
DOI: 10.2298/CSIS101229018L

A DSL for PIM Specifications: Design and

Attribute Grammar based Implementation

Ivan Luković
1
, Maria João Varanda Pereira

2
, Nuno Oliveira

3
,

Daniela da Cruz
3
, and Pedro Rangel Henriques

3

1 University of Novi Sad, Faculty of Technical Sciences,
Trg D. Obradovića 6, 21000 Novi Sad, Serbia,

ivan@uns.ac.rs
2 Polytechnic Institute of Bragança, Escola Superior de Tecnologia e

Gestão, Campus de Santa Apolónia - Apartado 1134
5301-857 Bragança, Portugal

mjoao@ipb.pt
3 Universisty of Minho, Department of Computer Science,

Campus de Gualtar - 4710-057 Braga, Portugal
{nunooliveira, danieladacruz, prh}@di.uminho.pt

Abstract. IIS*Case is a model driven software tool that provides
information system modeling and prototype generation. It comprises
visual and repository based tools for creating various platform
independent model (PIM) specifications that are latter transformed into
the other, platform specific specifications, and finally to executable
programs. Apart from having PIMs stored as repository definitions, we
need to have their equivalent representation in the form of a domain
specific language. One of the main reasons for this is to allow for
checking the formal correctness of PIMs being created. In the paper, we
present such a meta-language, named IIS*CDesLang. IIS*CDesLang is
specified by an attribute grammar (AG), created under a visual
programming environment for AG specifications, named VisualLISA.

Keywords: information system modeling, model-driven approaches,
domain specific languages, domain specific modelling, attribute
grammars.

1. Introduction

In this paper we present a textual language aimed at modeling platform
independent model (PIM) specifications of an information system (IS). Our
research goals are to create such a language and couple it with Integrated
Information Systems CASE Tool (IIS*Case). IIS*Case is a model driven
software tool that provides IS modeling and prototype generation. At the level
of PIM specifications, IIS*Case provides conceptual modeling of database
schemas and business applications. Starting from such PIM models as a
source, a chain of model-to-model and model-to-code transformations is

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 380

performed in IIS*Case to obtain executable program code of software
applications and database scripts for a selected target platform. One of the
main motives for developing IIS*Case is in the following. For many years, the
most favorable conceptual data model is widely-used Entity-Relationship (ER)
data model. A typical scenario of a database schema design process provided
by majority of existing CASE tools is to create an ER database schema first
and then transform it into the relational database schema. Such a scenario
has many advantages, but also there are serious disadvantages. One of
them, presented in [11] is named "lack of semantic" problem. Actually, there
are many examples in which the same structure of ER database schema
should not be transformed into the same relational database schema
structure, due to the different semantics assigned to the ER structure. In other
words, the transformation process depends not only on the formal mapping
rules, but also on the problem domain semantics. We overcome these
disadvantages by creating an alternative approach and related techniques
that are mainly based on the usage of model driven software development
(MDSD) [3] and Domain Specific Language (DSL) [4, 10] paradigms. The
main idea was to provide the necessary PIM meta-level concepts to IS
designers, so that they can easily model semantics in an application domain.
After that, they may utilize a number of formal methods and complex
algorithms to produce database schema specifications and IS executable
code, without any expert knowledge.

In order to provide design of various PIM models by IIS*Case, we created a
number of modeling, meta-level concepts and formal rules that are used in the
design process. Besides, we also developed and embedded into IIS*Case
visual and repository based tools that apply such concepts and rules. They
assist designers in creating formally valid models and their storing as
repository definitions in a guided way.

Apart from having created PIM models stored as repository definitions,
there is a strong need to have their equivalent representation given in a form
of a textual language, for the following reasons. (i) Firstly, despite that we may
expect that average users prefer to use visually oriented tools for creating PIM
specifications, we should provide more experienced users with a textual
language and a tool for creating PIM specifications more efficiently. (ii)
Secondly, we need to have PIM meta-level concepts specified formally in a
platform independent way, i.e. to be fully independent of repository based
specifications that typically may include some implementation details. (iii) The
third, but not less important, by this we create a basis for the development of
various algorithms for checking the formal correctness of the models being
created, as well as for the implementation of some semantic analysis.
Therefore, we need a grammatical specification to define the structure and
semantics of our meta-level concepts and rules, i.e. we need an attribute
grammar (AG) specification. By such a grammar, we specify a DSL [4, 15]
that recognizes problem domain concepts and rules that are applied in the
conceptual IS design provided by IIS*Case. In the paper, we present a
specification of such meta-language, named IIS*CDesLang. IIS*CDesLang is

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 381

used to create PIM project specifications that may be latter transformed into
the other specifications, and finally to programs.

There are a number of meta-modeling approaches and tools suitable for
the purpose of creating IIS*CDesLang. To create IIS*CDesLang, a visual
programming environment (VPE) for AG specifications, named VisualLISA
[19, 21] is selected. In the paper, we focus on the following application PIM
concepts: project, application system, form type, component type, application,
call type, and basilar concepts as attribute and domain. We applied
VisualLISA Syntactic and Semantic Validators to check the correctness of the
specified grammar.

A benefit of introducing IIS*CDesLang is to enable the creation of a parser
aimed at checking the formal correctness of project models under
development. In this way, we may help designers in raising the quality of new
IS specifications. A possibility to build two translators, IIS*Case repository-to-
IIS*CDesLang specifications and IIS*CDesLang-to-IIS*Case repository
definitions, is another value added by this approach. The benefit of the first
one is to allow the correctness checking of PIM visual models without
explicitly writing IIS*CDesLang specifications; and the benefit of the second
one is a possibility of generating correct PIM repository specifications from
IIS*CDesLang textual specifications. Currently, we developed, using
VisualLISA, an AG specifications of IIS*CDesLang. Apart from having the AG
specification of IIS*CDesLang, we also need the appropriate checkers. They
are still under development. Therefore, we were not able so far to test the
efficiency of the concept as a whole. It remains to be one of our next research
tasks. The main goal of this paper is to present a part of such VisualLISA
specification and address main future research directions.

Apart from Introduction and Conclusion, the paper is organized in four
sections. In Section 2 we present a related work, while in Section 3 we give a
short presentation of IIS*Case. Selected IIS*CDesLang PIM concepts are
briefly described in Section 4. In Section 5 we present preliminaries about
VisualLISA programming environment and an AG specification of
IIS*CDesLang, created by VisualLISA.

