
DOI:10.2298/CSIS110214013B

Software Agents: Languages, Tools, Platforms

Costin Bădică1, Zoran Budimac2, Hans-Dieter Burkhard3,
and Mirjana Ivanović2

1Software Engineering Department, Faculty of Automatics, Computers and
Electronics,

Bvd.Decebal, Nr.107, Craiova, RO-200440, Romania
badica_costin@software.ucv.ro

2 Faculty of Sciences, Department of Mathematics and Informatics
Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia

{zjb, mira}@dmi.uns.ac.rs
3Humboldt University, Institute of Informatics,

Rudower Chaussee 25, D-12489 Berlin, Germany
hdb@informatik.hu-berlin.de

Abstract: The main goal of this paper is to provide an overview of the
rapidly developing area of software agents serving as a reference point
to a large body of literature and to present the key concepts of software
agent technology, especially agent languages, tools and platforms.
Special attention is paid to significant languages designed and
developed in order to support implementation of agent-based systems
and their applications in different domains. Afterwards, a number of
useful and practically used tools and platforms available are presented,
as well as support activities or phases of the process of agent-oriented
software development.

Keywords: agent technologies, agent programming languages, agent
platforms.

1. Introduction

The metaphor of “intelligent software agents” as basic building blocks for the
development of new generation intelligent software systems triggered both
theoretical and experimental computer science research aiming to develop
new programming languages for agent systems. Fifteen years ago [64]
software agent technology has been recognized as a rapidly developing area
of research and one of the fastest growing areas of information technology.

In our opinion, the main achievement of this trend of research was the
development of new programming models that address both the basic
features of agenthood (autonomy, reactivity, proactivity and social abilities) as
well as more advanced, human-like features usually collectively coined in the
agent literature as “mental attitudes” (beliefs, desires, intentions,
commitments), following the model of “intentional systems” introduced by the
philosopher Daniel Dennett in 1971 to explain behavior of rational agents.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 256

Agent oriented technologies, engineering of agent systems, agent
languages, development tools and methodologies are an active and emergent
research area and agent development is getting more and more interesting.
There are many approaches, theories, languages, toolkits, and platforms of
different quality and maturity which could be applied in different domains.

Our motivation and the main goal of the paper are to bring a survey in the
field of agent technology and to cover different aspects of agents. Agents,
agent-oriented programming (AOP), and multi-agent systems (MAS) introduce
new and unconventional concepts and ideas. Still, there is a number of
definitions of the term ‘agent’ that include a property common to all agents:
agent acts on behalf of its user, as well as a lot of additional properties: agent
communicates with other agents in a multi-agent system; acts autonomously;
is intelligent; learns from experience; acts proactively as well as reactively; is
modeled and/or programmed using human-like features (beliefs, intentions,
goals, actions, etc.); is mobile, and so on.

After more than two decades of scientific work in the field, the challenge is
to include agents in real software environments and widely use the agent
paradigm in mainstream programming. One way to facilitate this is to provide
agent-oriented programming languages, tools and platforms.

Pioneering work is done by the Foundation for Intelligent Physical Agents
(FIPA). “FIPA was originally formed as a Swiss based organization in 1996.
Since its foundations, FIPA has played a crucial role in the development of
agents standards and has promoted a number of initiatives and events that
contributed to the development and uptake of agent technology. Furthermore,
many of the ideas originated and developed in FIPA are now coming into
sharp focus in new generations of Web/Internet technology and related
specifications." (cf. [116]). Since 2005, FIPA is the standards organization for
agents and multi-agent systems of the IEEE Computer Society standards
organization.

Our recent overview of the agent programming literature revealed a
number of trends in the development of agent programming languages. These
trends follow the main achievements of computer science disciplines that are
traditionally directly connected to multi-agent systems, i.e. formal methods,
object-oriented programming, concurrent programming, distributed systems,
discrete simulation, and artificial intelligence. Adding on top of that the
metaphor of “humanized agents” with roots in psychology research, by
regarding them as intentional systems that are endowed with mental states,
we can get a panoramic view of the current status of the world of agent
programming languages, tools and platforms. The whole paper or some
sections of it could be extremely useful and give more insights into the domain
for a wide range of readers. PhD students and young researchers can find
plenty of useful information and state-of-the-art in the domain of available
languages and platforms for programming software agents. Professionals in
different companies who are willing to apply this new, promising technology in
everyday programming and implementation of real world applications based
on agent technology, could find the paper very helpful. Undergraduate
students who like to widen their traditional knowledge and be introduced to

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 257

modern trends in programming can use it as an additional reading material.
Moreover, all of them can find a valuable source of references and
suggestions for further reading.

The rest of the paper is organized as follows. The second section attempts
to give an overview of all essential notions, issues and concepts related to
agents and agent technology which are used in other chapters of the paper.
Thereinafter, it makes the distinction between single agent and multi-agent
systems, goes through the broad spectrum of agent properties, discusses the
most acknowledged classifications of software agents, presents the most well-
known agent architectures, and explores the two most important agent
communication approaches. Section three lists and discusses standard
languages and several prototype languages that have been proposed for
constructing and implementing agent-based systems. Afterwards, section four
presents a number of tools and platforms that are available to support
activities or phases of the process of agent-oriented software development.
The last chapter gives some concluding remarks.

2. What is a software agent?

2.1. Introduction

Over the last years, many researchers in different fields have proposed a
large variety of definitions for the term “agent”. The common understanding is
that it is an entity which “acts autonomously on behalf of others”. Even if we
restrict ourselves to computer science, there are a lot of different definitions
and a lot of different fields where agents are used. It started 30 or more years
ago in (Distributed) Artificial Intelligence. With the arrival of the Internet and
with the dissemination of computer games, the notion of agents has become
broadly used even by non-experts, e.g. for electronic marketing, assistance
systems, search engines, chatter bots etc, or as constituents of larger
software projects. For the latter ones, it is useful to distribute the overall tasks
to autonomous entities and to organize a framework of cooperation and
interaction in a multi-agent system. Agents are typical inhabitants of open
systems like the Internet. Open systems have been characterized by Hewitt
[58] already in the 80’s as systems with continuous availability, extensibility,
modularity, arm-length relationships, concurrency, asynchronous work,
decentralized control, and inconsistent information.

Michael Coen [126] puts very small restrictions on a program to be
considered as an agent: "... programs that engage in dialogs and negotiate
and coordinate transfer of information." In the IBM [127], intelligent agents are
defined as: "...software entities that carry out some set of operations on behalf
of a user or another program with some degree of independence or
autonomy, and in so doing, employ some knowledge or representation of the
user's goals or desires.". The Software Agents Group at MIT [128] compares

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 258

software agents to conventional software and emphasizes the following
differences: "Software agents differ from conventional software in that they
are long-lived, semi-autonomous, proactive, and adaptive.". More detailed is
the so-called “weak notion of agency” by Wooldridge and Jennings [104],
[105]. They define an agent as "... a hardware or (more usually) software
based computer system that enjoys the properties:
− autonomy: agents operate without the direct intervention of humans or

others, and have some kind of control over their actions and internal state;
− social ability: agents interact with other agents (and possibly humans) via

some kind of agent-communication language;
− reactivity: agents perceive their environment (which may be the physical

world, a user via a graphical user interface, a collection of other agents, the
Internet, or perhaps all of these combined), and respond in a timely fashion
to changes that occur in it;

− proactiveness: agents do not simply act in response to their environment,
they are able to exhibit goal-directed behavior by taking the initiative.
A definition in the sense of “strong notion of agency” is [105]: "An agent is a

computer system that, in addition to having the properties identified in the
definition of weak agent, is either conceptualized or implemented using
concepts that are more usually applied to humans (knowledge, obligations,
beliefs, desires, intentions, emotions, human-like visual representation, etc.)."

The “strong notion of agency” corresponds to the usage in the field of
artificial intelligence (AI). These systems are often specified using human
mental categories: beliefs, plans, goals, intentions, desires, commitments, etc.
Shoham [90] claims that the use of mental categories in agent specification is
justified only under the following conditions:
− mental categories are precisely defined using some formal theory,
− agent has to obey that theory,
− every mental category used in an agent specification has to give some

benefit.
A collection of various agent definitions, based on the weak notion of

agency, can be found in [52]. It is not the aim of this paper to give a unique
definition of an agent. Instead, the reader will find that the different tools
presented in the rest of the paper correspond to different notions. Some more
relevant concepts are introduced in the following sections.

2.2. Agent Classification and Architectures

General classifications in the agent community [105] distinguish between
reactive architectures and deliberative architectures. Reactive architectures
are considered as simple controls, while deliberative architectures implement
complex behavior including mental attitudes (goals etc.) and planning, based
on symbolic representations and models. Hybrid architectures are
combinations of both reactive control on the “lower level” for fast responses
and deliberative control on the “higher level” for long-term planning.

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 259

 A technologically better classification addresses the possible “states” of an
agent, similar to the approach given in [86]. A state is a snapshot of the
system (e.g. the content of the memory) at a certain time point on a discrete
time scale. Transitions describe the state changes between two time points.
For agents, the time scale is usually chosen according to the sense-think-act-
cycle. This cycle consists of
− processing incoming information (“sense”, e.g. parsing messages from

other agents, analyzing human requests, possibly in natural language etc.)
− more or less complex decision procedures (“think”, e.g. by simple decision

or rules, or by deliberation, planning etc.)
− sending outgoing information (“act”, sending messages to other agents,

preparing answers in a human-like style etc.).
An internet agent may in one cycle get a customer request, update its

database and send an answer. The state is the content of the database at the
end of this cycle. An agent may have different cycles at different time scales:
A search engine may answer search requests more frequently than its index
machine gets updated. “This creates a need for synchronization efforts which
can be facilitated e.g. by different layers.”

A behavior (architecture) is called stimulus-response behavior if there are
no different states at all. The response of the agent to an input is always the
same (if there is some probabilistic component, then the distribution is the
same). It can be produced e.g. by a fixed set of rules, by an input-output table
or by a neural network. It doesn’t matter if the response routine is a simple or
a complex one. A search engine may perform extensive search over large
databases and a lot of effort to rank the results. If nothing is stored after
answering, then the same calculations yielding an identical answer will be
performed every time for the same request.

If the responses of an agent to identical requests are different, then they
depend on the state of the agent. The search engine may maintain profiles of
its users such that the answers depend on the stored profiles. The profile is
updated every time the user makes a request, i.e. the state of the agent is
changed. It is useful to distinguish between different kinds of states according
to their contents:

The so-called belief or world model stores internal representations about
the situation in the environment for later usage. It is updated according to the
sensor inputs. It is called belief because it needs not to be true knowledge
(e.g. the profile of a user calculated only by the available user inputs needs
not represent her or his true preferences).

Future directed states are created by “mental attitudes” related with
decision processes. They are named as goals, plans etc., and they guide the
future deliberation and actions (towards a formerly chosen goal). A trading
agent may have the goal of an optimal transaction. For that, it may develop a
plan for searching appropriate offers from databases and for negotiation with
other agents.

As introduced above, agents are called “stimulus-response” if they do not
have states. Nevertheless, their decision procedures might be very complex,
e.g. in complex information systems. Agents with states may have a world

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 260

model (belief) and/or future-directed state components like goals and plans.
Their deliberation process considers updates of the world model and
commitment procedures for selecting goals and constructing plans. Actually, it
is up to the programmer to decide if mental notions are used for data
constructs. Sometimes, very simple agents come with mental attitudes. There
is nothing wrong with it if it helps for better understanding.

The popular BDI architecture is inspired by the work of the philosopher [16].
BDI stands for belief, desire and intention. Belief describes the world model as
above, while desires and intentions are future-directed mental notions.
Bratman argues that the mental notion of goals is not sufficient to express
complex future-directed behavior. A rational agent should adopt only goals
which it believes to be achievable, i.e. not in conflict with the belief and not in
conflict with each other. However, before committing to a goal, the agent may
have different desires, which may be in conflict. A human may at the same
time have conflicting desires, e.g. go to home, to be at the beach, to ride a
bicycle, and to drive a car. Then he has to make a commitment, to choose
which desires to adopt as intentions. Rational behavior demands to select
only non conflicting options, e.g. to go by bicycle to the beach.

In BDI architectures, desires are used as preliminary stages of possible
intentions: first the agent collects desirable options, and then it selects some
of them as intentions e.g. through ranking, while avoiding conflicts between
intentions. Then it performs appropriate actions to achieve the intentions.

Not all the so-called BDI-architectures really implement Bratman’s ideas. In
some cases, the agent simply selects a single desire and calculates an
appropriate action sequence (called intention) which fulfills this desire. In such
a case, a desire is in fact a goal, and the intention is the related plan to
achieve the goal.

