
DOI: 10.2298/CSIS110302054L

Quantitative Analysis for Symbolic Heap Bounds

of CPS Software

Renjian Li
1
, Ji Wang

1
, Liqian Chen

1
, Wanwei Liu

2
, Dengping Wei

2

1 National Laboratory for Parallel and Distributed Processing
410073 Changsha, China

2 School of Computer, National University of Defense Technology
410073 Changsha, China

{li.renjian@gmail.com, wj@nudt.edu.cn, lqchen@nudt.edu.cn,
wwliu@nudt.edu.cn, dpwei@nudt.edu.cn}

Abstract. One important quantitative property of CPS (Cyber-Physical
Systems) software is its heap bound for which a precise analysis result
needs to combine shape analysis and numeric reasoning. In this paper,
we present a framework for statically finding symbolic heap bounds of
CPS software. The basic idea is to separate numeric reasoning from
shape analysis by first constructing an ASTG (Abstract State Transition
Graph) and then extracting a pure numeric representation which can
further be analyzed for the heap bounds. A quantitative shape analysis
method based on symbolic execution is defined in the framework to
generate the ASTG. The numeric representation is extracted based on
program slicing technique and inputted into an abstract interpretation
tool for computing the heap bounds. We take list manipulating
programs as an example to explain how to instantiate the framework
for important data structures and to exhibit its practicability. A novel list
abstraction method is also presented to support the instantiation of the
framework.

Keywords: CPS software, heap bounds, quantitative shape analysis,
symbolic execution, program slicing.

1. Introduction

Conformance with quantitative constraints over temporal-spatial resources
(such as execution time, energy, memory, etc.) is central to the correctness
of CPS software. Compared with general purpose software, CPS software
often suffers from very limited memory [1, 6, 8]. One of the most important
quantitative properties of CPS software should be its heap bounds.

CPS software often adopts dynamic memory allocation schemes, where a
program can at any time request the operating system to allocate additional
memory from heap. The failure of dynamic memory allocation request may
cause the failure of CPS software or even the whole CPS system. Usually

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1252

depending on environmental parameters and/or user inputs, symbolic heap
bounds are extremely important for CPS software which tends to feature a
tight coupling between physical and software components and runs in open
environments. Besides, precise symbolic heap bounds could also be very
useful for inter-procedural static analysis and hardware synthesis [2].

There are several obstacles for finding precise heap bounds of CPS
software written in imperative languages like C. Firstly, loops and recursive
procedures are what make heap usage exceed its bounds. However, finding
loop bounds may be difficult even for numeric programs and harder when
loop bounds depend on the shape of the heap. Secondly, both shape analysis
and numeric computation are needed for finding heap bounds. However, a
casual combination of these techniques should involve a large increase in
complexity, both in terms of the verification problem and the implementation
[3]. Last but not the least, programmers often adopt shared mutable data
structures, such as trees and lists, to develop CPS software for the sake of
effectiveness and convenience. However, none of the available heap bounds
analysis techniques can handle these shared mutable data structures full
automatically.

In this paper, we try to tackle these obstacles and present a novel
framework for analyzing heap bounds of CPS software. The basic idea is to
separate numeric reasoning from shape analysis and to make full use of
existed static analysis techniques and tools for finding precise heap bounds.
In detailed, the framework will first construct an ASTG via quantitative shape
analysis based on symbolic execution [4]. The ASTG is employed as an
intermediate representation during the analysis and the transformation. A
numeric representation maintaining the heap usage properties of the original
program is further extracted based on the main idea of program slicing. The
abstract interpretation tool Interproc [24] is finally used to find the heap
bounds.

The framework can be instantiated for various data structures manipulating
programs. In order to explain how the framework should work, we take list
manipulating programs as an example. A new list abstraction model which
maintains both shape and quantitative properties is presented and used
during instantiating the framework. The new list abstract model stores the
relationship between variables and list nodes in a singly-linked list implicitly,
and represents list states in a compact manner. Compared with other
abstraction models for list, such as shape graph and separation logic, it
enjoys lower space overhead and higher implementation efficiency.

This paper has several main technical contributions:

 We present a new framework for analyzing heap bounds of CPS software.
It separates numeric reasoning from shape analysis by extracting a
numeric representation which maintains the heap usage of the original
program.

 We further show how the framework could be instantiated for important
data structures taking list manipulating programs as an example. With
proper modifications and extensions, the framework should also work for

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1253

programs containing more complex data structures such as circular lists,
doubly-linked lists, etc.

 We present a novel quantitative shape analysis method based on symbolic
execution. It generates an ASTG (Abstract State Transition Graph) and is
more precise than classic shape analysis methods.
The paper is organized as follows. Section 2 presents the related work.

Section 3 explains our main idea through a simple example. Section 4
presents the framework for analyzing heap bounds of CPS software. In
Section 5 we introduce how to instantiate the framework for programs
manipulating lists. Section 6 presents the experimental results. Section 7
makes a conclusion.

2. Related Work

Quantitative properties of CPS software have gained a lot of attention within
the past several years, as shown by the recent publications on the subject [7-
10]. But they mainly focus on the WCET problem, while we try to find heap
bounds of CPS software in this paper.

Early work for heap bounds analysis and verification [11-13] mostly
focuses on functional programs where data structures are basically
immutable and easier to handle. These works often needn’t treat shape or the
shared mutable data structures.

For imperative Object Oriented programming languages such as Java, the
method proposed in [14] relies on a type system and type annotations. It is
therefore up to the programmer to annotate the sizes of data structures and
the amount of heap memory required for each method. Hofmann et al. [15]
also propose a type based heap space analysis for Java style OO programs
with explicit deallocation. It uses an amortised analysis and calculates heap
memory usage with an LP-solver based on function inputs during the type
inference. Albert et al. introduce a Java memory-bounds tool in [16]. It uses a
heap abstraction and applies heuristics based on arithmetic simplification to
find a memory bound.

For assembly-level programs, Chin et al. [25] present a method to find
memory resource bounds for each method in terms of the symbolic values of
its parameters. However, the system does not handle shared objects.

Different from previous work [14-16, 25], we focus on the C language
which is found in many critical CPS software implementations. Finding heap
bounds for C programs needs both quantitative shape analysis and numeric
reasoning. Previous work often omitted shape analysis; while our method
uses a more precise shape abstraction, which is crucial for dealing with our
examples.

He et al. [17] try to reuse a general-purpose verification system Hip/Sleek
for memory usage verification, where shape, size and alias information can
be readily obtained from the specifications given in separation logic. They
can verify quite a number of programs that cannot be handled by previous

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1254

approaches, such as doubly linked lists, cyclic linked lists and binary trees.
However, they need to supply memory specifications for the programs
manually, while our framework could find heap bounds automatically.

