
Computer Science and Information Systems 13(3):779–807 DOI: 10.2298/CSIS160124026B

Measuring the understandability of WSDL specifications,
Web Service Understanding Degree Approach and System

Mario Marcelo Berón1, Hernán Bernardis1, Enrique Alfredo Miranda1,
Daniel Edgardo Riesco1, Maria João Varanda Pereira2, and Pedro Rangel Henriques3

1 Universidad Nacional de San Luis, Departamento de Informática,
San Luis, Argentina

{mberon,hbernardis,eamiranda,driesco}@unsl.edu.ar
2 Instituto Politécnico de Bragança, Dep. de Informática e Comunicações/Centro Algoritmi

Bragança, Portugal
mjoao@ipb.pt

3 Universidade do Minho, Dep. de Informática/Centro Algoritmi
Campus de Gualtar, Braga, Portugal

prh@di.uminho.pt

Abstract. Web Services (WS) are fundamental software artifacts for building ser-
vice oriented applications and they are usually reused by others. Therefore they
must be analyzed and comprehended for maintenance tasks: identification of critical
parts, bug fixing, adaptation and improvement. In this article, WSDLUD a method
aimed at measuring a priori the understanding degree (UD) of WSDL (Web Service
Description Language) descriptions is presented. In order to compute UD several
criteria useful to measure the understanding’s complexity of WSDL descriptions
must be defined. These criteria are used by LSP (Logic Scoring of Preference), a
multicriteria evaluation method, for producing a Global Preference value that indi-
cates the satisfaction level of the WSDL description regarding the evaluation focus,
in this case, the understanding degree. All the criteria information required by LSP
is extracted from WSDL descriptions by using static analysis techniques and pro-
cessed by specific algorithms which allow gathering semantic information. This
process allows to obtain a priori information about the comprehension difficulty
which proves our research hypotheses that states that it is possible to compute the
understanding degree of a WSDL description.

Keywords: WSDL, Web Services Comprehension, LSP.

1. Introduction

Nowadays the Web Services (WS) are fundamental software artifacts for building service
oriented applications. According to World Wide Web Consortium (W3C, for details see
http://www.w3.org/), a WS is: a software application identified by a URI, whose
interfaces and bindings are capable of being defined, described, and discovered as XML
artifacts. A WS supports direct interactions with other software agents using XML-based
messages exchanged via Internet-based protocols. The organizations, increasingly, pro-
duce web services which are used by other organizations to produce new software systems
aimed at solving business demands. Web services have associated a description which
specifies the data types used, the operations provided, inputs and output, the technology

780 Berón et. al.

used to accomplish the communications between other high level and low level of soft-
ware elements. These descriptions are published in the internet and the organizations can
retrieve them and decide if some of those services are useful for building the software they
need [43]. Web Services are software packages and therefore they must be comprehend
for maintenance tasks (bug fixing, adaptation, evolution, etc.). The primary information
source to accomplish this task is the respective WSDL (Web Service Description Lan-
guage, http://www.w3.org/TR/wsdl20/) description. Although, there are seve-
ral resources from which it is possible to collect information about the Web Service, the
WSDL description is the first that the user employs for analysing its usefulness for his
purposes. Furthermore, the web service descriptions are interesting because they provide
a high level abstraction data which can be very useful to simplify the understanding of the
web services. As said above, a standard language used to write web service descriptions is
WSDL. This language is a dialect of XML with well defined rules to specify each compo-
nent. Being a XML based language it is fastidious to read such a description, and therefore
a tool is needed to assist the software engineer in this task. In this context, many tools can
be found that are oriented to facilitate the inspection of WSDL descriptions, transform
to a different WSDL version, compute several metrics, produce user-friendly visualiza-
tions, etc [25],[28],[35]. However, at the best of our knowledge, only a few are oriented
to help their understanding. Taking this into consideration, in this article WSDLUD (Web
Service Understanding Degree) is presented. WSDLUD is a metric aimed at providing, a
priori, a measurement about the WSDL description understanding complexity. For calcu-
lating WSDLUD, Logic Scoring of Preference Method (LSP) [19],[56] is used. LSP is a
multi-criteria evaluation method; it requires a Criteria Tree, an Aggregation Structure and
a set of Elementary Criteria Functions to be defined [45]. Combining systematically such
elements, this method produces a satisfaction level that indicates, in this case, the under-
standing degree of a WSDL description. In order to apply LSP and compute WSDLUD,
the WSDL description must be statically analysed and all the information available must
be retrieved. This information is submitted to different evaluation procedures in order to
obtain satisfaction values (values in [0,1] or [0,100]). To perform these processes, the use
of both compilation and natural language processing techniques are required. The first is
used to retrieve formal elements from WSDL source code. The second is employed to
gather semantic information from unstructured information sources.
A similar approach can be used to measure the understanding degree of the services pub-
lished with Representational State Transfer (REST) specifications. Since these specifi-
cations are written in a XML based DSL, the same approach can be used to extract the
information needed to compute the intermediate values (criteria) required by the multicri-
teria evaluation method. In this case, the criteria need to be defined because they must be
oriented to measure the complexity of each REST specification part. Even considering the
messages format, currently they are specified using JSON (Java Script Object Notation)
or JSONP (Java Script Object Notation with Padding), so once again the same methods
can be used to compute the understanding degree.
The article is organized as follow. Section 2 gives a justification about the reasons why
WSDL is taken as research topic instead other technology. Section 3 describes the work
tightly related with the research topics here presented. Section 4 proportionates an ex-
planantion of the LSP method, which will be used for calculating WSDLUD. Section 5
presents the software framework used to implement WSDLUD and it describes the exe-

Measuring the understandability of WSDL specifications 781

cution flow to symplify the understanding and to make the article self-contained. Further-
more, all the structures required to accomplished the evaluation are defined in sections 6
to 8. Section 9 presents the case studies where it is possible to observe the results obtained
through the application of WSDLUD to some test cases available in several web sites4.
Section 10 closes the paper with some conclusions and future work.

2. Why Web Service Description Language?

In the last years the REST (Representational State Transfer) is being often used for build-
ing WS- REST instead of WSDL [24,23,3]. Its popularity is due to: a) the methodology
used to build WS is not so technical and formal like WSDL-SOAP; b) it has good perfor-
mance in the net; c) it uses just only the HTTP protocol and a reduced set of actions based
on CRUD (Create, Read, Update, Delete) operations of data bases. These characteristics
turns REST an intuitive methodology, easy to use and learn by the software developers.
Google, Facebook and Twitter have contributed to REST popularity by implementing
their public APIs with this technology. This characteristic has generated discussions con-
cerned with if WS-SOAP is still a good choice or if it must be left of using [46,27]. The
discussion previously mentioned still doesn’t have a clear answer. Generally, the choice
depends on the WS context and the who will use the WS. On the one hand, REST is ori-
ented to be used by the developers (a clear example are the API’s of Google, Facebook,
Twitter, etc), clearly they are favored by their less formal and intuitive characteristics.
On the other hand, WS-SOAP is aimed at focusing to the business world and to be used
by software agents which need a technical and formal focus. However, some enterprise
like Yahoo and Flickr do not adopt a particular architecture and they offer their API’s
with both options. In this context, it is the developer who takes the last decision. From
a more technical point of view, REST has a slight advantage of performance, neverthe-
less it is not enought to discard WS-SOAP [33,49]. Moreover, there are techniques for
improving the SOAP performance which allow to reduce the gap with REST [57,33,49].
Furthermore, if security features is incorporated in REST specifications, by adding SSL
certificates, the performance is notably degraded; this is not the case of SOAP. Actually,
both architectures are often used. In this work WSDL-SOAP is taken as study focus for
several reasons. In first place, it is an older architecture and there are many legacy sys-
tems which, depending on the context, need to be comprehended for migrating them to
REST. Second, WS-SOAP allows to use different protocols, this peculiarity makes it a
more complete option and therefore more complex to understand. Third, WSDL can be
used for sending synchronous and asynchronous messages because it is possible to specify
the transport protocol for each particular service. This kind of flexibility is fundamental
when gateways are built for legacy systems with web-friendly protocols; REST does not
meet these characteristics and it only can be used for sending synchronous messages by

