
DOI:10.2298/CSIS110114012B

Challenges and Directions in

Formalizing the Semantics of Modeling Languages

Barrett R. Bryant1, Jeff Gray
2
, Marjan Mernik

3
, Peter J. Clarke

4
,

Robert B. France
5
, and Gabor Karsai

6

1 Department of Computer and Information Sciences,
University of Alabama at Birmingham, Birmingham, Alabama 35294-1170, USA

bryant@cis.uab.edu
2 Department of Computer Science, University of Alabama

Tuscaloosa, Alabama 35487-0290, USA
gray@cs.ua.edu

3 Faculty of Electrical Engineering and Computer Science, University of Maribor
2000 Maribor, Slovenia

marjan.mernik@uni-mb.si
4 School of Computing and Information Sciences, Florida International University

Miami, Florida 33199, USA
clarkep@cis.fiu.edu

5 Computer Science Department, Colorado State University
Fort Collins, Colorado 80523-1873

france@cs.colostate.edu
6 Institute for Software-Integrated Systems, Vanderbilt University

Nashville, Tennessee 37235
gabor.karsai@vanderbilt.edu

Abstract. Developing software from models is a growing practice and

there exist many model-based tools (e.g., editors, interpreters,
debuggers, and simulators) for supporting model-driven engineering.
Even though these tools facilitate the automation of software
engineering tasks and activities, such tools are typically engineered
manually. However, many of these tools have a common semantic
foundation centered around an underlying modeling language, which
would make it possible to automate their development if the modeling
language specification were formalized. Even though there has been
much work in formalizing programming languages, with many successful
tools constructed using such formalisms, there has been little work in
formalizing modeling languages for the purpose of automation. This
paper discusses possible semantics-based approaches for the
formalization of modeling languages and describes how this formalism
may be used to automate the construction of modeling tools.

Keywords: model-based tools, modeling languages, semantics.

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 226

1. Introduction

With increasing frequency, scientists and engineers in diverse areas of focus,
as well as end-users with specific domain expertise, are requiring
computational processes to allow them to complete some task (e.g., avionics
engineers who seek input on a modeled design from verification tools, or
geneticists who need to describe computational queries to process a gene
expression). A challenge emerges from the lack of knowledge of such users in
terms of expressing their computational desire (i.e., such users typically are
not familiar with programming languages). Model-driven engineering (MDE) is
an approach that provides higher levels of abstraction to allow such users to
focus on the problem, rather than the specific solution or manner of realizing
that solution through lower level technology platforms [46][52]. However, the
potential impact of modeling is reduced due to the imprecise nature in which
modeling languages are defined [26]. The large majority of modeling
languages are defined in an ad hoc manner that lacks precision and a
common reference definition for understanding the meaning of language
concepts. In current practice, the meaning of a modeling language is often
contained only in a model translator (we will use the term model interpreter in
this paper to refer to such translators) that converts a model representation
into some other form (e.g., source code). The current situation in MDE is not
unlike the early period of computing when the definition of a programming
language was delegated to “what the compiler says it means.” Such an
approach not only promotes misunderstanding of the meaning of a modeling
language, but also limits opportunities for automating the generation of
various language tools (much like the adoption of grammars provided a
reference point for compiler and other tool generation for a programming
language).

The advantages of formal specification of programming language
semantics are well-known. First, the meaning of a program is precisely and
unambiguously defined; second, it offers a unique possibility for automatic
generation of language-based tools (e.g., [27]). Unfortunately, formal
specifications, syntax and semantics, of modeling languages have not been
developed to this level yet. Although the syntax of modeling languages is
commonly specified by metamodels, an appropriate and standard formalism
for specifying the (behavioral) semantics of modeling languages does not yet
exist. Hence, there is no automatic generation of model interpreters,
debuggers, simulators and verification tools.

In this paper, we describe challenges and directions in formalizing the
semantics of modeling languages. The ideas developed in this paper were
derived from the Workshop on Formalization of Modeling Languages held in
conjunction with the European Conference on Object-Oriented Programming
(ECOOP) in Maribor, Slovenia, on June 21, 2010. The paper is organized as
follows. Section 2 motivates the need for semantics in modeling languages
and reviews existing work in this area. In Section 3, we describe an approach
based on state machine models. Section 4 describes a metamodel-based
approach to semantics. In Sections 5 and 6, we discuss our experiences with

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 227

semantics-based modeling tools for verification. Finally, we conclude in
Section 7.

2. The Need for Semantics in Modeling Languages

Much of the success of MDE is dependent on the descriptive power of
domain-specific modeling languages (DSMLs) [24][29][50]. One of the current
challenges of adopting a DSML is the lack of a precise description of the
semantics of the DSML. Initial attempts are described in [9], [10] and [16]. The
typical technique for specifying the syntax and static semantics of a DSML is
to use a metamodel, which describes concepts in a problem domain and their
relationships. A standard known as MOF (Meta-Object Facility) has been
proposed for defining the syntax of modeling languages by following a similar
role as BNF and its variants (e.g., EBNF) for programming languages.
Metamodels are currently even used for specifying the syntax of domain-
specific programming languages [42]. However, the situation concerning
syntactical description of languages is completely different from semantics. It
is often easier to describe the structure of a DSML using a metamodel than it
is to specify the syntax of a programming language using BNF. However,
specifying detailed behavior (semantics) is much harder with DSMLs. In our
opinion, this is why only the syntax of current DSMLs are formally described,
but the semantics are left toward other less than desirable means. For
example, as will be discussed further in Section 5, the semantics of the UML
(Unified Modeling Language) metamodel is defined using a mixture of OCL
(Object Constraint Language) and informal text, which is clearly unacceptable
for formal analysis. Hence, the meaning (semantics) of models are often not
formally described. For this purpose, general-purpose programming
languages (e.g., C++) are often used to define model interpreters that have an
internal representation of the semantics of a DSML. The lack of a formal
definition of DSML semantics contributes to several problems, as highlighted
in the following paragraphs.

Tool Generation Challenges: The semantics of DSMLs are not defined
formally. Hence, proving properties about concepts and relationships in the
domain is not possible. Moreover, a model interpreter cannot be automatically
generated in most cases. A further consequence is that various other model-
based tools (e.g., debuggers, test engines, simulators, verifiers) also cannot
be generated automatically.

Tool Analysis Challenges: Model interpreters are often implemented with
general-purpose programming languages (GPLs). This has several
consequences. Verifying a model interpreter is a very difficult, if not
impossible task. As such, verification, optimization, and parallelization of
models can be expressed only through GPLs.

Formal Language Design: DSMLs are also languages that need to be
designed properly. This leads to several key questions: What are the design

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 228

principles for modeling languages? How are the results of domain analysis
used in modeling language design?

Modeling Language Composition: In practice, multiple domains might be
involved to describe different perspectives of a modeled system. In such a
case, there is a need for composing DSMLs together. Presently, there is little
support for formal composition and evolution of DSMLs.

2.1. Related Work in Modeling Language Definition

Some work on the generation of various modeling tools has already been
investigated. Different approaches to the issue of defining the semantics of
DSMLs have been proposed; these differ in their applicability and potential of
leveraging automatic or at least semi-automatic language tool generation.

2.2. Mapping the DSML into Existing Formal Languages

A common way of defining the semantics of a modeling language is through
translation semantics, where the abstract syntax of the main DSML is mapped
into the abstract syntax of an existing formal language, with well-defined and
understood semantics. The mapping is achieved through model
transformations. An advantage of this approach is that the DSML can convey
existing tools of the language into which it is translated. A common critique of
this approach is that since the semantics definition is not defined in the
metamodel of the DSML, it is very challenging to correctly map the constructs
of the DSML into the constructs of the target language. The underlying cause
for this is that the mappings are not at the same level of abstraction and the
target language may not have a simple mapping from the constructs in the
source language. Another issue of the translation semantics approach is the
mapping of execution results (e.g., error messages, debugging traces) back
into the DSML in a meaningful manner, such that the domain expert using the
modeling language understands the result.