Cook et al. [18] present a constraint-based method to find symbolic bounds
for C programs combining several known methods and tools. They use the
shape analysis tool THOR [20] to produce a new program without heap
operations and use constraint-based techniques to find the heap bounds.
Magill et al. [19] present a formal system for producing numeric abstractions
of heap-manipulating programs based on the work of [18, 20, 21]. Our
quantitative shape analysis procedure is based on symbolic execution
techniques and that is different from THOR which is based on separation
logic invariants generation. Another key difference between their method and
ours should be the abstract model for list. Their work uses separation logic to
model the abstract list state, while our work adopts the newly presented list
abstract model. By focusing on specific data structures, our framework is able
to obtain more precise results than their work while without have to ask the
user to supply any annotations. Our numeric representation extraction
algorithm is based on program slicing technique, which makes our result
numeric CFG be smaller than theirs when applying to heap bounds analysis.

Shape graph is the most frequently used abstract model in static analysis;
however, it can’t express quantitative properties of heap. Some researchers
[14, 17-20] used separation logic to describe the abstract state of list.
Bouajjani et al. [22] use counter automata to model the abstract state of list.
Our list abstract model has the equal expression ability with their counter
automata. But our method enjoys lower space overhead and better
scalability. Besides, the method in [22] is not implemented automatically;
while we have implemented a prototype tool based on our list abstract model.

3. A Motivating Example

The example in figure 1 is taken from [2] with minor modifications, which may
denote a frequently used programming pattern in CPS software. The
procedure reads integers from an input signal i and returns every n inputted

integers to an output signal o in inverse order. The primitive input() reads

one integer from i, and the primitive output() writes one integer to o. The

data structure LIST is used to represent singly-linked lists (with fields data

and its next element). The bound of heap usage for prio should be 8n

(assuming that sizeof(LIST) = 8).

This example is fairly simple but exhibits all the obstacles we want to
overcome in this paper when finding precise symbolic heap bounds of CPS
software. Using the method presented in this paper, we are able to find such
a bound for this example. An intermediate representation including only
numeric variables will be constructed and analyzed for the heap bounds in
our framework. An equivalence program of the numeric representation written
in C is given in figure 2 for understanding convenience. The numeric

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1255

representation may contain some variables from the original program (such
as k and n) and some instrumentation variables such as heap_now, heap_peak
(which track the heap usage) and X, Y (which track the quantitative

properties of shape, and in this case they represent the length of lists). Now
analyzing the following numeric program, we could know the biggest value of
heap_peak is 8n, which is just the heap bound of the original program.

void prio(int n, in_signal i, out_signal o) {

LIST *head,*cur;

1: while(1){

// Build up an n−sized buffer

2: head = (LIST*)malloc(sizeof(LIST));

3: head->data = input(i);

4: for(int k = 0;k<n-1;k++){

5: cur = (LIST*)malloc(sizeof(LIST));

6: cur->data = input(i);

7: cur->next = head;

8: head = cur;}

// Send the buffer to the output and deallocate it

9: cur = head;

10: while(cur != NULL) {

11: output(o, cur−>data);

12: head = cur−>next;

13: free(cur);

14: cur = head; }}}

Fig. 1. A motivating example

4. A Symbolic Heap Bounds Analysis Framework

In this section, we introduce a new framework for finding symbolic heap
bounds statically. The framework is presented in figure 3. After getting the
CFG (Control Flow Graph) of the original program, we go forward with a
quantitative shape analysis which can generate shape invariants for each
program point. We do not annotate the abstract states and transitions in the
original CFG, but construct a new intermediate representation named as
Abstract State Transition Graph (ASTG, for short). ASTG is a core internal
representation in our framework which could be used to extract the numeric
representation. The final numeric representation is actually a CFG which
maintains the heap usage properties of the original programs and
manipulates only numeric variables. A numeric reasoning tool such as
Interproc [24] could be then used to find the heap bounds. We will introduce
these steps in detail in the following subsections. In this paper, we take list
manipulating programs as an example for explaining the main idea of the
framework. When extending to programs manipulating other kinds of data
structures, firstly, you need to adopt a suitable abstract model for these data

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1256

structures, and then make some proper modifications when implementing the
core algorithms.

void prio_numeric(int n, in_signal i, out_signal o)

1: {int heap_now, heap_peak, k, X, Y;

2: heap_now = 0;

3: heap_peak = 0;

4: while(1){

5: heap_now = heap_now + 8;

6: if(heap_now > heap_peak)

7: heap_peak = heap_now;

8: k = 0;

9: X = 1;

10 while(1){

11: if(k>=n-1)

12: break;

13: heap_now = heap_now + 8;

14: if(heap_now > heap_peak)

15: heap_peak = heap_now;

16: k = k + 1;

17: X = X + 1:}

18: Y = X;

19: while(1){

20: if(Y==1)

21: break;

22: heap_now = heap_now – 8;

23: Y = Y – 1;}

24: heap_now = heap_now – 8; }}

Fig. 2. The numeric program tracking the heap bounds

Fig. 3. Static analysis framework for symbolic heap bounds

CPS

software

Front-end

LLVM CFG
Quantitative

Shape Analysis

Interproc Numeric

CFG

Numeric

Extraction

Heap

Bounds

ASTG

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1257

4.1. Abstract State Transition Graph

ASTG plays an important role in our framework, so we first give its definition
in this subsection.

Definition 1. An Abstract State Transition Graph (ASTG) is a 5-tuple

Q,q0,P,,L, where:

- Q is a finite set of abstract states. Each qQ is a 2-tuple q = sg,pc where

sg is an abstract shape representation in program point pc.

- q0Q is the starting state.

- PQ is the set of exit states.

- QQ is the set of transitions.

- L is a labeling function which labels each with program commands.
The abstract shape representation must maintain both shape properties

and quantitative properties of the current shape. Supposing sg can be further

divided into shape part sgs and quantitative part sgq. Given an abstract shape

representation sg, we record it with sg = sgssgq. However, it’s obvious that
these two parts may rely on each other and are not fully independent with
each other. How to express the abstract shape depends on the concrete
implementation and the abstract model for shared mutable data structures.

One key difference between our method and existed methods (such as

[21]) is that we classified the transitions. The transitions in could be

classified into three disjoint subsets. s stands for the kind of transitions

which are labeled with statements from the original program; c stands for
the conditional transitions which are labeled with Boolean expressions; and

l stands for the kind of transitions which enter a loop structure and are

labeled with a special command MakeShapeSymbolic. Any could be
treated as a transfer function which maps a source abstract state to a target
abstract state.

