitful.

Domain analysis (CDA). The precondition of the design and
implementation of a DSL is a detailed domain analysis. The goal of CDA is to
select and define the domain of focus and collect appropriate domain
information and integrate them into a coherent domain model; the result of
CDA [19]. A representation of the domain system properties and their
dependencies is the domain model. The properties are either common or
variable, which is represented in the model along with the dependencies
between the variable ones. Besides the development of the domain model,
CDA also includes domain planning, identification and scoping. The inputs to
the domain analysis are different sources of implicit and explicit domain
knowledge. The information sources for the analysis are: technical literature,
existing implementations, customer demands, expert advice, and current and
future requirements [4]. An important note is the fact that the domain analysis
process not only collects existing information. The systematic and organized
collection of existing information enables and encourages the extension of
information with new knowledge. In some cases, CDA can be informal, while
in others it incorporates different methodologies. Methodologies differ based
on the degree of formality, information extraction techniques or their
products. We have listed the most known methodologies in the introduction.
FODA has been proven as the most commonly used formal methodology in
DSL development. The domain analysis can result in different DSLs.
However, they all share essential information acquired in the domain analysis
phase.

Design. Language design includes the definition of constructs and
language semantics. The semantics formalize the meaning of every construct
in the language and the behavior not specified in the program. The
approaches to the design of a DSL can be classified into two orthogonal
dimensions: the relation between DSL and a computer language and the
formality degree of the DSL description [1]. The first dimension refers to the
exploitation of an existing language (GPL or DSL) or the invention of a new
language. The most basic method for DSL construction is if the DSL is based
on an existing language. The existing language can be: partially reused
(piggyback pattern), limited (language specialization pattern) or extended
(language extension pattern) [1]. The advantages of building a DSL on an
existing language are: easier implementation and the familiarity of the
development environment to users who are experienced with the existing
language. If the connection between the DSL and an existing language does
not exist, a new language must be developed from the beginning. The
second dimension refers to the informal and formal design of the language.
With informal design, the specification is usually in the natural language with
optional program examples. When the design is formal, the specification is
usually in the form of a well-known formal definition method (BNF for syntax

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 321

specification, attribute grammars, denotational semantics, or algebraic
specifications for semantic specification).

Decision

Domain analysis

Design

Implementation

Deployment

Maintenance

T
e

c
h

n
ic

a
l
lit

e
ra

tu
re

E
x
is

ti
n

g

im
p

le
m

e
n

ta
ti
o

n
s

C
u

s
to

m
 s

u
rv

e
y
s

E
x
p

e
rt

 a
d

v
ic

e

C
u

rr
e

n
t
a

n
d

 f
u

tu
re

re
q

u
ir
e

m
e

n
ts

Domain analysis

methodology

T
e

rm
in

o
lo

g
y

C
o

n
c
e

p
ts

C
o

m
m

o
n

a
lit

ie
s

V
a

ri
a

ti
o

n
s

Domain model

S
y
n

ta
x

S
e

m
a

n
ti
c
s

Implementation pattern

D
S

L
D

S
L

P
o

s
s
ib

le

e
x
is

ti
n

g

im
p

le
m

e
n

ta
ti
o

n
s

i.e. Interpreters,

Compilers/application

generators, Emdedding, ...

Informal, Formal (DSSA,

FODA, ODM), Extract from

code

Decission pattern

i.e. Notation, AVOPT,

Task automation, Product

line, ...

Design pattern

Language exploitation,

Language invention

DSL

R
e

q
u

ir
e

m
e

n
ts

Yes

No

Testing

D
S

L

DSL

Fig. 1. DSL development phases

Implementation. Different approaches for DSL development can be used,
such as: interpreter, compiler/application generator, embedding,

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 322

preprocessing, extensible compiler/interpreter, Commercial Off-The-Shelf
(COTS), and hybrid. The approaches are presented in greater detail in [1].
Cleary we want to select the approach that requires the least effort during
implementation and offers the greatest efficacy to the end user. The link
between the implementation approaches, the effort of implementation and
the efficacy to the end user is presented by the authors of [5].

Testing. In this phase, a DSL evaluation is performed. As shown in the
study [20], this phase is often skipped or relaxed by language developers.
The skipping or relaxing of this phase is not desirable because it may lead to
the development of inadequate languages.

Deployment. In this phase, DSLs and applications constructed with them
are used.

Maintenance. In this phase, the DSL is updated to reflect new
requirements.

The number of phases and their individual complexity result in the
discovery of high costs when developing a new DSL. DSL development
requires domain knowledge and language expertise [1], [5]. These are the
main reasons why DSLs are not so often used for solving software
engineering problems. The development cost is seen as the greatest
disadvantage of DSLs [5].

The main goal of the presented research is to investigate if the classic
domain analysis (CDA) phase can be adequately replaced with an already
existing domain knowledge and representation (e.g., ontology). In this
manner the DSL development cost could be minimized.

2.2. Ontology

There are many definitions of ontologies in existing literature and one of the
most commonly used definitions is that of Studer et al. They defined an
ontology as follows: »An ontology is a formal, explicit specification of a
shared conceptualization.« [12]. The meaning of the Studer et al. definition is
detailed in [21]. Formal refers to the fact that it is machine readable. The
specification is explicit because it summarizes the concepts, properties and
relations between concepts. Furthermore, the shared conceptualization
contains knowledge that a group of experts has agreed upon.
Conceptualization refers to the fact that it incorporates the target domain
completely.