A lot of theoretical work using multimodal temporal logics has been
performed for the foundation of deliberative agent controls and some of them
resulted in executable formalisms like MetateM ([48]).

2.3. Robots and Software Agents

Robots are often considered as hardware controlled by a software agent
acting as the brain. The sensors and actuators of the robot provide the input
and output for the agent. This works well in simple settings, but it poses
problems for more complex robots in real environments. Control of such
robots is more than information processing: parts of such robots coordinate
not only by messages, but by physical interactions too. It is very difficult or
even impossible to model the physical dependencies in terms of information
processing. However, those relations can be used directly by clever design.
Modern robotic approaches are inspired by biology and use local sensor-actor
loops, etc. “The key observation is that the world is its own best model. It is
always exactly up to date. It always contains every detail there is to be known.
The trick is to sense it appropriately and often enough.” [109] This paradigm is
known as behavioral robotics, biologically inspired robotics etc.

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 261

Related robot controls are able to perform surprisingly complex tasks. Their
behavior emerges from the physical situatedness of an embodied entity. An
approach that exploits situated automata is described in [66]. Pattie Maes [72]
has developed an agent architecture that is composed of modules organized
into a network. The Subsumption Architecture, based on behaviors, is the
best-known architecture of this kind. Brooks built many robots (based on four
principles) using an AI approach [25], [26]:
− Situatedness - The robots are situated in the world.
− Embodiment - The robots have bodies and experience the world directly -

their actions are part of a dynamics with the world and have immediate
feedback on their own sensations.

− Intelligence - They are observed to be intelligent - but the source of
intelligence includes: computational engine, situation in the world, the
signal transformations within the sensors, and the physical coupling of the
robot with the world.

− Emergence - The intelligence of the system emerges from the system's
interactions with the world and from sometimes indirect interactions
between its components.
A behavior is implemented as a simple state machine with few states (not

representations of the outside world). Behaviors can overwrite each other
(subsumption). Brooks' robots built from connected behaviors are capable of
performing some complex tasks with relatively simple programming [24].
Maes has shown that the same ideas can also be exploited in the design of
software agents [73]. The behavioral agent architectures are sometimes
considered as prototypes of reactive architectures [105]). While single
behaviors are simple, their hierarchical combination into a more complex
behavior becomes more and more complicated. Because of that, the hybrid
architectures combine low-level approaches with classical reasoning
approaches in hierarchical architectures. Such architectures may consist of
several levels, where low levels can use behavioral (and possibly
subsymbolic) architectures, and higher levels are usually deliberative
(symbolic) ones. Symbolic modeling becomes necessary when sensing does
not give enough information, or when planning is really needed.

Because of the “physics in the loop”, the assumptions usually connected
with software agents are not fulfilled: Physical components do not behave like
objects (or agents). This difference is recently stressed by the investigation of
so-called Cyber Physical Systems [110], which are considered as distributed
systems where the components perform information processes as well as
physical processes. The interaction between the components is of physical
and computational nature, as well.

2.4. More Features of Agents

Depending on different usages of agents, they can have a lot of different
features. Such features are often used for classification as well. We have
already discussed different basic architectures. Next we describe mobility,

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 262

size intelligence and ability to adapt and to learn. Relations to other agents
are described later in the section on Multi-Agent Systems. A collection of
agent features will be given in table 1.

Mobility - Agents can be static or mobile. Static agents are permanently
located at one place, while mobile agents can change their location. When a
static agent wants some action to be executed at a remote site, it will send a
message to an agent at that location with the request for the action. In a
similar situation, a mobile agent would transmit itself to the remote site and
invoke the action execution. There are a lot of benefits from usage of mobile
agents [27] but if we wanted to get all of these benefits without a mobile
agent, we would need a large amount of work and it would be practically
almost impossible [1]. The advocated utility of mobile agents is to support
optimization of sophisticated operations that may require strong interactivity
between components or special computing facilities as encountered e.g. in
negotiation, network management and monitoring, and load balancing for
scientific computing. Mobility of software agents is closely related to the
problem of code mobility in distributed programming with applications in
operating systems and computer networks. Some problems related with
mobile agents concern security and safety. A good overview of code mobility
paradigms can be found in the reference paper [53].

Size and Intelligence - Agents can be of various sizes and can possess
various amounts of intelligence. Generally, intelligence of a software agent is
proportional to its size, so we can distinguish: big-sized, middle-sized and
micro agents. It is difficult to make clear boundaries among these categories.
1. A big-sized agent occupies and controls one or more computers. It

possesses enough competence to be useful even if it acts alone, without
the other agents in a MAS. A big-sized agent can be as big and as
intelligent as an expert system [63] with competences for expert problem
solving, e.g. distributed medical care or plane ticket reservation.

2. A middle-sized agent is the one that is not useful without the other agents
in a MAS or without additional software [6], [7], [8]. However, it is able to
perform some non-trivial task(s). A user-interface agent that acts without
other agents and performs some simple actions can also be classified as a
middle-sized agent. Mobile agents are usually middle-sized agents.

3. Micro agents (also called the Society of Mind agents) [77] do not possess
any intelligence. Minsky followed the idea that the intelligence emerges as
a global effect of the overall activity of many simple and unintelligent
agents.
Adaptation – Adaptive agents can adapt their behavior to different

situations and changes in the environment. For example, a navigation system
can adapt to changes in traffic (e.g. a traffic jam) and propose alternative
routes. This makes adaptive agents more robust to non-predicted changes in
a dynamic environment.

Learning - Agents can use learning capabilities for better performance.
Learning can be done online, e.g. by data mining from data which are
constantly collected through interaction with users (e.g. for profiles). Offline

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 263

learning refers to training processes (e.g. for pattern recognition) prior to
productive agent usage.

Agents may possess many features in various combinations. The following
table is a slightly modified collection from [54]:

Table 1. Agent’s features

Adaptivity Agents can adapt to unpredicted changes.
Autonomy An agent can act without direct intervention by humans

or other agents and that it has control over its own
actions and internal state

Benevolence It is the assumption that agents do not have conflicting
goals and that every agent will therefore always try to
do what is asked of it.

Character
(personality)

An agent has a well-defined, believable "personality"
and emotional state.

Competitiveness An agent is able to coordinate with other agents
except that the success of one agent may imply the
failure of others.

Cooperation or
collaboration

An agent is able to coordinate with other agents to
achieve a common purpose; non-antagonistic agents
that succeed or fail together.

Coordination An agent is able to perform some activity in a shared
environment with other agents. Activities are often
coordinated via plans, workflows, or some other
process management mechanism.

Credibility An agent has a believable personality and emotional
state.

Deliberation A deliberative agent decides for its actions by
reasoning processes which may involve mental
categories like goals, plans etc.

Embodiment An embodied agent can interact with its environment
by physical processes. This allows for emergent
controls guided by sensor data without internal
representations.

Emergent behavior More complex behavior emerges by interaction of
(simple) agents with each other (swarm intelligence) or
with the environment (embodied agents, situated
agents).

Flexibility The system is responsive (the agents should perceive
their environment and respond in a timely fashion to
changes that occur in it), pro-active and social.

Goal directed Agent behavior is guided by mental qualities like goals,
which are results of deliberation. Then the agent tries
to achieve the goal by appropriate actions.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 264

Hybrid
architecture

Combination of different architectures. Often with
simple (reactive, stimulus response) control for low
level behavior and deliberative control for high level
behavior.

Inferential
capability

An agent can act on abstract task specification using
prior knowledge of general goals and preferred
methods to achieve flexibility; goes beyond the
information given, and may have explicit models of
self, user, situation, and/or other agents.

Intelligence An agent’s state is formalized by knowledge and the
agent interacts with other agents using symbolic
language.

Interpretation
ability

An agent is interpretive if it can correctly interpret its
sensor readings.

“Knowledge-level”
communication
ability

The ability to communicate with persons and other
agents with language more resembling human-like
“speech acts” than typical symbol-level program-to-
program protocols.

Learning An agent is capable of learning from its own
experience, its environment, and interactions with
others.

Mobility an agent is able to transport itself from one machine to
another and across different system architectures and
platforms.

Prediction ability An agent is predictive if its model of how the world
works is sufficiently accurate to allow it to correctly
predict how it can achieve the task.

Proxy ability An agent can act on behalf of someone or something
acting in the interest of, as a representative of, or for
the benefit of, some entity.

 Personality
(character)

An agent has a well-defined, believable "personality"
and emotional state.

Proactiveness An agent does not simply act in response to its
environment; it is able to exhibit goal-directed behavior
by taking the initiative.

Rationality It is the assumption that an agent will act in order to
achieve its goals, and will not act in such a way as to
prevent its goals being achieved — at least insofar as
its beliefs permit.

Reactivity An agent receives some form of (sensory) input from
its environment, and it performs some action that
changes its environment in some way.

Resource limitation An agent can only act as long as it has resources at its
disposal. These resources are changed by its acting
and possibly also by delegating.

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 265

Reusability Processes or subsequent instances can require
keeping instances of the class ‘agent’ for an
information handover or to check and to analyze them
according to their results.

Ruggedization An agent is able to deal with errors and incomplete
data robustly.

Sensor-actor
coupling

Agents act by (direct) connections between sensors
and actors. This can be used for reactive controls.

Situatedness An agent (robot) is situated in its environment. Its
behavior can be guided by physical interactions (e.g.
sensor-actor coupling). This can be an efficient
alternative to control using internal representations.

Social ability An agent interacts and this interaction is marked by
friendliness or pleasant social relations; that is, the
agent is affable, companionable or friendly.

Sound An agent is sound if it is predictive, interpretive and
rational.

Stimulus
response

A stimulus response agent has no internal state. It
means that its responses are equal for equal inputs.

Temporal
continuity

An agent is a continuously running process, not a
"one-shot" computation that maps a single input to a
single output, then terminates.

Transparency
and accountability

An agent must be transparent when required, but must
provide a log of its activities upon demand.

Trustworthiness An agent adheres to laws of robotics and is truthful.
Unpredictability An agent is able to act in ways that are not fully

predictable, even if all the initial conditions are known.
It is capable of nondeterministic behavior.

Veracity It is the assumption that an agent will not knowingly
communicate false information.

2.5. Multi-Agent Systems and Agent Communication

“Distributed Problem Solving” is performed by agents working together
towards a solution of a common problem (e.g. for expert systems) [12]. Multi-
Agent Systems (MAS) take a more general view of agents which have contact
with each other in an environment (e.g. the Internet) [13]. The rules of the
environment as well as the agent controls determine the form of coordination.
The agents may be cooperative or competitive. Relations between local and
global behavior in such MAS have been studied using game theory and social
theories (cf. [101]).

Communication via exchange of messages is the usual prerequisite for
coordination. Nevertheless, cooperation is possible even without
communication, by observing the environment. The two most important
approaches to communication are using protocols and using an evolving

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 266

language [28]. Both have their advantages and disadvantages. For industrial
applications, communication protocols are the best practice, but in systems
where homogeneous agents can work together, language evolution is the
more acceptable option [28]. Agent Communication Languages (ACLs)
provide important features like technical declarations (sender, receiver,
broadcasting, peer-to-peer, …), speech act (query, inform, request,
acknowledge,…) and content language (e.g. predicate logic). Together with
these features, related protocols are defined to determine the expected
reactions to messages (e.g. an inform message as an answer to query
message). A number of languages for coordination and communication
between agents was enumerated in [102]. The most prominent examples
[102] are given in Table 2.

Table 2. Languages for coordination and communication between agents.

Agent communication
language

Description

KQML (“Knowledge
Query and Manipulation
Language”)

It is perhaps the most widely used agent
communication language [102], [45]. KQML uses
speech-act performatives such as reply, tell, deny,
untell, etc. Every KQML message consists of a
performative and additional data written in several
slots. Some slots are :content, :in-reply-to,
:sender, :receiver, :ontology, etc. The set of
performatives in KQML and their slots should be
general enough to enable agent communication in
every agent application. There are claims that
there might be some problems with the semantics
of performatives. Various agents may interpret the
same performative in various ways.

FIPA-ACL (“FIPA Agent
Communication
Language”)

It is an agent communication language that is
largely influenced by ARCOL [102]. FIPA ACL has
been defined by FIPA - Foundation for Intelligent
Physical Agents. Together FIPA-ACL [47],
ARCOL, and KQML establish a quasi standard for
agent communication languages [102]. Syntax
and semantics of FIPA ACL are very similar to the
syntax and semantics of KQML. Time will show
which one of these two standards will prevail.

ARCOL (“ARTIMIS
COmmunication
Language”)

ARCOL has a smaller set of communication
primitives than KQML, but these can be
composed. This communication language is used
in the ARTIMIS system [102].

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 267

KIF (“Knowledge
Interchange Format”)

This logic-based comprehensive language with
declarative semantics has been designed to
express different kinds of knowledge and meta-
knowledge [102]. KIF is a language for content
communication, whereas languages like KQML,
ARCOL, and FIPA-ACL are for intention
communication.