4 https://code.google.com/p/dic/downloads/detail?name=
GoogleSearch.wsdl
http://queue.amazonaws.com/doc/2009-02-01/QueueService.wsdl
http://www.webservicex.com/airport.asmx?wsdl
http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL and
www.webservicex.net/OFACSDN.asmx?WSDL.

782 Berón et. al.

using http protocol. Fourth, WSDL-SOA was elaborated to make easier the machine-to-
machine interoperability and not to facilitate the communication with the developers, for
this reason to comprehend WSDL-SOA is important for purpose of maintenance, migra-
tion and evolution tasks. Anyway, REST must be considered as other research line, and
can be taken as study focus in future works.

3. Related Work

The WSDL description analysis is based on static or behavioral information or a mix of
both.

Considering the static information several interesting works can be found. The tra-
ditional approaches are oriented to compute metrics like numbers of ports, number of
services and also provide visualizations easy to understand to compare and evaluate a set
of program parameters [6], [55],[58] [59].

Innovative works can be found in the security context. Concerning metrics for orga-
nization’s security they state that the easier to understand a WSDL description the easier
will be to carry out fraudulent actions against the organization. On account of that, the au-
thors compute the understanding level of WSDL description and if it is high they define
approaches to reduce its readability [55] [39],[52],[1].

Simon and Rischbeck in [53] propose to annotate the WSDL descriptions in such
way that the stakeholders are able to understand the business aspects. They hold that
the WSDL descriptions include business aspects specified in some XML dialect which
is not easy to understand by the stakeholders. For this reason the authors consider that
inserting annotations user understandable will simplify the WSDL understanding. These
annotations contain information about the business aspect for the user and technical for
housekeeping operations.

Nandigam, Gudivada and El-Said explain WSExplorer [42], it is a tool for facilitating
the understanding of WSDL descriptions allowing the access to all WSDL elements. This
task is accomplished using traditional inspection techniques and user-friendly graphical
interfaces.

Jiang and his research group in [30] state that the WS comprehension is a difficult
task. They mention that this peculiarity can be clearly observed in the WSDL automati-
cally generated where the engineer has not the control about how the WSDL description
was created. This characteristic difficults the comprehension because the generators have
not taken into account, properties like: comprehensibility, semantic degree, reusability,
etc. Therefore, they proposed to use model based on UML to comprehend and to com-
pare WSDL descriptions. Taken as base these models it is possible to obtain information
about of WS associated and the differences and similarities found between various WSDL
descriptions of the same WS.

Others contributions are based on behavioral information. In this context several works
concerned with measuring the WSDL description considering the complexity of the op-
erations and messages involved can be found. The result obtained by the authors state
that: the more complex the operations and messages are, the more complex will be to
understand the WSDL description [16],[32],[37].

In the work accomplished by Ni and Fan [44], the ontologies are used to make pos-
sible the interoperability between organizations. In order to reach this goal the domain

Measuring the understandability of WSDL specifications 783

specific ontologies are defined which specify a common vocabulary for the stakehold-
ers who need to share information. These ontologies before mentioned are built from the
WSDL description and business’ process implemented with BPEL. The new aspect in
this work is the using of ontologies to specify concepts used in the WSDL descriptions
associated with the BPEL implementations, clearly this approach helps to understand the
WSDL specficiation.

Segev and Toch in [51] present an approach that uses both static and behavioral in-
formation. In this work they extract some knowledge from WSDL descriptions for trying
to understand them with the goal of defining a ranking to compose web services. The
approach to extract information consists of three steps. The first one builds a basic vocab-
ulary (Base Line) from WSDL descrition and some documentation associated by using
inspection strategies. The second one uses TF/IDF a common strategy of information re-
trieval to extract keyword from a document corpus. Finally, the approach uses the web as
knowledge source for contextualizing the information gathered.

In the work of Wang [60] a method to make easier the understanding of WSDL doc-
uments is proposed. The method extracts information from WSDL descriptions and this
information is used to collect related web pages. This information is submitted to infor-
mation retrieval techniques with the goal of enriching the WSDL description.

Fangfang Liu et. al. in [35] hold that, due to the quantity of Web Services available
in the web, it is a problem to find a adequate Web Service for accomplishing the wished
task. For this reason, the authors elaborate strategies to compare the similarity between
WS from the semantic terms extracted of WSDL descriptions. This comparison is carried
out by extracting the terms using identifier analysis techniques and, after that, a graph is
built for each WS analyzed. These graphs are joined using the similar terms, the result of
this operation is a bipartite graph. This graph is employed to compute the WS similarity
through the metric based on distance between terms. The last task is achieved employing
Web Search for detecting the similar terms when the terms are not found in a traditional
dictionary.

Other kind of works found in the literature are related with experimental studies re-
garding the understandability of WSDL descriptions. The next paragraphs describes some
of them.

In the work of Crasso et. al. [15] the authors describes the bad practices found in
the WSDL descriptions which make difficult of understanding. The experimental studies
accomplished demonstrated that the most common bad practices are: ambiguous names,
lack of comments, inappropriate comments, port typed repeated, between others. For each
problem, they describe possible solutions: separating the schema from the definition of the
offered operations; removing repeated WSDL and XSD code; putting error information
within fault messages and only conveying operation results within output ones; replacing
WSDL element names with explanatory names if original names are cryptic; moving
noncohesive operations from their original port type to separate port types; documenting
the operations; etc.

Hu et. al in [29] present an experimental studies which demonstrate that the WSDL
description containts implicit semantic information. These studies confirm that the 97%
of this kind of operation can be found in the inputs and outputs of web services.

784 Berón et. al.

It is also possible to find works that use ad-hoc approaches. They are based on tradi-
tional object oriented metrics to measure quality attributes of WSDL descriptions [13],[14],
[54].

WSDLUD method, defined in this article, is different from those found in the literature
in several aspects. First, all formal elements of the WSDL description (types, messages,
port types, bindings, services) are considered and for each one of them the understanding
degree is measured.

Second, the WSDL description’s understandability can be simplified if the informa-
tion (provided by the identifiers and documentation) gives useful semantic information
about the description’s domain. For this reason, several metrics to measure the quality of
the identifiers and documentation of the description, are defined and calculated.

Third, the value produced by WSDLUD is the combination of metrics (those men-
tioned before) which consider both quantitative and qualitative information. We used these
metrics to measure WSDL descriptions and obtain a final value for each of them. This fi-
nal value is computed by using a multi criteria method. This method is parameterizable
allowing to reflect the engineer experience in the evaluation mechanism. Finally, as a side
effect, the process used to compute WSDLUD can also be used for: i) To provide a rank-
ing of WSDL descriptions understandability, ii) To build visualizations based in charts,
and allow to analyse the results and to discover the possibilities to improve the WSDL
description understanding.