2. Related Work

Domain Specific Languages are tailored to specific application domain and
offer to users more appropriate notations and abstractions. Usually DSLs are
more expressive and are easier to use than GPLs for the domain in question,
with gains in productivity and maintenance costs.

The design of a new DSL is usually made when it is needed to make
programming more accessible to end-users, to improve correctness of the
written programs, to improve the program developing time and to make
maintenance easier.

There are various meta-modeling approaches and supporting tools suitable
for the purpose of creating DSLs. One of them is the Meta-Object Facility

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 382

(MOF) [17] proposed by the OMG, where the meta-model is created by
means of UML class diagrams and Object Constraint Language (OCL). The
Generic Modeling Environment (GME) [23] is a configurable toolkit for
domain-specific modeling and program synthesis. In MetaEdit+ [18] models
are created through a graphical editor and a proprietary Report Definition
Language is used to create code from models. The Eclipse Modeling
framework (EMF) [5] is also a commonly used meta-modeling framework,
where meta-meta-model named Ecore is used to create meta-models, or to
import them from UML tools or textual notations like one presented in [6].

We may find a considerable number of references presenting the
applications of such approaches and tools in various problem domains, as it
is, for example, [8]. The same approaches can also be used for the design of
IIS*CDesLang, too.

In general, our current research goals are to apply two closely related
approaches to formally describe our IIS*Case environment. One of them is
based on MOF and the appropriate Domain Specific Modeling (DSM) tools
comprising specification language generators. The other one is applied in this
paper. It is based on creating textual DSLs by means of the appropriate
visually oriented tools with compiler generators. Although there is huge
number of references covering many applications of both approaches in
various problem domains, unfortunately, we still could not find references
communicating ideas how to formally specify a CASE / MDSD tool by means
of DSM and DSL approaches.

3. IIS*Case and Conceptual Modeling

IIS*Case, as a software tool assisting in IS design and generating executable
application prototypes, currently provides:

 Conceptual modeling of database schemas, transaction programs, and
business applications of an IS;

 Automated design of relational database subschemas in the 3rd normal
form (3NF);

 Automated integration of subschemas into a unified database schema in
the 3NF;

 Automated generation of SQL/DDL code for various database management
systems (DBMSs);

 Conceptual design of common user-interface (UI) models; and

 Automated generation of executable prototypes of business applications.
Apart from the tool, we also define a methodological approach to the

application of IIS*Case in the software development process [12, 14]. By this
approach, the software development process provided by IIS*Case is, in
general, evolutive and incremental. It enables an efficient and continuous
development of a software system, as well as an early delivery of software
prototypes that can be easily upgraded or amended according to the new or
changed users' requirements. In our approach we strictly differentiate

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 383

between the specification of a system and its implementation on a particular
platform. Therefore, modeling is performed at the high abstraction level,
because a designer creates an IS model without specifying any
implementation details. Besides, IIS*Case provides some model-to-model
transformations from PIM to Platform-Specific Models (PSM) and model-to-
code transformations from PSMs to the executable program code.

Detailed information about IIS*Case may be found in several authors'
references and we do not intend to repeat them here. A case study illustrating
main features of IIS*Case and the methodological aspects of its usage is
given in [12]. The methodological approach to the application of IIS*Case is
presented in more details in [14]. At the abstraction level of PIMs, IIS*Case
provides conceptual modeling of database schemas that include specifi-
cations of various database constraints, such as domain, not null, key and
unique constraints, as well as various kinds of inclusion dependencies. Such
a model is automatically transformed into a model of relational database
schema, which is still technology independent specification. It is an example
of model-to-model transformations provided by IIS*Case [13].

In [1] we present basic features of SQL Generator that are already im-
plemented into IIS*Case, and aspects of its application. We also present
methods for implementation of a selected database constraint, using
mechanisms provided by a relational DBMS. It is an example of model-to-
code transformations provided by IIS*Case.

At the abstraction level of PIMs, IIS*Case also provides conceptual
modeling of business applications that include specifications of: (i) UI, (ii)
structures of transaction programs aimed to execute over a database, and (iii)
basic application functionality that includes the following "standard" data
operations: read, insert, update, and delete. Also, a PIM model of business
applications is automatically transformed into the program code. In this way,
fully executable application prototypes are generated. Such a generator is
also an example of model-to-code transformations provided by IIS*Case [2].

4. PIM Concepts and IIS*CDesLang

IIS*CDesLang is a meta-language aimed at formal specification of all the
concepts embedded into IIS*Case repository definitions. In this paper, we
focus on the PIM concepts only. Hereby, we give a brief overview of the
following concepts covered by IIS*CDesLang: project, application system,
form type, component type, application, call type, as well as fundamental
concepts: attribute and domain. In this section we present the PIM concepts
only from the technical point of view. Additional and detailed information may
be found in several authors' references, as well as in [12, 14].

A work in IIS*Case is organized through projects. Everything that exists in
the IIS*Case repository is always stored in the context of a project. A designer
may create as many projects as he or she likes. One project is one IS
specification and has a structure represented by the project tree. Each project

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 384

has its (i) name, (ii) fundamental concepts or fundamentals for short, and (iii)
application systems. A designer may also define various types of application
systems – application types for short, and introduce a classification of
application systems by associating each application system to a selected
application type. At the level of a project there is a possibility to generate
various reports that present the current state of the IIS*Case repository.
IIS*Case provides various types of repository reports.

Application systems are organizational parts, i.e. segments of a project. We
suppose that each application system is designed by one, or possibly more
than one designer. Fundamental concepts are formally independent of any
application system. They are created at the level of a project and may be
used in various application systems latter on. Fundamental concepts are:
domains, attributes, inclusion dependencies and program units. In the paper,
we focus on domains, attributes, and functions as a category of program
units.

In the following text, we use a notion of domain with a meaning that is
common in the area of databases. It denotes a specification of allowed values
of some database attributes. We classify domains as (i) primitive and (ii) user
defined. Primitive domains exist "per se", like primitive data types in various
formal languages. We have a small set of primitive domains already defined,
but we allow a designer to create his or her own primitive domains, according
to the project needs. User defined domains are created by referencing
primitive or previously created user defined domains. Domains are referenced
latter from attribute specifications. A list of all project attributes created in
IIS*Case belongs to fundamentals. Attributes are used in various form type
specifications of an application system.

A concept of a function is used to specify any complex functionality that
may be used in other project specifications. Each function has its name as a
unique identifier, a description, a list of formal parameters and a return value
type. Besides, it encompasses a formal specification of function body that is
created by the Function Editor tool of IIS*Case.