One concrete approach that uses translation semantics is called semantic
anchoring [9], which uses the well-known Abstract State Machines (ASM)
formalism [7] to define the semantics. We will discuss the technique in detail
below. This solution maps the abstract syntax of the DSML, which was
defined in the GME (Generic Modeling Environment) metamodeling tool [33],
into well-established semantic domains, called semantic units (e.g., timed
automata, and discrete event systems) that have been defined in the ASML
(Abstract State Machine Language) tool. The initial work on semantic
anchoring did not show any application of tool generation from the semantics
specification, although the usage of ASML enables compilation, simulation,
test case generation and verification of ASML specifications, as will be
discussed further in Section 3. A similar concrete approach was proposed by
Di Ruscio et al. [16], which also did not demonstrate any tool generation

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 229

based on the semantics definition. Gargantini, Riccobene and Scandurra [22]
introduce a semantic framework based on ASM, which also includes three
translational semantics techniques: semantic mapping, semantic hooking and
semantic meta-hooking. The authors do not demonstrate any tool generation
from their semantics specifications. The Moses tool suite [21], which defines
the syntactical aspects (e.g., vertex edge/types, syntactical predicates) of the
language with a Graph Type Definition Language (GTDL), uses ASM for
prototyping model interpreters to achieve the definition of semantics. Based
on this kind of formal specification, the Moses tool suite generates animation
and debugging tools for visual models. The work presented in [43] describes a
translation semantics definition with Maude, which is a rewriting logic-based
language. Based on such a semantics definition simulation, reachability and
model-checking analysis tools can be generated. Sadilek and Wachsmuth
[44] present a semantics definition based on a transition system, where the
states are defined by metamodel instances and the transitions are defined by
model transformations. The work of Hahn [25] uses the Object-Z language
[48] as the means of defining the translation semantics.

2.3. Weaving the Semantics into the Metamodel

Another approach is to weave behavior into the abstract syntax (i.e., the
metamodel) by a meta-language (also called action language), which can be
used to specify the bodies of operations that occur in the metamodel. This
permits the model to be executable, because the semantics are defined inside
the operation bodies. The significant drawback of this approach is the fact that
some meta-languages are very similar to 3rd generation programming
languages; therefore, they have to be used in an operative way. The
advantage of this approach is the fact that this kind of semantics specification
can be mastered by most domain experts.

A well-known representative of this approach is the Kermeta tool [40],
which extends an abstract meta-layer with an imperative action language to
weave a semantic definition within the metamodel. Kermeta constructs
contain specification of operations over metamodel elements. The built-in
support for specification of operational semantics enables the automatic
generation of simulation and testing tools. Another example is the approach
proposed by Scheidgen and Fischer [45], where an operation is specified
through the use of OCL statements and an activity diagram. The graphical
format of this meta-language is particularly familiar to users with a strong
modeling background. The authors mentioned that in the future they will work
on automatic debugger generation. Soden and Eichler [49] propose a similar
approach based on the usage of activity diagrams as the meta-language.
Their future work will be implemented in a framework known as the Model
Execution Framework (MXF) and should take an important place in the
Eclipse environment. Based on the semantics definition, various tools like
trace analysis and runtime verification will be automatically generated. The
Mosaic XMF framework [3], which uses an extended OCL language to provide

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 230

semantics, is another representative of the semantics definition approach.
Initial work that corresponds to the behavior weaving approach was also
undertaken in UML [51], where action semantics were proposed to achieve
the goal of executable UML models. To define the semantics of a new
language, no notation was enforced, but the authors “suggest activities with
action semantics for language modelling.” Ducasse et al. [17] use Smalltalk as
a meta-language in their DSML semantics definition.

2.4. Defining the Semantics with Rewrite Rules

Semantics also can be specified through rewriting systems, where the system
typically consists of rewrite rules. Each rewrite rule consists of a left- and a
right-hand side. The execution of a rewrite system is based on the repeated
application of the rewrite rules to an existing configuration (e.g., model). A rule
is applied when the left-hand side of the rule is found in the configuration, in
such a way that this occurrence will be replaced by the right-hand side of the
rule. The execution is complete when there is no rule that can be applied to
the configuration. Typically, the existing approaches employ graph rewriting
where the semantics can be specified in an operational fashion through the
graphical definition given by graph grammars. Graph rewriting provides a
mathematically precise and visual specification technique by combining the
advantages of graphs and rules into a single computational paradigm [53].

Graph rewriting specification was employed in the AToM3 tool [32], which
uses triple graph grammars as rewriting rules. One of the interesting features
of AToM3 is that the definition of rewriting rules is given through concrete
syntax, which makes semantic specification especially amenable for domain-
experts. AToM3 can use graph grammar definitions to generate visual model
simulators and implement model optimizations and code generation. The
dynamic metamodeling [19] approach describes the semantics of UML
behavior diagrams with collaboration diagrams, which are used in graph
transformations. The authors mention future work on the generation of model
simulators. Ermel et al. [20] enable translation of UML behavior diagrams into
graph transformations, which are the basis for semantics that are used to
generate a visual simulator of UML models.

2.5. Other Approaches to the Definition of Semantics

There also exist other examples of generating tools from semantic definitions
that are described in GPLs. Perhaps a valuable lesson can be learned even
from these examples. One of the most well-known approaches is Ptolemy
[18], which is a tool that enables animated interpretation of hierarchically
composed domain-specific models. Models in Ptolemy consist of
heterogeneous domains (models of computation) that can have different
semantics. Adding a new DSML to Ptolemy is cumbersome, because the

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 231

syntax and semantics have to be defined manually (i.e., hand-coded) in Java
by implementing a “director” that assigns executable semantics to the DSML
constructs.

3. Defining the Semantics of Modeling Languages

We view semantics as a mapping from the abstract syntax (A) of the DSML
to some semantic domain (D). The abstract syntax defines the fundamental
modeling concepts, their relationships, and attributes used in the DSML, and
the semantic domain is some mathematical framework whose meaning is
well-defined. The abstract syntax defines the data structures that represent
the modeling constructs, and, as such, it can be considered as a schema for
the models. For instance, in a modeling language representing Finite State
Machines (FSMs), we will need data structures for states and transitions,
which need to be related to each other such that one can find the source and
target states of transitions. Instances of such data structures do represent
FSMs, and algorithms are available to analyze them. The concrete syntax (S)
is the human-readable manifestation of the abstract syntax. In our FSM
example, the concrete syntax can be textual (e.g., a simple language where
an FSM is represented as a set of names for states, and a set of transitions
represented in the form „state1  state2‟, where state1 and state2 are names
of states), or it can be graphical (e.g., a graphical notation with bubbles
representing states and arrows connecting bubbles representing the
transitions). There is always a well-defined mapping between A and S. We
use the concrete syntax to create and modify the models, with the assistance
of a customized metamodeling tool, such as the GME. Note that changes on
the models performed using the concrete syntax must eventually be reflected
as changes in the abstract syntax form of the models.

An example for the visual depiction of abstract syntax is shown in Figure 1,
which uses the UML class diagram graphical formalism. The abstract syntax

is that of a Stateflow-style [36] hierarchical state machine, with States and

Transitions being the main elements. The top-level model element

Stateflow is a Folder that acts as a container for models. This container

will contain States that contain other States and Transitions. The

recursive containment of states within states allows the composition of

hierarchical state machines. Transitions connect TransConnectors that are

abstract (only their derived classes can be instantiated), and that could be

States, Junctions, initial transitions (TransStart), history junctions

(History), or references (ConnectorRef) that point to other

TransConnectors. States may also contain Data or Event elements, as well

as an optional reference to a data type (TypeBaseRef). Note that this

composition expressed as abstract syntax follows the legal composition of
model elements available in the Stateflow language. For example, a

Transition cannot connect a Data element to a State – there is no legal

association between them.

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 232

Fig. 1. Abstract syntax for a DSML representing a Hierarchical FSM

One can also define well-formedness constraints (C) over the abstract
syntax. In our example, a well-formedness constraint could specify that there
must be precisely one state marked as “initial” among the states contained in
a Stateflow model, and the sub-states of a state. Such constraints delineate
what models are considered „correct‟ with respect to a static notion of
semantics; the constraints can be checked on the models directly, without
referring to a semantic domain.