To finish this section, it it important to notice that, at the best of our knowledge, a
metric with the characteristics mentioned above was not yet described in the literature. So,
we believe that the work here reported is a valid contribution for the area of Web Services’
formal descriptions, in particular using WSDL notation, aiding on their improvement.

4. Logic Scoring Preference

Logic Scoring of Preference (LSP) is a multicriteria evaluation method based in the defi-
nition of: a criteria tree, elementary criteria functions and an aggregation structure.
LSP is useful to analyze, compare and select and the best alternative from a set of ob-
jects being graded and ranked. Multiple Criteria Decision Methods (MCDMs) are used
to evaluate and make decisions regarding some problems that admit a finite number of
solutions [47]. Nowadays there are a considerable number of MCDMs that are used in de-
cision making in various topics. However, it was difficult to find, in the literature, systems
that implement this kind of methods. The MCDMs most recently used and implemented
are ELECTRE (ELimination Et Choix Traduisant la REalité) and PROMETHEE (Pref-
erence Ranking Organization METHod for Enrichment Evaluations). Both methods use
a similar approach than LSP. ELECTRE was proposed by Bernard Roy in 1971 [48].
The tools that implement different versions of ELECTRE [40,2,41], generally have some
drawbacks, for example: they employ traditional interaction strategies, they do not define
a Domain Specific Language (DSL) to be used during the evaluation process (even when
it would be very functional), they use complex fuzzy logic that user must deal with, etc.
PROMETHEE was developed by Brans and further extended by Vincke and Brans [10].
PROMETHEE is quite simple in conception and application compared with the other
MCDMs. Therefore, it is widely used in research and practical contexts. Two of the most
used implementations of PROMETHEE are Decision LAB and PROCALC [9]. Never-

Measuring the understandability of WSDL specifications 785

theless, both have similar drawbacks comparing to ELECTRE implementations. Other
MCDM implementations such as AHP [50], MAUT [31], etc., were studied. However we
could not find those implementations available for a deeper comparative analysis. In the
case of LSP (Logic Scoring of Preference), there are tools based on this method which
can be used to compute the the WSDL description understanding degree, some examples
are: LSPmed [21], webQEM [45], ISEE [17], NESSy [38]. In the following subsections,
all the LSP components will be explained.

4.1. Criteria Tree

The criteria tree has the characteristics that the objects under evaluation must have. With
the goal of developing a complete criteria list, a hierarchical decomposition process is
applied. At the end of this process a list of measurable attributes is obtained. In the first
instance, the high level characteristics are defined. Then, they are decomposed in sub-
characteristics and so on. This process is repeated until obtain the atomic attributes. The
result of this task is a tree that describes the main characteristics that the objects under
evaluation must meet.

4.2. Elementary Criteria

LSP requires the normalization of the measurable attributes. This normalization is neces-
sary because: i) In several decision contexts the measurement units are different; ii) The
values of different attributes may be incomparable.

The LSP attribute normalization is accomplished through the definition of Elementary
Criterion Functions. An elementary criterion function maps a value taken by the perfor-
mance variable in other contained in the interval [0,1] or [0,100]. This value represents
the satisfaction level of the performance variable under observation. So, 0 represents a
situation where the performance variable does not satisfy the requirements at all, and 1
(or 100) means that the requirement is totally satisfied. The elementary criteria can be
classified as: Absolute or Relative.

An Absolute elementary criterion is used to determine the absolute preference of some
attribute. A Relative elementary criterion is employed to establish the relative indicators
of the tools under comparison.

Absolute elementary criteria can belong to different types, as defined below.

– Continuous Variable
Multivariable: The performance variable is computed by a function. This function

receives parameters as its input and returns the value corresponding to the at-
tribute under evaluation.

Direct: The performance variable has a value that is directly inserted by the evalua-
tor.

– Discrete Variable
Multilevel: The performance variable can take one value from a set of discrete val-

ues. These values are established by the evaluator in the stage of elementary pref-
erence definition; they correspond to different preference levels. The engineer in
the evaluation stage must choose a value from that set.

786 Berón et. al.

4.3. Aggregation Structure

The elemental preferences, that result from the application of the elementary criteria to
the measurable attributes, must be aggregated in order to obtain the global preference.
This global preference represents the satisfaction of all the requirements, by the object
under evaluation.

In order to reach the global preference, some aggregation preference functions are
used. These functions receive a set of elementary preferences and their corresponding
weights as input. The weights represents the relative importance for each preference. The
functions return aggregated preferences as their output. All the outputs are aggregated
in the next level of the structure. This process is repeated until the global preference is
reached. The aggregation function proposed by LSP is:

E = (w1e
r
1 + w2e

r
2 ++ wke

r
k)

1
r (1)

where:

−∞ ≤ r ≤ +∞
0 ≤ wi ≤ 1 and i = 1..k
w1 ++ wk = 1

E is a general instantiation scheme which produces a continuous spectrum of aggre-
gation functions, depending on the value of r. Table 1 shows the most relevant values
for r, taking into account the number, n, of function input values. For example, if the
operator under consideration is D- and it receives three input values, then the value of r
in the precedent formula is 2.19. To be clearer, r represents the conjunction-disjunction
degree of each operator. We say that r generates several functions known as Conjunctive
Disjunctive Generalized functions (CDG). These functions are the operators used to ag-
gregate the elementary preferences. The formula employed to compute the values in table
1 is explained in [18].

4.4. The evaluation process

The evaluation process is carried out defining the values of all performance variables
for each tool under evaluation. In this way, for each system, a global preference will be
computed and this value is used to elaborate the ranking. Figure 1 shows a representation
of the LSP Evaluation Method.

The global preference is obtained from the computation (represented in figure 1 by
L(E1..En)) of all the elementary preferences.

And these elementary preferences are the result of applying the elementary criteria to
the performance variables. Finally, the elementary criteria can be computed because the
engineer provides the required values.

5. WSDLUD

In order to compute WSDLUD several tasks must be done. The central one, crucial to
obtain the final degree, is the LSP evaluation process. To accomplish that task, three steps

Measuring the understandability of WSDL specifications 787

Operation Name Symbol r
n=2 n=3 n=4 n=5

Disjunction D +∞ +∞ +∞ +∞
Strong Cuasi Dis-
junction

D+ 9.52 11.0912.2813.16

Cuasi Disjunc-
tion

DA 3.83 4.45 4.82 5.09

Weak Cuasi Dis-
junction

D- 2.02 2.19 2.30 2.38

Arithmetic Media A 1.00 1.00 1.00 1.00
Weak Cuasi Con-
junction

C- 0.26 0.20 0.17 0.16

Cuasi Conjunc-
tion

CA -
0.72

-
0.73

-
0.71

-
0.67

Strong Cuasi
Conjunction

C+ -
3.51

-
3.51

-
2.18

-
2.61

Conjuction C −∞ −∞ −∞ -∞

Table 1. Values of r corresponding to each CDG

Fig. 1. LSP Method Representation

788 Berón et. al.

must be done: building the criteria tree, performing the aggregation, and running the al-
gorithms that compute the elementary preferences (EP) and the one that constructs the
ranking. However, to be possible to execute the LSP Evaluation, some information must
be retrieved from the WSDL descriptions source code. The data so far extracted is then
processed by specific algorithms to obtain quantitative and qualitative metrics. The first
group is concerned with the evaluation of size metrics (with precise or rigorous defini-
tions) such as Ports Number, Services Number, Binding Number, etc. The second group
deals with more subjective definitions concerned with quality measurements that depend
on the problem domain; the identifiers and documentation gathered are processed resor-
ting to domain specific dictionaries which allow to assign a mean to each information part.
Fig. 2 shows the architecture of a software framework developed to compute WSDLUD
according to the approach here proposed. As can be seen in the sketch, the proposed tool
has three modules, or architectural blocks: WSDL Processor, Information Extractor, and
LSP Evaluator.