Ontologies are commonly encoded using ontology languages. Ontology
languages allow for the acquisition of knowledge about specific domains and
often include rules that allow the processing of knowledge in existing
ontologies. Ontology languages can be divided into two major groups:
traditional (i.e. Flogic, Ontolingua) and web-based languages (i.e. RDF(S),
OWL) [22]. Recently, a new group of languages, rule-based (i.e. RuleML,
SWRL) [23], has emerged. These languages differ in their purpose and in
their expressive power. The main requirements for an ontology language are:

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 323

a well-defined syntax, well-defined semantics, efficient reasoning support,
sufficient expressive power and convenience of expression [21].

3. Comparison of CDA and OBDA

Subsection 3.1 presents the FODA methodology with which the domain
analysis is performed. Subsection 3.2 introduces the ontology language
OWL. The examples in both subsections are for the case of a home robot
[24]. Subsection 3.3. compares the information obtained through FODA and
through ontology domain analysis.

3.1. FODA

FODA is a CDA method that was developed by the Software Engineering
Institute [19]. It is known for its models and feature modeling. In FODA, a
feature is an end-user characteristic of a system. A FODA process consists of
two phases: context analysis and domain modeling. The goal of context
analysis is to determine the boundaries (scope) of the analyzed domain. The
purpose of domain modeling is to develop a domain model. The FODA
domain modeling phase is comprised of the following steps: information
analysis, features analysis, and operational analysis. The main goal of
information analysis is to capture domain knowledge in the form of domain
entities and the links between them. The result of information analysis is the
information model. The result of feature analysis is a feature model, which is
presented below. An operational analysis results in the operational model. It
represents how the application works and covers the links between objects in
the informational model and the features in the feature model. An important
product from the phase of domain modeling is the domain dictionary. It
defines the terminology used in the domain and it also includes textual
definitions of domain concepts and features.

A feature model consists of the following:
– The Feature diagram (FD) represents a hierarchical decomposition of

features and their kinds (mandatory, alternative, and optional feature).
Mandatory features are those that each system must have in the domain.
Alternative features are features that a system can only possess one at a
time. Optional features are features that a system may or may not have. A
system can also have more than one feature at a time. These features are
called or-features. Features are also classified as atomic or composite.
Whereas atomic features cannot be further subdivided into other features,
composite features are defined in terms of other features. The root node of
the diagram represents a concept and the remaining nodes represent
features. An example of a feature diagram is shown in Fig. 2.

– Feature definitions describe all features (semantics).

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 324

– Composition rules for features describe which combinations are valid or
invalid.

– Rationale for features represents the reasons for choosing a feature.

HomeRobot

Command

Task

Commodity

Mandatory

Optional

Or

Alternative

Location

Close Check BringSwitchOn

Food&Drink Appliance HauseholdEquipment

bedRoomlivingRoom kitchen

Characteristics

SensorPowerSourceLocomotionMechanism

camerapowerCableBattery

liIon niCd

wheeled walking

moveTo take moveBack

juice beer sweets door windowtv videoCamera
...

audio

Fig. 2. Feature Diagram for a concept of a HomeRobot

Fig. 2 represents a simple FD of a HomeRobot. The root node of the
diagram, HomeRobot, represents a concept; the remaining nodes represent
its features. Whereas mandatory features are indicated by a filled circle,
optional features are indicated by an empty circle. Alternative and or-features
are both indicated by a triangle, the former with an empty one and the latter
with a filled triangle. The names of atomic features are written in lower-case
while the composite features are written with their first letter in upper-case.
Every house robot has individual characteristics and executes some
commands. Every house robot has to have a PowerSource, uses some
sensors for its locomotion and moves in a particular manner. Every robot can
have multiple power sources but only one mechanism of motion. Every robot
performs tasks, which are comprised of subtasks. The robot executes one
order per location, every task is focused on an item, while some tasks focus
on multiple items at the same time.

Feature models are not only represented in the visual form of FDs but also
in textual form. Van Deursen and Klint have proposed the feature description
language (FDL) for the textual representation. The FDL definition constitutes
the feature definitions followed by a colon (“:”) and the features expression.
Possible feature expression forms are presented in [25]. FDL exceeds the
graphic feature diagram in terms of expressive power and is appropriate for
automatic processing. The FD for a home robot in FDL is shown in Fig. 3.

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 325

HomeRobot: all (Command, Characteristics)

Command: all (Task, Location, Commodity)

Characteristics : all (LocomotionMechanism,

PowerSource, Sensor)

Task: one-of (Close, SwitchOn, Check, Bring)

Bring: all (moveTo, take, moveBack)

Location: one-of (livingRoom, bedRoom, kitchen)

Commodity: one-of (Food&Drink, Appliance,

 HauseholdEquipment)

Food&Drink: more-of (juice, beer, sweets)

Appliance: one-of (tv, videoCamera)

HauseholdEquipment : one-of (door, window)

LocomotionMechanism: one-of (wheeled, walking)

PowerSource: more-of (Battery, powerCable)

Sensor : more-of (camera, audio)

Battery: one-of (liIon, niCd)

Fig. 3. FD for the home robot in FDL

An important role of the FDs is to describe the variability of the
programming system. The number of all possible configurations per system
can be calculated with the use of variability rules, as presented in [25].