COOL (“Domain
independent
COOrdination
Language”)

COOL relies on speech-act based
communication, aims at explicitly representing
and applying coordination knowledge for multi-
agent systems and focuses on rule-based
conversation management (conversation rules,
error rules, continuation rules, …) [102].
Languages like COOL can be considered as
supporting a coordination/communication (or
“protocol-sensitive”) layer above intention
communication.

Contract Net Protocols and Blackboard Systems are well understood

mechanisms for organizing MAS. Contract Net Protocols organize the
distribution of tasks to other agents by announcing tasks, receiving bids from
other agents and choosing one of the bidding agents for execution.
Blackboard systems provide a common active database (the blackboard) for
information exchange.

MAS with many agents are often used for simulations to study Swarm
Intelligence and for social simulations in the field of Socionics. Social
simulations include simulations of financial markets, traffic scenarios, and
social relationships. Swarm intelligence can lead to complex “intelligent”
behavior which emerges from the interaction of very simple agents, e.g. in ant
colonies or in trade simulations. Complex problems, e.g. the well-known
travelling salesman problem can be solved with swarm techniques.

3. Languages for constructing Agent-based systems

An essential component of agent-based technology and implementation of
agent-based systems is a programming language. Such a language, called an
agent-oriented programming language, should provide developers with high-
level abstractions and constructs that allow direct implementation and usage
of agent-related concepts: beliefs, goals, actions, plans, communication etc.

Most agent systems are still probably written in Java and C/C++ [102].
Although traditional languages are not well-suited for agent systems, it is
achievable to implement them in Pascal, C, Lisp, or Prolog languages [79].
Typically, object-oriented languages (Smalltalk, Java, or C++) are easier to
use for realization of agent systems as agents share some properties with
objects such as encapsulation, inheritance and message passing but also

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 268

differ definitely from objects vis-à-vis polymorphism [79]. Apart from these
standard languages, several prototype languages for implementing agent-
based systems have been proposed to support better realization of agent-
specific concepts.

Devising a sound classification and analysis methodology for agent
programming languages is a very difficult task because of the highly-
dimensional and sometimes interdependent heterogeneous criteria that can
be taken into account, e.g. computational model, programming paradigm,
formal semantics, usage of mental attitudes, architectural design choices,
tools availability, platform integration, application areas, etc. Therefore, here
we take a more pragmatic approach by firstly proposing a light top-level
classification that takes into account those aspects that we consider most
relevant for agent systems, i.e. the usage of mental attitudes. According to
this classification we find: agent-oriented programming (AOP) languages;
belief-desire-intention (BDI) languages, hybrid languages (that combine AOP
and BDI within a single model), and other (prevalently declarative) languages.
Understanding the current state of affairs is an essential step for future
research efforts in the area of developing agent-oriented programming
languages.

Table 3 (at the end of the paper) brings summary and specific information
for all agent languages presented in the paper that we managed to collect
from different sources: Web Page, IDE, Implementation language, Agent
platform integration, Applications, Paradigm, and Textbook.

3.1. Agent-oriented programming model

The term Agent-oriented Programming (AOP) was coined in [90] to define a
novel programming paradigm. It represents a computational framework whose
central compositional notion is an agent, viewed as a software component
with mental qualities, communicative skills and a notion of time. AOP is
considered to be a specialization of object-oriented programming (OOP), but
there are some important differences between these concepts ([107], [90]).
Objects and agents differ in their degree of autonomy. Unlike objects, which
directly invoke actions of other objects, agents express their desire for an
action to be executed. In other words, in OOP the decision lies within the
requesting entity, while in AOP the receiving entity has the control over its
own behavior, by deciding whether an action is executed or not. Also, agents
can often have conflicting interests, so it might be harmful for an agent to
execute an action request from another agent. An additional difference is
flexibility. Agents often exhibit pro-active and adaptive behavior and use
learning to improve their performance over time. The thread of control is the
final major difference. While multi-agent systems are multi-threaded by
default, there is usually a single thread of control in OOP.

An important part of the AOP framework, as described in [90], is a
programming language. Agent-orient Programming Language (APL) is a tool
that provides a high-level of abstraction directed towards developing agents

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 269

and incorporates constructs for representing all the features defined by the
framework. Most of all, it should allow developers to define agents and bind
them to specific behaviors [87]; represent an agent’s knowledge base,
containing its mental state; and allow agents to communicate with each other.

The AOP paradigm was very influential for the further development of
agent programming languages, resulting in a number of languages.

AGENT0

AGENT0 (see Table 3) [90], [107] and [9], was the first agent-oriented
programming language that has been developed, providing a direct
implementation of the agent-oriented paradigm. Although being more of a
prototype than a “real” programming language, it gives a feel of how a large-
scale system could be built using the AOP concept.

In AGENT0, an agent definition consists of four parts: a set of capabilities
(describing what the agent can do), a set of beliefs, a set of commitments or
intentions, and a set of commitment rules containing a message condition, a
mental condition and an action [107]. Agents communicate with each other
through an exchange of messages which can be one of three different types:
(1) a request for performing an action, (2) an “unrequest”, for refraining from
an action, and (3) an informative message, used for passing information.
Usually, requests and unrequests result in agent’s commitments being
modified, while an inform message results in a change in agent’s beliefs.
Furthermore, a message can be private, corresponding to an internally
executed subroutine, or public, for communication with other agents in the
environment. These messages can alter agent’s beliefs and commitments, i.e.
its mental state. A crucial task is, therefore, to maintain the agent’s mental
state in a consistent form. As proposed in [90], there are three different ways
of achieving this: 1) Using formal methods and mathematical logic; 2)
Heuristic methods; 3) Making the language for mental space description as
simple as possible, thus enabling trivial verification (the solution applied in
AGENT0). Shoham [90] proposes the model for agent execution using a
simple loop, which every agent regularly iterates: 1) Read the current
messages, and, if needed, update set of beliefs and commitments; 2) Execute
all commitments for the current cycle. This can result in further modifications
of beliefs.

PLACA

Planning Communicating Agents - PLACA (see Table 3) is an improvement of
the AGENT0 language, extending it with planning facilities, which significantly
reduce the intensity of communication ([95], [9]). In PLACA, an agent doesn’t
need to send a separate message each time it requests another agent to
perform some action. Instead, it can provide another agent with a description
of the desired final state. After checking the rule conditions are satisfied, as

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 270

well as by using its planning abilities, the receiving agent presents to the
sender a plan of actions to execute in order to reach the desired state. This
means that the agents communicate requests for actions via high-level goals.

The logical component of PLACA is similar to that of AGENT0, but it
includes operators for planning. Due to introduction of plans, mental
categories and syntax in PLACA are a bit different than those in AGENT0. If a
received message satisfies the message condition and if the current mental
state of the receiving agent satisfies the mental condition, then the agent’s
mental state will be changed and the agent will send appropriate messages.

PLACA, as AGENT0, is an experimental language, not designed for
practical use.

Agent-K

Agent-K (see Table 3) is another extension of the AGENT0 [35]. It replaces
custom communication messages (i.e. request, unrequest and inform) with
the standardized KQML. This improves the general interoperability of agents
and enables them to communicate with different types of agents (that employ
KQML as well). It doesn’t, however, include the improvements brought by
PLACA. Merging of the two concepts is achieved by modifying the AGENT0
interpreter to handle KQML messages. Since the interpreter is implemented in
Prolog, an intermediate level was introduced to convert the Lisp-style format
of KQML messages into an unordered Prolog list of unary predicates. In
addition, this layer transforms textual parts of a KQML message into tokens
that can be handled by the interpreter. The interpreter has been modified to
include these changes and to allow multiple actions to occur at the same time,
i.e. when there is a match between an incoming message and multiple
commitment rules. Because of that, each Agent-K agent is a separate process
with its own instance of the interpreter.

As an addition, Agent-K uses the KAPI1 library for agent communication,
which can transport KQML messages over TCP/IP and e-mail to remote
systems. Although the integration with KQML should improve the
interoperability of agents, this was not fully achieved [35] because Agent-K
uses Prolog to encode agents’ beliefs and commitments (thus restricting the
communication to other Prolog-based agents only). Authors of the language
propose another language for knowledge representation, (e.g. KIF), to be
used.

MetateM

The Concurrent MetateM, currently called simply MetateM (see Table 3), [14],
[15] is probably one of the oldest programming languages for multi-agent
systems. It was based on the direct execution of logical formulae [49], [106].

1 The KAPI library is provided by Jay Weber, EIT

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 271

MetateM has its roots in formal specification using temporal logic by bringing
in the idea of executable temporal specifications. Therefore, it can be equally
well described as a temporal logic programming language that is based on
temporal rather than on first-order logic.

A MetateM agent program consists of a set of temporal rules that are built
according to the paradigm: declarative past and imperative future. Intuitively
this means that: (i) the conditional part of the rules is interpreted declaratively
by matching it with the history of the agent execution, i.e. what is true in the
current state of the agent and what was true in the past states of the agent,
and (ii) the execution part of the rules represents the choices that the agent is
facing in the next state, as well as in future states. So, intuitively, the
execution of a MetateM program is in fact the process of building a concrete
model of the program specification using a forward chaining algorithm.

The current implementation of MetateM [123] is based on Java and it
supports asynchronous and concurrent execution of multiple agents that are
able to exchange messages such that each message sent is guaranteed to
arrive at a future moment in time. Moreover, MetateM supports a dynamic
structuring of agents based on two sets of agents that are associated with
each agent in the system: (i) the content set representing those agents that
the current agent can control, and (ii) the context set representing those
agents that can influence the current agent. This style of grouping allows
efficient agent communication using multicast messages [50].

April and MAIL

Agent PRocess Interaction Language - April (see Table 3) [74] is a process-
oriented symbolic language that was not designed specifically for agent-
oriented programming, but rather as a general-purpose multi-process
development tool. Nevertheless, it provides the necessary infrastructure for
developing and employing simple agents. The main entity in an April system
is a process, which represents an agent in the multi-agent paradigm. An agent
is identified by its private or public handle. Private handles are accessible
within the system only, while the public handles are available to agents in
other systems as well. Public handles are registered in the system’s name
server and as such can be found from other systems connected to it. These
inter-connected name servers allow one to build a global April application.

April has a simple communication infrastructure that uses TCP/IP and
permits access to non-April based applications. Agents communicate by
exchanging messages identified by their handles. If two agents send a
message to a third agent, the April system cannot guarantee that they will
arrive in the order of transmission, since there is no global synchronization
clock. What can be assured is that if one agent sends n messages to another,
they will arrive in the order they were sent, but it is not always possible to
determine how much time an operation will take to execute. Therefore, “April
is not particularly suitable for time-critical real-time applications” [74].

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 272

A powerful feature offered by April is macro, which gives developers the
ability to define new language constructs, based on the existing ones. One of
the main purposes of macros was to serve as tools for developing new, richer
and more agent-oriented languages on top of April. Concepts as messages
based on a particular speech-act, agent mobility, knowledge handling etc. can
also be simulated [74]. Authors of April intended to include these extensions
in a more developer-friendly manner and to create a new agent-oriented
programming language called MAIL. MAIL as a high level language was
intended for realization of many common MAS. First version of April and MAIL
specification was the subject of an ESPRIT project and April had to serve as
implementation language for MAIL, in fact as the intermediary between C and
MAIL. MAIL was prototyped using IC-Prolog II (distributed logic programming
system). Funding for the project was cancelled before it was implemented.

VIVA

VIVA (see Table 3) [98], an agent-oriented declarative programming
language, was based on theory of VIVid agents introduced by same author. A
VIVid agent is a software-controlled system with state expressed in a form of
beliefs and intentions (as mental categories) and with behavior represented
by action and reaction rules. Its basic functionality covered possibility to
represent and perform actions in order to generate and execute plans. VIVA
was in accordance with agent-oriented programming paradigm, but it was
slightly conservative as it adopted as many concepts as possible from Prolog
and SQL. The basic design principles of VIVA apart from conservativeness
were scalability and versatility [98].

An agent specified in VIVA could run on a number of hosts with the same
or different hardware/software architectures. The composition of MAS and the
locations of participating agents had to be specified before a VIVA application
could run.

The language was intended for general-purpose software agent
programming, embedded systems and robots but has not fulfilled
expectations of the authors to be widely used in MAS.

GO!