The semantic domain for such a DSML could be a finite state machine (M)
(implemented in hardware or software), with a finite set of states (with
precisely one, distinguished state called the initial state), a finite set of
triggering events, and state transitions between states. Transitions are labeled
with triggering events and Boolean guard expressions over some variables of
the system. A model expressed in the DSML compliant with the abstract
syntax will map to a specific machine that operates as follows: The machine is
always in a specific state, called the current state. When the execution starts,
the current state is the initial state. When an event arrives, it is matched
against the event labels attached to transitions emanating from the current
state, and if a matching label is found the transition is selected. The guard for
the selected transition is evaluated, and if it is true then the current state
becomes the target state the transition points to. If the event does not match
any event on an outgoing transition (or if it does match, but the guard is false),
the current state does not change. It is required that if multiple transitions are

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 233

selected, at most one guard can be true, otherwise the behavior is non-
deterministic and the model is incorrect. Note that this machine does not have
hierarchical states.

The semantics of the models can be defined by a mapping m : A → D that
instantiates a specific (non-hierarchical) finite state machine from a model.
After the machine is created, it operates in some environment according to
the algorithm described above. Note that the semantics is ultimately defined
by our understanding of how the machine works: although it can be
formalized, it is still dependent on our (possibly inaccurate) understanding of
the operation of the machine. After this understanding is refined, we can
„build‟ it as a digital circuit or as a software simulator. Note that the semantic
domain defines the meaning of a model with respect to a dynamic notion of
semantics; one needs a “machine” to execute the computation denoted by the
model.

Note that not all DSMLs have an executable (or „operational‟) semantics.
For instance, UML class diagrams are not „executable,‟ however, they can be
expressed in various forms (e.g., C++ code consisting of classes with data
members and member functions). Some DSMLs have very weak opportunity
for semantics definition; for instance, UML use-case diagrams can only be
paraphrased in a natural language, without any formal mapping. Below, we
restrict the discussion to DSMLs that do have executable semantics.

Drawing from the example, we can observe that the specification of
semantics may be accomplished in two steps: (1) defining the ‟semantic
domain,‟ and (2) defining the mapping between the abstract syntax and the
constructs of the semantic domain. For a pragmatic approach one can
envision a translator for (2), and a simulator (or interpreter) for (1) that
interprets the result of (2) with some input. Below we describe two variations
on how these steps can be accomplished.

3.1. Definition via a Semantic Unit

Assume we have well-defined, accepted, and well-understood modeling
languages whose semantics are simple and defined in a non-ambiguous,
preferably executable way. Let‟s call these core modeling languages semantic
units. An example of a semantic unit could be the domain of simple finite state
machines, as described in the previous section. If a new DSML needs to be
defined, one has to specify the semantics of this new language by showing
how the models built in the new language could be reduced to (or transformed
into) the well-defined semantic units. The principle is illustrated in Figure 2.

In this method, the semantics are mainly defined by the transformation
MDSMLi,SU that maps the abstract syntax of the DSML (A of DSML-i) to the
abstract syntax of a semantic unit (A of SU). The concrete syntax (C) of the
DSML is related to the abstract syntax of the DSML (A) via a mapping (MCi).
The semantic domain of the DSML is some S, and the notional semantics of
the DSML is defined via the mapping MSi. The key idea here is that we define
the MSi mapping in two steps: (1) the transformation (MDSMLi,SU), and (2) the

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 234

semantic mapping of the semantic unit MSU. Note that semantic units also
have a DSML: a concrete syntax (C of SU), a semantic domain (S of SU), an
abstract syntax (A of SU), and the mappings: MC2 for the syntax and MSU for
the semantics. The base semantic domain is much simpler than a higher level
DSML. The transformation can be specified formally, for instance in the form
of graph transformation rules [2], which represent how to rewrite a higher level
DSML into the lower level DSML; hence, establishing a formal, yet executable
mapping between the two languages. For the example described above, the
transformation rewrites the hierarchical, Statechart-like state machine into a
flat, non-hierarchical state machine.

Fig. 2. Defining semantics via a transformation and a semantic unit

For specifying the semantic unit, a tool has been created that uses the
Abstract State Machine Language (ASML) [38] to represent semantic units.
ASML allows building these semantics units using the Abstract State Machine
concepts [7] (i.e., essentially as transition systems with sophisticated data
structures representing the state of the system). A number of prototype model
transformations have been built that show how a non-trivial DSML (e.g., a
Statechart-like language) can be formally defined via the transformation [9].
These form the initial components of a tool suite where one can define the
abstract syntax of a language, together with its semantics using semantic
units and transformations. An interesting property of ASML is that it is
executable, thus one can rapidly prototype and experiment with DSMLs by
executing their models as ASML “programs.”

In this approach, the main complexity is in the model transformation
process, and semantic units are typically simple. A semantic unit is a subject
of reuse: it is designed to be used with different DSMLs. Because of this
desired property, all of the semantic (and possibly syntactic) variations are
kept in the transformation part. Note that the semantic unit can be expressed

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 235

in any formalism that does not have to be executable. ASML was used in the
projects described above and is suitable for execution and test generation, but
formalisms better suited for model checking (e.g., nuSMV [12]) can be used
as well.

3.2. Definition via an Interpreter

The approach described in the previous section is well-suited for cases when
one semantic unit can serve a number of DSMLs and all the semantic
variations can be captured in the transformation. However, this is not the case
for many DSMLs, most notably the 20+ variants of the Statechart notation [5].
In this case, another approach is to simplify the translation part and define the
semantics using an interpreter that directly executes the models.

Fig. 3. Defining semantics via an interpreter

Formally, an interpreter is a mapping i that depends on the model M, and
implements i(M) : I × S(M) → O × S(M), where I is the input event alphabet, O
is the output event alphabet, and S is the set of the internal states of the
interpreter, also dependent on the model. The concept is illustrated in Figure
3. The model is a read-only data structure that controls the interpreter‟s
behavior, while the state is updated by the interpreter as it processes inputs.
Of course, an interpreter is not different conceptually from a semantic unit, but
typically much more complex.

Such interpreters can be defined in any executable language, including
conventional languages. This has advantages: (1) any developer skilled in the
implementation language can understand the specification of the semantics,
(2) all the formal reasoning and analysis tools available for the implementation
language can be used, (3) fast prototyping of semantics is feasible, (4)
program verification, debugging, and testing tools available for the
implementation language can be immediately used. The disadvantages of the
approach are: (1) reasoning about programs is typically more difficult than
reasoning about models, (2) verifying an interpreter + model assembly is
inefficient, as the resulting system has many more states than strictly needed

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 236

by the model, and (3) treating non-deterministic behavior as complex,
because a concrete interpreter is always deterministic.

We have used this interpreter-based approach to define the semantics of
two Statechart variants: (1) UML State machines, and (2) Matlab Stateflow.
Each has a specification of about 100 pages in English, and for some subsets
formal specifications exist, but are documented in journal papers. We have
defined a common data structure (an abstract syntax) for the models, and
coded the interpreter in pure Java (only the core libraries were used). The
code for the abstract syntax part was about 600 lines; functional code
common across the two variants required about 250 lines; the Stateflow-
specific code had about 600 lines; and the UML State machine variant had
about 400 lines. All the code was reviewed by 3-4 programmers and
thoroughly tested and compared to existing tools using carefully chosen
examples (models and input/output sequences). Our experience indicates that
such interpreter-based specification is feasible, and can be quite compact.

3.3. Challenges

When defining the semantics of DSMLs, several challenges arise, some of
which are listed below.

Existence of valid models. One can define an abstract syntax with very
restrictive well-formedness constraints, such that no valid models can be
constructed. In the case of a complex DSML, it may become a challenge to
recognize such a problem.

Existence of valid models that generate an acceptable behavior. A
secondary problem is to verify if a valid model exists that generates an
acceptable behavior, which, for instance satisfies certain properties (e.g.,
deadlock freedom). It is a defect of the semantics definition if such a model
cannot be constructed.

Composability. In a project, multiple DSMLs are often used. Syntactic
composition can be simple, but composition of semantics needs to be
investigated more thoroughly as a core research topic.

Efficiency of verification with interpreters. The interpreter-based method
has a shortcoming: the system has much more states than the original model,
so its verification is more complex. We need techniques to introduce
abstractions over the states of an interpreter-based system to reduce the
complexity.