Constraints, which are intended for variability reduction, are an optional
component of the FDs. The constraints are enforced with satisfaction rules
[25]. The constraints are of two types [25]: diagram constraints and user
constraints. The former include the “A1 requires A2” (if the feature A1 is
presented, then feature A2 should also be presented) and “A1 excludes A2”
(if feature A1 is presented, then feature A2 should not be presented)
constraints, while the latter include the “include A” (feature A should be
present) and “exclude A” (feature A should not be present) constraints.

3.2. OWL

OWL is the most commonly used ontology language. It was created on the
basis of RDFS [10], [11]. It has three sublanguages; OWL Full, OWL DL, and
OWL Lite [10], [11], [21]. These sublanguages have different levels of
expressiveness. Whereas OWL Full is the most expressive, OWL Lite is the
least expressive. Only OWL-DL allows automated reasoning.

The three components of OWL are: classes, properties, and individuals.
Classes are interpreted as sets that contain individuals. Classes may be

organized into a hierarchy. This means that a class can subsume other
classes or it can be subsumed by other classes. The consequence of the
subsumption relation is inheritance. Inheritance refers to the inheritance of
properties, which the children inherit from their parents. Whereas some
ontologies only allow single inheritance, most ontologies, like OWL, allow
multiple inheritance. OWL defines two special classes called „Thing“ and

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 326

„Nothing“. Class Thing is the most general class and it is the superclass of
every class that is included in the ontology. Class Nothing is empty and it is
the subclass of every included class. The class hierarchy of the Home robot
ontology (HRO) is represented by Fig. 4. HRO is based on [24]. The main
functionalities of the robot are comprised of common household tasks, such
as checking if the window is closed. HRO formalizes terms for three classes:
locations, items and tasks. The locations are physical places where tasks are
performed. Items are part of the tasks in the manner that the same action is
performed on them or with them. The tasks are the actions being performed.
Each task is comprised of subtasks. For the HRO annotation we used the
OWL-DL, a sublanguage of the Ontology Web Language (OWL). The tool
used for the creation of the ontology was Protégé [26], [27].

The second component, the properties, is a binary relation. OWL defines
two main kinds of properties: object properties and datatype properties.
Whereas object properties relate objects to other objects, datatype properties
relate an object to datatype values. OWL supports XML schema primitive
datatypes.

The third component, the individuals, is the basic component of an
ontology. They represent objects in the domain of discourse. They can be
concrete individuals (i.e. animals, airplanes, and people) as well as abstract
individuals (i.e. words and numbers).

3.3. Comparison

Both analysis incorporate a concept vocabulary, enable the display of
property and class hierarchies, and provide a constraint mechanism (see
Table 1). The CDA uses this mechanism for variability reduction while the
OBDA uses it for the description of class properties. Both types of analysis
describe semantics and are machine readable.

Table 1. Comparison of CDA and OBDA

Property FD + FDL OWL ontology
Concept vocabulary Features names Name Class or property
Hierarchy Feature diagram Class hierarchy
Constraints FDL constraints Restrictions
Rationale FD rationale properties No
Objects
Possible combinations
Reasoning support
Machine readable
Tools
Semantics
Query support

No
Variability rules (FDL)
No
Yes
Yes
Yes
No

Individuals
No
Reasoners (i.e. FaCT++)
Yes
Yes (i.e. Protege)
Yes
Yes (DL Query)

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 327

Fig. 4. Class hierarchy of a Home robot ontology

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 328

The CDA differs from OBDA in its capability to record the reasons for the
use of a particular property (rationale) and the calculation of all possibilities.
OBDA, on the other hand, provides the existence of objects, reasoning and
querying. Numerous tools are available for it and ontologies are created
across diverse research areas and are therefore available for use.

The comparison shows that OBDA is capable of most of what the CDA is
capable of doing. The advantages of an ontology are reasoning and querying,
because they enable the validation of an ontology. A valid ontology
significantly reduces or prevents errors in DSL development. Semantics,
which are inherently defined with the ontology, are also of great use when
developing language semantics. Existing tools provide easy access to the
ontology and enable efficient information extraction procedures. It is also a
very important fact that ontologies are present in different areas of research.
This provides the method for elimination of the domain analysis phase in DSL
development and might significantly reduce the time needed for language
development.

The comparison leads to the conclusion that the CDA can indeed be
replaced with OBDA, primarily because the ODBA provides everything
needed for DSL development and also adds new capabilities.

4. Designing the DSL grammar

While the previous chapter shows that OBDA is appropriate for DSL
development, this chapter demonstrates the process of grammar [28]
construction from an OWL ontology. Section 4.1 introduces the rules used in
the transformation from an ontology to its corresponding grammar. Section
4.2, however, is the application example which demonstrates the usage of
the rules presented in 4.1.

4.1. Transformation rules

The input in the transformation is a data structure named the ontology data
structure (ODS), which carries the data extracted from the OWL document.
The result of the transformation is again a custom data structure, in this case
the grammar data structure (GDS). GDS is a formal annotation of the
resulting grammar.

With regard to the effect the transformation has on the ODS, the rules can
be divided into the following two groups: (1) rules that do not affect the ODS
and (2) rules that do affect and alter it. The results of the former can only be
observed on the GSD, while the results of the latter are identifiable on both
ODS and GDS. The rules that affect ODS can be used to alter the ontology.