Multi-paradigm programming language GO! (see Table 3) [32] is conceptually
similar to April. It combines OOP, concurrent, logic and functional paradigms
into a single framework. Based on April, GO! brings following extensions:
knowledge representation features of logic programming, yielding a multi-
threaded, strongly typed and higher order language (in the functional-
programming aspect) [21]. In inheritance from April, threads primarily
communicate through asynchronous message passing. Threads, as executing
action rules, react to received messages using pattern matching and pattern-
based message reaction rules. A communication daemon enables threads in

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 273

different GO! processes to communicate transparently over a network. Each
agent usually can encompass several threads directly communicating with
threads in other agents. Threads within a single GO! process can also
communicate by manipulating a shared cell or dynamic relation objects.

As a strongly typed language it can improve code safety as well as reduce
the programmer’s burden. New types and new data constructors can be easily
added. The designers of the language have had in mind critical issues like
security, transparency and integrity, in regards to adoption of the logic
programming essence. Features of Prolog like the cut (‘!’) have been left out
for obvious reasons. In Prolog, the same clause syntax is used for defining
relations (declarative semantics), and for defining procedures (operational
semantics). In GO!, however, behavior is described using action rules
expressed in a specialized syntax.

3.2. BDI based languages

A significant and influential trend in designing agent programming languages
stemmed from the success of the practical reasoning agent architectures,
among which the most notable is probably the PRS – Procedural Reasoning
System [55]. PRS became the first system embodying a belief, desire, and
intention (BDI) architecture. Based on that, approximately around the same
time with Shoham, Rao proposed the AgentSpeak(L) language [83].
AgentSpeak(L) employs the metaphors of belief, desire, and intention of the
BDI architecture to shape the design of an innovative agent programming
language. However, AgentSpeak(L) was only a proposal, while Jason
programming language became in 2004 the first implementation of an
interpreter for an extended version of AgentSpeak(L) [22], [121].
AgentSpeak(L) is often described as a BDI agent programming language, as
it is assumed to convey the most important ideas of BDI agent architectures
(including the PRS).

In this section we will present several important agent programming
languages which support BDI architecture and belong to the hybrid paradigm.

AgentSpeak

The language was originally called AgentSpeak(L) (see Table 3), but became
more popular as AgentSpeak. This term is also used to refer to the variants of
the original language. The primary goal of the authors of AgentSpeak [100]
was to join BDI architectures for agents and for object-based concurrent
programming and to develop a language that would capture the essential
features of both. They identified the primary characteristics of agents:
complex internal mental state, proactive or goal-directed behavior,
communication through structured messages or speech acts, distribution over
a wide-area network, adequate reaction to changes in the environment,

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 274

concurrent execution of plans and reflective or meta-level reasoning
capabilities.

The basic construct in AgentSpeak is an agent family and its purpose is
analogous to a class in object-oriented languages. Each agent (an instance of
an agent family) contains a public and a private area which are, respectively,
offered to other agents or used for agent’s internal purposes. An agent’s
behavior is described using three different concepts: database relations,
services and plans. Agents execute actions in order to meet their own, or
desires of other agents. For fulfilling its own desires, an agent uses a set of
private services (inner goals), while other agents can invoke its public
services (corresponding to messages from other agents). In AgentSpeak
there are three distinct types of services for different purposes:
− Achieve-service: used to achieve a certain state of the world
− Query-service: used to check whether something is true, considering the

associated database
− Told-service: used to share some information with another agent.

Once a service has been invoked, an agent proceeds to execute it by the
means of plans. Once a plan has been activated, its goal statements are
executed. Upon successful execution of all goal statements, the reached state
is assessed in order to make sure that the desired state of affairs has been
achieved.

Agents communicate in AgentSpeak by exchanging messages, either
asynchronously (default) or synchronously. A message can be sent to a
specific agent or to an agent family, in which case it is forwarded to all
instances of that family. If a message sent to another agent contains some
information, but puts no obligation upon the receiving agent, it is called an
inform speech-act. Otherwise, it’s a request. In addition, a message can have
a priority assigned to it, thus giving it an overall importance.

In recent times, a work on Coo-AgentSpeak has been published in [2]. It
incorporates ideas presented in Coo-BDI [3] into AgentSpeak. Coo-BDI
extends the standard BDI model with cooperation, allowing agents to
exchange their plans for satisfying intentions.

Jason

Jason (see Table 3) is probably the first implementation of AgentSpeak(L)
using the Java programming language and belongs to the hybrid agent
paradigm [22]. The syntax of Jason exhibits some similarities with Prolog.
However, the semantics of the Jason language is different and it is based on
AgentSpeak(L). One strength of Jason is that it is tightly integrated with Java
with the following immediate consequences: (i) the behavior of the Jason
interpreter can be tailored using Java; (ii) Jason can be used to build situated
agents by providing a Java API for integration with an environment model that
is developed with Java; (iii) Jason has been integrated with some existing
agent frameworks, including JADE [18], AgentScape [97], and Agent Factory
[113].

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 275

AF-APL

Agent Factory Agent Programming Language - AF-APL (see Table 3) is the
core of Agent Factory agent development environment. AF-APL is originally
based on Agent-Oriented Programming [90], but was revised and extended
with BDI concepts (hybrid paradigm). AF-APL is described as a “practical rule-
based language” based on commitment rules. A commitment rule joins
together three types of mental attitudes: beliefs, plans, and commitments. The
syntax and semantics of the AF-APL language have been derived from a
logical model of how an agent commits itself to a course of action [33], [85].
The semantics of AF-APL was formalized in Rem Collier’s Ph.D. thesis using
multi-modal first-order branching-time logic [33].

An AF-APL programmer can declare explicitly, for each agent, a set of
sensors (situated agents) referred to as perceptors and a set of effectors
(actuators). Perceptors are in fact instances of Java classes which define how
to convert raw sensor data into beliefs. An actuator is realized as an instance
of a Java class with responsibilities: 1) to define the action identifier that
should be used when referring to the action (realized by the actuator); 2) to
contain code that implements the action. These declarations, specified within
the agent program, are termed the embodiment configuration of the agent.

The AF-APL programming language is strongly related to the Agent
Factory framework for the development and deployment of agent systems
(see [76] for a recent overview and applications of Agent Factory framework).

3APL

3APL (see Table 3) [60] is not explicitly declared a descendant of either
AgentSpeak(L), or Agent0. However, in our opinion it was clearly influenced
by both AOP and BDI families of languages, and more important, both
families of languages were clearly influenced by the general settings of the
intentional stance towards understanding and development of a software
system [38]. It is interesting to note that 3APL was theoretically shown to be at
least as expressive as AgentSpeak(L) [59]. However, although it’s Web page
is still alive [111], we have noticed that 3APL language and supporting tools
do not seem to be further developed. Rather, one of its authors, Koen V.
Hindriks switched to the development of a new language GOAL.
Nevertheless, 3APL is still relevant as it has opened the new direction of goal-
oriented agent-programming languages and in some sense it has unified
ideas from AOP, BDI and logic within a single programming model with
declarative goals (hybrid paradigm). Moreover, there is an explicitly declared
successor of 3APL called 2APL that is currently being developed [133]. 3APL
has been applied to robot control using an API called ARIA (provided by
ActivMedia Robotics2).

2 http://www.activmedia.com/

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 276

2APL

2APL (see Table 3) is the successor of 3APL, enhancing it in many aspects.
Probably the most important aspect is the clear separation of multi-agent and
individual agent concerns. The multi-agent part is addressing the specification
of a set of agents, a set of external environments and the relations between
them, i.e. agent – agent and agent – external environment relations. The
individual agent concepts in 2APL cover beliefs, goals, plans, events,
messages, and rules, so it has many similarities with the programming notions
that are available in other BDI and AOP languages. 2APL amalgamates
declarative and imperative programming styles, so it can be described as
hybrid (in the sense of the classification from [21]). Probably this is the most
notable difference between 2APL and GOAL, as GOAL is clearly a declarative
programming language, while 2APL is described by its authors as a “practical
agent programming language”. 2APL has been designed to work with JADE
and, in comparison with 3APL, it provides practical extensions that allow
better testing and debugging [34].

JACK Agent Language

JACKTM Intelligent Agents, or simply JACK (see Table 3), is a commercial
agent platform provided by Autonomous Decision Making Software – AOS
[130]. The main JACK components are: JACK Agent Language (also known
as JAL), JACK compiler, JACK kernel, and JACK Development Environment.
JAL is a superset of Java that incorporates the full Java language and
provides the necessary constructs for building agent-oriented programs
according to the BDI model. JAL is translated into JAVA source code using
the JACK compiler, and the resulting Java code can be run on top of the
JACK runtime engine, also known as JACK kernel. JACK Development
Environment is an integrated graphical environment for the development of
JACK multi-agent applications.

JACK supports the development of distributed agent applications by
allowing agents to be deployed in separate processes, possibly running on
different networked machines. JACK agents are able to exchange messages
in a peer-to-peer fashion, as well as they are able to find each other using
name servers. JACK and supporting tools are reviewed in [103].

JADEX

JADEX (see Table 3) is a Java-based agent platform that tries to respond to
three categories of requirements: openness, middleware, and reasoning, thus
bridging the gap between middleware-centered and reasoning-centered
systems [82], [120]. The architecture of a JADEX agent follows the Procedural
Reasoning System (PRS, [55]) computational model of practical reasoning.
Agents in JADEX communicate by exchanging messages. Internally, an agent

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 277

reacts to events in its execution cycle that combines reaction and deliberation
processes.

A JADEX agent uses the concepts of BDI agents: beliefs, desires (goals in
JADEX), and intentions (plans in JADEX). JADEX employs an object-oriented
representation of beliefs. Additionally, beliefs have an active role, i.e. their
update can trigger generation of events or adoption/dismissing of goals.
JADEX uses four types of goals: (i) perform goal designating action execution;
(ii) achieve goal designating a point-wise condition in the lifecycle of an agent
that must be reached; (iii) query goal that is an introspection mechanism by
which an agent is inspecting its own internal state; (iv) maintain goal
designating a process-wise condition that must be maintained during the
agent’s execution. JADEX plans represent the behavioral aspect of an agent
and they have a procedural flavor. A plan consists of a head and a body,
similarly to a procedure in a procedural language.

The JADEX language combines the declarative specification of an agent
containing its set of beliefs, goals and plans using an Agent Definition File
(ADF) and the procedural specification of the plan bodies using the Java
programming language. The plan body accesses the internals of an agent
through a specialized API. JADEX agents are able to run on the JADE
middleware platform, thus enabling the development of distributed intelligent
systems using the BDI metaphor.

3.3. Other Agent Languages

Within the generic class of “other languages” we include all those agent
programming languages that do not explicitly employ mental attitudes for
shaping the language, but rather use other constructs that are very useful for
building intelligent software agents by supporting reasoning tasks based on
formal logic, methods and calculi set on top of the main characteristics
attributed to agents. Compared to AOP and BDI, this category can be
characterized as a more traditional to agent programming from the point of
view of computer science practices.

During the period of developing different agent-oriented programming
languages, some authors and research groups proposed and implemented
languages essentially based on and characterized as the declarative
paradigm. In this section we will present several important agent programming
languages which support the declarative paradigm.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 278

GOAL3

The main motivation behind the development of Goal-Oriented Agent
Language, i.e. GOAL (see Table 3) was to bridge the gap between agent
logics and agent programming models (BDI and AOP) [61]. This new
language introduces a declarative perspective of goals in agent programming
languages by unifying the concepts of commitments from Agent0, intentions
from AgentSpeak(L) and goals from 3APL. An interesting feature of GOAL is
that it sets on a clean and unified theoretical basis the concepts of reasoning
and knowledge representation from AI with the mentalist notions that are
more specific to agent programming. The GOAL agent programming
language was recently overviewed in [62]. According to this reference, GOAL
has been tested on top of JADE. However, we were not able to find any
references to such an experiment. The current implementation of GOAL [132]
is just a prototype that is currently mainly used for educational purposes.
However, it can be also useful in planning applications, for example in the
transportation and logistics domain.

Golog

”alGOl in LOGic” – GOLOG (see Table 3), is a family of logic languages
(declarative paradigm) based on the formalism of situation calculus that was
developed in AI by John McCarthy for the specification of dynamic systems
[75]. Situation calculus is a first-order logic language with some second-order
extensions that utilizes the following concepts: (i) action; (ii) situation; and (iii)
fluent. Changes in the world are modeled using the action concept. Histories
of the world are modeled using the situation concept; a situation is in fact a
sequence of actions. Fluents represent relations and functions that depend on
the situation, thus we have relational fluents and functional fluents.

According to [118], the GOLOG family comprises the following languages:
(i) GOLOG, the core language, initially introduced in [84]; (ii) ConGOLOG, i.e.
Concurrent GOLOG, an extension of GOLOG for handling concurrency [37];
(iii) IndiGOLOG: Incremental deterministic GOLOG [37].

Recently, it was shown that the BDI-style of agent programming can be
achieved with GOLOG [88], thus bridging the gap between BDI and action
logic styles of agent programming.