Fig. 2. Logical View of WSDL Tool.

The module WSDL Processor is composed of:

WSDL Manager FE: this component implements the front-end needed to analyze WSDL
descriptions. It allows to select one or more WSDL description/s and submitted them
to the analysis process. Futhermore, it is possible to add, delete, inspect WSDL
descriptions, etc.

The module Information Extractor has the following components:

Data Manager: this component allows to use efficiently domain specific dictionaries and
other knowledge bases that are necessary to compute some of the qualitative metrics.

DOM Parser and Extractor: this component uses a DOM parser to analyze the input
(the WS specifications given are written in a specific XML dialect), and it builds
internal data structures to store the extracted data in order to enable the metrics evalua-
tion.

Measuring the understandability of WSDL specifications 789

Qualitative Metrics Evaluator: this component implements traversals to the internal
structure where comments and identifiers are stored and processes them in order to
extract meaning and evaluate numeric information about their quality.

Size Metrics Evaluator: this component implements traversals to the internal structures
in order to compute the value of size metrics, evaluating the operation number, pa-
rameter number, service number, etc.

Visualizer: this component is used to produce the visualizations relevant for making
easier the intermediate or final information understanding. At present this module
builds visualizations based on charts to depict size metrics like: Types Number, Ports
Number, Services Number, etc [7].

The module LSP implements the LSP operation flow. Futhermore, it allows to retrive
the evaluation state, save results, among other administrative operations. It has three com-
ponents:

LSP Evaluator: it is the evaluation coordinator, this component is responsible to access
the internal data structures, produced by the previous module, in order to get the
concrete criteria values necessary to rank the quality of the input description. Com-
plementary, this component instantiates the aggregation structure defined with the
concrete criteria parameters obtained in the previous step.

Criteria Tree Builder: on one hand, it provides the facilities to visually build a criteria
tree. The engineer can insert, delete and modify nodes which represent characteristics
to consider in the evaluation. Furthermore, it is possible to define hierarchical rela-
tions between the characteristics and subcharacterstics until obtaing the preferences
be measurable.

Aggregation Structure Builder: like Criteria Tree, the Aggregation Structure must be
built. In order to simplify this task, this component implements methods aimed at
insert nodes i.e. logical operators and conect them through arcs which indicates how
the evaluation process must be accomplished.

Ranking Builder: this component carries out the evaluation process. For this task, the
component provides methods to validate the data inserted in the aggregation structure
and traverse it to produce a value which indicates the satisfaction level that in this
project is the WSDL description understandability degree.

The logical view defined has been described it shows the static aspects of the software
used to implement WSDLUD. However, to get a complete comprehension about how
WSDLUD is calculated, a dynamic view is presented in Fig. 3. The Sequence Diagram in
Fig. 3 allows to observe the operation flow between the components described above to
compute a metric related to the identifiers (in this case a elementary preference).

First, the identifier is retrieved by using the method retrieveIdentifier(). Once the iden-
tifier is available, the split algorithm is applied; in this case samurai() splitter is the used
algorithm [11],[22], [12]. Samurai returns a set of words (that compound the identifier
under analysis) which are searched in the domain specific dictionary (findInDictionary())
with the goal to verify if it is a valid word or not. As next step, the words are expanded
using the Classic Expansion Algorithm (classicExpansionAlgorithm()) [5],[4], [26],[34].
This algorithm needs to access the dictionaries to verify if the expanded words obtained
have a mean (an word is considered to be meaningful if it exists in the dictionary). As a

790 Berón et. al.

final step, the criterion concerned with the current evaluation is gathered (retrieveCrite-
rion()) and the elementary preference is computed (computePreference()). This value is
saved in the aggregation structure for proceeding to the final evaluation. This last task is
carried out when all the elementary preferences for all the criteria are computed. In this
case, the LSP Evaluator receive the message evaluate() from WSDLManager, and it in
turn sends the message computeRanking() to the Ranking Builder. As next step, the Rank-
ing Builder retrieves the aggregation structure with the elementary preferences using the
method aggregationStructure() and return as result the global preference (see Fig. 4).

Fig. 3. Dynamic Logical View of WSDL Tool - Identifier metrics.

Fig. 4. Dynamic Logical View of WSDL Tool - Global Preference.

Measuring the understandability of WSDL specifications 791

6. WSDL Description Criteria Tree

The criteria tree of a WSDL description is composed by the following characteristics4:
i) Type Understanding Degree, ii) Message Understanding Degree, iii) Port Type Under-
standing Degree, iv) Binding Understanding Degree and v) Service Understanding De-
gree. Each characteristic has associated a sub criteria tree which takes into consideration
the proper properties of the evaluated element. In the next paragraphs, the Criteria Tree
for these characteristics will be explained.

Type Understanding Degree. This characteristic is composed by the following attributes:
Number of Primitive Types, Number of Complex Types, Documentation Quality, Type
Name Quality and Number of Fields. Clearly, a primitive type (a primitive type is a type
provided by the language), for example: text, integer, real, boolean, etc. will be easier to
understand than a complex type (a complex type is a type defined by the user). A primi-
tive type can be deduced from its identifier and the explanations provided by the language
manual. A complex type is more difficult of perceiving because it is composed by several
identifiers, which are susceptible to do many analysis and the explanations exposed in the
language manual are not enough. In this context, if the documentation provided is bad or
null, the comprehension will be even more difficult.

Message Understanding Degree. This characteristic can be evaluated taking into conside-
ration the following attributes: Message Documentation Quality, Message Name Quality
and Part Understanding Degree. Concerning the first two elements, it is possible to say
that they will provide relevant information when some semantic information can be ex-
tracted. The sub-characteristic named Part Understanding Degree is considered atomic.

Port Type Understanding Degree. This characteristic has the following attributes: Port
Type Name Quality, Port Type Documentation Quality and Operation Understanding De-
gree. The first two are important because they provide semantic information when they
are well defined. The third also is relevant because it is composed of several elements like
name, documentation, parameters, etc. (see figure 10 for more details about the disaggre-
gation of this subcharacteristic [8]). It is unnecessary to say that these elements provide
interesting information.

Binding Understanding Degree. This characteristic is composed by the following attri-
butes: Binding Name Quality, Binding Documentation Quality, Binding Type Understan-
ding Degree and Binding Operation Complexity. Once more, the name quality and the
documentation quality are important characteristics to measure using the attributes: Bin-
ding Name Quality and Binding Documentation Quality. The others two attributes are
already defined in others characteristics. Binding Type Understanding Degree is defined
in Type Understanding Degree and Binding Operation Complexity is defined in Port Type
Understanding Degree. For this reason, during evaluation process we re-use the values
obtained in previous computation.