Reusability. One goal of the semantic units was reusability, and the same
applies to the interpreter-based approach. We were able to take advantage of
the features of the implementation language (namely, inheritance and
polymorphism) when developing the interpreters for the Statechart variants,
but the question arises regarding how this can be extended to other cases.

Dissemination. Definition of the semantics for a DSML must be published in
a form supporting review by the stakeholders. A key research question
regards the best way of disseminating or sharing such specifications.

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 237

4. A DSML with Metamodel-Based Semantics

Recent advances in unified communication, mobile technology, and the desire
for collaborators from geographically dispersed teams to coordinate their
communication activities are becoming commonplace. There is a strong
demand for an easy and flexible way of building user-centric communication
services that effectively shields users of these systems from the heterogeneity
of communication technologies, and that supports the dynamic nature of
communication-based collaboration. Many existing communication service
frameworks are custom-built, inflexible, costly, and technology specific. They
provide little or no support for user-driven specification, adaptation and
coordination of communication services performed in response to changes in
highly dynamic environments (e.g., those found in disaster management and
healthcare).

To address the aforementioned problems, Deng et al. [14] proposed the
Communication Virtual Machine technology which consists of an interpreted
DSML, the Communication Modeling Language (CML), and a semantic rich
platform to execute the communication models, the CVM. In this section we
present an extension of CML called the Workflow Communication Modeling
Language (WF-CML) that better supports the dynamic coordination of
communication services. WF-CML defines communication-specific
abstractions of workflow concepts found in many of the major general-
purpose workflow languages, including UML activity diagrams [41], YAWL [1],
and Windows Workflow Foundation [39]. The definition of WF-CML includes
the metamodel and the dynamic semantics. Due to space limitations, we only
present a subset of the metamodel and an overview of the dynamic
semantics, yet to be completed.

4.1. Motivating Scenario

To further motivate the need for WF-CML, we present a scenario developed
at the Miami Children‟s Hospital [8]. The following are the actors in the
scenario: A Discharge Physician (DP), a Senior Clinician (SC), a Primary
Care Physician (PCP), a Nurse Practitioner (NP) and the Attending Physician
(AP). Patient Discharge Scenario:

(1) On the day of discharge, Dr. Burke (DP) establishes an audio
communication with Dr. Monteiro (SC) to discuss the discharge of baby Jane.
During the conversation, Dr. Burke composes a discharge package,

DisPkg_1, referred to as a form, and sends it to Dr. Monteiro to be validated.

The DisPkg_1 form consists of a RecSum-Jane.txt (text file), summary of

patient‟s condition; xRay-Jane.jpg, an x-Ray of the patient‟s heart, (non-

streamfile); and a HeartEcho-Jane.mpg (video clip), an echocardiogram

(echo) of the patient's heart. After DisPkg_1 is sent, Dr. Burke contacts Dr.

Sanchez (PCP) to join the conversation with Dr. Monteiro to discuss the

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 238

patient‟s condition. During the conversation, Dr. Monteiro validates DisPkg_1

and sends it to Dr. Burke.

(2) Since the form DisPkg_1 is received within 24 hours and is validated,

Dr. Burke then sends it to Nurse Smith (NP) and Dr. Wang (AP) (If the form
had not been validated and received within 24 hours, the workflow requires

that Dr. Burke send out an interim discharge note (InterimNote_1)). At the

same time, Dr. Burke continues his conference with Drs. Monteiro and
Sanchez.

-workFlowID : EString

CommWorkFlow

InitialNode

#commProcName : EString

CommProcNode

ControlNode

FinalNode

-edgeID : EString

-edgeType : EdgeType

WF-Edge1

edges1..*

1

cmlSchema1

1

triggerEvent0..1

CompositeCommProcNode

AtomicCommProcNode

1

nestedWorkflow

1

#nodeID : EString

WF-Node

1

nodes

1..*

-IsElse : EBoolean

EdgeAnnotation

1

annotation0..1

ForkNode JoinNode

MergeNode

DecisionNode
#communicationID : EString

#schemaID : EString

CommSchema

-eventID : EString

-communicationID : EString

-connectionID : EString

-workflowID : EString

-nodeID : EString

TriggerEvent

target 1

incomingEdge

0..*

source

1

outgoingEdge 0..*

+ReguarEdge

+DecisionEdge

«enumeration»

EdgeType

Fig. 4. Partial Abstract Syntax for WF-CML

4.2. Metamodel

The metamodel for WF-CML consists of the abstract syntax, represented as a
UML class diagram, and the static semantics defined using OCL. Figure 4
shows a partial class diagram of the abstract syntax for WF-CML. The
complete class diagram and static semantics can be found on the project‟s
web page1.

A WF-CML model is a graph (CommWorkFlow) consisting of nodes (WF-

Node), edges (WF-Edge), and trigger events (TriggerEvent) as shown in

Figure 4. The nodes are described as follows: InitialNode and

FinalNode – signify the beginning and ending of a model representing the

coordination of communication processes. CommProcNode (communication

process node) - is either an atomic communication model

(AtomicCommProcNode) or a nested workflow model (Composite-

CommProcNode) and has zero or one trigger event associated with the node.

The atomic communication model represents a model created using pre-

1 http://cml.cs.fiu.edu/

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 239

workflow CML. DecisionNode, ForkNode, JoinNode and MergeNode -

express control flow between communication processes. There are two types
of edges (decision and regular). A decision edge is annotated with zero or
more atomic events. If there is no event annotation on the decision edge, it is
considered an else edge.

[FormEvent_1][Else]

Trigger Event

1. FormEvent_1: Discharge_Pack Received

and Discharge_Pack.validity EQ True

2. FormEvent_2: Discharge_Pack

NotReceived 24 hrs After Sent

Trigger Event

1. MediaEvent: InterimNote_1

Sent

Trigger Event

1. FormEvent: Discharge_Pack

 Sent

CommProc_1

CommProc_2 CommProc_3

DP SC

DP
AP

NP

DP AP

Fig. 5. WF-CML Model for Scenario

Figure 5 shows the WF-CML model for the scenario described in the

previous section. The CML model in CommProc_1, top node in the figure,

specifies the communication between the DP and the SC, the user ids and
names are instantiated when the WF-CML model is executed by Dr. Burke,
and he loads the contact information for the SC. There are two types defined

for this communication, a form type (Discharge_Pack) and a built-in media

type (LiveAudio). The trigger event in CommProc_1 states that this node is

exited when a validated patient form of type Discharge_Pack is received, in

this case DisPkg_1, and it is validated; or the patient form is not received 24

hours after being sent.

4.3. Dynamic Semantics

The semantic rules of WF-CML extend the semantic rules for CML [54]. We
first provide an overview of the semantic rules for realizing CML models
followed by the semantics rules for WF-CML models.

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 240

CML:
((CIin, DIin), CSP_Envi) => ((CIout, DIout), Scriptout, Eventout, CSP_Envi+1)
where:
(CIin, DIin) - input control and data instances capturing a user‟s communication

needs to be realized by the communication service.
CSP_Envi - state of the CS process including the state of the executing

control and data instances, (CIi, DIi), negotiation state, Negi, and
media transfer state, MTi.

(CIout, DIout) - updated control and data instances generated during the
transition.

Scriptout - communication control script generated, including (re)negotiation
and media transfer scripts, executed by the CVM middleware.

Eventout - output event generated during the execution of the CS process,
including media events or negotiation events.

CSP_Envi+1 - updated environment of the CS process. The structure is similar
to CSP_Envi stated above.

WF-CML:
(Eventin, WF_Envi) => ((CIout, DIout), WF_Envi+1)
where:
Eventin - an input event that may trigger the execution of the next node in the

WF-CML model. These events include negotiation events, data
transfer events and exception events.

WF_Envi - the current configuration of a process executing the WF-CML
model (WF_Proc). Its state is defined as (WFexec, CS_Procs,
Curr_CS),
where:
WFexec - the currently executing WF-CML model in the WF_Proc

process.
CS_Procs - a list of executing CS processes in the executing

WF_Proc process.
Curr_CS - currently active CS processes with respect to the WF Proc

process.
WF Envi+1 - the updated configuration of the WF Proc process.