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 329

The rules that do not alter the primary data structure:

1. NN(C)R 11  (R - rule, C - class, 1N - nonterminal, N - set of

nonterminals). Rule 1R is used to convert class C into nonterminal 1N .

An application example for rule 1R can be seen in chapter 3.2, step 1.

2. TT(C)R 12  (1T - terminal, T - set of terminals). Rule 2R is used

to convert class C into terminal 1T . The user can, if necessary, change

the name of terminal 1T . Name changes must be recorded in the

dictionary.

3.  "C" :: CP(C)R N3  (NC - class name, P - set of productions,

G - grammar ( PS,N,T,G)). Rule 3R is used to add production

into the grammar G . An application example for the rule 3R can be

seen in chapter 3.2, step 2.

4.  21214 C :: CP)C ,(CR  . Rule 4R is used to add production into

the grammar G .

5.   Dn1n 21D5 CL...CC ,type|C | ... |C | C:: CP type),CL (C,R 

 TCL(CH)C if DD  (L - list, CH - class hierarchy, DCL - list

of disjoint classes [17], DC - disjoint class, type - string, integer, …).

The rule 5R accepts the following inputs: class C , list of disjoint classes

DCL and type. The inputs DCL and type are optional. In any case, at

least one of them must be present. If the inputs C and DCL exist we

are talking about the rule 5aR . If inputs C and type exist we are talking

about the rule 5bR . If all three inputs exist we are talking about the rule

5cR . Rule 5aR is used to add a production in the form

n 21 C | ... |C | C:: C  into grammar G . Rule 5cR is an extension of rule

5aR and is used to add productions in the form

type|C | ... |C | C:: C n 21 into grammar G . A precondition for the

successful transformation is that the children are disjointed; otherwise the

resulting grammar is not a context free grammar. Classes from DCL that

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 330

are also leafs of the class diagram, are transformed, with the use of rule

3R to the set of terminals T . Rule 5bR is used to add productions in the

form type:: C  into grammar G . The rule enables grammar

generalization, as described by class C , and the associated part of

ontology. Each rule is used according to the bottom up principle; first on

the lower of the class hierarchy levels, followed by the higher classes. An

application example for the rules 5aR and 5cR

can be seen in chapter

3.2, step 2.

6.     C :: SP LAC PL)C(| PL ifPL) (C,R6 

(PL - parent list, S - start symbol, LAC - list of anonymous classes).

Rule 6R is used to define grammar start symbols. Class C is a possible

grammar start symbol in the case that its parent list PL is empty or if all

classes from PL are anonymous classes. Grammars can have more

than one start symbol. An application example for the rule 6R can be

seen in chapter 3.2, step 5.

The rules that affect and alter the primary data structure:

7.    ? , *,O ,(NC) typeTrans:: CP NC) O, (C,R7  (O -

operator). Rule 7R is used to formalize the number of repetitions of

some classes. The rule accepts the following inputs: class C , operator

O , which defines the number of repetitions of some class and the new

class NC . The rule is carried out in three steps. In the first step, the

children of class C are assigned to class NC (Child(C) Child(NC) ).

In the second step, the children of class C are removed

(ds(C)RemoveChil). In the third step the production is formalized. An

application example for rule 7R can be seen in chapter 3.2, step 6.

8.  RLR8 T Nc T :: CP NC) ,T ,T (C,R
L

 (LT - left terminal, DT -

right terminal). Rule 8R is used to enrich the syntax. Either the left or the

right terminal can be omitted. The rule is carried out in three steps. In the

first step, the children of class C are assigned to the class NC

(Child(C) Child(NC) ). In the second step, the children of class C

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 331

are removed (ds(C)RemoveChil). In the third step, the production is

formalized. An application example for rule 8R can be seen in chapter

3.2, step 7.

9.  2M1M219some C T NC::CP NC),T,C,(CR  (MT - middle

terminal). Rule some9R is used to formalize productions which describe

restrictions (some). The rule accepts the following inputs: class 1C to

which the restriction refers, class 2C which determines the possible

values of class 1C , the middle terminal MT and the new class NC .

The rule is carried out in three steps. In the first step, the children of class

1C are assigned to class NC (Child(C) Child(NC) ). In the second

step the children of class 1C are removed ()ds(CRemoveChil 1). In the

third step the production is formalized.

10.   LofCs;...CC C ,...CC C:: CPLofCs) C, (R n21n 2 110 

 TCL(LofCs)C if ii  (LofCs - list of classes)

The rule 10R accepts the following inputs: class C and a list of classes

LofCs . Rule 10R is used to add a production in the form

n 21 C ... C C:: C  into the grammar G . Classes from LofCs that are

also leafs of the class diagram, are transformed, with the use of rule 3R

to the set of terminals T . The rule is used on the first level. The class

Thing is ignored in the transformation. An application example for rule

10R can be seen in chapter 3.2, step 4.

This chapter lists some of the rules necessary for the transformation of an
onotology into a DSL grammar.

4.2. Ontology to DSL transformation: Home robot example

The prerequisite of the Ontology to DSL transformation (Ontology2DSL) is a
proper understanding of the target ontology. The language designer must
understand what the ontology describes and why it was designed. Moreover,
the language designer needs to know what the DSL requirements are, and
what the purpose of the DSL is. In most cases, the DSL requirements and the
ontology do not overlap in all concepts. A single ontology, for instance the

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 332

HRO, can be used to develop many different DSLs. We continue with the
examination of the DSL used for the home robot. The robot is tasked with
performing various chores on different locations in the household.