4 These characteristics were extracted from a WSDL specification provided by W3C.

792 Berón et. al.

Service Understanding Degree. A service is made available by a WSDL description.
A service has a name and documentation and it is composed by ports. For analyzing the
Service Understanding Degree it is necessary to measure Service Name Quality, Service
Documentation Quality and Service Port Understanding Degree in a Service context.

7. Aggregation Structure

As LSP method states [56], the satisfaction values that result from the application of the
Elementary Criteria Functions to the measurable attributes, must be aggregated in order
to obtain the Global Preference. This Global Preference represents the satisfaction of the
object under evaluation. As could be seen in section 6, we propose a Criteria Tree for each
WSDL element (type, message, port, etc.). For each of these Criteria Trees, we developed
a specific Aggregation Structure. To illustrate the approach and to save space, in Fig.
5 and Fig. 6, we only show the Aggregation Structure for the characteristics Message
Understanding Degree and Port Type Understanding Degree.

For the first, we used a partial absorption LSP function (compound by operator A
(arithmetic mean) and SQU (square mean) — all the LSP operators are better explained
in [20]— to aggregate Message Documentation Quality and Message Name Quality. This
kind of asymentric compound operators are used when some input values could be zero
(non-mandatory input). It is necessary because in many cases, messages do not have a
good documentation (sometimes do not have at all). A medium conjunctive operator (CA)
is used to compute the Message Understanding Degree Global Preference. This kind of
operator is employed when the input requirements are mandatory. Thus if one of the input
values is zero, the operation result will be zero. The weights are used to express the rela-
tive importance of input preference. As message documentation and name provides more
significant semantic information, its weight is 70%, as opposed to Part Understanding
Degree which provides less semantic information (its weight is 30%).

Message Documentation Quality

Message Name Quality

Part Understanding degree

70

30

60

40

A

70

30

SQU

CA

Fig. 5. Message Understanding Degree Aggregation Structure.

The second characteristic follows a similar approach, nevertheless the weights are
changed and the satisfaction value of Operation Understanding Degree is computed us-
ing an aggretation structure (see Fig. 10 for more details about the aggregarion structure
of this criterion). Because the Port Type Name Quality is an identifier and Port Type Docu-
mentation Quality is a documentation, they have the same characteristics as the equivalent
message attributes.

Measuring the understandability of WSDL specifications 793

Port Type

Documentation

Quality

Port Type

Name Quality

Operation

Undestanding Degree

A

SQU

CAAggregation

Structure

70

30
60

40

60

40

Fig. 6. Port Type Understanding Degree Aggregation Structure.

The weights assigned to edges related with the identifier and documentation follow
the same distribution of the Message Understanding Degree, however the input edges to
the CA operator indicates that the operation name and its documentation have the more
importance level that Operation Understanding Degree. Nevertheless, the operations pro-
vide more information than the message parts because it has more elements (the parts
are considered atomic elements). As a result of the previous observations, the port type
operations have much information which is useful to comprehend the port type.

To have a deeper Port Type understanding, the operations provided by the port, must
be comprehended. In order to estimate the operations understanding difficulty, an average
of the satisfaction level of Operation Understanding Degree attribute can be computed.
This task is carried out using the aggregation structure shown in Fig. 7. As it is possible
to observe, the aggregation structure follows the same pattern for the attributes Opera-
tion Documentation Quality and Operation Name Quality. However the operator used to
aggregate Parameter Complexity whith the other attributes is C-. It is because this oper-
ator does not produce a zero value when one of its inputs is zero. Moreover, the weights
of its inputs indicates that the informal information is more important than information
provided by Parameter Complexity.

Operation

Documentation

Quality

Operation

Name Quality

Parameter

Undestanding Degree

A

SQU

C-Aggregation

Structure

70

30
40

60

65

35

Fig. 7. Operation Understanding Degree Aggregation Structure.

794 Berón et. al.

Finally, the Parameter Complexity is also computed as average of understanding com-
plexity of each parameter, which is calculated using the aggregation structure shown in
Fig 8.

Fig. 8. Parameter Complexity Aggregation Structure.

Like the previous examples, the differences are centered in the aggregations of Port
Type Message Understanding Degree with the others attributes and with the weights assig-
ned. In this case, the operator used is D- (weak disjunction) which models interchangea-
bility. The minus sign declares that the result obtained by D- is near to the aritmethic ave-
rage (A). This peculiarity imposes restrictions to the total interchangeability. The weights
of D- operators affirm that the information provided by the message is more relevant
than the parameter qualitative information (Documentation and Name). It is because the
messages have many elements which contribute to produce more semantic information.

For finishing this section, it is interesting to remark that the attributes’ value re-
lated with names and documentations are calculated by the functions nameQuality and
documentationQuality (both functions are specified in section 8).

The next step is the extraction of the information needed to compute the elementary
criteria which allow to carry out the final evaluation. This topic is explained in next sec-
tion.

8. Information Extraction Techniques and Elementary Criteria
Functions

The information extraction techniques and the Elementary Criteria Functions are the most
important features for the evaluation process that will be described. The former allows to
obtain the information and perform all the analysis to get each attribute value for the
Criteria Tree. The latter maps each of these in a satisfaction level, i.e., a value in the
interval [0,1] (or [0,100]). This value represents the satisfaction degree of the attribute for
the object under evaluation according to the sensibility and experience of the authors.

8.1. Information Extraction Techniques.

The approach used to extract information from a WSDL description combines compila-
tion techniques, natural language processing algorithms and strategies to compute indica-
tors [11]. As was described at the beginning of section 5, the first is implemented using
DOM (Domain Object Model) a parser for XML language which explicitly builds an
internal representation of the analysed XML source code. Several traversals are applied

Measuring the understandability of WSDL specifications 795

through this internal representation for gathering the desired information. The identifiers
and the documentation are extracted by using compilation techniques. In order to retrieve
semantic information the Information Extractor [4] is used. Remember that this software
is aimed at applying algorithms to divide, expand and find a meaning for the identifiers
of a program. Finally, with the goal to provide a measure about of the understanding de-
gree of a WSDL description, LSP Evaluator [38] was used. For attributes like Type Name
Quality, Message Name Quality or Binding Name Quality we use identifier analysis tech-
niques. The purpose of this analysis is to discover the relation between the names and the
concepts of the problem domain. The name quality is higher when its related words are
meaningful. The result of the techniques is a percentage which indicates the satisfaction
level for a particular name quality.

For attributes like Type Documentation Quality, Message Documentation Quality,
Binding Documentation Quality, etc., we use documentation analysis techniques. This
kind of attributes has as main goal to measure the usefulness level of the information pro-
vided by the element’s documentation (the Information Extractor also is used to carry out
this task). Type Name Quality and Message Name Quality require similar analysis to their
names that will be divided into words. Each word must be searched in the dictionaries to
verify if it has a meaning, in this case the word is computed as valid and contributes to
evaluate the identifier quality. The more meaninful words are found the higher the quality
of the identifer. Function nameQuality shows how the identifier quality is computed.