The rules describing the semantics for CML and WF-CML models may be
applied to the motivating scenario presented in Section 4.1 as follows. The
WF-CML model is processed using the semantics rule for WF-CML and
shown in Tables 1 and 2. Table 1 shows the left-hand side of the rule and
Table 2 the right-hand side of the rule. The input to the rule, shown in the
third row in Table 1 (i.e., when i = 0), includes: (1) the null event, and (2) the
workflow environment (WFexe). The current workflow environment includes:
(a) the WF-CML model shown in Figure 5, (b) the list of executing processes

(CS_Procs), which is empty, and (c) the currently active CS processes in the

workflow (Curr_CS), which is null. The output of the rule includes: (1) the

control instance and data instance pair (CI, DI) to be processed by the CML
semantic model, (2) the currently executing WF-CML model (Figure 5), (3) the

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 241

list of executing processes which is Comm_Proc_1, the top node in Figure 5,

and (4) the currently active node in the WF-CML model, Comm_Proc_1.

Table 1. Left-hand side of the semantic rule used for WF-CML.

i Eventin WF_Envi

 WFexec CS_Procs Curr_CS

0 null
WF-CML model
(see Figure 5)

empty null

…

k FormEvent_1
WF-CML model
(see Figure 5)

CommProc_1
(see Figure 5, top
node)

CommProc_1
(see Figure 5, top
node)

…

Table 2. Right-hand side of the semantic rule used for WF-CML.

i (CIout, DIout) WF_Envi+1

 WFexec CS_Procs Curr_CS

0 (M1, null)
WF-CML model
(see Figure 5)

CommProc_1
(see Figure 5, top
node)

CommProc_1
(see Figure 5, top
node)

…

k (Mp, null)
WF-CML model
(see Figure 5)

CommProc_1,
CommProc_3
(see Figure 5)

CommProc_3
(see Figure 5,
bottom right)

…

The (CI, DI) model pair extracted from the WF-CML model is processed by

the semantic rule for CML. The left-hand and right-hand sides of the rule are
shown in Tables 4 and 5, respectively. Table 3 shows some of the CML
models used during the realization of the communication. The third row of
Table 4, where j = 0, shows the input model pair of (M1, null). Table 3 shows
that M1 is a model representing the communication between two persons and
the connection (C1) supports the transmission of live audio and a patient
discharge form. The media and form types on the connection are not labeled.
We use the pair (null, null) in Table 4 to represent the initial models in the
system. The initial states for the negotiation and media transfer state

machines are the negotiation ready state (Neg_Ready) and the media

transfer ready state (MT_Ready), respectively. After applying the rule, Table 5

shows the output generated and the updated state of the system. The models
generated are the same as the input models because these models are used
during negotiation; the script generated creates a connection with the remote
party in the connection, Dr. Monteiro, and sends the control model (M1); the

event generated (Neg_Initiated) reflects that negotiation has started. The

entries in the table for j=1 and j=2 represents the negotiation process. The
application of the rule shown in Tables 4 and 5 with the row labeled j=2 shows
the application of the rule to enable live audio.

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 242

Table 3. Some of the CML models used in the motivating scenario.

Model ID Graphical Representation of the CML model

M1

(control instance) monteiro41burek23 C1

M2

(control instance) monteiro41burek23 C1

M3

(data instance) medium

LiveAudio

C1

…

Mp
smith35

burek23 C2
wang12

Table 4. Left-hand side of the semantic rule used for CML.

j (CIin, DIin) CSP_Envi Comments

 (CIi, DIi) Negi MTi

0 (M1, null) (null, null) Neg_Ready MT_Ready

M1 is the control
instance model
created by the
local participant,
Dr. Burke

1 (M2, null) (M1, null) WaitingSameCI MT_Ready

M2 is the control
instance model
received by Dr.
Burke‟s CVM
from the remote
participant, Dr.
Monteiro

2 (M2, M3) (M2, null) Neg_Ready MT_Ready

M3 is the model
that represents
the activation of
live audio

…

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 243

During the communication for CommProc_1 an event will eventually be

triggered that moves the workflow onto the next node. In the scenario, the

FormEvent_1 is triggered, as shown in Table 1 row labeled i = k. The right-

hand side of the WF-CML rule in Table 2 shows that both CommProc_1 and

CommProc_3 are now active and the currently active node with respect to

workflow is CommProc_3. Two communication processes are active since our

semantics do not force the termination of a communication after the workflow
model moved on to the next node. Note that the control model (Mp) is now
processed by the CML semantic rule which establishes a new connection with
two participants, Nurse Smith and Dr. Wang.

Table 5. Right-hand side of the semantics rule used for CML.

j (CIout, DIout) Scriptout Eventout CSP_Envi+1

 (CIi+1,DIi+1) Negi+1 MTi+1

0 (M1, null)

createConnection
(“C1”);
sendSchema
(“C1”, “burke23”,
“monteiro41”, “M1,
null”)

Neg_ Initiated (M1, null)
Neg_
Initiated

MT_
Ready

1 (M2, null)

sendSchema
(“C1”, “burke23”,
“monteiro41”, “M2,
null”);
addParticipant
(“C1”,
“monteiro41”)

Neg_
Complete

(M2, null)
Neg_
Complete

MT_
Ready

2 (M2, M3)

enableInitiator
(“C1”,
“LiveAudio”);
sendSchema
(“C1”, “burke23”,
“monteiro41”, “M2,
M3”)

Enable_
Stream

(M2, M3) Neg_ Ready
Stream_
Enabled

…

4.4. Challenges

WF-CML supports the execution of communication models in a distributed
environment, where participants in the communication are allowed to change
the currently executing communication process. The complexity of executing
WF-CML models directly provide us with the following challenges: (1) What
notation should be used to define the dynamic semantics (e.g., operational,
denotational, or axiomatic)? (2) How to define the environments for a
communication process and workflow process? (3) How can the semantics be
extended to support dynamic adaptation of the WF-CML?

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 244

5. Model-Based Verification Tools

MDE provides a context in which formal specification and verification
techniques can be applied. There is evidence that this is already taking place
(e.g., see [11], [23], [30], [34], [47]). With respect to the UML, in the late
nineties the precise UML (pUML) group helped raise awareness of the need
for more formal descriptions of UML semantics to enable rigorous analysis of
structural and functional properties of systems captured in UML models. Over
the last decade, we have seen a significant number of papers on using
relatively mature formal verification techniques to analyze properties
described in particular UML models (e.g., there has been significant work on
using model checking techniques to analyze UML state machine models, and
Petri net variants to analyze activity models).

Despite the focused attempts, there are very few UML-based verification
tools that can be described as usable by practitioners. In the following, we
discuss some of the opportunities for applying verification techniques in MDE
and discuss some of the challenges. For the most part, the opportunities and
challenges are presented in terms of UML modeling issues, primarily because
this is one of the more widely used (and misused) MDE languages, and there
is a dire need for practical UML-based verification tools.

5.1. Towards Usable UML-based Verification Tools

The UML has reached a level of maturity that now allows us to reach for some
of the lower hanging fruit (not necessarily the same as low-hanging fruit!)
where application of rigorous verification techniques are concerned. One of
the frustrating experiences that a modeling student or practitioner learning a
language such as the UML goes through is determining if his/her model is, in
some sense, a valid description. In the case of students, the only feedback
that they often receive is the instructor‟s grade of their work. There is a need
to provide modelers, in particular, UML modelers, with some means of
checking the validity of their model.

An obvious approach is to provide some support for executing or animating
models. The Colorado State University (CSU) UMLAnT (UML Animation and
Testing) tool provides a means for dynamically analyzing (testing) UML
design models. A UMLAnT design model consists of class diagrams with
operations specified in a Java-like action language called JAL [15]. UMLAnT
is an Eclipse plug-in that provides support for (1) generating test inputs that
satisfy criteria based on coverage of elements in a sequence diagram that
describes the scenarios that will be exercised in a test, (2) executing the
design model using test inputs (a test input is an operation with parameter
values), and (3) showing execution progress in terms of sequence diagrams
and changes to object configurations. We are currently updating the tool to
the latest version of Eclipse and improving its robustness.