4.1. Domains and Attributes

A specification of a primitive domain includes: name, description, default
value, and a "length required" item specifying if a numeric length: a) not to be,
b) may be or c) must be given. User defined domains are to be associated
with attributes. A user defined domain specification includes: a domain name,
description (like all other objects in IIS*Case repository), default value, domain
type, and check condition.

We distinguish the following domain types: (i) domains created by the
inheritance rule and (ii) complex domains that may be created by the: a) tuple
rule, b) choice rule or c) set rule. Inheritance rule means that a domain is
created by inheriting a specification of a primitive domain or a previously
defined user defined domain. It inherits all the rules of a superordinated
domain and may be "stronger" than the original one.

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 385

 A domain created by the tuple rule is called a tuple domain. It represents a
tuple (record) of values. For such a complex domain, we need to select some
attributes as items of a tuple domain. Therefore, we may have a recursive
usage of attributes and domains, because we need some already created
attributes to use in a tuple domain specification. A domain created by the
choice rule – choice domain is technically specified in the same way as tuple
domain. Choice domain is the same as choice type of XML Schema
Language. Each value of such a domain must correspond to exactly one
attribute which is an item in the choice domain. A set domain represents sets
(collections) of values over a selected domain. To create it, we only need to
reference an existing domain as a set member domain. Each value of this
domain will be a set of values, each of them from a set member domain.

Check condition, or the domain check expression is a regular expression
that further constrains possible values of a domain. We have a formal syntax
developed and the Expression Editor tool that assists in creating such
expressions. We also have a parser for checking syntax correctness.

Currently we do not have a possibility to define allowed operators over a
domain in IIS*Case repository. It is a matter of our future work.

Each attribute in an IIS*Case project is identified only by its name.
Therefore, we obey to the Universal Relation Scheme Assumption (URSA)
[11], well known in the relational data model for many years. The same
assumption is also applicable in many other data models. Apart from the
name and description, we specify if an attribute is included into database
schema, derived, or renamed.

Most of the project attributes are to be included into the future database
schema. However, we may have attributes that will present some calculated
values in reports or screen forms that are not included into database schema.
They derive their values on the basis of other attributes by some function,
representing a calculation. Therefore, we classify attributes in IIS*Case as a)
included or b) non-included in database schema. Also we introduce another
classification of attributes, by which we may have: a) elementary or non-
derived and b) derived attributes. If an attribute is specified as non-derived, it
obtains its values directly by the end users. Otherwise, values are dervied by
a function that may represent a calculation formula or any algorithm. Any
attribute specified as non-included in database schema must be declared as
derived one.

A derived attribute may reference an IIS*Case repository function as a
query function. Query function is used to calculate attribute values on
queries. Only a derived attribute may additionally reference three IIS*Case
repository functions specifying how to calculate the attribute values on the
following database operations: insert, update and delete.

In IIS*Case we have a notion of renamed attribute. A renamed attribute
references a previously defined attribute and has to be included in the
database schema. It has its origin in the referenced attribute, but with a
slightly different semantics. Renaming is a concept that is analogous to the
renaming that is applied in mapping Entity-Relationship (ER) database
schemas into relational data model. If a designer specifies that an attribute A1

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 386

is renamed from A, actually he or she introduces an inclusion dependency of

the form [A1]  [A] at the level of a universal relation scheme.
Each attribute specification also includes: a reference to a user defined

domain, default value and check condition. Check condition, or the attribute
check expression is a regular expression that further constrains possible
values of the attribute. It is defined and used in a similar way as it is for
domain check expressions. If the attribute check expression and domain
check expression are both defined, they will be connected by the logical AND.

Both user defined domain and attribute specifications also provide for
specifying a number of display properties of screen items that correspond to
the attributes and their domains. Such display properties are used by the
IIS*Case Application Generator aimed at generating executable application
prototypes. Display properties of an attribute may inherit display properties of
the associated domain or may override them. To keep closed to the main
goals of the paper, a detail technical description of display properties is
omitted here. An interested reader may find it in [2, 24].

4.2. Application Systems, Form Types and Applications

Apart from name, type and description, each application system may have
many child application systems. In this way, a designer may create application
system hierarchies in an IIS*Case project. An application system may
comprise various kinds of IIS*Case repository objects. For PIM specifications,
only two kinds of objects are important: a) form types and b) business
applications, or applications, for short.

A form type is the main modeling concept in IIS*Case. It generalizes
document types, i.e. screen forms or reports by means of users communicate
with an IS. It is a structure defined at the abstraction level of schema. Using
the form type concept, a designer specifies a set of screen or report forms of
transaction programs and, indirectly, specifies database schema attributes
and constraints. Each particular business document is an instance of a form
type.

Form types may be (i) owned, if they are created just in the application
system observed, or (ii) referenced, if they are "borrowed" from another
application system, regardless if it is referenced as a child application system.
If a form type is referenced it is a read-only object in the application system.

Business applications are structures of form types. Each application has its
name, description, and a reference to exactly one form type that is the entry
form type of the application. To exist, each application must contain at least
the entry form type. The execution of a generated application always starts
from the entry form type. Form types in an application are related by form type
calls. A form type call always relates two form types: a calling form type and a
called form type. By a form type call, a designer may formally specify how
values are passed between the forms during the call execution. There are
also other properties specifying details of a call execution. Business

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 387

Application Designer is a visually oriented tool for modeling business
applications in IIS*Case.

Each form type has the following properties: name, title, frequency of
usage, response time and usage type or usage for short. By the usage
property form types are classified as menus or programs. Menu form types
are used to generate just menus without any data items. Program form types
specify transaction programs with the UI. They have a complex structure and
may be designated as (i) considered or (ii) not considered in database
schema design. The first option is used for all form types aimed at updating
database, as well as for some report form types. Only the form types that are
"considered in database schema design" participate latter on in generating
database schema. The former option is used for report form types only.

Each program form type is a tree structure of component types. It must
have at least one component type. A component type has a name, reference
to the parent component type (always empty for the root component type
only), title, number of occurrences, and operations allowed. Number of
occurrences may be specified as (i) 0-N or (ii) 1-N. 0-N means that for each
instance of the parent component type, zero or more instances of the
subordinated component type are allowed. 1-N means that for each instance
of the parent component type, we require the existence of at least one
instance of the subordinated component type. By operations allowed a
designer may specify the following "standard" database operations over the
component types: read, insert, delete, and update instances of the component
type.