Function nameQuality
input : name a word that represents a name.
input : d a domain specific dictionary
output: Satisfaction Level, a percentage that indicates

the name quality.
Data: wordSet a set of words.
Data: wd a word extracted from a name.
Data: w a word.
Data: wordsWithMeans an integer variable which counts

the number of words extracted from name which have
meaning.

wordSet←samurai(name)- extractStopWords(wordSet);
wordsWithMean←0;
foreach w in wordSet do

wd←classicExpansionAlgorithm(w);
if hasMean(wd,d) then

wordsWithMean←wordsWithMeans + 1;
end
return (wordsWithMeans

|wordSet|);

A similar process is carried out for the documentation, in this case it is divided in
several words. Each word is searched in the dictionary and if it is found, then contributes

796 Berón et. al.

to produce a relevant documentation. The function documentationQuality shows how the
process previously describe is accomplished.

Function documentationQuality
input : doc a string which represents a documentation.
input : d a domain specific dictionary.
Result: A percentage that indicates the documentation

quality.
Data: wordSet a set of words.
Data: w a word.
Data: sl a real variable the number of word with

meaning.
/* the function tokenizer divides the documentation in
words. The character used to divide is the blank space

*/;
wordSet← tokenizer(documentation);
wordSet← wordSet - extractStopWord(wordSet);
satisfactionLevel←0;
foreach w in wordSet do

sl← sl + nameQuality(w,d);
end
;

return sl
|wordSet|;

8.2. Elementary Criteria Functions.

In this evaluation process, the majority of Elementary Criterion Function are direct map-
pings, since most of the attributes values are computed by extraction techniques. They
take as input the strings to be analysed and return a percentage value that could directly
be mapped to a satisfaction value. It is the case of parameters in the context of operations,
to understand the parameter intention it is necessary take in consideration the following
characteristcis: parameter name, parameter documentation and a message transmitted.
The first characteristic (name) can be analyzed by using the function nameQuality. Param-
eter Documentation, like the documentation associated to other components, can be cal-
culated by using the function documentationQuality. Regarding to messages, the Messa-
ge Understanding Degree can be used to measure the Port Type Message Understanding
complexity. Algorithm 1 shows the process to compute the parameters complexity.

After the analysis of all the operation’s characteristics it is possible to propose the
Algorithm 2 to estimate the Operation Complexity.

Measuring the understandability of WSDL specifications 797

Algorithm 1: Parameter Complexity Satisfaction Level
input : p it is a list of operation’s parameters to be

evaluated. Each element of p is a triple (n,d,m)
where n is the parameter name, d is the
parameter documentation and m is the message
associated to p.

input : d a domain specific dictionary.
Result: A percentage that indicates Parameter Complexity

Satisfaction Level.
Data: sl a real variable. It holds a partial

satisfaction level.
Data: pn a real variable. It holds the parameter name

quality value.
Data: pd a real variable. It holds the parameter

documentation quality value.
Data: mud a real variable. It holds the message

understanding degree value.
Data: temp1,temp2 real variables used to storage

intermediate values.
sl←0;
foreach par in p do

pn←nameQuality(getParameterName(par),d);
pd←docQuality(getDocParameter(par),d);
mud← messageUnderstandingDegree(getMessage(par),d);
temp1← A(pd,70,pn,30);
temp2← SQU(temp1,40,pn,60);
sl← sl+D-(temp2,35,mud,65);

end
return sl

length(p);

9. Evaluation, experimental results

This section presents the evaluation of five WSDL descriptions using LSP and the struc-
tures defined in section 5 [36]. All descriptions analyzed and assessed define to web ser-
vices frequently used by real world information systems:

i) Google Web APIs8, provides operations to do Google searchs, ii) Create Queue
(Amazon)9, offers a reliable, highly scalable hosted queue for storing messages as they
travel between computers, iii) Airport10, provides useful information of all world air-
ports (e.g. airport codes, names, countries, countries code, latitude, longitude, etc.) iv)

8 https://code.google.com/p/dic/downloads/detail?name=
GoogleSearch.wsdl

9 http://queue.amazonaws.com/doc/2009-02-01/QueueService.wsdl
10 http://www.webservicex.com/airport.asmx?wsdl

798 Berón et. al.

Algorithm 2: Satisfaction Level of Operation Complexity
input : ol a list of Port Type Operations. Each element

of ol contains all the operation components,
i.e: name, documentation, parameters.

input : d a domain specific dictionary.
output: A percentage that indicates the satisfaction

level of the criterion Operation Complexity.
Data: sl a real variable.
Data: on a real variable. It holds the operation name

quality value.
Data: od a real variable. It holds the operation

documentation quality value.
Data: pc a real variable. It holds the parameter

complexity value.
sl←0;
foreach op in ol do

od← documentationQuality(getDocumentation(op),d);
on←nameQuality(getName(op),d);
/*parCompexitySatisfactionLevel is an abbreviation
of parameterComplexitySatisfactionLevel */
pc←parCompexitySatisfactionLevel(getParameters(op),d);

sl← sl+C-(SQU(A(od,70,on 30),40,on,60),65, pc,35);
end
return sl

length(p);

Global Weather 11, gets weather report for all major cities around the world, and v) OFAC
(http://www.webservicex.net/OFACSDN.asmx?WSDL) aids banks in meet-
ing the requirements of the US Treasury Department’s Office of Foreign Asset Control
(OFAC).

In order to explain in detail how the valuation process operates up to reach the global
Understanding Degree (UD), a special case of is developed (specifically Create Queue of
Amazon). In particular, the Understanding Degree for the characteristic Port Type. Figure
10 exhibits the entire Criteria Tree and the Aggregation Structure for Port Type UD.

All operators in Aggregation Structure must be resolved in order of precedence, thus,
in the first phase, all Elementary Criterion Functions must be computed. In the particular
case of Port Type, all measurable attributes (represented by Criteria Tree leaves) are ex-
tracted by i) documentation and identifier analysis techniques or ii) are values previously
computed (for example, Message UD for Parameter UD). The first level of operations are
the calculations corresponding to Parameter UD. Once computed this value, the process
estimates Operation UD and finally, all these values allows to obtain Port Type UD. When
there are more than one element (for example 2 or more Parameters, Operations or Ports),
the process obtains the average for all UD values.

11 http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL

Measuring the understandability of WSDL specifications 799

In the particular case of Amazon Create Queue, it has two Port Types: QueueService-
PortType and MessageQueuePortType.

The port Type QueueServicePortType contains two operations: CreateQueue and List-
Queues; all composed by two parameters: input and output. This port type is exposed in
Fig. 9.

<wsdl:portType name="QueueServicePortType">
<wsdl:operation name="CreateQueue">
<wsdl:documentation>
The CreateQueue action creates a new queue, or returns
the URL of an existing one.
When you request CreateQueue, you provide a name for
the queue. To successfully create a new queue, you must
provide a name that is unique within the scope of your own
queues. If you provide the name of an existing queue, a new
queue isn’t created and an error isn’t returned. Instead, the
request succeeds and the queue URL for the existing queue is
returned.
Exception: if you provide a value for DefaultVisibilityTimeout
that is different from the value for the existing queue, you
receive an error.
</wsdl:documentation>
<wsdl:input message="tns:CreateQueueRequestMsg" wsa:Action=
"urn:CreateQueue"/>
<wsdl:output message="tns:CreateQueueResponseMsg" wsa:Action=
"urn:CreateQueue:Response"/>
</wsdl:operation>

<wsdl:operation name="ListQueues">
<wsdl:documentation>
The ListQueues action returns a list of your queues.
</wsdl:documentation>
<wsdl:input message="tns:ListQueuesRequestMsg"
wsa:Action="urn:ListQueues"/>
<wsdl:output message="tns:ListQueuesResponseMsg"
wsa:Action="urn:ListQueues:Response"/>
</wsdl:operation>
</wsdl:portType>

Fig. 9. Port Type QueueServicePortType

For example, the parameter input in operation CreateQueue, has a message tns:Create-
QueueRequestMsg. This message obtained 82,3438 for Message UD (already computed).