The transformation requires a list of ontology classes and a collection of
individually disjoint classes. All the required data was obtained from the OWL
document. During the transformation, we also relied on the class hierarchy
presented in Fig. 4.

Classes. Commodity, Food&Drink, Juice, Sweets, Beer,
Appliance, TV, VideoCamera, HauseholdEquipment, Door,

Window, Task, Close, Bring, Check, SwitchOn, Robot,

Location, BedRoom, LivingRoom, Kitchen.

(Class Thing and other classes from Fig. 4, which are not mentioned in the
above list, are ignored in the transformation.)
Disjoint classes.
– Food&Drink, Appliance and HauseholdEquipment

– Juice, Sweets and Beer

– TV and VideoCamera

– Door and Window

– Close, Check, Bring and SwitchOn

– Robot, Commodity, Location and Task

– BedRoom, LivingRoom and Kitchen

Step 1. In the first step, all classes are converted into nonterminals.
R1(Robot)

N = {Robot}

Rule 1R in this step is used on all the classes and results in the following set

of nonterminals N .
N = {Commodity, Food&Drink, Juice, Sweets, Beer,

 Appliance, TV, VideoCamera, HauseholdEquipment,

 Door, Window, Task, Close, Bring, Check, SwitchOn,

 Robot, Location, BedRoom, LivingRoom, Kitchen}

Step 2. The transformation is continued on the lowest, third, level. It is

performed with the rules 3R , 5aR , and 5cR .

R5c(Food&Drink, {Juice, Sweets, Beer}, string)

R3(Juice)

R3(Sweets)

R3(Beer)

R5a(Appliance {TV, VideoCamera})

R3(TV)

R3(VideoCamera)

R5a(HauseholdEquipment {Door, Window})

R3(Door)

R3(Window)

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 333

T = {»juice«, »sweets«, »beer«, »TV«, »videoCamera«,

 »door«, »window«}

P = { Food&Drink ::= Juice | Sweets | Beer | string

Juice ::= »juice«

Sweets ::= »sweets«

Beer ::= »beer«

Appliance ::= TV | VideoCamera

TV ::= »TV«

VideoCamera ::= »videoCamera«

HauseholdEquipment ::= Door | Window

Door ::= »door«

Window ::= »window«}

Step 3. The transformation is continued on the second level. The rules used

are 3R and 5aR .

R5a(Commodity, {Food&Drink, Appliance,

 HouseholdEquipment})

R3(Food&Drink)

R3(Appliance)

R3(HouseholdEquipment)

R5a(Location, {BedRoom, LivingRoom, Kitchen})

R3(BedRoom)

R3(LivingRoom)

R3(Kitchen)

R5a(Task, {Close, Check, Bring, SwitchOn})

R3(Close)

R3(Check)

R3(Bring)

R3(SwitchOn)

T = {…, »food&Drink«, »appliance«, »householdEquipment«,

 »bedRoom«, »livingRoom«, »kitchen«, »close«,

 »check«, »bring«, »switchOn«}

P = { …, Commodity ::= Food&Drink | Appliance |

 HouseholdEquipment

Food&Drink ::= »food&Drink«

Appliance ::= »appliance«

HouseholdEquipment ::= »householdEquipment«

Location ::= BedRoom | LivingRoom | Kitchen

BedRoom ::= »bedRoom«

LivingRoom ::= »livingRoom«

Kitchen ::= »kitchen«

Task ::= Close | Bring | Check | SwitchOn

Close ::= »close«

Check ::= »check«

Bring ::= »bring«

SwitchOn ::= »switchOn«}

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 334

Step 4. The first level is transformed with the 10R rule.

R10(Robot, {Task, Commodity, Location})

T = {…, »Task«, »Commodity«, »Location«}

P = {…, Robot ::= Task Commodity Location}

Step 5. In the next step, all possible grammar start symbols are extracted.
R6(Commodity, {})

R6(Task, {})

R6(Robot, {})

R6(Location, {})

R5a(S, {Commodity, Task, Robot, Location})

S = {Commodity, Task, Robot, Location }

P = {…, S ::= Commodity | Task | Robot | Location}

Step 6. In the next step, rule 7R is used. Strikethrough production is

eliminated from the set of production.
R7(Commodity, +, Commodities)

P = { …, Commodity :: = Food&Drink | Appliance |

 HauseholdEquipment

 Commodity::= Commodities
+

 Commodities ::= Food&Drink | Appliance |

 HouseholdEquipment}

Step 7. In the last step the syntax is enriched. Strikethrough productions are
eliminated from the set of production.
R8(Location, {»from«| »in«}, {}, LocationE)