Each component type has a set of attributes included from IIS*Case
repository. An attribute may be included in a form type at most once.
Consequently, if a designer includes an attribute into a component type, it
cannot be included in any other component type of the same form type. Each
attribute included in a component type may be declared as: (i) mandatory or
optional, and (ii) modifiable, query only or display only. Also, a set of allowed
operations over an attribute in a component type is specified. It is a subset of
the set of operations {query, insert, nullify, update}. A designer may also
specify "List of Values" (LOV) functionality of a component type attribute by
referencing a LOV form type and specifying various LOV properties. More
information about LOV functionality and LOV properties may be found in [2,
24].

Each component type must have at least one key. A component type key
consists of at least one component type attribute. Each component type key
provides identification of each component instance, but only in the scope of its
superordinated component instance. Also, a component type may have
uniqueness constraints, each of them consisting of at least one component
type attribute. A uniqueness constraint provides an identification of each
component instance, but only if it has a non-null value. On the contrary to
keys, attributes in a uniqueness constraint may be optional. Finally, a
component type may have a check constraint defined. It is a logical
expression constraining values of each component type instance. Like domain
check expressions, they are specified and parsed by Expression Editor.

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 388

Both component type and form type attribute specifications provide for
specifying a vast number of display properties of generated screen forms,
windows, components, groups, tabs, context and overflow areas, and items
that correspond to the form type attributes. There is also the Layout Manager
tool that assists designers in specifying component type display properties,
and a tool UI*Modeler that is aimed at designing templates of various
common UI models. All of these display properties combined with a selected
common UI model are used by the IIS*Case Application Generator. More
information about display properties, Layout Manager and UI*Modeler may be
found in [2, 24].

Our intention is not to present here the formal syntax rules of
IIS*CDesLang in Backus-Naur (BNF) or an equivalent form, but just to
illustrate them by means of a fragment of IIS*CDesLang program. A BNF
specification of IIS*CDesLang is too complex and we believe that it would not
contribute so much while communicate our main idea. However, apart from
the selection of our references given here [1, 2, 11, 12, 13, 14, 24] there are
many other references covering not only PIM concepts of IIS*Case, but also
all the existing concepts of this environment, in detail. In some of them, we
presented the IIS*Case concepts in a quite formal way, by means of the first
order logic formulas, while in the others we presented our repository based
and visually oriented tools for creating formal specifications in IIS*Case. All of
such references are accessible upon request.

In the following example, we illustrate a form type created in an IIS*Case
project named FacultyIS, and the corresponding IIS*CDesLang program.
Figure 1 presents a form type defined in the child application system Student
Service of a parent application system Faculty Organization. It refers to
information about student's grades (STG). It has two component types:
STUDENT representing instances of students, and GRADES, representing
instances of grades for each student.

APPLICATION SYSTEM PARENT APPLICATION

SYSTEM

Student Service Faculty Organization

Fig. 1. A form type in the application system Student Service

STUDENT

GRADES

StudentId, StudentName, Year

CourseShortName, Date, Grade

STG - STUDENT GRADES

r

r, i, u, d

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 389

By the form type STG, we allow having students with zero or more grades.
Component type attributes are presented in italic letters. StudentId is the key
of the component type STUDENT, while CourseShortName is the key of
GRADES. By this, each grade is uniquely identified by CourseShortName
within the scope of a given student. Allowed database operation for
STUDENT is only read (shown in a small rectangle on the top of the rectangle
representing the component type), while the allowed database operations for
GRADES are read, insert, update and delete.

Figure 2 presents a fragment of IIS*CDesLang program that corresponds to
the form type specification from Figure 1. Despite that it is just a fragment we
present the program in a way to cover the specification as a whole. Just
repeating segments of the specification, as well as a number of display and
LOV properties are omitted. To better explain various segments of the
program, we have included in-line comments tagged with the symbol //. In the
following text, we give a textual explanation of the program from Figure 2.

Firstly, the project FacultyIS with its two application systems is specified.
The first one is a specification of the Faculty Organization application system
and then a specification of its child application system Student Service. After
specifying the application system properties Description and Type, a list of
form type specifications included in Student Service is given. In Figure 2 it is
presented a specification of the form type STG – Student Grades only. Each
form type specification includes properties Title, UsageType that may be
program or menu, UsageFrequency and ResponseTime, and a list of
component type specifications. A parent component type STUDENT and its
child component type GRADES are specified in the form type STG – Student
Grades.

The first, Title and Allowed Operations properties are specified for a
component type. By this, read is the only allowed database operation for the
component type STUDENT. After that, a list of display and other UI properties
is specified. When generates UI of a transaction program of the form type
STG – Student Grades, the component type STUDENT is to be positioned in
a new window (Position property) and presented in a field layout style
(DataLayout property). A window is to be centred to its parent window
(Window Position property). Search functionality for student records is allowed
(Search Functionality property), while multiple deletions (Massive Delete
Functionality property) and retaining last inserted record in the screen form
(Retain Last Inserted Record property) functionalities for student records are
disabled. After the specifications of display and UI properties, it follows a list
of specifications of component type attributes.

For each component type attribute we specify its name (Name property),
title (CTA_Title property), if it is mandatory or optional for entering values on
the screen form (CTA_Mandatory property), behavior (CTA_Behavior
property) and allowed operations on the screen form (CTA_AllowedOpera-
tions property). A set of display and LOV properties (preceded by
CTA_DisplayType and CTA_LOV_FormType properties) may also be given.

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 390

Project: Faculty IS

 Application System: Faculty Organization

 Description: "A unit of a Faculty IS"

 Type: ProjectSubsystem

 ... // Specification of the appl. system continues...

 ...

 Application System: Student Service

is-child-of <<Faculty Organization>>

 Description: "A unit of Faculty Organization subsys."

 Type: ProjectSubsystem

 ...

 ... // A list of form types is specified here

 ...

 // A specification of the form type STG begins

 FormType: "STG - Student Grades"

 Title: "Catalogue of student grades"

 UsageType: Program Considered-in-db-design: Yes

 UsageFrequency: 1 Unit: seconds

 ResponseTime: 1 Unit: seconds

 // A specification of the component type begins

 ComponentType: STUDENT

 Title: "Student Records"

 Allowed Operations: read

 Position: newWindow

 DataLayout: FieldLayout

 Window Position: Center

 Search Functionality: Yes

 Massive Delete Functionality: No

 Retain Last Inserted Record: No

 Component Type Attributes:

 Name: StudentID

 CTA_Title: "Student Id."