800 Berón et. al.

This parameter does not have a name or documentation, thus Parameter Name Quality and
Parameter Documentation Quality values are 0. The UD computation for this parameter
(i.e, the partial preference computed by operator D-) is accomplished using the formula:[

(0, 35) ∗ (0)2,018 + (0, 65) ∗ (82, 3438)2,018
] 1

2,018

which results in 66,5154.
The parameter output UD are computed likewise input UD employing the formula:[

(0, 35) ∗ (0)2,018 + (0, 65) ∗ (73, 17)2,018
] 1

2,018

obtaining a UD value of 59,105.
Then, the process calculates the average value of both of them (in this case, the average

value is 62,8102).
Next phase, Operation UD is calculated for CreateQueue. Aggregation Structure takes

as input Parameter UD (average for all operation’s parameters), Operation Name Quality
and Operation Documentation Quality. The function nameQuality throws an elementary
preference of 100 for the Operation Name Quality. Also, for Operation Documentation
Quality the elementary preference is 100.

All previous values are computed by the operator C- and the result is 85,5193. This
port type has a second operation named ListQueues. As this operation obtains exactly the
same values for Operation Name Quality, Operation Documentation Quality and Param-
eter Understanding Degree the UD value for this operation is exactly as ’CreateQueue’.
Likewise Parameter UD, all operations UD values must be averaged and it represents the
Operation UD for a particular port type. For QueueServicePortType, the Operation UD is
85,5193 (both operations have the same UD).

Port Type Name Quality is 100 and Port Type Documentation Quality is 100. Opera-
tor CA returns the preference for this Port Type. As Amazon WSDL has two port types,
their corresponding UD values must be averaged to obtain the whole Port Type UD for
this WSDL. ”QueueServicePortType” has an UD value of 81,9748 and ”MessageQueue-
PortType” obtains an UD value of 82,2829. The average for these values is 82,12885, and
represents the whole Port Type UD for this WSDL.

Previous paragraphs exhibit the operation of evaluation process, considering Port Type
UD. Next paragraphs shows global Understanding Degree values obtained for all case
studies.

Table 2 shows the global understanding degree for each WSDL description. Each
Global Preference was computed aggregating all the characteristic preferences with the
logical operator CA (this function simulates simultaneity) and the weight equally dis-
tributed among the characteristics (20% for each one). The choice of this operator is due
to the fact that all WSDL components (type, message, port type, etc.) must be understan-
dable. If one of these is incomprehensible, the whole WSDL will be difficult to under-
stand.

As can be seen in Table 2, almost all WSDL are very similar taking into account un-
derstanding degree, except for OFAC WSDL description. This is because that description
has numerous identifiers with acronyms which decreases the satisfaction levels.

Weather and Airport define each type using a few primitive and complex types. Fur-
thermore they specify explicit and unambiguos identifiers. On the other hand, Google
uses a number of primitive and complex types that exceed the established thresholds. The

Measuring the understandability of WSDL specifications 801

Fi
g.

10
.E

nt
ir

e
C

ri
te

ri
a

Tr
ee

an
d

A
gg

re
ga

tio
n

St
ru

ct
ur

e
fo

rP
or

tT
yp

e
un

de
rt

an
di

ng
D

eg
re

e.

802 Berón et. al.

Table 2. Partial and global evaluation of WSDL

High-Level Characteristic Google Weather Amazon Airport OFAC
Types U. D. 60,2665 71,5131 68,8148 72,2303 40,5846
Messages U. D. 69,1173 83,3624 79,753 77,4924 58,8801
Port Types U. D. 75,7194 81,4166 82,1289 81,8902 45,3519
Bindings U. D. 75,5258 79,3457 82,2505 79,5241 42,755
Services U. D. 78,9946 79,6724 89,4138 79,7011 42,0794
Final Scores 71,5594 77,0112 80,1496 78,0884 45,4495

majority of messages’s parts of Weather WSDL uses primitive types and this fact rise its
Messages Understanding Degree satisfaction value.

In general, Amazon WSLD presents more documentation than others in different parts,
like messages, types, port types and services. This makes this WSDL the most understand-
able of the case study.

From another point of view, this set of metrics was proposed to measure each com-
ponent individually inside a WSDL. In this sense, we could compare, for example, all
elements of a kind that a WSDL contains (e.g. types, messages or services), in order to
analyze it individually. This could be useful for maintainability or re-structuring purposes.
In this context, we measured the quality of three different messages of the Create Queue
(Amazon) WSDL description; the results are shown in Table 3.

Table 3. Messages analysis for Create Queue (Amazon) WSDL description.

Sub-characteristic SMR RPR DeleteMessageResponse

M. Doc. Quality 0 0 0
M. Name Quality 100 100 100
M. Parts U. D. 60,9759 93,6933 73,1726

Final Scores 73,17 83,5379 77,6729

As can be seen, RemovePermissionRequest (RPR) message is the most understandable
of these three messages and SendMessageResponse (SMR) the worst. This is basically due
to Message Part Understanding Degree satisfaction values.

This is a comparative analyse that allows to identify the most critical parts of the
description. If we want to analyse the results individually we would say that a score below
50% represents a candidate description for improvement.

Measuring the understandability of WSDL specifications 803

10. Conclusion and Future Work

In this article WSDLUD, a metric to measure the understanding degree of WSDL descrip-
tion, was defined. In order to compute WSDLUD other metrics were also specified. These
metrics have as main goal to provide an estimation about the understanding degree of
each description part. Each part is associated with an importance level specified by the
engineer. Both values (understanding degree and importance level) are used by LSP (a
multi criteria evaluation method) to produce a global value which represents the desired
WSDL description understanding degree which proves our research hypotheses stated in
the abstract.

We believe that our approach is novel because it makes possible to analyse each part
of a particular WSDL description as well as the global understanding degree. Yet more
important, all the engineer’s experience can be included in the evaluation process in order
to get more significant results. All the detailed information provided by our system can
be used to identify the most critical parts of the description and the chances for quality
improvement. In some cases, the description can be simplified or made more readable.
But, in other cases, the complexity of the description is full dependent on the domain
complexity and there is not chance for improvement.

As future work we intend to: i) Improve the documentation quality evaluation in order
to cope with the possibility of identifying problem domain concepts and relations among
the text; ii)Improve the Criteria Tree (CT) and Aggregation Structure (AS); iii) Extend
the work presented in this paper to WSDL 2.0, this work is near to be finished and the
results obtained will be presented in a future article; iv) Apply a similar analysis to study
business processes specified with BPEL (Business Process Execution Language).