In our literature review we have found that GOLOG was quite influential in
the area of programming physical robots endowed with cognitive capabilities.
This trend spawned a number of extensions of GOLOG. ICPGOLOG is an

3 Note that the GOAL agent programming language developed by Koen V. Hindriks is

not the same thing as the GOAL agent programming language proposed by (Byrne
and Edwards, 1996) in Byrne, C. ; Edwards, P.: Refinement in Agent Groups. In:
Weiß, G. ; Sen, S. (Eds.): Proceedings of the IJCAI’95 Workshop on Adaption and
Learning in Multi-Agent Systems, Lecture Notes in Computer Science 1042,
Springer, 1996, pp. 22–39. Byrne’s GOAL is a direct descendant of Agent-0 and it
was proposed earlier than Hindriks’s GOAL.

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 279

extension of GOLOG with actions to describe continuous change, support for
noisy sensors and effectors, and probabilistic actions [39]. Implementation of
ICPGOLOG was based on the existing implementation of IndiGOLOG in
Prolog. READYLOG is a robot programming and planning language that adds
to GOLOG the logic specification of MDP theories for decision-theoretic
planning [43]. A novel prototype implementation of the GOLOG interpreter
using the Lua scripting language for the bi-ped robot platform Nao was
recently reported in [44].

Although one can notice that the main focus of GOLOG was to model
single robotic agents, there were also works that propose GOLOG extensions
for multi-agent systems in a game-theoretic setting, namely GTGOLOG [46].

FLUX

Fluent executor – FLUX (see Table 3) is a logic programming language
(declarative paradigm) based on fluent calculus [93]. Fluent calculus is an
axiomatic theory of actions that represents an improvement of situation
calculus [75], since in fluent calculus situations represent state descriptions,
while in situation calculus they represent histories of action occurrences.
Thus, FLUX has a declarative semantics. The language is extensively
described in the textbook [94]. An important difference between FLUX and
many other agent programming languages is that the main focus of FLUX is
on programming single agents that act logically in a dynamic environment,
rather than developing complex multi-agent systems. In this respect, FLUX is
similar to GOLOG. There are works, however, that describe a practical multi-
agent system that contains a set of agents, each one equipped with a FLUX
interpreter, that cooperate to solve a complex problem [89]. The current
implementation of FLUX is based on constraint logic programming systems
(Eclipse Prolog and Sicstus Prolog) for efficient handling of the axioms of
fluent calculus.

CLAIM

Computational Language for Autonomous, Intelligent and Mobile agents –
CLAIM (see Table 3) is a high-level agent programming language that
combines the basic functionalities required for the agent model with higher-
level support specific to intelligent and cognitive abilities (belongs to the hybrid
paradigm). An important characteristic of CLAIM is its built-in support for
agent mobility that is based on the abstract computation model of ambient
calculus [30]. CLAIM agents are hierarchically structured (according to the
formal model of ambients), goal-directed, knowledge-based, able to
communicate at knowledge level, and mobile. CLAIM agents are not entirely
declarative, as they mix declarative characteristics required for the
specification of the knowledge component with imperative capabilities,
required for the specification of the capabilities component. CLAIM is part of

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 280

Hymalaya unified framework and it is supported by SyMPA distributed multi-
agent platform. Unfortunately, there is not much information about any of
them, excepting the research papers [91] and [41].

4. Tools and Platforms

Multi-agent systems are deployed and run over specialized software
infrastructures that provide the set of functionalities vital for the existence of a
realistic multi-agent application. Seen from the perspective of distributed
systems technologies, such infrastructures are placed at the middleware level
and they include a collection of software functionalities and services that
assure: agent lifetime management, agent communication and message
transport, agent naming and discovery, mobility, security, etc. An agent
framework is a software infrastructure available as a software library, a
language environment, or both, which provides the core software artifacts
needed for creating the skeleton of a multi-agent system. A software package
that provides the core functionalities for deploying and running multi-agent
applications is traditionally known as an agent platform [96]. An agent toolkit is
a more complex software infrastructure that allows both the development and
deployment of a multi-agent system [69]. It is sometimes known as an agent
development environment [96], because of its expected support for all
engineering stages of a multi-agent application from requirements to
deployment, maintenance and evolution.

Most often, a multi-agent system is deployed and runs on top of an agent
platform. If an agent platform is not available, at least an agent framework is
usually utilized to create the multi-agent system which is then run on a
general purpose middleware platform. Agent code can be programmed either
using a general-purpose programming language linking with software libraries
available in the agent framework via the framework API, or using one of the
agent programming languages (see the previous section).

Agent platforms can be extremely useful because they considerably
simplify the development and deployment of a multi-agent system. There is
the option to choose between standardized or not-standardized agent
platforms. A standard agent platform is compliant with available standards for
software agents. Compliance to standards is important for open systems, i.e.
systems that might need to interoperate in the future with other systems that
are either not available at the moment when the open systems are being
developed or that, even if they are available at the moment, still might change
in the future.

According to our literature review, more than 100 agent platforms and
toolkits were developed (or started to be developed) [69] of different quality
and maturity. Most of them are built on top of and are integrated with Java
[102]. Despite this fact that clearly shows that software agent technologies
triggered a significant initial interest and hope, only few of them are still
currently available, while the rest either became obsolete or are not being

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 281

developed anymore. In the rest of the section, we provide a brief review of
some of them. Although our selection might look quite subjective, we have
done our best to consider those agent platforms and toolkits that we think are
most influential, currently active and also well supported by the open source
and/or business communities. Note that some of the platforms considered in
this paper are also overviewed in more detail by [96].

4.1. ZEUS

ZEUS [129], [4], [81], [80] developed by British Telecommunications Labs, is a
collaborative agent building environment that has excellent GUI and
debugging, provides library of predefined coordination strategies, general
purpose planning and scheduling mechanism, self-executing behavior scripts,
etc. ZEUS is one of the most complete and the most powerful agent tools
which are used to design, to develop and to organize agent systems. The aim
of ZEUS project was to facilitate the rapid development of multi-agent
applications by abstracting into a toolkit the common principles and
components underlying some existing multi-agent systems [78]. It enables
applications with additional assistant tools, e.g. reports and statistics tools,
agents and society viewer, etc. ZEUS documentation is very weak, which
leads to difficulties in creating new applications. The three main functional
components of ZEUS are (adapted from [129]): The Agent Component
Library; The Agent Building Tools; The Visualization Tools.

Some characteristics of ZEUS are: it implements FIPA standards, supports
KQML and ACL communication and security policy supports ASCII-encoded,
Safe-Tcl scripts or MIME-compatible e-mail messages for transportation; it
uses public-key and private-key digital signature technology for
authentication, cash and secrecy.

4.2. JADE

Java Agent DEvelopment Framework - JADE is probably one of the most
popular agent platforms that are currently available to the open source
community. JADE is FIPA-compliant and it is well supported by
documentation [119], a textbook [18] and an enthusiastic community of users.

A JADE agent platform can be distributed on multiple machines that run the
Java virtual machine, while multiple platforms can interoperate via FIPA
standards. A platform consists of multiple containers, while each container
can contain zero or more JADE agents. There is exactly one Main container
and, optionally, zero or more ordinary containers, linked to the Main container.
The JADE containers can be distributed onto the nodes of a local area
network. Each node can host several containers. Each JADE agent contains
its own execution thread. Unfortunately, this design choice is one of the main
limitations for the number of agents that can be created and executed on a

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 282

single machine. JADE agents use a specialized execution model based on
non-preemptive scheduling of dynamically loadable JAVA plugins called
behaviors. The agent execution model combined with JADE’s intuitive
programming interface allows the programmer to relatively easily develop
software agents that are capable of flexible reactive and/or proactive
behaviors. JADE agents can interact by asynchronously exchanging FIPA
ACL messages, optionally following FIPA interaction protocols [116]. Telecom
Italia is currently used JADE as reference framework for Network Neutral
Element Manager – NNEM project [19].

4.3. agenTool

agenTool is a Java-based graphical development environment/tool that
supports the Multi-agent Systems Engineering (MaSE) methodology [39]
originally developed at the Artificial Intelligence Lab of the Air Force Institute
of Technology, Ohio. It implements all MaSE steps including conversation
verification and code generation. One of its most interesting abilities is the
possibility to work on different pieces of the system and at various levels of
abstraction interchangeably, which mirrors the ability of MaSE to
incrementally add detail [39]. During each step of system development it is
possible to use various analysis and design diagrams. . Moreover, it is
possible to transform a set of analysis models into appropriate design models
using semi-automatic transformations. Some efforts have been done in order
to support modeling of mobile agents.

4.4. RETSINA

Reusable Environment for Task-Structured Intelligent Networked Agents –
RETSINA is a multi-agent system toolkit that has been developed since 1995
at the Intelligent Software Agents laboratory of Carnegie Mellon University’s
Robotic Institute [125].

RETSINA is probably one of the earliest, most influential software
infrastructures for developing multi-agent systems. It supports the
development of communities of heterogeneous agents that can engage in
peer-to-peer relations without imposing any centralized control for agent
management. A RETSINA-based multi-agent system is platform independent,
being able to run on various operating systems, while its agents can be
implemented using different general-purpose programming languages.
RETSINA is using a multi-agent software infrastructure based on Agent
Foundation Classes – AFC. A very good overview of the distributed software
infrastructure of RETSINA is provided by [92].

RETSINA was utilized for developing an impressive number of applications
in various areas: military operations, critical decision making, supply chain
management, financial portfolio management, text mining, etc [125], [92].

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 283

4.5. JATLite

‘Java Agent Template, Lite’ - JATLite [65] has been developed at the Stanford
Center for Design. The intention was to allow creating software typed-
message agents communicating over the Internet. Agents communicated
using typed messages in an agent communication language like KQML, in
which some semantics are defined before runtime. Two additional
requirements had to be fulfilled: Reliable message delivery and Migrating
agent communication.

JATLite added basic infrastructure functionality that earlier systems missed,
supporting buffered-message exchanges and file transfers with other agents
on the Internet, as well as connection, disconnection, and reconnection in the
joint computation [65]. Security aspects of JATLite message relied on current
open standards for encryption and authentication. The one simple feature that
JATLite added was a password associated with the agent name.

JATLite featured modular construction consisting of increasingly
specialized layers: protocol, Router, KOMC, Base and Abstract layer.
Developers could select the appropriate layer to start building their systems.
Each layer could be exchanged with other technologies without affecting the
operation of the rest of the package.

4.6. FIPA-OS

FIPA-OS [117] is a component-based toolkit enabling rapid development of
FIPA compliant agents. It was first released in August 1999 supporting the
majority of the FIPA specifications. It has been continuously improved until
2003 and was publicly available as an ideal choice for FIPA compliant agent
development. There have been two versions of FIPA-OS:
− Standard FIPA-OS - Two alternative distributions were provided: Java 2

(JDK1.2) compatible version (containing code developed directly from the
FIPA-OS codebase) and Java 1.1 compatible version (containing code,
which has undergone automated code-refactoring to enable the JDK1.2
compatible code of FIPA-OS to be used with JDK1.1).

− MicroFIPA-OS - This is an extension to the JDK 1.1 version of FIPA-OS
and has been designed to execute on PDAs (that can execute a
PersonalJava compatible virtual machine).
Both FIPA-OS versions use tasks and conversations as the basis for

support to agents’ functionalities. Developers using FIPA-OS have been
encouraged to provide extensions, bug fixes and feedback to help improve
different releases.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 284

4.7. MADKIT

Multi-agent development kit - MadKit [122] [56] is an open source modular
and scalable multi-agent platform which has been developed at LIRMM
(France), built upon the AGR (Agent/Group/Role) organizational model
(Aalaadin [42]). MadKit is written in Java and MadKit agents play roles in
groups and thus create artificial societies. In addition to AGR concepts, the
platform adds three design principles: Micro-kernel architecture; Agentification
of services; Graphic component model.

The last version was released in November 2010. MadKit is a set of
packages of Java classes that implements the agent kernel, various libraries
of messages, probes and agents. This platform is not a classical agent
platform as any service, besides those assured by micro-kernel, is handled by
agents. Micro-kernel and existence of a range of modular services managed
by agents enable a range of multiple and scalable platforms. Communication
is achieved through asynchronous message passing: 1) by primitives used to
send a message directly to another agent represented by its AgentAddress, or
2) by higher-level functions that send or broadcast to one or all agents having
a given role in a specific group. MadKit uses agents to achieve distributed
message passing, migration control, dynamic security, and other aspect of
system management.

MadKit has been used in various projects covering a wide range of
applications [67], from simulation of hybrid architectures for control of
submarine robots to evaluation of social networks or study of multi-agent
control in a production line.