 CTA_Mandatory: Yes

 CTA_Behavior: queryOnly

 CTA_AllowedOperations: query

 CTA_DisplayType: textbox Height: 20 ...

 // More display properties are omitted ...

 CTA_LOV_FormType: <<STD - Student>> ...

 // More LOV properties are omitted ...

 Name: StudentName

 ...

 Name: Year

 ...

 Component Type KEY: StudentID

 // A specification of the component type ends

 // A specification of the component type begins

 ComponentType: GRADES is-child-of <<Student>>

 NoOfOccurrences: (0:N)

 Allowed Operations: read, insert, update, delete

 Position: sameWindow

 Layout Relative Position: Bottom-to-parent

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 391

 DataLayout: TableLayout

 Window Position: Center

 Search Functionality: Yes

 Massive Delete Functionality: No

 Retain Last Inserted Record: Yes

 Component Type Attributes:

 Name: CourseShortName

 CTA_Title: "Course Short Name"

 CTA_Mandatory: Yes

 CTA_Behavior: modifiable

 CTA_AllowedOperations: query, insert

 CTA_DisplayType: textbox Height: 20 ...

 CTA_LOV_FormType: <<CRS - Courses>> ...

 Name: Date

 ...

 Name: Grade

 ...

 Component Type KEY: CourseShortName

 // A specification of the component type ends

 // A specification of the form type STG ends

 ...

 ... // Specification of form types continues...

 ... // Specification of the project continues...

 ...

Fig. 2. A fragment of IIS*CDesLang program that correspond to the form type in Fig. 1

After the list of component type attributes, the list of component type
constraints is given. It may include the specifications of key, uniqueness and
check constraints. In the example shown in Figure 2, only component type
keys are specified for STUDENT and GRADES by the property Component
Type KEY.

5. The Attribute Grammar Specification of IIS*CDesLang

In this section, an AG specification of IIS*CDesLang, created by VisualLISA
will be described. The IIS*Case concepts, introduced along the previous
section, will now be mapped into IIS*CDesLang symbols establishing a
correspondence between domain concepts and non-terminal or terminal
grammar symbols in the systematic way described in [9].

To provide an easier following of the rest of the paper, we firstly introduce a
brief overview of the notion of AG [7]. An AG is a fvie-tuple AG = <CFG, A, R,
CC, TR> where: CFG is a Context-free Grammar, also given as a four-tuple
CFG = <T, N, S, P>; A is the set of attributes for all symbols in N or T; R is the
set of all the attribute evaluation rules associated with each production p in P;
CC is the set of contextual conditions (or predicates constraining the attribute
values) associated with each production p in P; and TR is the set of all
translation rules (that output attribute values) associated with each production

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 392

p in P. Notice that attributes a in A(t), associated with terminal symbols, are
evaluated outside the grammar rules. Their values are called "intrinsic" and
are provided by the lexical analyzer. However attributes associated with an
non-terminal symbol X (denoted by A(X) can be: synthesized (AS(X)), if their
value is evaluated when X appears in the left-hand side of a grammar rule; or
can be inherited (AI(X)), if their value is evaluated when X appears in the
right-hand side of a grammar rule, using the values of parent or sibling

symbols. So we can state that for each X in N, A(X) = AI(X)  AS(X).
Although the same term "attribute" is used in this paper as a well known

concept in two different contexts: (i) in Section 4, in the domain of databases
and information systems and (ii) in Section 5, as a concept of AGs, it is
important to notice that it is generally speaking the same concept. It is used in
the sequel (associated with symbols) in the context of grammars, in the same
way as it is in the context of object-oriented models/programs, or databases;
in all of these contexts, the notion of attribute denotes a characteristic that

gives semantic to the thing we are formally describing  a grammar symbol, a
class, or even a relation scheme/entity type.

As it can be inferred from AG definition above, to write a complete attribute
grammar for a real size programming language is a systematic and disciplined
work. However it is time consuming and repetitive task.

Although not a complex task, in a case of real size grammar it tends to be
time consuming process requiring a careful work. This inconvenience
discourages language designers to use AGs. Such an attitude prevents them
of resorting to systematic ways to implement the languages and their
supporting tools [22].

To overcome this drawback, for modeling the new DSL we use a Visual
Language (VL) and its respective VPE called VisualLISA, as it is proposed in
[21], and conceived in [19]. The idea of introducing VL is not only about
having a nice visual depiction that will be translated into a target notation latter
on, but also having a possibility of checking syntactic and semantic
consistency.

VisualLISA environment offers a visually oriented and non-errorprone way
for AG modeling and an easy translation of AG models into a target language.
Three main features of VisualLISA are: (i) syntax validation, (ii) semantics
verification and (iii) code generation. The syntax validation restricts some
spatial combinations among the icons of the language. In order to avoid
syntactic mistakes, the model edition is syntax-directed. The semantics
verification copes with the static and dynamic semantics of the AG meta-
language. Finally, the code generation produces code from the drawings
sketched up. The target code would be LISA specification language (LISAsl),
the meta-language for AG description under LISA generator [19]. LISAsl
specification is passed to the LISA system [16, 20] in a straightforward step.

In this section, we discuss how VisualLISA is used to create IIS*CDesLang.
We only present a small set of productions and semantic calculations, to show
how we use the visual editor to model the language. Before that we present a
short description of VisualLISA look and feel, and main usage.

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 393

Figures 3-6 show the editor look and feel; it exhibits its main screen with
four sub-windows. To specify an AG a user starts by declaring the productions
in rootView – sub-window presented in Figure 3, and rigging them up by
dragging the symbols from the dock to the editing area in prodsView – sub-
window presented in Figure 4, as commonly done in VPEs. The composition
of the symbols is almost automatic, since the editing is syntax-directed. When
the production is specified, and the attributes are attached to the symbols, the
next step is to define the attribute evaluation rules. Once again, the user
drags the symbols from the dock, in rulesView – sub-window presented in
Figure 5, to the editing area. To draw the computations links should connect
some of the (input) attributes to an (output) attribute using functions.
Functions can be pre-defined, but sometimes it is necessary to resort to user-
defined functions that should be described in defsView – sub-window
presented in Figure 6. In this sub-window it is also possible to import
packages, define new data-types or define global lexemes.

Fig. 3. VisualLISA subwindow for declaring productions

In this example, presenting the development of the IIS*CDesLang formal
specification with VisualLISA, we will show how the following condition is
formalized and verified using the visual editor: “The application types
associated to application systems should be previously defined”.