The transitions in s are easily understood. Given an input state, it just
generates one output state according to the semantics of the labeled program
statements. It’s worth noting that the definition of ASTG doesn’t require the

statements labeled on s must be assignment statements, as you can see
soon from the example ASTG in figure 4.

There are some cases that a statement could generate two output abstract
states. One case is when the branch condition of a branch statement could
either be true or false for an input abstract state. The other case is when
some special assignments might also generate two abstract states, according
to the operational semantics of the abstract shape model for the underline
data structures. For these two cases, we must bring in conditional transitions

which are labeled with transition conditions and add them to c.
In order to handle loop structures, we bring in a special transition for each

edge entering a loop structure in the CFG and add them to l. The target

abstract state of each transition in l is a symbolic representation of the
source abstract state. We label these transitions with a special command
named MakeShapeSymbolic. It means that we should construct a new

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1258

symbolic abstract state. The quantitative part sgq of the abstract shape
representation should contain only new symbolic variables.

There are some optimizations or constraints we would like to make for the
transitions in ASTG in order to reduce the abstract states set Q and to

simplify the implementation of our framework. As for the transitions in s, if a
continuous fragment of statements can only generate one output abstract
state for each inputted abstract state, then they could be merged into a
compound transition. The compound transition takes the source state of the
first transition and the target state of the last transition and is labeled with the
statements from all these transitions sequentially. There are some cases that
the condition of a branch statement is definitely evaluated to true or to false
for the input abstract state. We treat these branch statements as normal
assignment transition in this case and label these branch statements with

transitions in s. The underline abstract modeling method must assure that
an assignment statement should never generate more than two abstract
states for the correctness of our method. Suppose the conditions labeled on
the two outgoing transitions from one common source abstract states are

cond_true and cond_false, it must be assured that cond_true = (cond_false)

and cond_false = (cond_true). As for the transitions in l, the shape parts of
the source state and the target state must be identical.

cur=malloc();

cur->data=

 input(i);

cur->next=head;

head=cur;

k=k+1;

10 X

10 X+1

head=malloc();

head->data=

 input(i);

k=0;

for(;k<n-1;)

MSS

10 X

k<n-1

10 1

Ø(k<n-1)

11 Y

cur=head;

free(cur);

cur=head;

11 Y

11 X

11 Y-1
01 1

01 1

Y-1==0 Ø(Y-1==0)

11 Y-1

while(cur!=NULL)

output(o,cur−>data);

head=cur−>next;

10 X

MSS

MSS

MSSMSS

free(cur);

cur=head;

MSS

s

c

l

Fig. 4. The ASTG generated for the motivating example

The generated ASTG for the example by our framework in figure 1 is given
in figure 4. Here each solid line box stands for an abstract shape sg and its

position should exhibit the program counter pc. The abstract shape is

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1259

expressed with our list abstract model which will be explained in the next
section. You don’t have to doubt why an abstract shape can be expressed
like that now. The starting state q is slash marked. The program will runs
forever so there is no exit states. Three kinds of transitions are denoted with
different arrows as shown in the figure. The dotted line boxes positioned
aside present what are labeled for each transition. The operation
MakeShapeSymbolic is represented with MSS for brevity. As you can see,
the ASTG describes all the abstract states that may occur during the
execution of the original program. A program point of the original CFG may
be separated into several abstract states with different abstract shape parts.
An ASTG could be treated as the result of refining the original CFG based the
shape analysis result in some ways.

4.2. Quantitative Shape Analysis

In this part we introduce how we can construct an ASTG from a CFG based
on the idea of symbolic execution [4]. The algorithm is presented in figure 5.
Its main idea is to start symbolic execution from the initial state and record
the abstract states and the transitions that can arise during symbolic
execution. Semantics of all the basic shape operations must be defined at
first in order to implement the algorithm. Before explain how the algorithm
works, we first define the abstract subsumption relationship between two
abstract states.

Definition 2. Given two abstract states s1,s2, supposing s1 = sg1,pc1 and s2

= sg2,pc2, sg1 = sgs
1sgq

1, sg2 = sgs
2sgq

2. We would call s1 is subsumed by s2

and record with s1 s2 if and only if pc1 = pc2 sgs
1 = sgs

2 and sgq
2 includes only

atom symbolic variables.
The algorithm in figure 5 maintains two sets of abstract states, where NEW

maintains the abstract states needed to be analyzed and OLD keeps the
ones that have been analyzed. The algorithm will start symbolic execution
from a selected abstract state in NEW and runs along the original CFG. When

the set NEW is empty we could get the final ASTG. The method of selecting

the next abstract state to analyze from NEW is not fixed and depends on the

adopted search strategy. With a selected state from NEW, the algorithm will
keep executing until it reaches one of the following three special cases:

- When reaching an exit abstract state, it will select another abstract state
from NEW, and start a new symbolic execution process.

- When reaching a statement that may generate two possible abstract

states, it will first construct a new s transition and two new c transitions. If
any branched new abstract state is not subsumed by some abstract state in
OLD, then a new abstract state has occurred and must be added to NEW.

- When reaching an edge which enters a loop structure in the CFG, it will
check whether the state could be subsumed by some abstract state in OLD. If
not, then a new abstract state has occurred and must be created with

MakeShapeSymbolic command and added to NEW. Besides, a new l

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1260

transition and a new s transition may also be constructed accordingly. The
MakeShapeSymbolic operation means making a shape representation
become a more general symbolic representation. Its concrete implementation
depends on the underline abstract model for shared mutable data structures.

As an example, you can refer to figure 4 which gives an ASTG generated
by the algorithm for the motivating example in figure 1.

Algorithm 1: QuantitativeShapeAnalysis

INPUT: q0 // the initial abstract state

 P // the set of exit abstract states

 cfg // the CFG of the original program

OUTPUT: astg = OLD,q0,P, scl,L
// the ASTG of the original CFG

begin

1: OLD = ; NEW = {q};

2: while(NEW) do

3: select and remove s from NEW, add it to OLD;

4: start symbolic execution from s until the following cases happen:

// suppose the temporal abstract state before the interrupt is s’
5: In case of reaching a statement that may generate two different

abstract states s1, s2:

6: if s s’ then

7: add s, s’ to s, label it with corresponding statements;

 8: add s1 to NEW if si OLD. (s1 si);

9: add s2 to NEW if si OLD. (s2 si);

10: add s’,s1,s’,s2 to c, label it with corresponding conditions;

11: continue;
12: In case of reaching an edge entering a loop structure in the CFG:

13: if s s’ then

14: add s, s’ to s, label it with corresponding statements;

15: if si OLD. (s’ si) then

16: s’’ = MakeShapeSymbolic(s’);

17: add s’’ to NEW;

18: add s’, s’’ to , label it with MakeShapeSymbolic;

19: else // suppose si OLD. s’ si

20: add s’,si to l, label it with MakeShapeSymbolic;

21: continue;

22: In case of s’ P

23: continue;

24: od

end

Fig. 5. The QuantitativeShapeAnalysis algorithm

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1261

4.3. Numeric Extraction

In this subsection, we will first introduce how we can model the heap usage of
the original program with two numeric variables, and then introduce the main
steps for extracting a numeric CFG from the ASTG.
Heap bound is a quantitative property intending to find a peak value for heap
usage. Here we bring in two instrumentation variables heap_now and

heap_peak which represent the heap usage at present and the peak heap
usage until now respectively. There are two cases when we need to modify
these two variables.