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 245

We are also developing lightweight scenario-based analysis techniques
that allow developers to check whether a scenario describing a desired or
undesired behavior is supported by a model [56]. The technique provides a
less expensive way of analyzing a system in the cases where exhaustive
formal analysis is not possible or cost-effective. In the approach we are
developing, a behavior is described as a sequence of snapshots, where a
snapshot is an object configuration that conforms to a class diagram. A class
model with operations specified in the OCL is transformed to a class model,
called a Snapshot Model, that characterizes all possible behaviors
(sequences of snapshots). A verifier then provides scenarios (expressed as
sequence diagrams) and the analysis tool we are developing checks whether
these scenarios conform to the Snapshot Model.

One of the problems that our analysis approaches and those developed by
other researchers face is that they do not handle incomplete models well. This
is one of the challenges that we are currently tackling in our analysis work.
Another aspect that requires attention is ensuring consistency of behavioral
and structural concepts across different modeling views. This is a particularly
challenging problem in the UML, and is sometimes one of the reasons
practitioners limit their use to one or two UML diagram types (typically class
diagrams, sequence diagrams or state machine diagrams). One of the
problems that hinders research in this area is the size of the UML language
(as reflected in its metamodel) - this makes it very difficult to determine
precisely the consistency relationships that must hold across elements in
different diagrams. Furthermore, it has not been verified that the UML
metamodel is a valid description that can be relied upon correctly to define
these relationships. A good usability challenge problem for verification tools is
finding an answer to the question “is the UML metamodel correct?”

5.2. Formal Verification Challenges: Transformations, Semantic

Variations, and Models@Run.Time

The previous subsection identified some obvious opportunities for applying
verification techniques in the MDE context. That was just the tip of the
iceberg; there are other more challenging verification problems that should be
tackled in MDE. A challenging problem concerns verification of model
transformations [35]. In a recently published paper on testing model
transformations, we highlighted some of these challenges [4]. One of the
major problems concerns generating an adequate set of test models.
Generating test inputs for programs that use inputs with simple structures is
challenging in itself; when the inputs are models with complex structures the
challenges are greater.

Another problem that must be considered is the variety of semantics that
can be associated with languages such as the UML. In the UML, some parts
of the semantics are intentionally left undefined to allow users to tailor
semantics to their needs. While formal methods purists may argue for defining
a single semantics for the UML, the practical reality is that different groups

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 246

use the UML differently, and this need must be supported. It is highly unlikely
that a single verification approach would meet all structural, functional and
behavioral analysis needs. To tackle this problem we have started a research
initiative called GeMoC (Generic Model of Computation) with the goal of
developing a verification framework that can be used in a modeling
environment that supports a variety of semantics (or models of computation).

An emerging MDE research area that attempts to extend the use of models
to runtime management is models@run.time [6]. There has been significant
work on using models to support runtime adaptation of software. Verifying
adaptations at runtime is a particularly challenging problem that groups
working in this area are currently addressing.

6. Semantics-Based Tools in Domain-Specific Modeling

As mentioned in Section 2, a formal description of a modeling language
allows for the automatic generation of supporting tools that are based on the
modeling language semantics. This section motivates the need for such tool
generation by summarizing our previous work in generating debuggers and
testing engines for domain-specific languages (DSLs) [31], [37]. Our
framework (Figure 6) for automatic generation of DSL debuggers and test
engines reuses existing GPL tools [55]. The framework consists of a mapping
process that records the correspondence between the DSL program and the
generated GPL code, a tool methods mapping that specifies how DSL tool
actions are mapped to GPL tool actions (e.g., a DSL debugging command
might request execution of several GPL debugging commands), and a tool
results mapping, which specifies how obtained results should be displayed to
the end-user using only DSL abstractions.

Existing approaches for defining the formal semantics of programming
languages can be used to specify the semantics of DSMLs. However, a
critical point of this work is that a semantics definition should be model-based.
To fulfill this objective and accomplish transparency of low-level formalisms,
three steps are followed. The first step focuses on the methodology to specify
state transitions to show dynamic behavior of meta-elements. The second
step concerns the visual language to control the sequence of the defined state
transitions and runtime configurations. The third step includes transformation
of specifications into the different language-based tools. The combination of
all outcomes of these steps will form the semantic framework. Figure 7 shows
an outline of the approach. The first part of the figure demonstrates abstract
syntax and static semantic definitions; current platforms provide a means for
specifying these definitions. The second part depicts the dynamic semantics
specification technique based on activity diagrams and graph grammars.
These tools are used to define a sequence of state transitions. The last part
shows specification of verification properties within domain boundaries.
Finally, all these specifications can be transformed into the different language-
based tools (e.g., interpreter, code generator, simulator, verifier).

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 247

Re-interpreter GPL Tool Server

Source Code

Mapping

Tool Results

Mapping

Tool Methods

Mapping

Translator

GPL

Tool Actions

DSL Tool-Specific View

DSL Level

GPL Level

End-User

GPL Tool

Commands

DSL

Fig. 6. The framework for automatic generation of DSL tools

MetaElem1 MetaElem2

MetaElem4

-End1

1

-End2

*

MetaElem3

-End3

*

-End4*

MetaElem5

MetaElem6

-End51

-End6

*

{OCL}

End1
End2

MetaElem2

MetaElem5

{OCL}

End1
End2

Abstract Syntax & Static Semantics Dynamic Semantics Verification Properties

ActionState1

ActionState3

ActionState4

ActionState5

NAC LHS RHS

MetaElem1 Meta2 Meta3-End7

1

-End8

*

Meta2 Meta3

Meta4 -End91

-End10

*

VerifierInterpreter Code Generator

Debugger Simulator

Fig. 7. Semantics-Based Tool Generation

In [13], we performed some experiments on semi-automatic generation of
tools for modeling languages and focused on how to specify the behavioral
semantics of a DSML by a sequence of graph transformation rules, enabling
transformation of a modeling language specification into the model checking
tool Alloy [28]. In our initial study, we demonstrated specification of sequential
system semantics that connects the initial model to possible result models.
First, we focused on how to specify the behavioral semantics of a DSML by a

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 248

sequence of graph transformation rules. While each graph transformation rule
represents a state change of a sequential system, a sequence of state
changes is defined by an activity diagram. Sequence definitions control what
state transition is to be fired, in what order, and what condition. All these steps
are mapped into a transition system that is used to generate a state space.
We provided an example to demonstrate semantics definition of a DSML and
verification of an assertion in one of the model checking tools (i.e., Alloy). The
activities investigated in our initial work can be summarized by the following
items:

1. mapping metamodel elements to Alloy abstract signatures,
2. mapping model elements to Alloy concrete signatures,
3. mapping graph transformation rules to Alloy predicates, and
4. mapping verification tasks to Alloy asserts.
Abstract signatures are used to define the meta-layer of the models. To

define a model layer in Alloy, these abstract signature definitions are
extended into concrete signatures. Each model element is mapped into an
appropriate concrete signature in Alloy. Behavioral specifications, which we
define by means of graph transformation rules, are mapped into Alloy
predicates. Each task defined in a semantics definition is transformed into an
Alloy predicate having two parameters, g and g‟, representing the current
state and the next state. Finally, the assertions that would be satisfied at the
final states are transformed into Alloy assert definitions.

Although our current investigation was performed manually, it
demonstrated how DSML designers can define semantic and verification
specifications using visual models. We are currently investigating how to
generalize and automate this process.

7. Conclusions

DSMLs allow end-users and domain experts to specify the core essence of a
problem using visual abstractions that are close to the problem space of a
specific domain. A key research challenge in the adoption of such modeling
languages concerns the manner in which the semantics of each DSML is
specified. Typically, the behavioral semantics of a DSML is described within
individual hard-coded model interpreters. Such a representation of the
semantics is not specified in a manner that is ameliorable to formal analysis
and generation of model-based tools. As such, the utility of a DSML is
hampered due to the lack of a single representation that formally denotes the
semantics of the language. This paper has described several research
projects that investigate and develop a formal, yet widely usable, means to
specify DSML semantics. Our future work is automatic generation of model
interpreters, simulators, debuggers and verifiers from such semantic
specifications, which would have significant impact on the current practice of
model-driven engineering in terms of automating many tasks that are currently
done ad hoc in a manual hand-crafted manner.