For a thorough understanding of the upcoming example, here follows a
brief overview of the visual symbols semantics. The cloud-shaped symbol is
the left-hand side (LHS) of a production; the squares and ellipses are the
terminals and the non-terminals at the right-hand side (RHS) of a production,
respectively. The triangles represent the attributes: inherited attributes are
inverted triangles, while the other triangles are synthesized attributes. The
explosion-shaped symbol represents a function to compute the attributes
value. Concerning the lines and the arrows: the simple lines represent the
connection between the LHS and the RHS symbols; the dashed lines
represent the connections between the symbols and the synthesized and the
inherited attributes; the full arrow means the copy of a value from an attribute
to another; the dashed arrow with a number over it represents an ordered

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 394

argument of a function and, finally, the full arrow from an explosion-shaped
symbol stands for the output of the function.

Fig. 4. VisualLISA subwindow for selecting symbols

Fig. 5. VisualLISA editing area subwindow

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 395

Fig. 6. VisualLISA subwindow for creating user defined functions, importing packages,
defining new data-types and global lexemes

Figure 7 shows the first production of IIS*CDesLang – the one having the
grammar axiom as the tree root. The root Project (see Figure 7.a) derives in
three other non-terminal symbols (ApplicationTypes, ApplicationSystems, and
Fundamentals) and two terminals. Apart from that structural description, the
production shown in Figure 7.a states that the attribute verify of the root
symbol has the same value as the synthesized attribute verify (triangle) of the
non-terminal ApplicationSystems. In Figure 7.b it is presented a detail of the
same production, specifying that the inherited attribute setof_types (inverted-
triangle) of non-terminal ApplicationSystems, inherits the value of the attribute
setof_types of the non-terminal ApplicationTypes.

In Figure 8, we present how the attribute setof_types of the non-terminal
AplicationTypes, is computed. First notice that the production for this non-
terminal has two options: (i) a non-recursive one, where AplicationTypes
derives only one AplicationType (Figure 8.a) and (ii) a recursive case, where
the left-hand side non-terminal derives into an AplicationType and recursively
calls itself.

In this production, we are interested in collecting the application type
names that can be associated to the application systems, as explained
before. To describe this in VisualLISA we created a function that adds a string
to a list, and this function is used to collect the types that are synthesized from
each non-terminal ApplicationType. The explosion symbol denotes the
function, the dashed-arrows define the arguments of these functions, and the

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 396

straight arrows denote to which attribute the output of the function is assigned.
The numbers in the dashed-arrows indicate the order of the arguments in the
function, which are then used as „$i‟ in the function body, where $1 is the first
function argument and $2 the second; in general, $i represents the value of
the i-th argument.

(a)

(b)

Fig. 7. Production structure and computation rules for non-terminal Project. (a)
computation rule for attribute verify; (b) computation rule for inherited attribute
setof_types

Recall Figure 7.b, where an inherited attribute is assigned the value of the
attribute we just compute in Figure 8. The reason why we need to inherit this

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 397

attribute is in the fact that we must check whether the type of each application
system is in this list. Otherwise the language is not correct according to the
contextual condition that we try to verify in this example. Figure 9 presents the
recursive option of the production with the ApplicationSystems as LHS
symbol.

(a)

(b)

Fig. 8. Production structure and computation of attribute setof_types of the element
ApplicationTypes. (a) non-recursive case; (b) recursive case.

From each application system we synthesize its application type (attribute
app_type). Then, we use the inherited attribute setof_types and the value that
results from applying this computation to the rest of the application systems in
the language, to inject these three arguments in a function that tests if the
setof_types ($1 in the operation description of Figure 9) contains the value of
the synthesized attribute app_type ($2 in the operation description). As this
operation returns a boolean value, we check using the logic and operation, if
this value and the value of the attribute verify ($3 in the operation description)

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 398

are both true. The output of the function is also a Boolean and is assigned to
attribute verify of the LHS symbol.

The non-recursive option of this production is similar, but the computation
of the final attribute is only based on the list of types and the type that comes
from the ApplicationType symbol.

Fig. 9. Recursive case for production of the symbol ApplicationSystems and
computation of the attribute verify.

Although the drawings presented in Figures 7 to 9 have been formally
constructed, for those that read the visual grammar it is not necessary to
know if attributes are synthesized or inherited, neither the way evaluation
rules are built – it is enough to understand the way they are connected to
understand the new language semantics. The remaining parts of the
formalization follows the same structure as the one presented in this section.

To develop incrementally a DSL using VisualLISA is very easy. Just define
a new set of attributes (corresponding to the next semantic step) and the
respective evaluation rules and draw this new semantic specification over a
syntax tree (a production) previously created. VisualLISA environment will
automatically add this new component to the ones existing for the same
symbols. However VisualLISA does not include any operator for grammar
inheritance or symbol/production extension in LISA style.

With VisuaLISA we defined a model of IIS*CDesLang PIM concepts. The
IIS*CDesLang productions were visually modelled, checked and translated to
LISA specifications. This model can be turned into a valid AG, and in a
straightforward step, we have not only a new language, but also a compiler for
the language.

We list below the textual format for the most important IIS*CDesLang
productions of the AG outputted by VisualLISA environment. Those are the
productions that in general cover the concepts of: project, application system,

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 399

form type and component type. Notice that we transcribe them in a neutral
AG-format to avoid that the reader must learn LISA syntax.

The first production is:

Project  ProjectName ApplicationType+ ApplicationSystem+
 Fundamentals Reports

It defines a project specifying a name (ProjectName), a set of possible types
of application systems (ApplicationType), a set of application systems created
in the scope of a project (ApplicationSystem), fundamental concepts
(Fundamentals) and category of a repository report (Reports).

The production defining the application system is:

ApplicationSystem  AppSystemName AppSystemDescription
 ApplicationTypeName FormTypes
 BusinessApplication+ ChildAppSystem+
 RelationScheme+ JoinDependency+
 ClosureGraph Reports

It specifies a name (AppSystemName), a description (AppSystem
Description), a type of application system (ApplicationTypeName), a category
of a form type (FormTypes), a set of business applications
(BusinessApplication), a set of child application systems (ChildAppSystem), a
set of generated relation schemes (RelationScheme), a set of created join
dependencies (JoinDependency), a closure graph (ClosureGraph) and
category of application system specific reports (Reports).