4.8. JAFMAS

Java-based Agent Framework for Multi-Agent Systems - JAFMAS [36], is a
framework for representing and developing cooperation knowledge and
protocols in a multi-agent system (coordinating their knowledge, plans, and
goals so that they can take actions which result in coherent joint problem
solution). This framework provides a generic methodology for developing
speech-act based multi-agent systems and follows several stages: agent
identification, definition of each agent’s conversations, determining the rules
governing each agent’s conversations, analyzing the coherency between all
the conversations in the system, and implementation. JAFMAS provides
communication (directed and subject-based broadcast), linguistics for speech-
acts (e.g. KQML) and coordination support. Such functionality is based on
COOL (coordination Lisp-based language for explicitly representing, applying
and capturing cooperation knowledge for multi-agent systems). In COOL and
JAFMAS, an agent is a programmable entity that can exchange messages
within structured “conversations” with other agents, change state and perform
actions. JAFMAS agents support conversation based on message exchange
according to mutually agreed conventions, change state and perform local

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 285

actions. Different researchers still use JAFMAS framework for developing
multi-agent systems [108] [99].

4.9. Agent Building Shell

Agent Building Shell - ABS was developed at University of Toronto [10]. ABS
provides several reusable layers of languages and services for building agent
systems. The layers of the architecture achieve a range of functionalities
[112]. The shell supports KQML/KIF based communication. COOL is provided
and built on top of the agent communication language. The language supports
definition, execution and validation of complex speech-act based cooperation
protocols. Multiple, parallel conversations are possible and their management
can be programmed through specific control mechanisms. Interaction
between users (using web browsers) and agents is conversation based, using
the same conversational infrastructure that supports interactions among
agents. Agents negotiate by exchanging constraints about the performance of
activities. In the negotiation process, agents send their requests to other
agents and receive either confirmations or explanations why their requests
cannot be satisfied. Agents employ a unified behavior description language
that specifies behaviors as consisting of sequential, parallel and choice
compositions of actions. Specific constraint propagation mechanisms are
used to determine which actions will be executed. At the organization level,
agents acquire authority to make requests and impose violation costs from the
roles they play in the organization. Concerning knowledge management, there
is a representational substrate that provides services for carrying out the
various reasoning tasks outlined.

According to several authors [51], [11], [71], ABS has been considered
appropriate for developing agents in supply chain management systems.

4.10. OAA

Open Agent Architecture – OAA [124] was developed in Artificial Intelligence
Center, California and its last version was released in 2007. It is a framework
for integrating a community of heterogeneous software agents in a distributed
environment. OAA facilitates flexible, adaptable interactions among distributed
components through delegation of tasks, data requests and triggers; and
enables natural, mobile, multimodal user interfaces to distributed services.
OAA is structured to minimize the effort in creating agents and "wrapping"
legacy applications, written in various languages and platforms; to encourage
the reuse of existing agents; and to allow for dynamism and flexibility in the
makeup of agent communities. Unique features of OAA include great flexibility
in using facilitator-based delegation of complex goals, triggers, and data
management requests; agent-based provision of multimodal user interfaces;
and built-in support for including the user as a privileged member of the agent

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 286

community. The system has been used in different applications and some of
them are:
− framework of transformer condition assessment system employing data

warehouse, data mining, and Open Agent Architecture [68].
− multi-agent architecture with distributed coordination for an autonomous

robot [5].

4.11. Cougaar

Cognitive Agent Architecture – Cougaar [115] is an open-source Java-based
agent platform developed as result of a multi-year project of DARPA research.
Cougaar is not FIPA-compliant, and more important, it was not designed for
standards compliance. Cougaar agents are composed of plugins that
communicate sharing common and distributed data space - blackboard
architecture. Agents can subscribe for automatically receiving blackboard
updates. The plugins communicate by publishing (adding) new objects to the
blackboard, making changes to objects already published or removing objects
from the blackboard. When special objects called relays are published onto
the blackboard they are automatically forwarded by the blackboard system to
other agents, thus achieving the communication between agents.

The main focus of its development was scalability [57] and as a
consequence it was mostly utilized for the development of applications in
military logistics [31].

4.12. AgentScape

AgentScape was developed at Delft University of Technology as a
middleware platform that provides a minimal set of concepts and
functionalities for the development of large-scale distributed multi-agent
systems. The focus in AgentScape was set on: (i) scalability; (ii) heterogeneity
through multiple code bases, programming languages and operating systems;
(iii) interoperability [114]. Although AgentScape is a very interesting platform,
it currently suffers from the problem that the documentation is not mature
enough and is rather incomplete. Nevertheless, AgentScape has been applied
in a number of interesting research and commercial projects related to the
electricity market [17] and e-commerce [40].

4.13. Cybele

CybeleTM is a commercial agent platform provided by Intelligent Automation
Inc. for the development and deployment of large-scale distributed intelligent
systems [131]. CybeleTM is built on top of Java platform. Agents are
programmed in Java using a standard style of programming called Activity

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 287

Centric Programming (ACP). This means that the basic building blocks of an
agent are activities, while accesses to the basic functionalities of CybeleTM are
provided via an Activity Oriented Programming Interface (AOPI). CybeleTM
allows the development of distributed applications by installing it on several
(at least 2) network nodes that together define a CybeleTM community. Exactly
one node is designated as a master node, while the rest of them are slave
nodes. A CybeleTM node can host several specialized Java applications
known as CybeleTM containers. A container provides the runtime environment
for a set of CybeleTM agents. It is not difficult to observe that an activity in
CybeleTM has similarities with behavior in JADE, as well as with a plugin in
Cougaar. Moreover, the method of structuring a distributed agent application
into nodes, containers, agents and activities / plugins / behaviors is also used
by JADE and Cougaar.

CybeleTM can be utilized as a platform for distributed robotics. The
Distributed Control Framework (DCF) is a framework for building robotics
applications for robot team coordination and management. CybeleTM is used
as a core for DCF which supports two types of robotic agents: (i) Robot Agent
that embodies a real or a simulated robot; (ii) Remote Control Agent that
provides the control interface for a human operator with a robot team.
Additionally, DCF includes a suite of components for sensing, estimation and
control of several commercial robotic platforms.

5. Conclusion

Software agents are an emergent and rapidly developing field of research. In
the last decade, a number of essential advances have been made in the
design and development of software agent languages and the implementation
of multi-agent systems. In this brief survey, we have tried to bring some of the
key concepts, languages, tools and platforms and make a reference point to a
large body of literature. Our intention was to enumerate and present essential
features and functionalities of selected languages, tools and platforms,
instead of judging them.

We consider an orthogonal classification by looking at the way agent
programming languages are used during the systems development process.
On one side, we can find agent languages useful for building software agents
that can be used as building blocks for the development and deployment of
complex distributed applications, usually based on agent or other suitable
middleware platforms. On the other hand, we can find agent programming
languages used for designing and running complex simulation models that
employ the agent metaphor for modeling and simulation of complex systems.
However, these languages are not immediately useful for developing real
systems, but are rather mostly employed for research in understanding
complex systems using agent-based modeling and simulation tools, as agent
simulation languages. Note that this class of languages is very often forgotten
by the existing works that overview advances in agent programming.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 288

Nevertheless, between the two extremes we can find agent languages that
are useful for both systems simulation, as well as for systems development
and deployment.

In Table 3 we give a brief summary of agent programming languages. It
can be noted that almost all of them, particularly the recently developed ones,
have appropriate web-sites and IDEs. Despite the fact that there are
representatives of different programming paradigms (imperative, declarative,
BDI, hybrid), almost all of them are implemented in Java and a significant
number of them are implemented in Prolog. Most of the recently developed
languages find their place in real environments and have been used in
developing different kinds of applications. Unfortunately, for majority of them
there are no appropriate textbooks.

Note that we were able to find in the literature other overview works that
provide classifications and comparisons of agent programming languages.
Authors of [21] propose a classification of agent programming languages
based on a lightweight interpretation of the programming paradigm as
imperative, declarative, and hybrid (i.e. between declarative and imperative).

For the development and deployment of a multi-agent system in real
environments it is necessary that appropriate software infrastructures
(frameworks, tools, platforms) exist.

According to our literature survey, more than 100 agent infrastructures
have been developed in the previous two decades. For portability and
usability reasons most of them are built on top of and are integrated with Java
[102]. Unfortunately, only few of them are still currently available, others either
becoming obsolete or not being developed anymore.

Futhermore, this prominent technology inspired some authors to go a step
further. In [70] authors extrapolated future trends in multi-agent systems and
presented a thorough and outstanding approach to the future of multi-agent
systems. Finally, it is important to mention that in order to be accepted by the
industrial community, MAS applications need to be successfully demonstrated
in complex real world pilot systems [29].

Acknowledgment. Research was partially supported by the Ministry of Education and
Science, Republic of Serbia, through project no. OI-174023 'Intelligent techniques and
their integration into wide-spectrum decision support'.

References

1. Agents mailing list, agents@cs.umbc.edu.
2. Ancona, D., Mascardi, V., Hübner, J.F., Bordini, R.H.: Coo-AgentSpeak:

Cooperation in AgentSpeak through Plan Exchange, In Third International Joint
Conference on Autonomous Agents and Multiagent Systems, Vol. 2, pp. 696 –
705 (2004)

3. Ancona, D., Mascardi, V.: Coo-BDI: Extending the BDI Model with Cooperativity,
In Declarative Agent Languages and Technologies, Vol. 2990, pp.109-134 (2004)

4. Azarmi, N., Thompson, S.: "ZEUS: A Toolkit for Building Multi-Agent Systems",
Proceedings of fifth annual Embracing Complexity Conference, Paris, (2000)

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 289

5. Badano B.M.I., A multi-agent architecture with distributed coordination for an
autonomous robot, PhD theses, University of Girona, (October 2008)

6. Badjonski, M., Ivanović, M.: "Multi-agent System for Determination of Optimal
Hybrid for Seeding", Proceedings of EFITA '97 - First European Conference for
Information Technology in Agriculture, Copenhagen, Denmark, June 15-18, pp.
401-404. (1997)

7. Badjonski, M., Ivanović, M., Budimac, Z.: "Possibility of using Multi-Agent System
in Education", Proceedings of IEEE International Conference on Systems, Man,
and Cybernetics, Orlando, Florida, USA, October 12-15, pp. 588-593. (1997)

8. Badjonski, M., Ivanović, M., Budimac, Z.: "Software Specification Using LASS",
Proceedings of Asian'97, Lecture Notes in Computer Science Vol 1345, Springer-
Verlag, Kathmandu, Nepal, pp. 375-376. (1997)

9. Badjonski, M.: Adaptable Java Agents – a Tool for Programming of Multi-Agent
Systems, PhD thesis, Department of Mathematics and Informatics, Faculty of
Natural Science, University of Novi Sad (2003)

10. Barbuceanu, M., Fox, M.S., The architecture of an agent building shell. Intelligent
Agents II, LNAI 1037, Spinger-Verlag, pp. 235-250 (1996)

11. Fox M.S., Barbuceanu M., Teigen R.: Agent-Oriented Supply Chain Management,
International Journal of Flexible Manufacturing System, vol 12, pp. 165-188.
(2000)

12. Bădică, C., Manufacturing and Control: Putting Agents to Work, IEEE Distributed
Systems Online, vol. 8, no. 6, pp. 5, (2007)

13. Bădică, C., Ganzha, M., Paprzycki, M.: Developing a Model Agent-based E-
Commerce System. In: Jie Lu, Guangquan Zhang, and Da Ruan (eds.): E-service
Intelligence, Studies in Computational Intelligence, Volume 37, Springer, 555-578
(2007)

14. Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: METATEM: A
Framework for Programming in Temporal Logic, In: Proceedings on Stepwise
refinement of distributed systems: models, formalisms, correctness, REX
workshop, LNCS Volume 430, pp. 94-129 (1990)

15. Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: METATEM: An
introduction. Formal Aspects of Computing 7(5), pp. 533–549 (1995)

16. Bratman, M.E.: Intention, Plans and Practical Reason. Harvard University Press,
1987.

17. Brazier, F., Cornelissen, F., Gustavsson, R., Jonker, C.M., Lindeberg, O., Polak,
B., Treur, J.: A Multi-Agent System Performing One-to-Many Negotiation for Load
Balancing of Electricity Use. In: Electronic Commerce Research and Applications
Journal, vol.1, no.2, pp. 208-224, Elsevier, (2002)

18. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE, John Wiley & Sons (2007)

19. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE: A software framework for
developing multi-agent applications. Lessons learned, Information and Software
Technology, Volume 50, Issues 1-2, Elsevier, pp. 10-21. (2008)

20. Bordini, R.H., Dix, J., Dastani, M., Seghrouchni, A.E.F.: Multi-Agent Programming
Languages, Platforms and Applications, Springer, (2005)

21. Bordini, R.H., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A Survey of Programming Languages
and Platforms for Multi-Agent Systems, Informatica, no.30, pp. 33-44 (2006)

22. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason, John Wiley & Sons, (2007)

23. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (Eds.): Multi-Agent
Programming: Languages, Tools and Applications, Springer (2009)

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 290

24. Brooks, R.A.: "A Robust Layered Control System for a Mobile Robot", IEEE
Journal of Robotics and Automation, 2(1), pp. 14-23. (1986)

25. Brooks, R.A.: "Intelligence without Reason", Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI-91), Sydney,
Australia, pp. 569-595. (1991)

26. Brooks, R.A.: "Intelligence without Representation", Artificial Intelligence, 47, pp
139-159. (1991)

27. Budimac, Z., Ivanović, M., Popović, A.: "Workflow Management System Using
Mobile Agents", Proceedings of ADBIS ‘99, Lecture Notes in Computer Science,
Maribor, Slovenia, pp. 169-178. (1999)

28. Bussink, D.: A Comparison of Language Evolution and Communication Protocols
in Multi-agent Systems. 1st Twente Student Conference on IT, Track C -
Intelligent_Interaction, http://referaat.ewi.utwente.nl/ (2004)

29. Camarinha-Matos, L. M.: Multi-agent systems in virtual enterprises. Proceedings
of AIS’2002 – International Conference on AI, Simulation and Planning in High
Autonomy Systems, SCS publication, Lisbon, Portugal, pp. 27-36. (2002)

30. Cardelli, L., Gordon, A.D.: Mobile ambients. Foundations of Software Science and
Computational Structures, Lecture Notes in Artificial Intelligence 1378, Springer,
pp. 140-155. (1998)

31. Carrico, T., Greaves, M.: Agent Applications in Defense Logistics. In: Defence
Industry Applications of Autonomous Agents and Multi-Agent Systems, Whitestein
Series in Software Agent Technologies and Autonomic Computing, Birkhäuser
Basel, pp. 51-72. (2008)

32. Clark, K. L., McCabe, F. G.: Go! – A Multi-paradigm Programming Language for
Implementing Multi-threaded Agents, In Annals of Mathematics and Artificial
Intelligence, Vol. 41, Issue 2 – 4, pp. 171 – 206, (2004)

33. Collier, R.W.: Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications, Doctoral Thesis, University College Dublin, Ireland, (2001)

34. Dastani, M.: 2APL: a practical agent programming language, International Journal
of Autonomous Agents and Multi-Agent Systems (JAAMAS), 16(3), pp. 214-248
(2008)

35. Davies, W.H.E., Edwards, P.: Agent-K: An Integration of AOP and KQML, In
Proceedings of the Third International Conference on Information and Knowledge
Management, ACM Press, (1994)

36. Chauhan, D., Baker, A.D.: JAFMAS: a multiagent application development
system. In Proceedings of the second international conference on Autonomous
agents (AGENTS '98), http://doi.acm.org/10.1145/280765.280782 (1998)

37. De Giacomo, G., Lespérance, Y., Levesque, H.J., Sardina, S.: IndiGolog: A High-
Level Programming Language for Embedded Reasoning Agents, In [23], Springer,
pp. 31-72. (2009)

38. Dennett, D.: Intentional Systems. In: Journal of Philosophy No. 68, pp. 87–106.
(1971)

39. Dylla, F., Ferrein, A., Lakemeyer, G.: Specifying multirobot coordination in
ICPGolog - from simulation towards real robots. In Proc. of the Workshop on
Issues in Designing Physical Agents for Dynamic Real-Time Environments: World
modeling, planning, learning, and communicating (IJCAI 03), (2003)

40. El-Akehal, E.E., Padget, J.: Pan-supplier stock control in a virtual warehouse. In:
Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems AAMAS '08, pp. 11-18 (2008)

41. Seghrouchni, A.E.F., Suna, A.: CLAIM and SyMPA: A Programming Environment
for Intelligent and Mobile Agents. In: [20], pp. 95-122, Springer, (2005)

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 291

42. Ferber, J., O. Gutknecht: Aalaadin: a meta-model for the analysis and design of

organizations in multi-agent systems, In Proceedings of the Third International
Conference on Multi-Agent Systems, ICMAS'98 pp. 128-135. (1998)

43. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic domains,
Robotics and Autonomous Systems, volume 56, issue 11, North-Holland
Publishing Co., 980-991, (2008)

44. Ferrein, A.: golog.lua: Towards a Non-Prolog Implementation of Golog for
Embedded Systems. In: Cognitive Robotics, Dagstuhl Seminar Proceedings,
no.10081, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Also in
Proceedings of AAAI Spring Symposium 2010 on Embedded Reasoning, Stanford
University, (2010)

45. Finin, T., Weber, J., et. al.: "Draft Specification of the KQML Agent-Communication
Language", The Darpa Knowledge Sharing Initiative External Interfaces Working
Group, available as http://www.cs.umbc.edu/kqml/kqmlspec.ps. (1993)

46. Finzi, A., Lukasiewicz, T.: Game-Theoretic Agent Programming in Golog, In:
Proceedings of the 16th European Conference on Artificial Intelligence,
ECAI'2004, pp. 23-27, IOS Press, (2004)

47. Foundation for Intelligent Physical Agents, "FIPA ACL Message Structure
Specification", available at http://www.fipa.org/specs/fipa00061/

48. Fisher M.: "Representing and Executing Agent-Based Systems", Intelligent
Agents, Lecture Notes in Artificial Intelligence, Vol. 890, Springer-Verlag, pp. 307-
323. (1994)

49. Fisher, M.: A Survey of Concurrent MetateM – The Language and its Applications,
In Proceedings of the First International Conference on Temporal Logic, LNCS,
Vol. 827, pp. 480 – 505, (1994)

50. Fisher, M., Hepple, A.: Executing Logical Agent Specifications. In [23], pp. 3-29,
(2009)

51. Forget P., D’Amours S., Frayret J.M.: Multi-Behavior Agent Model for Planning in
Supply Chains: An Application to the Lumber Industry, Universite Laval, Quebec,
Canada, Working paper DT-2006-SD-03,
https://www.cirrelt.ca/DocumentsTravail/2006/DT-2006-SD-03.pdf (2006)

52. Franklin, S., Graesser, A.: "Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents", Working Notes of the Third International Workshop on
Agent Theories, Architectures and Languages, ECAI '96, Budapest, Hungary, pp.
193-206. (1996)

53. Fuggeta, A., Picco, G.P.: Understanding Code Mobility, IEEE Transactions on
Software Engineering, vol.24, no.5, pp.342-361, (1998)

54. Georgakarakou, C. E., Economides, A. A.: Software agent technology: An
overview. In: Software Applications: Concepts, Methodologies, Tools, and
Applications, P. F. Tiako (ed.), IGI-Global ISBN: 978-1-60566-060-8 (2007)

55. Georgeff, M., Lansky, A.: Reactive reasoning and planning. In: Proceedings of the
6th National Conference on Artificial Intelligence (AAAI-87), pp. 677-682, (1987)

56. Gutknecht, O., Ferber, J.: The MADKIT Agent Platform Architecture. Agents
Workshop on Infrastructure for Multi-Agent Systems, (2000)

57. Helsinger, A., Thome, M., Wright, T.: Cougaar: A Scalable, Distributed Multi-Agent
Architecture, Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics, 1910 – 1917, vol.2, IEEE Computer Society Press, (2004)

58. Hewitt, C.: The Challenge of Open Systems. Byte Magazine 10, 4, pp. 223-242,
(April 1985)

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 292

59. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J-J.C.: A formal
embedding of AgentSpeak(L) in 3APL, Advanced Topics in Artificial Intelligence,
LNCS 1502, pp. 155-166, (1998)

60. Hindriks, K.V., De Boer, F.S., van der Hoek, W., Meyer, J-J.C.: Agent

Programming in 3APL, Autonomous Agents and Multi-Agent Systems Volume 2,
Number 4, pp. 357-401, (1999)

61. Hindriks, K.V., De Boer, F.S., van der Hoek, W., Meyer, J-J.C.: "Agent
Programming with Declarative Goals", Intelligent Agents VII. Agent Theories
Architectures and Languages, LNCS 1986, pp. 248-257, Springer, (2001)

62. Hindriks, K.V.: Programming Rational Agents in GOAL. In [23], 119-157, Springer,
(2009)

63. Huang, J., Jennings, N., Fox, J.: "An Agent Architecture for Distributed Medical
Care", Intelligent Agents, Lecture Notes in Artificial Intelligence, Vol 890, Springer-
Verlag, pp. 219-232. (1994)

64. Jennings, N.R., Wooldridge, M.: "Software Agents", IEE Review, January, pp. 17-
20. (1996)

65. Jeon, H., Petrie, C., Cutkosky, M.R.: JATLite: A Java Agent Infrastructure with
Message Routing, IEEE Internet Computing, pp. 2-11. (2000)

66. Kaelbling, L.P.: "A Situated Automata Approach to the Design of Embedded
Agents", SIGART Bulletin, 2(4), pp. 85-88, (1991)

67. Kallel I., Chatty A., Allimi A.M.: Self-Organizing Multirobot Exploration through
Counter-Ant Algorithm, Proceedings Self-Organizing Systems: Third International
Workshop, Iwsos 2008, Vienna, Austria, December 10-12, 2008, Springer. (2008)

68. Wu, L., Yongli, Z., Yuan, J., Li, X.: "Application of Open Agent Architecture and
Data Mining Techniques to Transformer Condition Assessment System,"
International Journal of Emerging Electric Power Systems: Vol. 2 : Iss. 1, Article
1034. (2005)

69. Luck, M., Ashri, R., d’Inverno, M.: Agent-Based Software Development, Artech
House, 2004

70. Luck, M., McBurney, P., Gonzalez-Palacios, J: Agent-Based Computing and
Programming of Agent Systems. LNCS, Agent-Based Computing and
Programming of Agent Systems, 3862, pp. 23-37, Springer. (2006)

71. Madejski, J.: Survey of the agent-based approach to intelligent manufacturing,
Journal of of Achievements in Materials and Manufacturing Engineering, VOLUME
21, ISSUE 1, pp. 67-70. (2007)

72. Maes, P.: "The Agent Network Architecture (ANA)", SIGART Bulletin, 2(4), pp.
115-120, (1991)

73. Maes, P.: "Modelling Adaptive Autonomous Agents", Artificial Life Journal, Ed. C.
Langton, Vol 1, No. 1&2, MIT Press, pp. 135-162. (1994)

74. McCabe, F. G., Clark, K. L.: April – Agent PRocess Interaction Language, In
Proceedings of the workshop on agent theories, architectures, and languages on
Intelligent agents, pp. 324 – 340 (1995)

75. McCarthy, J.: Situations, actions and causal laws. Technical report, Stanford
University, 1963. Reprinted in Semantic Information Processing (M. Minsky ed.),
MIT Press, Cambridge, Mass., pp. 410-417 (1968)

76. Muldoon, C., O’Hare, G.M.P., Collier, R.W., O’Grady, M.J.: Towards Pervasive
Intelligence: Reflections on the Evolution of the Agent Factory Framework. In: [23],
pp. 147-212 (2009)

77. Minsky, M.: "The Society of Mind", Simon and Schuster, New York (1986)

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 293

78. Nguyen G., Dang T.T, Hluchy L., Laclavik M., Balogh Z., Budinska I.: AGENT
PLATFORM EVALUATION AND COMPARISON, Institute of Informatics, Slovak
Akademy of Sciences (2002)

79. Nwana, H., & Wooldridge, M., Software Agent Technologies. BT Technology
Journal 14(4), pp. 68-78. (1996)

80. Nwana, H.S.: "ZEUS: An Advanced Tool-Kit for Engineering Distributed Multi-
Agent Systems", Proceedings of PAAM'98, London pp. 377-392. (1998)

81. Nwana, H.S., Ndumu, D.T., Lee, L.C., Collis, J.C.: " A Toolkit and Approach for
Building Distributed Multi-Agent Systems ", Proceedings of the Third International
Conference on Autonomous Agents (Agents'99), Seattle, WA, USA, pp. 360-361.
(1999)

82. Pokahr, A., Brauhach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In
[20], pp. 149-174, Springer (2005)

83. Rao, A.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language, Proceedings of the 7th European workshop on Modelling autonomous
agents in a multi-agent world, Einhoven, Netherlands, pp. 42-55 (1996)

84. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems, MIT Press (2001)

85. Ross, R., Collier, R., O’Hare, G.: AF-APL: Bridging principles and practices in
agent oriented languages. In Programming Multi-Agent Systems, Second Int.
Workshop (ProMAS’04), volume 3346 of LNCS, Springer Verlag, pp. 66–88,
(2005)