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 249

Acknowledgments. This work was supported in part by United States National

Science Foundation awards CAREER CPA-1052616, CCF-0811630, CCF-1018711,
HRD-0833093, OISE-0730065, and OISE-0968596, and programs by the Defense
Advanced Research Project Agency: the Evolutionary Design of Complex Systems
and Model-based Integration of Embedded Systems, by the National Science
Foundation‟s ITR program, by Boeing and General Motors through the ESCHER
initiative, and NASA‟s Robust Software Engineering program.

References

1. van der Aalst, W. M. P., ter Hofstede, A. H. M.: YAWL: Yet Another Workflow
Language. Information Systems, Vol. 30, No. 4, 245–275. (2003)

2. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The Design of a
Language for Model Transformations. Journal on Software and System Modeling,
Vol. 5, No. 3, 261–288. (2006)

3. Álvarez, J. M., Evans, A., Sammut, P.: Mapping between Levels in the
Metamodel Architecture. In: Gogolla, M., Kobryn, C. (eds.): The Unified Modeling
Language. Modeling Languages, Concepts, and Tools, Lecture Notes in
Computer Science, Vol. 2185. Springer-Verlag, New York, 34-46. (2001)

4. Baudry, B., Ghosh, S., Fleury, M., France, R., La Traon, Y., Mottu, J.-M.: Barriers
to Systematic Model Transformation Testing. Communications of the ACM, Vol.
53, No. 6, 139-143. (2010)

5. von der Beeck, M.: A Comparison of Statecharts Variants. In: Langmaack, H., de
Roever, W.-P., Vytopil, J. (eds.): Formal Techniques in Real-Time and Fault-
Tolerant Systems. Lecture Notes in Computer Science, Vol. 863. Springer-
Verlag, Berlin, 128–148. (1994)

6. Blair, G., Bencomo, N., and France, R. R.: Models @ run.time. Computer, Vol.
42. No. 10, 22–27. (2009).

7. Börger, E.: The Origins and Development of the ASM Method for High-Level
System Design and Analysis. Journal of Universal Computer Science, Vol. 8, No.
1, 2-74. (2002)

8. Burke, R. P., White, J. A.: Internet Rounds: A Congenital Heart Surgeon‟s Web
Log. Seminars in Thoracic and Cardiovascular Surgery, Vol. 16, No. 3, 283–292.
(2004)

9. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic Anchoring
with Model Transformations. In: Hartman, A., Kreische, D. (eds.): Model Driven
Architecture - Foundations and Applications. Lecture Notes in Computer Science,
Vol. 3748. Springer-Verlag, Berlin, 115-129. (2005)

10. Chen, K., Sztipanovits, J., Neema, S.: Compositional Specification of Behavioral
Semantics. In Proceedings of DATE ‟07, Design, Automation and Test in Europe,
IEEE, Nice, France, 906-911. (2007)

11. Chiorean, D., Pasca, M., Cârcu, A., Botiza, C., Moldovan, S.: Ensuring UML
Models Consistency Using the OCL Environment. Electronic Notes in Theoretical
Computer Science, Vol. 102, 99 – 110. (2004)

12. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A New Symbolic
Model Checker. International Journal on Software Tools for Technology Transfer,
Vol. 2, 2000. (2000)

13. Demirezen, Z., Mernik, M., Gray, J., Bryant, B. R.: Verification of DSMLs Using
Graph Transformation: A Case Study with Alloy. In Proceedings of the 6th

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 250

International Workshop on Model-Driven Engineering, Verification and Validation,
ACM, Denver, Colorado. (2009)

14. Deng, Y., Sadjadi, S.M., Clarke, P. J., Hristidis, V., Rangaswamy, R., Wang, Y.:
CVM - A Communication Virtual Machine. Journal of Systems Software, Vol. 81,
No. 10, 1640–1662. (2008)

15. Dinh-Trong, T T., Ghosh, S., France, R. B.: A Systematic Approach to Generate
Inputs to Test UML Design Models. In Proceedings of ISSRE ‟06, the 17th
International Symposium on Software Reliability Engineering, IEEE, Raleigh,
North Carolina, 95–104. (2006)

16. Di Ruscio, D., Jouault, F., Kurtev, I., Bezivin, J., Pierantonio, A.: Extending
AMMA for Supporting Dynamic Semantics Specifications of DSLs. Technical
Report, INRIA/LINA, http://hal.archives-ouvertes.fr/ccsd-00023008/en. (2006)

17. Ducasse, S., Girba, T., Kuhn, A., Renggli, L.: Meta-Environment and Executable
Meta-Language using Smalltalk: An Experience Report. Software and Systems
Modeling, Vol. 8, No. 1, 5-19. (2009)

18. Eker, J., Janneck, J. W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming Heterogeneity - The Ptolemy Approach,
Proceedings of the IEEE, Vol. 91, No. 1, 127-144. (2003)

19. Engels, G., Hausmann, J., Heckel, R., Sauer, S.: Dynamic Meta Modeling: A
Graphical Approach to the Operational Semantics of Behavioral Diagrams in
UML. In: Evans, A., Kent, S., Selic, B. (eds.): The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, Lecture Notes in Computer Science,
Vol. 1939. Springer-Verlag, New York, 323-337. (2000)

20. Ermel, C., Holscher, K., Kuske, S., Ziemann, P.: Animated Simulation of
Integrated UML Behavioral Models Based on Graph Transformation. In
Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing, IEEE Computer Society, Dallas, Texas, 125-133. (2005)

21. Esser, R., Janneck, J.W.: Moses - A Tool Suite for Visual Modeling of Discrete-
Event Systems. In Proceedings of the IEEE 2001 Symposia on Human Centric
Computing Languages and Environments (HCC'01), IEEE Computer Society,
Stresa, Italy, 272-279. (2001)

22. Gargantini, A., Riccobene, E., Scandurra, P.: A Semantic Framework for
Metamodel-Based Languages. Automated Software Engineering, Vol. 16, No. 3,
415-454. (2009)

23. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE
by Automatic Snapshot Generation. Journal on Software and System Modeling,
Vol. 4, No. 4, 386-398. (2005)

24. Gray, J., Tolvanen, J.P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-
Specific Modeling. In Fishwick, P. A. (ed.): Handbook of Dynamic System
Modeling, CRC Press, Boca Raton, Florida. (2007)

25. Hahn, C.: A Domain Specific Modeling Language for Multiagent Systems. In
Proceedings of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems, International Foundation for Autonomous Agents and
Multiagent Systems, Estoril, Portugal, 233-240. (2008)

26. Harel, D., Rumpe, B.: Meaningful Modeling: What's the Semantics of
"Semantics"?, Computer, Vol. 37, No. 10, 64-72. (2004)

27. Henriques, P. R., Pereira, M. J. V., Mernik, M., Lenič, M., Gray, J., Wu, H.:
Automatic Generation of Language-Based Tools using the LISA System. IEE
Proceedings Software, Vol. 152, No. 2, 54-69. (2005)

28. Jackson, D.: Alloy: A Lightweight Object Modelling Notation. ACM Transactions
on Software Engineering and Methodology, Vol. 11, No. 2, 256-290. (2002)

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 251

29. Kelly, S., Tolvanen, J-P.: Domain-Specific Modeling: Enabling Full-Code
Generation, John Wiley and Sons. (2008)

30. Knapp. A.: A Formal Semantics for UML Interactions. In: France, R. B., Rumpe,
B. (eds.): The Unified Modeling Language. Modeling Languages, Concepts, and
Tools, Lecture Notes in Computer Science, Vol. 1723. Springer-Verlag, New
York, 116–130. (1999)

31. Kosar, T., Oliveira, N., Mernik, M., Varanda Pereira, M. J., Črepinšek, M., da
Cruz, D., Henriques, P. R.: Comparing General-Purpose and Domain-Specific
Languages: An Empirical Study. Computer Science and Information Systems,
Vol. 7, No. 2, 247-264. (2010)

32. de Lara, J., Vangheluwe, H., Alfonseca, M.: Metamodelling and Graph Grammars
for Multi-Paradigm Modelling in AToM 3. Software and Systems Modeling, Vol. 3,
No. 3, 194-209. (2004)

33. Lédeczi, Á., Bakay, Á., Maróti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J.,
Karsai, G.: Composing Domain-Specific Design Environments, Computer, Vol.
34, No. 11, 44-51. (2001)