At this point, it is needed to verify if the application system type specified
for an application system belongs to the set of possible types:

ApplicationSystem.ApplicationTypeName.value belong_to
{set_of(ApplicationType.ApplicationTypeName .value)}

Just as an illustration, we give here selected productions covering the form
type and component type concepts:

FormTypes  OwnedFormType+ ReferencedFormType+

OwnedFormType  FormTypeName FormTypeTitle FTFrequency
 FTResponseTime FTParameter+ CalledFormType+
 FTUsage

FTUsage  Menu | Program

Program  ComponentTypeTreeStructure ConsideredInDBSchDesign

ComponentTypeTreeStructure  ComponentType+

ComponentType  CTName CTParent NoOfOcurrences
 CTTitleAllowedOperations ComponentDisplay
 ItemGroup+ComponentTypeAttribute+
 ComponentTypeKey+ ComponentTypeUnique+
 ComponentTypeCheckConstraint

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 400

These productions also have a set of semantic conditions that must be
verified.

6. Conclusion

AGs are widely used to specify the syntax (by the underlying Context Free
Grammar) and the semantics (by the set of attributes and theirs computation
rules and contextual conditions) of computer languages. This formalism is well
defined and so its usage is completely disciplined; but, more than that, it has
the unique property of supporting the specification of syntax and semantics
under the same framework. Moreover, an AG can be automatically
transformed into a program to process the sentences of the language it
defines.

The research presented in this paper resulted from the collaborative
research project between Serbia and Portugal. To formally describe the
Integrated Information Systems CASE Tool (IIS*Case) – a model driven
software tool that provides IS modeling and prototype generation developed
at University of Novi Sad – we define a DSL, named IIS*CDesLang, that
encompasses problem domain concepts and rules that are applied in the
conceptual IS design provided by IIS*Case. In the paper, we present such a
meta-language resorting to a VPE for attribute grammar specifications, named
VisualLISA, developed at University of Minho. VisualLISA makes the process
of AG development easier and safer; it allows the drawing of the AG
productions (grammar rules) in the form of attributed trees decorated with
attribute evaluation rules. These visual productions are syntactically and
semantically checked for correctness.

Currently, we are completing the IIS*CDesLang AG specification to cover
all the IIS*Case. After that, we will resort to the compiler generator system
LISA to produce a compiler for IIS*CDesLang.

On the basis of the problem domain knowledge embedded in the AG, the
generated compiler will also provide semantic analyses of the designed
specifications and further assist designers in raising the quality of their work.
Two characteristic examples are domain compatibility analysis and check
constraint equivalence analysis. We plan to include a textual editor for
IIS*CDesLang into IIS*Case, and integrate into it the generated compiler to
couple IIS*Case repository with the formal IIS*CDesLang descriptions.

Moreover, as future work we plan to build a translator from IIS*Case Visual
PIM specifications into textual IIS*CDesLang descriptions. This will allow to
verify the specifications correctness without writing them manually in
IIS*CDesLang. Also, it will be possible and interesting to implement the
automatic generation of PIM specifications from IIS*CDesLang descriptions.

Acknowledgments. A part of the research presented in this paper was supported by
Ministry of Education and Science of Republic of Serbia, Grant III-44010 Title:
Intelligent Systems for Software Product Development and Business Support based on
Models.

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 401

References

1. Aleksić, S., Luković, I., Mogin, P., Govedarica, M.: A Generator of SQL Schema
Specifications. Computer Science and Information Systems (ComSIS),
Consortium of Faculties of Serbia and Montenegro, Novi Sad, Serbia, ISSN:1820-
0214, Vol.4, No. 2, 79--98. (2007)

2. Banović J.: An Approach to Generating Executable Software Specifications of an
Information System. Ph.D. Thesis. University of Novi Sad, Faculty of Technical
Sciences in Novi Sad. (2010)

3. Bézivin J., On the unification power of models, Software and Systems Modeling,
Vol. 4, No. 2, 171--188. (2005)

4. Deursen van, A., Klint, P. Visser, J.: Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices, Association for Computing Machinery, USA,
Vol. 35, No. 6, 26--36. (2000)

5. Eclipse Modeling Framework [Online] Available:
 http://www.eclipse.org/modeling/emf/ (current April, 2011)

6. Jouault F., Bézivin J.: KM3: a DSL for Metamodel Specification, In: Proceedings of
8th IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems, Bologna, Italy, Springer LNCS 4037, 171--185. (2006)

7. Knuth, D. E.: Semantics of Context-free Languages. Theory of Computing
Systems, Vol 2, No. 2, 127--145. (1968)

8. Krahn H., Rumpe B., Völkel S.: Roles in Software Development using Domain
Specific Modelling Languages, In: Proceedings of 6th OOPSLA Workshop on
Domain-Specific Modeling, Portland, USA, 150--158. (2006)

9. Kosar T., Mernik M., Henriques P.R., Varanda Pereira M.J, Žumer V.: Software
development with grammatical approach. Informatica, ISSN: 1854-3871, Vol. 28,
No. 4, 39--404. (2004)

10. Kosar T., Oliveira N., Mernik M., Varanda Pereira M.J., Črepinšek M., da Cruz D.,
Henriques P.R.: Comparing General-Purpose and Domain-Specific Languages:
An Empirical Study. Computer Science and Information Systems (ComSIS),
Consortium of Faculties of Serbia and Montenegro, Novi Sad, Serbia, ISSN:1820-
0214, Vol. 7, No. 2, 247--264. (2010)

11. Luković I.: From the Synthesis Algorithm to the Model Driven Transformations in
Database Design, In: Proceedings of 10th International Scientific Conference on
Informatics (Informatics 2009), Herlany, Slovakia, ISBN 978-80-8086-126-1, 9--18.
(2009)

12. Luković, I., Mogin, P., Pavićević, J., Ristić, S.: An Approach to Developing
Complex Database Schemas Using Form Types. Software: Practice and
Experience, John Wiley & Sons Inc, Hoboken, USA, DOI: 10.1002/spe.820, Vol.
37, No. 15, 1621--1656. (2007)

13. Luković, I., Ristić, S., Aleksić, S., Popović, A.: An Application of the MDSE
Principles in IIS*Case. In: Proceedings of III Workshop on Model Driven Software
Engineering (MDSE 2008), Berlin, Germany, TFH, University of Applied Sciences
Berlin, 53--62. (2008)

14. Luković, I., Ristić, S., Mogin, P., Pavićević, J.: Database Schema Integration
Process – A Methodology and Aspects of Its Applying. Novi Sad Journal of
Mathematics, Serbia, ISSN: 1450-5444, Vol. 36, No. 1, 115--150. (2006)