LocationE:: = {»from«| »in«} Location

P = { …, S ::= Robot | Commodity | Location | Task

Robot ::= Task Commodity Location

S ::= Robot | Commodity | LocationE | Task

Robot ::= Task Commodity LocationE}

Obtained grammar:
P = { Robot ::= Task Commodity LocationE

Task ::= Close | Check | Bring | SwitchOn

Close ::= »close«

Check ::= »check«

Bring ::= »bring«

SwitchOn ::= »switchOn«

Commodity::= Commodities
+

Commodities ::= Food&Drink | Appliance |

 HouseholdEquipment

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 335

Food&Drink ::= Juice | Sweets | Beer | string

Food&Drink ::= »food&Drink«

Juice ::= »juice«

Sweets ::= »sweets«

Beer ::= »beer«

Appliance ::= TV | VideoCamera

Appliance ::= »appliance«

TV ::= »TV«

VideoCamera ::= »videoCamera«

HouseholdEquipment ::= Door| Window

HouseholdEquipment ::= »householdEquipment«

Door ::= »door«

Window ::= »window«

Location ::= BedRoom | LivingRoom | Kitchen

BedRoom ::= »bedRoom«

LivingRoom ::= »livingRoom«

Kitchen ::= »kitchen«

LocationE :: = {»from«| »in«} Location}

Program examples:

close door in bedRoom

check window in kitchen

switchOn TV in livingRoom

bring beer chips from kitchen

5. Ontology2DSL

The Ontology2DSL framework enables automated grammar construction as
well as one or more programs from a target ontology. The framework accepts
an OWL document as an input, parses it and uses the information retrieved
to create and fill internal data structures. Then a transformation pattern,
annotated with the proper rule execution order, is applied over the data
structures and the corresponding grammar and programs are constructed.
The resulting grammar, acquired fully automatically, is then inspected by a
DSL engineer in order to verify it and find any irregularities. If any
irregularities are found, they are tasked with their resolution with regard to the
source and type. The engineer can either correct the constructed grammar,
programs or the transformation pattern (i.e. change the order in which the
rules are applied or construct new rules and include them in the pattern). The
framework then rebuilds the grammar and programs as required. The rebuild
process can utilize a new transformation pattern on an old ontology, an old
pattern on a new ontology, or a new pattern on a new ontology. The process
is repeated until the DSL engineer can no longer find any irregularities. The
framework also has the option of constructing in sequential steps instead of
the fully automated method. In that case, the engineer can execute each rule

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 336

individually and can, at any time, return to a previous step if the result proves
to be unsatisfactory. This method allows for complete control over the
grammar and the resulting program’s construction process. The final (correct)
grammar can later be used by the DSL engineer for the development of DSL
tools. The latter are developed with the use of language development tools,
such as LISA [29] or VisualLISA [30]. The development of DSL tools from an
ontology is a process demonstrated in the workflow of Fig. 5.

Fig. 5. Ontology2DSL workflow

5.1. Architecture of the framework

The architecture of the Ontology2DSL framework, shown in Fig. 6 is
comprised of the following:

– OWL parser. The parser is tasked with the parsing of OWL documents

and the filling of the data structure with the retrieved data. The data
structure is composed of the following individual data structure types: a
class tree, an object properties tree, a datatype properties tree, a list of
anonymous classes, a list of disjoint classes, a list of instances and a list of
ID's of all the ontology building blocks in the aforementioned lists. Part of
the data structure for the HRO is presented in Fig. 7. The building of
hierarchy objects (trees) and lists is done with a sequential scan of the
OWL document. Each retrieved element is added to an appropriate list and
is assigned all the necessary information. A check is also performed to
determine if the new element possesses any new information that should
be assigned to other elements. In instances where the new element has
some information that is important for the elements that have not yet been
added to any of the trees or lists, that information is cached until the
required elements are not added to the data structure.

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 337

– Rule reader. The reader is tasked with the sequential read operations on
the rules list. The reader forwards each rule to the rule execution and
transaction logger components.

– Rule execution component (REC) is used for the execution of individual
rules. The necessary data for the execution is retrieved automatically by
REC from the data structure. After a rule is executed, REC refreshes the
data structure if the rule execution result requires it. Also, the set of
grammar elements are refreshed and parts of the code are written out. The
element set of the grammar in the final result becomes the final grammar
and the code parts become the programs that represent the final output of
the Ontology2DSL framework.

– Transaction logger. After the execution of every rule, the system’s
current state is logged by the transaction logger. The logger stores the
entire content of the data structure, the last executed rule, the output of the
rule execution component and the current grammar and program parts.

Fig. 6. Architecture of the framework

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 338

Fig. 7. An excerpt of the data structure for HRO

6. Conclusion and future work

In this paper, we focused on the presentation of a new design methodology
that enables the development of a language grammar based on the OBDA.
The limitations of the CDA have been examined and a replacement in the
form of an OBDA has been proposed. Both analyses have been presented
and compared for similarities and differences. Grammar development, based
on the OBDA, and the Ontology2DSL framework were also briefly presented.

The results of the comparison between both analyses show that the OBDA
is comparable to the CDA and also provides some additional information that
can be used to specify language behavior. As such, it is also suitable as an
alternative to CDA for grammar development. The framework Ontology2DSL
is still under development. The current version is composed of all of the basic
components: an OWL parser, a rule reader, REC and a transaction logger. As

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 339

opposed to other components that are fully developed, REC is not fully
developed, as it does not yet construct code fragments. The framework in the
current development phase can only be used to construct grammar.
Additionally, in the current version, a DSL engineer cannot add custom rules
and create custom transformation patterns. In the future, we intend to fully
develop the Ontology2DSL framework. We will also focus on validating the
developed grammar and the use of previously unused information (i.e. for
semantics development) that was acquired with an OBDA. The results of our
research work will also include the transformation of the developed DSL to a
form that is compatible with compiler generators, such as LISA [29] or
VisualLISA [30]. Our future work also encompasses empirical studies to
evaluate the success of our methodology and to compare it with the existing
methodologies. One of our future activities, to complete the methodology
Ontology2DSL, will be an evaluation of DSLs. As shown in study [20], this
activity is often underestimated by language developers. There is a plan to
support this activity with a tool based on a questionnaire similar to [31] which
will further improve the language.