When programs call library functions such as malloc() to allocate some

amount of memory from heap, heap_now should be increased by the amount

of allocated heap memory. Besides, we have to determine whether heap_now

is greater than heap_peak, and update heap_peak if it was. For each original
statement ptr=malloc(malloc_size), we should instrument with the

following statements:

heap_now = heap_now + malloc_size;

if(heap_now>heap_peak)

 heap_peak = heap_now;

Other library functions such as realloc() and calloc() could also be

handled in this way with respect to their operation semantics. We will not list
them in detail.

When programs call library function free() to give back some amount of

memory to heap, heap_now should be decreased by the amount of
deallocated heap memory. Suppose the size of the freed memory
free_size has been gained by a pre-analysis task, we will instrument

free(ptr) with the following statements:

heap_now = heap_now - free_size;

We can traverse all statements labeled on the transitions of ASTG and
complete the instrumentation work based on syntax analysis. The biggest
value of heap_peak should be the heap bounds of the original program.

However, besides depending on numeric program variables, heap_peak may
also be controlled by loops and branches which may further depend on the
shape of the heap, as we can see from the example in figure 1. Existed
numeric reasoning tools could not be adopted directly. We will try to
overcome these obstacles by constructing a pure numeric representation of
the original program. The good news is that ASTG contains plentiful
information for transforming these syntax structures into corresponding
numeric versions.

We can transform these loops depending on the shape of the heap as
following. Because we have refined the original loop structures in the
quantitative shape analysis phase, all new loop structures in ASTG enjoy the
good character that the shape parts of the abstract shape representations in
the loop entries are identical. So the loop body can only affect the

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1262

quantitative properties of the abstract states. We try to bring in new
instrumentation variables to describe the change of the quantitative parts of

the abstract representations. Each transition in l is also well designed
requiring that the shape parts of the source abstract state and the target
abstract state must be identical. Besides, the quantitative part of the target

abstract state of a l transition contains only atom symbolic variables. We
could take these atom symbolic variables as new numeric instrumentation
variables, and assign the corresponding symbolic expressions from the

quantitative part of the source abstract state of l to them. These
assignment statements could then reflect the effect of the loop body for the
abstract state.

As for the branches depending on the shape of the heap, we can replace
the shape related branch conditions with equivalent quantitative properties of
the shape. It’s fortunately that the generated ASTG has already transformed
these branch conditions into numeric versions, as you can see in figure 4. We
will explain how it is possible for us to make the transformation taking lists
manipulating programs as an example in the next section.

Now we can extract the statements that affect the value of heap_peak and
construct the numeric CFG. The extraction algorithm presented in figure 6 is
based on the program slicing technique [5]. Program slicing can be used to
extract program statements which are relevant to a particular computation. A
program slice is an executable program whose behavior must be identical to
a specific subset of the original program’s behavior. The principle of getting
this behavior subset is called slicing criterion and can be expressed as the
value of some sets of variables at some set of statements and/or program
points.

The numeric CFG is a heap bounds slice of the instrumented ASTG with
the initial slicing criterion including all the statements that modify heap_peak.
The slicing procedure then starts to find and label the statements on all these
edges that lead the program reaching some slice criterion based on the main
idea of classic program slicing. After getting the labeled ASTG, we could
construct the numeric CFG easily.

Algorithm 2: ExtractNumericCFG

INPUT: astg // the intermediate representation

OUTPUT: cfg // the final numeric representation tracking the heap bounds
of the original program

begin

1: traverse astg and instrument it with heap_now, heap_peak;

2: traverse astg and label all transitions in l with corresponding
assignment statements;

3: add all the statements that modify heap_peak into slicing criterion;

4: slice the ASTG and construct cfg;

end

Fig. 6. The ExtractNumericCFG algorithm

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1263

As an example, the extracted numeric CFG for the motivating example by
our framework is presented in figure 7. Each box may stand for a
combination of several basic blocks. We present it like this on purpose to
reflect the main idea of the ExtractNumericCFG algorithm and for simplicity.
Suppose the initial value for heap_now and heap_peak are all zero, then we

could get the heap bounds 8n with the abstract interpretation tool Interproc
now.

5. Instantiate the Framework

In this section, we illustrate how to instantiate the framework for various
shared mutable data structures. List is one of the most frequently used data
structures in CPS software. So we will take list as an example and present a
novel abstract model for lists in the first subsection. In the second subsection
we will explain some special issues needed to be considered when
instantiating the framework.

heap_now+=8;

if(heap_now>heap_peak)

 heap_peak=heap_now;

k=k+1;

X=X+1;

heap_now+=8;

if(heap_now>heap_peak)

 heap_peak=heap_now;

k=0;

X=1;

heap_now-=8;

Y=Y-1;

Y=Xk<n-1

Y==1

heap_now-=8;

heap_now=0;

heap_peak=0;

Fig. 7. The final numeric CFG for the motivating example

5.1. A New List Abstract Model

In order to express our basic idea more clearly, we focus on non-circled
singly-linked lists at first. Although doubly-linked lists and circled lists are
special, they can all be expressed using this abstract model with simple
extensions. A singly-linked list node contains one next field pointing to the
next list node; while all other fields can be treated as data fields. The abstract
syntax considered in this paper is given in figure 8. Here PVar is a finite set of

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1264

pointer variables of list type and DVar is a finite set of variables of primitive
types (for simplicity, we only consider integer variables by now). Allowed
syntax structures include assignment statements, branch statements, and
loop statements. We suppose that there is at most one next operator in a list
operation. All other cases could be transformed by bringing in temp variables.
One example manipulating lists is presented in figure 1.