34. Lilius, J. and Porres Paltor, I. Formalising UML State Machines for Model
Checking. In: France, R. B., Rumpe, B. (eds.): The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, Lecture Notes in Computer Science,
Vol. 1723. Springer-Verlag, New York, 430–445. (1999)

35. Lin, Y., Zhang, J., Gray, J.: A Testing Framework for Model Transformations. In
Beydeda, S., Book, M., Gruhn, V. (eds.), Model-driven Software Development,
Springer, Heidelberg, Germany, 219-236. (2005)

36. Mathworks: Matlab Simulink/Stateflow Tools, http://www.mathworks.com (2010)
37. Mernik, M., Heering, J., Sloane, A. M.: When and How to Develop Domain-

Specific Languages. ACM Computing Surveys, Vol. 37, No. 4, 316-344. (2005)
38. Microsoft Corporation: The Abstract State Machine Language,

http://research.microsoft.com/en-us/projects/asml. (2010)
39. Microsoft Corporation: Windows Workflow Foundation,

http://msdn.microsoft.com/en-us/vbasic/cc506054 (2010)
40. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-

Oriented Meta-Languages. In: Briand, L. C., Williams, C. (eds.): Model Driven
Engineering Languages and Systems, Lecture Notes in Computer Science, Vol.
3713. Springer-Verlag, Heidelberg, Germany, 264-278. (2005)

41. Object Management Group. Unified Modeling Language: Superstructure, Version
2, http://www.omg.org/spec/UML/2.3. (2010)

42. Porubän, J., Forgáč, M., Sabo, M., Běhálek, M.: Annotation Based Parser
Generator. Computer Science and Information Systems, Vol. 7, No. 2, 291-307.
(2010)

43. Romero, J.R., Rivera, J.E., Durán, F., Vallecillo, A.: Formal and Tool Support for
Model Driven Engineering with Maude, Journal of Object Technology, Vol. 6, No.
9, 187-207. (2007)

44. Sadilek, D. A., Wachsmuth, G.: Using Grammarware Languages to Define
Operational Semantics of Modelled Languages. In: Oriol, M., Meyer, B. (eds.):
Objects, Components, Models and Patterns, Lecture Notes in Business
Information Processing, Vol. 33. Springer-Verlag, Heidelberg, Germany, 348-356.
(2009)

45. Scheidgen, M., Fischer, J.: Human Comprehensible and Machine Processable
Specifications of Operational Semantics. In: Akehurst, D. H., Vogel, R., Paige, R.
F. (eds.): Model Driven Architecture - Foundations and Applications, Lecture
Notes in Computer Science, Vol. 4530. Springer-Verlag, Heidelberg, Germany,
157-171. (2007)

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 252

46. Schmidt, D. C.: Guest Editor's Introduction: Model-Driven Engineering.
Computer, Vol. 39, No. 2, 25-31. (2006)

47. Shah, S., Anastasakis, K., Bordbar, B.: From UML to Alloy and Back Again. In
Proceedings of MoDeVVa ‟09, the 6th International Workshop on Model-Driven
Engineering, Verification and Validation, ACM, Denver, Colorado, USA, 1–10. (
2009)

48. Smith, G.: The Object-Z Specification Language, Kluwer Academic Publishers.
(2000)

49. Soden, M., Eichler, H.: Towards a Model Execution Framework for Eclipse. In
Proceedings of the 1st Workshop on Behaviour Modelling in Model-Driven
Architecture, ACM, Enschede, Netherlands, 1-7. (2009)

50. Sprinkle, J., Mernik, M., Tolvanen, J.-P., Spinellis, D.: Guest Editors' Introduction:
What Kinds of Nails Need a Domain-Specific Hammer? IEEE Software, Vol. 26,
No. 4, 15-18. (2009)

51. Sunyé, G., Pennaneac‟h, F., Ho, W.-M., Le Guennec, A. and Jézéquel, J.-M.:
Using UML Action Semantics for Executable Modeling and Beyond. In: Dittrich,
K. R., Geppert, A., Norrie, M. C. (eds.): Advanced Information Systems
Engineering, Lecture Notes in Computer Science, Vol. 2068. Springer-Verlag,
Heidelberg, Germany, 433-447. (2001)

52. Sztipanovits, J., Karsai, G.: Model-Integrated Computing. Computer, Vol. 30, No.
4, 110-111. (1997)

53. Varró, D.: A Formal Semantics of UML Statecharts by Model Transition Systems.
In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.): Graph
Transformation, Lecture Notes in Computer Science, Vol. 2505. Springer-Verlag,
Heidelberg, Germany, 378-392. (2002)

54. Wang, Y., Wu, Y., Allen, A., Espinoza, B., Clarke, P.J., Deng, Y.: Towards the
Operational Semantics of User-Centric Communication Models. In Proceedings
of the 33rd Annual IEEE International Computer Software and Applications
Conference, vol.1, pp.254-262. (2009)

55. Wu, H., Gray, J., Mernik, M.: Grammar-Driven Generation of Domain-Specific
Language Debuggers. Software: Practice and Experience, Vol. 38, No. 10, 1073-
1103. (2008)

56. Yu, L., France, R. B., Ray, I.: Scenario-Based Static Analysis of UML Class
Models. Model-Driven Engineering Languages and Systems. Lecture Notes in
Computer Science, Vol. 5301. Springer-Verlag, New York, 234–248. (2008)

Barrett R. Bryant is Professor and Associate Chair of Computer and
Information Sciences at the University of Alabama at Birmingham (UAB). He
received his B. S. in computer science from the University of Arkansas at
Little Rock in 1979 and his Ph. D. in computer science from Northwestern
University in 1983, after which he joined UAB. His research interests include
theory and implementation of programming languages, formal specification of
software systems, and component-based software engineering. He is a
member of EAPLS, and a senior member of ACM and IEEE.

Jeff Gray received the BSc and MSc degrees in Computer Science from
West Virginia University in 1991 and 1993, and the Ph.D. in Computer
Science from Vanderbilt University in 2002. He is currently Associate
Professor of Computer Science at the University of Alabama. Jeff's research

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 253

interests are in the general areas of software engineering and programming
languages, and in the specific areas of model-driven engineering, aspect
orientation, and software evolution. He is a member of the IEEE and ACM.

Marjan Mernik received the M.Sc. and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998, respectively. He is currently
Professor of Computer Science at the University of Maribor. He is also Visiting
Professor of Computer and Information Sciences at the University of Alabama
at Birmingham, and at the University of Novi Sad, Faculty of Technical
Sciences. His research interests include programming languages, compilers,
domain-specific (modeling) languages, grammar-based systems, grammatical
inference, and evolutionary computations. He is a member of the IEEE, ACM
and EAPLS.

Peter J. Clarke received his BSc. degree in Computer Science and
Mathematics from the University of the West Indies (Cave Hill) in 1987, MS
degree from SUNY Binghamton University in 1996 and PhD in Computer
Science from Clemson University in 2003. His research interests are in the
areas of software testing, software metrics, model-based testing, model-
driven software development and domain-specific modeling languages. He is
currently Associate Professor of Computing and Information Sciences at
Florida International University. He is a member of the ACM (SIGSOFT,
SIGCSE, and SIGAPP); IEEE Computer Society; and a member of the
Association for Software Testing (AST).

Robert France is Professor of Computer Science at Colorado State
University. His research interests are in the area of Software Engineering, in
particular formal specification techniques, software modeling techniques,
design patterns, and domain-specific modeling languages. He is an editor-in-
chief of the Springer journal on Software and System Modeling (SoSyM), a
Software Area Editor for IEEE Computer, and is a past Steering Committee
Chair of the MoDELS/UML conference series. He was also a member of the
revision task forces for the UML 1.x standards. He was awarded the Ten Year
Most Influential Paper award at MODELS in 2008.

Gabor Karsai is Professor of Electrical Engineering and Computer Science at
Vanderbilt University and a senior research scientist in the Institute for
Software-Integrated Systems at Vanderbilt. He conducts research in model-
integrated computing. Karsai received a Technical Doctorate degree in
Electrical Engineering from the Technical University of Budapest, Hungary,
and a PhD in Electrical Engineering from Vanderbilt University. He is a
member of the IEEE Computer Society.

Received: January 14, 2011; Accepted: March 11, 2011.