References

1. Mernik, M., Heering, J., Sloane, A. M.: When and how to develop domain-specific
languages. ACM Computing Surveys, Vol. 37, No. 4, 316-344. (2005)

2. Kosar, T., Oliveira, N., Mernik, M., Veranda Pereira, M. J., Črepinšek, M., da
Cruz, D., Henriques, P. R.: Comparing General-Purpose and Domain-Specific
Languages: An Empirical Study. Computer Science and Information Systems,
Vol. 7, No. 2, 247-264. (2010)

3. Thibault, S., Marlet, R., Consel, C.: Domain-Specific Languages: From Design to
Omplementation Application to Video Device Drivers Generation. Conception,
Implementation and Application. IEEE Transactions on Software Engineering,
Vol. 25, No. 3, 363-377. (1999)

4. Thibault, S.: Domain-Specific Languages: Conception, Implementation and
Application. Phd thesis. Université de Rennes, France. (1998)

5. Kosar T., Martínez López P.E., Barrientos P.A., Mernik M.: A preliminary study
on various implementation approaches of domain-specific language. Information
and Software Technology, Vol. 50, No. 5, 390-405. (2008)

6. Mernik, M., Hrnčič, D., Bryant, B. R., Javed, F.: Applications of grammatical
inference in software engineering : domain specific language development. In:
Martin-Vide, C. (ed.): Scientific applications of language methods, Vol. 2.
Imperial College Press, London, 421-457. (2011)

7. Taylor, R. N., Tracz, W., Coglianese, L.: Software development using domain-
specific software architectures. ACM SIGSOFT Software Engineering Notes, Vol.
20, No. 5, 27-38. (1995)

8. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented
Domain Analysis (FODA). Technical report. (1990)

9. Simons, M., Anthony, J.: Weaving the Model Web: A Multi-Modeling Approach to
Concepts and Features in Domain Engineering. In Proceedings of the 5th
International Conference on Software Reuse. IEEE Computer Society, Victoria,
BC, Canada, 94-102. (1998)

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 340

10. Lacy, L.: Representing Information Using the Web Ontology Language. Trafford
Publishing. (2005)

11. Hebeler, J., Fisher, M., Blace, R., Perez-Lopez, A.: A Semantic Web
Programming. Wiley Publishing. (2009)

12. Studer, R., Benjamins, R., Fensel, D.: Knowledge engineering: Principles and
methods. Data & Knowledge engineering, Vol. 25, No. 1-2, 161-198. (1998)

13. Tairas, R., Mernik, M., Gray, J.: Using Ontologies in the Domain Analysis of
Domain-Specific Languages. In: Chaudron, M. R. V (ed.): Models in Software
Engineering. Lecture Notes in Computer Science, Vol. 5421. Springer-Verlag,
Berlin Heidelberg New York, 332-342. (2009)

14. Miksa. K., Sabina, P., Kasztelnik, M.: Combining Ontologies with Domain
Specific Languages: A Case Study from Network Configuration Software. In:
Assmann, U., Bartho, A., Wende, C. (eds.): Reasoning Web. Semantics
technologies for software engineering, Vol. 6325. Springer-Verlag, Berlin
Heidelberg New York, 99-118. (2010)

15. Guarino, N.: Semantic Matching: Formal ontological distinctions for information
organization, extraction, and integration. In: Pazienza, M. T.: Information
Extraction: A Multidisciplinary Approach to an Emerging Information Technology.
Lecture Notes in Computer Science, Vol. 1299. Springer-Verlag, Berlin
Heidelberg New York, 139-170. (1997)

16. Ontology-Based Evaluation and design of domain-specific visual modeling
languages, http://www.loa-cnr.it/Guizzardi/ISD2005.pdf.

17. Walter, T., Parreiras, F. S., Staab, S.: OntoDSL: An Ontology-Based Framework
for Domain-Specific Languages. In: Schürr, A., Selic, B. (eds.): Model Driven
Engineering Languages and Systems. Lecture Notes in Computer Science, Vol.
5795. Springer-Verlag, Berlin Heidelberg New York, 408-422. (2009)

18. Bräuer, M., Lochmann, H.: An Ontology for Software Models and Its Practical
Implications for Semantic Web Reasoning. In: Beckhofer, S., Hauswirth, M.,
Hoffmann, J., Koubarakis, M. (eds.): The Semantic Web: Research and
Applications. Lecture Notes in Computer Science, Vol. 5021. Springer-Verlag,
Berlin Heidelberg New York, 34-48. (2008)

19. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools and
Applications. ACM Press/Addison-Wesley Publishing Co. (2000)

20. Gabriel, P., Goulão, M., Amaral, V.: Do Software Languages Engineers Evaluate
their Languages? In Proceedings of the XIII Congreso Iberoamericano en
"Software Engineering" (CIbSE'2010). Cuenca, Ecuador, 149-162. (2010)

21. Stabb, S., Studer, R., editors. Handbook on Ontologies. Springer Verlag Berlin
Heidelberg. (2009)

22. Corcho, Ó., Gómez-Pérez, A.: A Roadmap to Ontology Specification Languages.
In: Dieng, R., Corby, O.: Knowledge Engineering and Knowledge Management.
Lecture Notes in Computer Science, Vol. 1937. Springer-Verlag, Berlin
Heidelberg New York, 80-96. (2000)