Fig. 8. The abstract syntax for operating lists

Suppose the set of list nodes is N, and the variables in PVar form a special

subset of list nodes VN. Another special node NULLN is used to denote the

null node. We define a binary relation E from N-{NULL} to N-V:

n1,n2N,n1,n2E iff n1 points to list node n2 when n1V and n2 is the next list

node of n1 otherwise. We record the transitive, irreflexive closure of E with E+,

and define a binary predicate Reach(n1,n2) such that n1,n2N, Reachn1,n2

evaluates to true iff n1,n2E+.
For the time being, we consider programs without recursion or concurrency

constructs, and therefore all variables could be assumed to be global. We

arrange all the variables in PVar in order, and for each 0i|V|-1, Vi stands for

the ith variable. The binary predicate Reach describes the reachability

property between list nodes in N. If Reach(Vi,n) evaluates to true, then Vi could

access list node n via a number of next operators and we would say that the

variable Vi can reach list node n. For each list node nN-V, its reachability
property for all the variables could always be expressed with a Boolean
vector.

Definition 3. For each list node nN-V-{NULL}, its Variable Reachability

Vector (VRV for short) n is a |V|-sized Boolean vector n {0,1}|V| where n

[i]=1 iff Reach(Vi,n) evaluates to true.
Let’s see an example of VRV. Suppose the example in figure 1 has just

executed the statement in line 7 during the (n-1)th loop. The current list state
may be like what is presented in the left part of figure 9. We denote list nodes
with boxes, while denote those special nodes with boxes with dotted lines. If
we define V0 = head, V1 = cur, then the VRVs listed on the top of each list node

could describe their reachability. And as we can see, the list node nn has just

been created and pointed to by cur, so the VRV for nn should be 01. The VRV

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1265

for all the other list nodes should be 11 because they can all reached by both

head and cur.

cur

head

NULL

01 11 11

nn nn-1 n1

V0V1

0 1
1 1

num
1

n-1
V0 = head; V1 = cur;

Fig. 9. An example for VRV and VRVSC

Without confusing, we would also say that the variable Vi can reach VRV

if [i]=1. Given a VRV , we define a set of integers R={i|[i]=1}which

describes the variables that could reach . For two VRVs 1, 2, if R1R2,

then we would say 1 can reach 2 and record with 1 2. Besides, for each

variable Vi, we define a set of VRVs i = {|[i] = 1} which contains all the

VRVs that the variable Vi can reach. After defining the reachability

relationships between VRVs, for each variable Vi, we can find the minimal

element in i and record it with 0 :i 0.i i . It’s obvious that 0

i must be

the right VRV for the list node pointed to by Vi.

Let’s see the example in figure 9 again, where 0 = {11},
0

0 = 11, so we

can know that the list node pointed to by head has the VRV 11. Similarly,

because 1 = {01,11},
0

1 = 01, we can know that the list node pointed to by

cur has the VRV 01.
Given a list state, we can always construct a set of VRVs according to

Definition 3. The relationship between these VRVs can describe the relative
position of the corresponding list nodes. We can also get the VRV to which
each variable points. There may exist any number of nodes with identical
VRVs. Because we are only interested in the shape of heap and its
quantitative properties, we can simply count the number of list nodes with
identical VRV as following.

Definition 4. VRV Set with Counters (VRVSC for short) is a set of 2-tuples

VRVSC = {vrv,num}, where vrv is a VRV and num is the number of list nodes

whose VRV equals to vrv.
According to the definition, all tuples in a VRVSC should be different in

their vrvs and the num field for each tuple should always be greater than zero.
We could always get one and only one VRVSC for each list state after
defining the sequence of the variables. So VRVSC can be used as an
abstract list model which maintains both the shape and quantitative
properties.

For example, the VRVSC given on the right part of figure 9 could deliver
the same information as the shape graph given on the left part. We could
read from the VRVSC representation that there are n-1 node which could be

accessed by both head and cur via a number of next operators, and there is

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1266

one list node pointed to by head but not pointed to by cur. Also we can know

the next node of the node pointed to by cur should be the same node pointed

to by head.
The operation of data fields and primitive data types are the same as

normal, so we only consider the abstract semantics for list operations. For
simplicity, we use some simple recording symbols. Given a set of integers S

and a VRVSC tuple vrv,num, we use vrv/S0 to represent the operation of

replacing all the bits of vrv in S with 0, meanwhile, use vrv/Sj to represent the

operation of replacing all the bits of vrv in S with vrv[j]. new(S) means creating

a new VRV in which all the bits in S are 1 and the other bits are 0. We also

use p to represent the pth variable when not confusing.
An assignment statement can be treated as a transfer function for the

abstract list model. Given a VRVSC vrvsc, the abstract semantics given in
figure 9 describe how it can be updated according to the semantics of each

assignment statement. For each assignment statement, a tuple vrv,num

vrvsc may be changed only when vrvpq (or p if the assignment

statement doesn’t manipulate q). We will use vrvsc to represent the

unmodified part of vrvsc in figure 10.

Fig. 10. Abstract semantics for list operations

When executing these list operations according to the abstract semantics,
three cases in the output VRVSC may occur.

(1) There exist some tuples whose num fields are zero. The definition of

VRVSC requires that all num fields must be greater than zero. If this case

happens, we should delete these tuples from vrvsc.

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1267

(2) There exist several tuples whose vrv fields are identical. If this case
happens, we should merge all these tuples into one tuple and take the sum of
their num fields as the new num field.

(3) There exist some tuple whose vrv field is an all zero VRV. If the tuple’s

num field is also zero, then we simply delete the tuple from vrvsc according to

the first case handling schema. However, if the num field is not zero, then it
means some list nodes will never be accessed by any variables, so we will
report a memory leak error.

We have defined a function Compact(vrvsc) to handle the above cases. The
function should be called after each list operation by default.

The abstract semantics for list operations are fairly straight forward, so we
won’t explain in detail here, and only list them in figure 10. The detailed
explanations and examples are given in Appendix A.

5.2. Some Special Issues to Be Considered

Our framework requires that the abstract model should maintain both shape
properties and quantitative properties for the shared mutable data structures.
VRVSC could be used as an abstract model of list meeting the above
requirements. Next we show some special issues to be considered when
instantiating the framework.

(1) Algorithm for checking subsumption
The quantitative shape analysis algorithm will check the subsumption

relationship between two abstract states in a high frequency. So the algorithm
plays an important role for improving the efficiency and extendibility of the
framework. Based on Definition 2, implementing such an algorithm for the
abstract list model is fairly easy.

In this case, a vrvsc plays the role of the abstract shape representation sg,

the set of VRVs: {vrv|vrv,numvrvsc} plays the role of the shape part sgs,

and the constraints on the num fields play the role of the quantitative part sgq.

In order to check whether sgs
1 = sgs

2, we could iterate on the two set of VRVs,
and check if they are identical. We design one practicable algorithm and
present it in figure 11. The comparison of two Boolean vectors (checking
whether vrv1=vrv2) could be implemented in a high efficiency way, so the
checking subsumption algorithm could run efficiently.