15. Mernik, M., Heering, J., Sloane, M. A.: When and How to Develop Domain-
Specific Languages. ACM Computing Surveys (CSUR), Association for Computing
Machinery, USA, Vol. 37, No. 4, 316--344. (2005)

http://www.eclipse.org/modeling/emf/

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 402

16. Mernik, M., Lenič, M., Avdičaušević, E., Žumer, V.: LISA: An Interactive
Environment for Programming Language Development. In: Proceedings of
Compiler Contruction, LNCS Vol. 2304, 1--4. (2002)

17. Meta-Object Facilty [Online] Available: http://www.omg.org/mof/ (Current: April,
2011)

18. MetaCase Metaedit+ [Online] Available: http://www.metacase.com/ (Current: April,
2011)

19. Oliveira, N. Varanda Pereira, M.J., Henriques, P.R., Cruz, D., Cramer, B.:
VisualLISA: A Visual Environment to Develop Attribute Grammars. Computer
Science an Information Systems Journal, Special Issue on Compilers, Related
Technologies and Applications (ComSIS), Lukovic, I. and Leitão A, Slivnik B.
(Guest Eds.), ISSN:1820-0214, Vol. 7, No. 2, 265--289. (2010)

20. Varanda Pereira, M.J., Mernik, M., Cruz, D., Henriques, P.R.: Program
Comprehension for Domain-Specific Languages. Computer Science and
Information Systems (ComSIS), ISSN:1820-0214, Vol. 5, No. 2, 1--17. (2008)

21. Varanda Pereira, M.J., Mernik, M., Cruz, D., Henriques, P.R.: VisualLISA: a Visual
Interface for an Attribute Grammar based Compiler-Compiler, In: Proceedings of
2nd Conference on Compilers, Related Technologies and Applications
(CoRTA08), IPB, Bragança, Portugal, 265--289. (2008)

22. Henriques P.R., Pereira Varanda M.J., Mernik M., Lenič M., Gray J., Wu
H.: Automatic Generation of Language-based Tools using LISA. IEE Proceedings
– Software, Vol. 152, No. 2, pp. 54--69. (2005)

23. The Generic Modeling Environment [Online] Available:
http://www.isis.vanderbilt.edu/Projects/gme/ (Current April, 2011)

24. Popović A.: A Specification of Visual Attributes and Business Application
Structures in the IIS*Case Tool. Mr (M.Sc.) Thesis. University of Novi Sad, Faculty
of Technical Sciences in Novi Sad. (2008)

Ivan Luković received his M.Sc. (5 year, former Diploma) degree in
Informatics from the Faculty of Military and Technical Sciences in Zagreb in
1990. He completed his Mr (2 year) degree at the University of Belgrade,
Faculty of Electrical Engineering in 1993, and his Ph.D. at the University of
Novi Sad, Faculty of Technical Sciences in 1996. Currently, he works as a
Full Professor at the Faculty of Technical Sciences at the University of Novi
Sad, where he lectures in several Computer Science and Informatics courses.
His research interests are related to Database Systems and Software
Engineering. He is the author or coauthor of over 75 papers, 4 books, and 30
industry projects and software solutions in the area.

Maria João Varanda Pereira, received the M.Sc. and Ph.D. degrees in
computer science from the University of Minho in 1996 and 2003 respectively.
She is a member of the Language Processing group in the Computer Science
and Technology Center , at the University of Minho. She is currently an
adjunct professor at the Technology and Management School of the
Polytechnic Institute of Bragança,on the Informatics and Communications
Department and vice-president of the same school. She usually teaches
courses under the broader area of programming: programming languages,
algorithms and language processing. But also some courses about project
management. As a researcher of gEPL, she is working with the development

http://www.omg.org/mof/
http://www.metacase.com/
http://www.isis.vanderbilt.edu/Projects/gme/

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 403

of compilers based on attribute grammars, automatic generation tools, visual
languages, domain specific languages and program comprehension. She is
author or coauthor of 12 journal papers and over 36 international conference
papers. She was also responsible for PCVIA project (Program
Comprehension by Visual Inspection and Animation), a FCT funded national
research project; She was involved in several bilateral cooperation projects
with University of Maribor (Slovenia) since 2000. Now, the bilateral project
underdevelopment is about ``Program Comprehension for Domain Specific
Languages''.

Nuno Oliveira received, from University of Minho, a degree in Computer
Science (2007) and a M.Sc. in Informatics (2009), for his thesis “Improving
Program Comprehension Tools for Domain Specific Languages”. He is a
member of the Language Processing group at CCTC (Computer Science and
Technology Center) , University of Minho. He participated in several projects
with focus on Visual Languages and Program Comprehension. Currently, he
is starting his PhD studies on Architectural Reconfiguration of Interacting
Services, under a research grant funded by FCT.

Daniela da Cruz received a degree in “Mathematics and Computer Science”,
at University of Minho (UM), and now she is a Ph.D. student of ”Computer
Science” also at University of Minho, under the MAPi doctoral program. She
joined the research and teaching team of “gEPL, the Language Processing
group” in 2005. She is teaching assistant in different courses in the area of
Compilers and Formal Development of Language Processors; and
Programming Languages and Paradigms (Procedural, Logic, and OO). She
was also involved in several research projects (CROSS, DSLpc, PCVIA).

Pedro Rangel Henriques got a degree in “Electrotechnical/Electronics
Engineering”, at FEUP (Porto University), and finished a Ph.D. thesis in
“Formal Languages and Attribute Grammars” at University of Minho. In 1981
he joined the Computer Science Department of University of Minho, where he
is a teacher/researcher. Since 1995 he is the coordinator of the “Language
Processing group” at CCTC (Computer Science and Technologies Center).
He teaches many different courses under the broader area of programming:
Programming Languages and Paradigms; Compilers, Grammar Engineering
and Software Analysis and Transformation; etc. Pedro Rangel Henriques has
supervised Ph.D. (11), and M.Sc. (13) thesis, and more than 50 graduating
trainingships/projects, in the areas of: language processing (textual and
visual), and structured document processing; code analysis, program
visulaization/animation and program comprehension; knowledge discovery
from databases, data-mining, and data-cleaning. He is co-author of the “XML
& XSL: da teoria a pr´ atica” book, published by FCA in 2002; and has
published 3 chapters in books, and 20 journal papers.

Received: December 29, 2010; Accepted: May 19, 2011.