23. Milanović, M., Gašević, D., Giurca, A., Wagner, G., Lukichev, S., Devedžić, V.:
Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Languages. Computer Science and Information Systems, Vol. 6, No. 2, 47-85.
(2009)

24. Cho, K., Kawamura, T.: Blogalpha: Home automation robot using ontology in
home environment. In Proceedings of the 25

th
 International Multi-Conference

Artificial Intelligence and Applications. ACTA Press Anaheim, CA, USA, 197-203.
(2007)

http://www.springerlink.com/content/rv201xh6tp19/?p=b794268ac86e4039bf4a5da5f07367fd&pi=0
http://www.springerlink.com/content/rv201xh6tp19/?p=b794268ac86e4039bf4a5da5f07367fd&pi=0
http://www.springerlink.com/content/rv201xh6tp19/?p=b794268ac86e4039bf4a5da5f07367fd&pi=0
http://www.springerlink.com/content/t4343n5736k6/?p=e90a2dbc6a2443e9afcea50348de2164&pi=0
http://www.springerlink.com/content/t4343n5736k6/?p=e90a2dbc6a2443e9afcea50348de2164&pi=0
http://www.loa-cnr.it/Guizzardi/ISD2005.pdf
http://www.springerlink.com/content/rtt685366016/?p=59eddd8dbf7e4feeadc45f5102055bd5&pi=0
http://www.springerlink.com/content/rtt685366016/?p=59eddd8dbf7e4feeadc45f5102055bd5&pi=0
http://www.springerlink.com/content/rtt685366016/?p=59eddd8dbf7e4feeadc45f5102055bd5&pi=0
http://www.springerlink.com/content/r5p601w63k72/?p=e7eddc8a1e654605a99147f61fd90337&pi=0
http://www.springerlink.com/content/r5p601w63k72/?p=e7eddc8a1e654605a99147f61fd90337&pi=0
http://www.springerlink.com/content/r5p601w63k72/?p=e7eddc8a1e654605a99147f61fd90337&pi=0
http://www.uazuay.edu.ec/cibse/1_motivation.php
http://www.springerlink.com/content/6lu5q80bx8j7/?p=a53c2216113b4e3a87558a6efe3a1487&pi=0

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 341

25. Van Deursen, A., Klint, P.: Domain-specific Language Design Requires Feature
Descriptions. Journal of Computing and Information Technology, Vol. 10, No. 1,
1-17. (2002)

26. Welcome to Protégé. [Online]. Available: http://protege.stanford.edu/ (current
April 2011)

27. Jung, H., Park, S.: A Grammar-based Model for the Semantic Web. Computer
Science and Information Systems, Vol. 8, No. 1, 73-100. (2011)

28. Aho, A. V., Lam, M. S., Sethi, R., Ullman, J. D.: Compilers: Principles,
Techniques, and Tools. Addison Wesley, USA. (2007)

29. Mernik, M., Lenič, M., Avdičauševič, E., Žumer, V.: LISA: An Interactive
Environment for Programming Language Development. In: Horspool, R. N. (ed.):
Compiler Construction. Lecture Notes in Computer Science, Vol. 2304. Springer-
Verlag, Berlin Heidelberg New York, 1-4. (2002)

30. Oliveira, N., Veranda Pereira, M. J., Henriques, P. R., da Cruz, D., Cramer, B.:
VisualLISA: A Visual Environment to Develop Attribute Grammars. Computer
Science and Information Systems, Vol. 7, No. 2, 247-264. (2010)

31. Haugen, O., Mohagheghi, P.: A Multi-dimensional Framework for Characterizing
Domain Specific Languages. In Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling (DSM’07). Montréal, Canada. (2007)

Ines Čeh received the B.Sc. degree in computer science at the University of
Maribor, Slovenia in 2008. Her research interests include domain-specific
languages and ontologies. She is currently a Ph.D student, employed as a
researcher at the University of Maribor, Faculty of Electrical Engineering and
Computer Science.

Matej Črepinšek received the Ph.D. degree in computer science at the
University of Maribor, Slovenia in 2007. His research interests include
grammatical inference, evolutionary computations, object-oriented
programming, compilers, grammar-based systems and Android application
development. He is currently a teaching assistant at the University of
Maribor, Faculty of Electrical Engineering and Computer Science.

Tomaž Kosar received the Ph.D. degree in computer science at the
University of Maribor, Slovenia in 2007. His research is mainly concerned
with design and implementation of domain-specific languages. Other
research interest in computer science include also domain-specific modelling
languages, empirical software engineering, software security, generative
programming, compiler construction, object oriented programming, object-
oriented design, refactoring, and unit testing. He is currently a teaching
assistant at the University of Maribor, Faculty of Electrical Engineering and
Computer Science.

http://protege.stanford.edu/

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 342

Marjan Mernik received the M.Sc. and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998, respectively. He is currently
Professor of Computer Science at the University of Maribor. He is also
Visiting Professor of Computer and Information Sciences at the University of
Alabama at Birmingham, and at the University of Novi Sad, Faculty of
Technical Sciences. His research interests include programming languages,
compilers, domain-specific (modeling) languages, grammar-based systems,
grammatical inference, and evolutionary computations. He is a member of
the IEEE, ACM and EAPLS.

Received: December 31, 2010; Accepted: May 13, 2011.