(2) Implementation of the MakeShapeSymbolic Command
The MakeShapeSymbolic command constructs a more general symbolic

representation. Based on the list abstract model, we can bring in a new
symbolic variable for each num field of all the tuples in the VRVSC in the

QuantitativeShapeAnalysis algorithm. When handling transitions in l in the
ExtractNumericCFG algorithm, we could compare two VRVSCs of the source
and the target abstract states, find two tuples with identical vrv, and assign

the symbolic expressions kept in the num field of the source state to the

symbolic variable kept in the num field of the target state.

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1268

Algorithm 3: CheckingSubsumption

INPUT: s1, s2 // two abstract states, supposing:

 s1 = { 1

1vrv , 1

1num ,…,
1

ivrv ,
1

inum },pc1,

 s2 = { 1

2vrv , 1

2num ,…,
2

jvrv ,
2

jnum },pc2

OUTPUT: yes // when s1 s2

 no // otherwise

begin

1: return no if pc1 pc2;

2: return no if i j;

3: For each 1ki

4: subsumed = no;

5: For each 1tj

6: if 1

kvrv == 2

tvrv and
2

tnum is an atom symbolic variable

7: subsumed = yes;
8: break;
9: if(subsumed == no)

10: return no;

11: return yes;

end

Fig. 11. Algorithm for checking subsumption

(3) How to transform the shape dependent conditions to numeric conditions
In order to facilitate the ExtractNumericCFG algorithm, the abstract list

model should be able to transform the shape dependent branch conditions
into numeric versions. We focus on two kinds of branch conditions depending
on the shape of the heap. They can both be transformed easily as following.

The first kind of conditions check whether a pointer variable is null. For

example, p==null means that all the list nodes should not be reached by the

variable p. Given vrvsc, it equals to vrv,numvrvsc.vrv[p]==0. Considering

the num fields may contain symbolic variables, we adopt another equal

expression: vrv,numvrvsc.vrv[p]0 num==0. Another kind of conditions
check whether two pointer variables point to the same list node. For example,
p==q means that p and q should always point to the same list node. Following

the above idea, we can express it with vrv,numvrvsc.vrv[p]vrv[q]

num==0.
(4) How could an assignment statement become a branch statement?
A shape controlled branch may also affect the heap usage, for example we

may call malloc() or free() in a shape controlled branch statement.

However, when generating the ASTG, all these shape related branch
conditions will be evaluated to a fixed value. So we don’t have to handle
these branches specially. That’s because our framework has transferred the
uncertainty of shape controlled branches to the uncertainty of some special
assignment statements as following.

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1269

As we have pointed out in the previous sections, the Compact() operation

must check if the num field of a tuple in VRVSC is zero. Because we adapt
symbolic execution techniques during quantitative shape analysis, the
underline SMT solver may report an answer unknown when verifying whether

a symbolic expression equal 0. In this case, the Compact() operation may
don’t know whether to delete a tuple from the VRVSC. That should generate
two abstract states and both of them should be treated with conservative
care. In this case, the assignment statement acts like a branch statement and

we should construct two transitions of c type to deal with this problem.
Corresponding conditions with only numeric symbolic expressions are also
labeled on the transitions. For example, when executing the statement head

= cur−>next in line 12 of the example presented in figure 1, we must

check if the symbolic expression Y-1 equals to 0, and the adopted SMT solver
will answer with unknown, so we add two transitions to the ASTG as shown in
figure 4.

6. Experimental Results

In order to prove the practicability of our framework, we have designed and
implemented a prototype tool for analyzing symbolic heap bounds of list
manipulating programs statically. The prototype tool is implemented on top of
the LLVM framework [27] which offers many useful facilities for the front-end
analysis and the implementation of the numeric extraction algorithm. We
adapt the core framework of KLEE [23] to implement the quantitative shape
analysis procedure. The final numeric representation is inputted into Inerproc
[24] for computing the biggest value of heap_peak.

We have carried our experiments for several small programs. The
example given in figure1 and copy_and_delete are hand written.
Hash_New_Table1 and Hash_New_Table2 are two Hash Table construction
functions taken from the hash.c of heaplayer-0.1-benchmarks [26]. The other
benchmarks are taken from [28] and can be downloaded from
http://www.liafa.jussieu.fr/celia/ examples.html. Table 1 shows the statistics
obtained for each analyzed program. The program size is evaluated in terms
of number of lines of C code (Column 2). For each program, Column 3
represents the time for the preparation of CFG with LLVM infrastructure,
Column 4 represents the time taken by quantitative shape analysis, Column 5
represents the time taken by numeric representation extraction, and Column
6 represents the time taken by Interproc to compute the biggest value for
heap_peak. We also list the symbolic heap bounds reported by our tool and
the expected results in the last two columns. Our experiments were done
under Fedora 12 platform on Dual Core 1.8 GHz with 1GB main memory.

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1270

Table 1. Experimental results

Programs Size

(in

lines)

Control

Flow

Analysis

(in sec.)

Quantitative

Shape

Analysis

(in sec.)

Numeric

Extraction

(in sec.)

Interproc

(in sec.)

Report

Result

(in Bytes)

Expected

Result

(in Bytes)

figure 1 20 0.015 0.957 0.585 0.092 8n 8n

copy_and_

delete

26 0.007 0.736 0.523 0.070 8n 8n

Hash_New_

Table1

18 0.009 0.688 0.424 0.290 65545328 65545328

Hash_New_

Table2

25 0.011 0.791 0.459 0.397 81931660 81931660

intlist-lib-add 16 0.009 0.090 0.045 0.009 8 8

intlist-lib-

add_tail

30 0.010 0.745 0.583 0.075 8 8

intlist-lib-init 16 0.009 0.701 0.421 0.289 8len 8len

intlist-fold-

copyGe5

37 0.009 0.698 0.601 0.081 8n 8n

intlist-fold-

splitV

42 0.012 0.684 0.583 0.087 8n 8n

intlist-fold2-

concat

59 0.016 0.959 0.601 0.094 8(n+m) 8(n+m)

intlist-fold2-

merge

90 0.019 1.219 0.893 0.138 8(n+m) 8(n+m)

Our tool reports precise heap bounds for all the programs. Although the

original programs and their ASTGs vary very much, the final numeric CFGs
are all very simple, so the time for running Interproc is almost the same.
Another interest thing found during the experiments with Hash_New_Table()
is that a first slicing before the shape analysis phase may be helpful
sometimes. As our tool doesn’t handle arrays of pointers now, it can’t analyze
Hash_New_Table() at first. The reason is that there exists an assignment
statement for an array of pointers in the example. A first slicing can remove
these assignment statements because they don’t affect the heap usage. The
initial experimental results have shown that, the framework presented in the
paper is practicable and the list abstraction model is effective.