86. Russell, S., and Norvig, P.: Artifical Intelligence: A Modern Approach. Prentice-
Hall, 2nd edition, 2002.

87. Santoro, C.: Towards an Agent Programming Language, In 10th national
workshop Towards the Future of Agent-based software systems, Parma, Italy
(2009)

88. Sardina, S., Lespérance, Y.: Golog Speaks the BDI Language. In: 7th International
Workshop on Programming Multi-Agent Systems, ProMAS 2009, LNCS 5919, pp.
82-99, Springer (2010)

89. Schiffel, S., Thielscher, M., Trang, D.T.: An Agent Team Based on FLUX for the
ProMAS Contest 2007, Proceedings of the 5th international conference on
Programming multi-agent systems, ProMAS'07, LNCS 4908, pp. 261-265,
Springer-Verlag (2008)

90. Shoham, Y.: "Agent-Oriented Programming", Artificial Intelligence, 60(1), pp. 51-
92 (1993)

91. Suna, A., Seghrouchni, A.E.F.: Programming mobile intelligent agents: An
operational semantics, Web Intelligence and Agent Systems, vol.5, no.1, pp. 47-
67, IOS Press (2007)

92. Sycara, K.P., Paolucci, M., Velsen, M.V., Giampapa, J.A.: The RETSINA MAS
Infrastructure, Autonomous Agents and Multi-Agent Systems, Springer, no.1-2, pp.
29-48 (2003)

93. Thielscher, M.: Introduction to the fluent calculus. Electronic Transactions on
Artificial Intelligence, 2(3–4), pp. 179–192 (1998)

94. Thielscher, M.: Reasoning Robots. The Art and Science of Programming Robotic
Agents, Applied Logic Series, Vol.33, Springer (2005)

95. Thomas, R.S.: "PLACA, an Agent Oriented Programming Language", PhD thesis,
Computer Science Department, Stanford University, Stanford, CA 94305, (1993)

96. Unland, R., Klusch, M., Calisti, M.: Software Agent-Based Applications, Platforms
and Development Kits, Birkhauser Verlag AG (2005)

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 294

97. Schip, R.C.v.h., Warnier, M., Brazier, F.M.: Deploying BDI agents in open,
insecure environments, in: Proceedings of the 7th European Workshop on Multi-
Agent Systems (EUMAS'09) (2009)

98. Wagner, G.: VIVA knowledge-based agent programming. Preprint, Institut fur
Informatik, Universitat Leipzig, Germany, (1996)

99. Wang, J.B., Pang, J., Jiang, B.C.: The Modeling and Implementation of Virtual

Enterprise Based on Multi-Agent System, Applied Mechanics and Materials
(Volume 33) pp. 280-284. (2010)

100.Weerasooriya, D., Rao, A. S., Ramamohanarao, K.: Design of a Concurrent
Agent-Oriented Language, LNAI, Vol 890, Springer-Verlag, (1994)

101.Weiss, G. (ed.): Multiagent Systems. A Modern Approach to Distributed Artificial
Intelligence. MIT Press 2000.

102.Weiss, G.: Agent orientation in software engineering. Knowledge Engineering
Review, 16(4), pp. 349–373. (2002)

103.Winikoff, M.: JACKTM Intelligent Agents: An Industrial Strength Platform, In: [20],
Springer, pp. 175-193, (2005)

104.Wooldridge, M., Jennings, N.R.: "Agent Theories, Architectures, and Languages:
A Survey", Intelligent Agents, LNAI, Vol 890, Springer- Verlag, pp. 1-39. (1994)

105.Wooldridge, M., Jennings, N.R.: "Intelligent Agents: Theory and Practice",
available as http://www.doc.mmu.ac.uk:80/STAFF/mike/ker95/ker95-html.html,
(1994)

106.Wooldridge, M.: A Knowledge-Theoretic Semantics for Concurrent MetateM, In
Proceedings of the Workshop on Intelligent Agents III, Agent Theories,
Architectures, and Languages, LNCS, Vol. 1193, pp. 357 – 374, (1996)

107.Wooldridge, M.: Intelligent Agents, chapter 1 of Multiagent systems: a modern
approach to distributed artificial intelligence, Massachusetts Institute of
Technology, 2000, pp. 27 – 77 (2000)

108.Jinkai, X., Weihong, Y.: Study of comparison between JAFMA and JADE,
Circuits, Communications and System (PACCS), 2010 Second Pacific-Asia
Conference on, pp. 105 – 108 (2010)

109.Brooks, R.A.: Elephants don't play chess, In Robotics and Autonomous Systems,
vol 6., pp 3-15, (1990)

110.Lee, E.A.: Cyber Physical Systems: Design Challenges, EECS Department,
University of California, (2008)

111.http://www.cs.uu.nl/3apl/, accessed in January 2011
112.http://www.eil.utoronto.ca/aac/abs/, accessed in January 2011
113.http://www.agentfactory.com/index.php/AF-AgentSpeak, accessed in Jan. 2011
114.http://www.agentscape.org/, accessed in January 2011
115.http://www.cougaar.org/, accessed in January 2011
116.http://fipa.org/, accessed April 2011
117.FIPA-OS (http://fipa-os.sourceforge.net/index.htm) accessed in January 2011
118.http://www.cs.toronto.edu/cogrobo/main/systems/index.html, accessed in January

2011
119.http://jade.tilab.com/, accessed in January 2011
120.http://jadex-agents.informatik.uni-hamburg.de/, accessed in January 2011
121.http://jason.sourceforge.net, accessed in January 2011
122.http://www.madkit.org/, accessed in January 2011
123.http://www.csc.liv.ac.uk/~anthony/metatem.html, accessed in January 2011
124.[http://www.ai.sri.com/~oaa/], accessed in January 2011
125.http://www-2.cs.cmu.edu/~softagents/, accessed in January 2011

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 295

126.http://www.ai.mit.edu/people/sodabot/slideshow/total/p001.html, accessed in
January 2011

127.http://activist.gpl.ibm.com:81/WhitePaper/ptc2.htm, accessed in January 2011
128.http://agents.media.mit.edu/, accessed in January 2011
129.http://193.113.209.147/projects/agents/zeus/index.htm, accessed in January 2011
130.http://www.aosgrp.com, accessed in January 2011
131.http://www.i-a-i.com/, accessed in January 2011
132.http://mmi.tudelft.nl/~koen/goal.php, accessed in January 2011
133.http://apapl.sourceforge.net/, accessed in January 2011

Costin Bădică received in 2006 the title of Professor of Computer Science
from University of Craiova, Romania. He is currently with the Department of
Software Engineering, Faculty of Automatics, Computers and Electronics of
the University of Craiova, Romania. His research interests are at the
intersection of Artificial Intelligence, Distributed Systems and Software
Engineering. He authored and coauthored more than 100 publications related
to these topics as journal articles, book chapters and conference papers. He
prepared special journal issues and coedited 4 books in Springer's Studies in
Computational Intelligence series. He coinitiated the Intelligent Distributed
Computing -- IDC series of international conferences that is being held yearly.
He is member of the editorial board of 4 international journals. He also served
as programme committee member of many international conferences.

Zoran Budimac holds position of full professor since 2004 at Faculty of
Sciences, University of Novi Sad, Serbia. Currently, he is head of Computing
laboratory. His fields of research interests involve: Educational Technologies,
Agents and WFMS, Case-Based Reasoning, Programming Languages. He
was principal investigator of more then 20 projects and is author of 13
textbooks and more then 220 research papers most of which are published in
international journals and international conferences. He is/was a member of
Program Committees of more then 60 international Conferences and is
member of Editorial Board of Computer Science and Information Systems
Journal.

Hans-Dieter Burkhard is Senior professor at the Institute of Informatics at
Humboldt University of Berlin. He founded the Artificial Intelligence group at
Humboldt University. He has studied Mathematics in Jena and Berlin, and he
has worked on Automata Theory, Petri Nets, Distributed Systems, VLSI
Diagnosis and Knowledge Based Systems. Current interests include
Cognitive Robotics, Distributed AI, Agent Oriented Techniques, Machine
Learning, Socionics, and AI applications in Medicine. He is a fellow of the
ECCAI, and he was Vice President of the International RoboCup Federation.
His publication activities include numerous papers and book articles, invited
talks and memberships in program committees. His soccer robot teams have
won several first places in the RoboCup world championships.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 296

Mirjana Ivanović holds position of full professor since 2002 at Faculty of
Sciences, University of Novi Sad, Serbia. She is head of Chair of Computer
Science. She is author or co-author of 13 textbooks and of more then 230
research papers on multi-agent systems, e-learning and web-based learning,
software engineering education, intelligent techniques (CBR, data and web
mining), most of which are published in international journals and international
conferences. She is/was a member of Program Committees of more then 80
international Conferences and is Editor-in-Chief of Computer Science and
Information Systems Journal.

Received: February 14, 2011; Accepted: April 12, 2011.

Table 3. Summary of agent languages

Name Web page IDE Implementation
language

Agent platform
integration Applications Paradigm Text

book

AGENT0 No No Interpreters written in
Prolog and CommonLisp N/A N/A Declarative No

PLACA No No None (experimental) N/A N/A Declarative,
prototype No

Agent-K No No Prolog N/A N/A Declarative No

MetateM No No Interpreters written in
Prolog and Scheme N/A

According to [Fisher 1994], can
be used in process control,
fault-tolerance, bidding, etc.

Declarative, based
on discrete, linear
temporal logic

No

APRIL http://sourceforge.net/p
rojects/networkagent/ Yes C, Java, Prolog

No, although its
execution relies on
external software (e.g.
April Machine, InterAgent
Communication server)

Networked intelligent agents
(kaccording to [McCabe 1994])

Process-oriented
symbolic language,
not designed
specifically for multi-
agent programming

No

MAIL No No APRIL N/A N/A (development of the
language was discontinued) Hybrid No

VIVA No No PVM-Prolog N/A N/A
Declarative,
combining concepts
of Prolog and SQL

No

GO! http://sourceforge.net/p
rojects/networkagent/ Yes C, Java, Prolog N/A Networked intelligent agents Hybrid (according to

[Bordini 2006]) No

Agent
Speak No

Yes,
(indirectly
(e.g. for
Jason)

Several interpreters for
the language exist, such
as Jason, SIM_Talk, and
AgentTalk

N/A N/A Declarative,
theoretical language Yes [22]

Jason http://jason.sf.net Yes Java interpreter for
AgentSpeak(L)

Yes, based on JADE and
Saci; was also integrated
in AgentScape [97] and
Agent Factory [113]

N/A Hybrid (according to
[21]) Yes [22]

AF-APL
http://www.agentfactor
y.com/index.php/Main_
Page

Yes, via
Agent
Factory

Java Agent Factory
Robotics, virtual and mixed
reality environments, and mobile
computing [Collier, 2009]

According to [21] is
hybrid No

Name Web page IDE Implementation
language

Agent platform
integration Applications Paradigm Text

book

3APL http://www.cs.uu.nl/3ap
l/ Yes

A Java implementation
and a Haskell
implementation

N/A

Robot control using an API
called ARIA (provided by
http://www.activmedia.com),
look at
http://www.cs.uu.nl/3apl/thesis/v
erbeek/verbeekimpl.html

According to
classification of [21]
is hybrid

No

2APL http://apapl.sourceforg
e.net/ Yes Java on top of JADE JADE N/A Hybrid No. There

is a tutorial

JACK http://aosgrp.com/prod
ucts/jack/index.html Yes Java

No, execution relies on
the JACK agent kernel
runtime

Unmanned Aerial Vehicles,
surveillance, air traffic
management

Imperative
A number
of manuals
and tutorial.

JADEX

http://jadex-
agents.informatik.uni-
hamburg.de/xwiki/bin/vi
ew/About/Overview

Yes Java JADE

Workflow execution, self-
organizing systems, treatment
scheduling for patients in
hospitals

Hybrid

A number
of user
guides and
tutorials

GOAL http://mmi.tudelft.nl/trac
/goal Yes Java based on SWI-

Prolog

According to [62], GOAL
has been tested on top of
JADE. However, we
could not find any
reference to such an
experiment

It is just a prototype that is
currently used for educational
purposes. It can be useful in
planning applications, e.g. in the
transportation domain

Declarative

No. There
is a tutorial
on its Web
site

Golog http://www.cs.toronto.e
du/cogrobo/main/ No Prolog (Eclipse Prolog,

SWI-Prolog) N/A Cognitive robotics, embedded
systems Declarative Yes [84]

FLUX http://www.fluxagent.or
g/home.htm No

Two implementations
available: 1. Eclipse
Prolog (constraint logic
programming system),
and 2. Sicstus Prolog

N/A Cognitive robotics Declarative (also
according to [21])

Yes
[Thielscher,
2005a]

CLAIM ? ? Java SyMPA N/A

Although in [41] it is
said that CLAIM is
declarative our
impression is that it
is hybrid

No