7. Conclusion and Future Work

We have presented a framework for statically analyzing symbolic heap
bounds of CPS software. When input CPS software, the framework will
generate a numeric representation which tracks the heap usage of the
original program and can further be inputted into Interproc for the heap
bounds. We have taken list as an example to explain how the framework
could be instantiated for shared mutable data structures. We have also
presented a novel list abstraction method which maintains precise shape
properties and quantitative properties. We have built a prototype tool which
could analyze the heap bounds full-automatically.

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1271

As for the future work, we will first carry experiments with some more
complex examples and then try to extend the framework for handling other
critical data structures that may also be frequently used in CPS software such
as doubly-linked lists, tree, etc.

Acknowledgments. This research is supported by the National High Technology
Research and Development Program (863 Program) of China under the Grant No.
2011AA010106, and the National Natural Science Foundation of China (NSFC) under
the Grant Nos. 61120106006, 90818024 and 60725206.

References

1. Xia, F., Sun, Y., Tian, Y., Tadé, M. O., Dong, J.: Fuzzy Feedback Scheduling of
Resource-Constrained Embedded Control Systems. Int. J. of Innovative
Computing, Information and Control, vol.5, no.2, 311-321. (2009)

2. Cook, B., Gupta, A., Magill, S., Rybalchenko, A., Simsa, J., Singh, S., Vafeiadis,
V.: Finding heap-bounds for hardware synthesis. FMCAD2009, 205-212. (2009)

3. Magill, S., Tsai, M., Lee, P., Tsay, Y.: Automatic numeric abstractions for heap-
manipulating programs. POPL 2010, 211-222. (2010)

4. King, J. C.: Symbolic Execution and Program Testing. Commun. ACM 19(7),
385-394. (1976).

5. Weiser, M.: Program Slicing. IEEE Trans. Software Eng. 10(4), 352-357. (1984).
6. Xia, F. Sun, Y.: Control and Scheduling Codesign: Flexible Resource

Management in Real-Time Control Systems. Springer, 2008, 272 pages, ISBN:
978-3-540-78254-4. (2008)

7. Seshia, S. A., and Rakhlin, A.: Quantitative Analysis of Systems Using Game-
Theoretic Learning. ACM Transactions on Embedded Computing Systems
(TECS). To appear.

8. Lee, E. A., Seshia, S. A., Introduction to Embedded Systems, A Cyber-Physical
Systems Approach, http://LeeSeshia.org, ISBN 978-0-557-70857-4. (2011)

9. Seshia, S. A., Kotker, J.: GameTime: A Toolkit for Timing Analysis of Software.
TACAS 2011, 388-392. (2011)

10. Seshia, S. A..: Quantitative Analysis of Software: Challenges and Recent
Advances. In 7th International Workshop on Formal Aspects of Component
Software (2010).

11. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order
functional programs. POPL 2003, 185-197. (2003)

12. Hughes, J., Pareto, L.: Recursion and Dynamic Data-structures in Bounded
Space: Towards Embedded ML Programming. ICFP 1999, 70-81. (1999)

13. Unnikrishnan, L., Stoller, S. D.: Parametric heap usage analysis for functional
programs. ISMM 2009, 139-148. (2009)

14. Chin, W., Nguyen, H., Qin, S., Rinard, M. C.: Memory Usage Verification for OO
Programs. SAS 2005, 70-86. (2005)

15. Hofmann, M., Jost, S.: Type-Based Amortised Heap-Space Analysis. ESOP
2006, 22-37. (2006)

16. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Heap space analysis for java
bytecode. ISMM 2007, 105-116. (2007)

17. He, G., Qin, S., Luo, C., Chin, W.: Memory Usage Verification Using Hip/Sleek.
ATVA 2009, 166-181. (2009)

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1272

18. Cook, B., Gupta, A., Magill, S., Rybalchenko, A., Simsa, J., Singh, S., Vafeiadis,
V.: Finding heap-bounds for hardware synthesis. FMCAD 2009, 205-212. (2009)

19. Magill, S., Tsai, M., Lee, P., Tsay, Y.: Automatic numeric abstractions for heap-
manipulating programs. POPL 2010, 211-222. (2010)

20. Magill, S., Tsai, M., Lee, P., Tsay, Y.: THOR: A Tool for Reasoning about Shape
and Arithmetic. CAV 2008, 428-432. (2008)

21. Magill, S., Berdine, J., Clarke, E. M., Cook, B.: Arithmetic Strengthening for
Shape Analysis. SAS 2007, 419-436. (2007)

22. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with Lists Are Counter Automata. CAV 2006, 517-531. (2006)

23. Cadar, C., Dunbar, D., Engler, D. R.: KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. OSDI 2008,
209-224. (2008)

24. Lalire, G., Argoud, M., and Jeannet, B.: The interproc analyzer. http://pop-
art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html.

25. Chin, W., Nguyen, H., Popeea, C., Qin, S.: Analysing memory resource bounds
for low-level programs. ISMM 2008, 151-160. (2008)

26. Berger, E. D., Zorn, B. G., McKinley, K. S.: Composing High-Performance
Memory Allocators. PLDI 2001, 114-124. (2001)

27. Lattner, C., Adve, V. S.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. CGO 2004, 75-88. (2004)

28. Bouajjani, A., Drăgoi, C. et al. On Inter-Procedural Analysis of Programs with
Lists and Data. PLDI2011. (2011)

Appendix A. The Abstract Semantics for List Operations

When explaining the abstract semantics for list operations, we will continue to
use the recording symbols from section 5.1.

(1) p = null

After executing the assignment statement p = null, the variable p points to

the special node NULL and won’t reach any list nodes, so the pth bit of the vrv

should be 0. We can modify vrvsc like following:

(2) p = q

The variables q and p will point to the same list node after the execution,

so p will reach and only reach the list nodes formerly reached by q. We can

construct the new abstract state by copying the qth bit of vrv to its pth bit. And

vrvsc can be modified like the following:

(3) p = qnext

After the assignment statement p = qnext is executed, the reachability
properties of the two variables are identical for all the list nodes except the

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1273

list node that q pointed to formerly. For each tuple vrv,num in vrvsc with

vrvpq:

- 1. If vrv
0

q , then we can replace the pth bit of vrv with its qth bit;

- 2. Otherwise, the corresponding list nodes could be divided into two
categories. At first, because p will not reach the list node formerly pointed to

by q, we can replace the pth bit of
0

q with 0 and construct a new tuple with

num equaling 1 to describe the list node. Secondly, for other list nodes with

VRV
0

q , both p and q will reach them after the execution. We can replace

the pth bit of vrv with its qth bit, making both the pth bit and the qth bit equal

1. But because we have excluded one list node, so the num part of the tuple
should be decreased by 1.

To sum up, when executing p=qnext, we can modify vrvsc as following:

For an example, let’s consider the execution in figure 12. Four variables
may point to list nodes. The shape graphs are given on the left for convenient
and the VRVSC are given on the right part. The gray cell in source VRVSC

represents
0

q and which stands for the two list nodes n2,n3. When executing

the assignment statement p = qnext, the pth bit will be replaced with the qth

bit for the VRVs 1100,1110,1111 and become 1100,1110,1111 respectively, the

num corresponding to
0

q (1100) will be decreased by 1 and become 1.The

tuple listed in the last cell stands for the newly constructed tuple by assigning

the pth bit of
0

q with 0 and making the num field equal 1.

u

q

v
p

NULL

0010

1100 1100 1110 1111

V0 = p; V1 = q;

V2 = u; V3 = vn1

n2 n3 n4 n5

u

q

wp

NULL

0010

0100 1100 1110 1111

n1

n2 n3 n4 n5

pquv
0010
1100
1110
1111

num
1
2
1
1

pquv
0010
1100
1110
1111

num
1
1
1
1

0100 1

Fig.12. An example for executing p = qnext

(4) pnext = null

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1274

After the assignment statement pnext = null is executed, for each tuple

vrv,num in vrvsc with vrvp:

- 1. If vrv
0

p , then all the variables which reach
0

p formerly will not

reach vrv now. We can assign all the bits in with 0.

- 2. If vrv =
0

p , then the corresponding list nodes could be divided into two

categories. The VRV for the list node formerly pointed to by p should not
change. In order to describe this list node, we can construct a new tuple with

VRV equaling
0

p and num equaling 1. As for other list nodes with VRV
0

p ,

none variables will not reach them after the execution. We can assign all the
bits in with 0. Because we have excluded one list node, the

corresponding num should be decreased by 1.

To sum up, we can express the abstract semantics for pnext = null as
following:

(5) pnext = q

After executing the assignment statement pnext = q, the reachability
properties of the two variables are identical for all the list nodes except the

list node that p pointed to formerly. For each tuple vrv,num in vrvsc with

vrvpq:

- 1. If vrvq, then vrv can be reached by the variables which can reach
0

p

formerly. We can replace all the bits in with the qth bit, making these bits

equal 1;

- 2. If vrvp-q but vrv
0

p , then vrv will not be reached by the variables

which formerly reach
0

p . We can replace all the bits of vrv in with the qth

bit, making these bits equal 0;

- 3. If vrv=
0

p , then the corresponding list nodes could be divided into two

categories. In order to describe this list node, we can construct a new tuple

with VRV equaling
0

p and num equaling 1. The VRV for the list node

formerly pointed to by p should not change. As for other list nodes with VRV

equaling
0

p , none variables will not reach them after the execution. Because

we only consider non-circular list now, 0[]p q must equal 0. We can replace

all the bits in with the qth bit, making all these bits of vrv equal 0. But

because we have excluded one list node, the num should be decreased by 1.

To sum up, we can express the abstract semantics for pnext = q as
following:

Quantitative Analysis for Symbolic Heap Bounds of CPS Software

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1275

For an example, let’s consider the execution of pnext = u in figure 13. The

black cell in source abstract state represents
0

p which stands for the list

node n3. When executing the assignment statement pnext = u, the bits in

 ({p,q}in this case) will be replaced with the uth bit for the VRVs

0010,1100,1110,1111 generating 1110,0000,1110,1111 respectively. The num

corresponding to
0

p (1100) will be decreased by 1 and become 0. The tuple

listed in the last cell describes the VRV for n3. As we have pointed in section

5.1, a default called operation Compact() should be called to handle the output
VRVSC after each assignment statement is executed. For this example, we

should delete a tuple 0000,0 and join the two tuples with the same VRV 1110
as you can see in figure 13.

u

q

wp

NULL

0010

0100 1100 1110 1111

n1

n2 n3 n4 n5

pquv

0010

1100

1110

1111

num

1

1
1

1
0100 1

pquv
1110
0000
1110
1111

num
1

0
1
1

0100 1

u

q

wp

NULL

11100100 1100 1110 1111

n1n2 n3
n4 n5

V0 = p; V1 = q;

V2 = u; V3 = v

1100 1

pquv
1110

1111

num
2

1
0100 1
1100 1

Compact

Fig.13. An example for executing pnext=u

(6) p = malloc()

After executing the assignment statement p = malloc(), the variable p will
point to a new created list node and won’t reach all the already existed list
nodes, so the pth bit of all the vrv for all tuples in vrvsc should be 0. In order to

describe the new created list node, we can create a tuple with only the pth bit

of its vrv equaling 1 and its num equaling 1.:

We could express the operational semantics for p= malloc() as following.

(7) free(p)

After executing free(p), all the variables which reach
0

p formerly will never

reach the VRVs in p. We could assign 0 to all the bits in for all the VRVs

Renjian Li, Ji Wang, Liqian Chen, Wanwei Liu, Dengping Wei

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1276

in p. Because we have deallocated a list node, the num corresponding to
0

p

should be decreased by 1. So we can express the abstract semantics as
following:

Renjian Li received his M.S. degree in computer science from National
University of Defense Technology (NUDT) in 2006. He is currently a Ph.D.
candidate in School of Computer, NUDT. His research interests are in the
areas of program analysis and verification.

Ji Wang received his Ph.D. degree in computer science from National
University of Defense Technology in 1995. He is currently a professor at
National Laboratory for Parallel and Distributed Processing of China. His
research interests include high confidence software and systems, software
engineering and distributed computing. He is a senior member of China
Computer Federation.

Liqian Chen is an assistant professor at the School of Computer Science,
National University of Defense Technology, Changsha, China. He received
his PhD degree in Computer Science from National University of Defense
Technology in 2010. His research interests include software engineering,
program analysis and verification.

Wanwei Liu receives his Ph.D degree in Jun. 2009 at NUDT. He is currently
a lecturer in School of CS, NUDT. His research interests mainly include:
automata theory, logic in CS and model checking.

Dengping Wei is an assistant professor at the School of Computer Science,
National University of Defense Technology, Changsha, China. She received
her PhD degree in Computer Science from National University of Defense
Technology in 2011. Her research interests include Semantic Web, Web
service and Cyber-Physical Systems.

Received: March 2, 2011; Accepted: April 22, 2011.