References

1. Abid, K., Abid, A., Ansari, M.: A better approach for conceptual readability of wsdl. In: Multi-
media Big Data (BigMM), 2015 IEEE International Conference on. pp. 260–263 (April 2015)

2. Aguezzoul, A., Rabenasolo, B., Jolly-Desodt, A.M.: Multicriteria Decision Aid Tool for Third-
Party Logistics Providers’ Selection. In: Service Systems and Service Management, 2006 In-
ternational Conference on. vol. 2, pp. 912–916 (2006)

3. Allamaraju, S.: RESTful Web Services Cookbook. O’Reilly (2010)
4. Azcurra, J., Berón, M., Montenjano, G., Farnese, A., Henriques, P., M.Pereira.: AId: Uma Fer-

ramenta para Análise de Identificadores de Programas Java. In: Congreso Nacional de Inge-
nierı́a Informática/Sistemas de Información, 2014. pp. 880–892 (Nov 2014)

5. Azcurra, J., Beron, M., Montejano, G.: Análisis de Identificadores para Abstraer conceptos del
Dominio del Problema. Universidad Nacional de San Luis (2015)

6. Bernardis, H., Beron, M., Riesco, D., Henriques, P.R.: Extracción de información y cálculo
de métricas en WSDL 1.1 y 2.0. In: Congreso Nacional de Ingenierı́a Informática/Sistemas de
Información. pp. 963–974 (Nov 2014)

7. Beron, M., Montejano, G., Riesco, D., Henriques, P., Debnath, N.: Sip: A simple tool for
inspecting and evaluating wsdl specifications. In: Information Technology: New Generations
(ITNG), 2013 Tenth International Conference on. pp. 14–19 (April 2013)

8. Beron, M., Henriques, P.R., Riesco, D., Pereira, M.J.V.: On the Comprehension of WSBPEL
Programs. Tech. rep., Universidad Nacional de San Luis - Universidade do Minho (2015)

9. Brans, J.P., Mareschal, B.: PROMETHEE methods. In: Multiple criteria decision analysis: state
of the art surveys, pp. 163–186. Springer (2005)

804 Berón et. al.

10. Brans, J., Vincke, P., Mareschal, B.: How to select and how to rank projects: The
Promethee method. European Journal of Operational Research 24(2), 228–238 (1986),
¡ce:title¿Mathematical Programming Multiple Criteria Decision Making¡/ce:title¿

11. Carvalho, N.R.: An Ontology Toolkit for Problem Domain Concept Loction in Program Com-
prehension. Ph.D. thesis, Escola de Engenharia, Universidade do Minho (2014)

12. Carvalho, N.R., Almeida, J.J., Henriques, P.R., Pereira, M.J.V.: From source code identifiers
to natural language terms. Journal of Systems and Software 100, 117–128 (2015), http:
//dx.doi.org/10.1016/j.jss.2014.10.013

13. Coscia, L.O., Crasso, M., Mateos, C., Zunino, A.: Estimating Web Service interface quality
through conventional object-oriented metrics. CLEI Electronic Journal 16(1) (2013), http:
//www.clei.org/cleiej/paper.php?id=258

14. Coscia, L.O., Mateos, C., Crasso, M., Zunino, A.: Refactoring code-first Web Services for
early avoiding WSDL anti-patterns: Approach and comprehensive assessment. Sci. Comput.
Program. 89, 374–407 (2014), http://dx.doi.org/10.1016/j.scico.2014.03.
015

15. Crasso, M., Rodriguez, J.M., Zunino, A., Campo, M.: Revising wsdl documents: Why and how.
IEEE Internet Computing 14(5), 48–56 (2010)

16. Deng, L., Zhou, A., Guo, H., Han, P.: Investigating, modeling and evaluating the interface com-
plexity of web services. In: Communications, Computing and Control Applications (CCCA),
2011 International Conference on. pp. 1–6 (March 2011)

17. Dujmović, J., Kadaster, M.: A technique and tool for software evaluation. Evolution 374, 246
(2002)

18. Dujmovic, J., Elnicki, R., of Florida, U., of Standards, U.S.N.B.: A DMS Cost/benefit Deci-
sion Model: Mathematical Models for Data Management System Evaluation, Comparison and
Selection (part 1 of Second Deliverable). National Bureau of Standards (1981)

19. Dujmovic, J.: Continuous Preference Logic for System Evaluation. IEEE Transactions on
Fuzzy Systems 15(6), 1082–1099 (Dec 2007)

20. Dujmovic, J.: Characteristic forms of generalized conjunction/disjunction. In: Fuzzy Systems,
2008. FUZZ-IEEE 2008.(IEEE World Congress on Computational Intelligence). IEEE Inter-
national Conference on. pp. 1075–1080. IEEE (2008)

21. Dujmović, J.J., Ralph, J.W., Dorfman, L.J.: Evaluation of Disease Severity and Patient Disabil-
ity Using the LSP Method. In: Proceedings of the 12th Information Processing and Manage-
ment of Uncertainty international conference (IPMU 2008). pp. 1398–1405 (2008)

22. Enslen, E., Hill, E., Pollock, L., Vijay-Shanker, K.: Mining source code to automatically split
identifiers for software analysis. In: Mining Software Repositories, 2009. MSR’09. 6th IEEE
International Working Conference on. pp. 71–80. IEEE (2009)

23. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans. In-
ternet Technol. 2(2), 115–150 (may 2002), http://doi.acm.org/10.1145/514183.
514185

24. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures.
Ph.D. thesis (2000), aAI9980887

25. Gold, N., Bennett, K.: Program comprehension for web services. In: Program Comprehension,
2004. Proceedings. 12th IEEE International Workshop on. pp. 151–160 (June 2004)

26. Guerrouj, L., Di Penta, M., Antoniol, G., Guéhéneuc, Y.G.: Tidier: an identifier splitting ap-
proach using speech recognition techniques. Journal of Software Maintenance and Evolution:
Research and Practice (2011)

27. Guinard, D., Ion, I., Mayer, S.: Mobile and Ubiquitous Systems: Computing, Network-
ing, and Services: 8th International ICST Conference, MobiQuitous 2011,Copenhagen, Den-
mark, December 6-9, 2011, Revised Selected Papers, chap. In Search of an Internet of
Things Service Architecture: REST or WS-*? A Developers’ Perspective, pp. 326–337.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012), http://dx.doi.org/10.1007/
978-3-642-30973-1_32

Measuring the understandability of WSDL specifications 805

28. Haidar, A., Abdallah, A.: Abstractions of web services. In: Engineering of Complex Computer
Systems, 2009 14th IEEE International Conference on. pp. 182–191 (June 2009)

29. Hu, X., Feng, Z., Chen, S.: Analyzing distribution of implicit semantic information in web
services. In: IEEE 37th Annual Computer Software and Applications Conference, COMPSAC
Workshops 2013, Kyoto, Japan, July 22-26, 2013. pp. 415–420 (2013), http://dx.doi.
org/10.1109/COMPSACW.2013.122

30. Jiang, J., Lipponen, J., Selonen, P., Systa, T.: Uml-level analysis and comparison of web service
descriptions. In: Ninth European Conference on Software Maintenance and Reengineering. pp.
236–240 (March 2005)

31. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs.
Cambridge University Press (1993)

32. Kumar, R., Indraveni, K., Goel, A.K.: Automation of detection of security vulnerabilities in
Web Services using dynamic analysis. In: 9th Int. Conf. on Internet Technology and Secured
Transactions (ICITST). pp. 334–336 (Dec 2014)

33. Kumari, S., Rath, S.K.: Performance comparison of soap and rest based web services for en-
terprise application integration. In: Advances in Computing, Communications and Informatics
(ICACCI), 2015 International Conference on. pp. 1656–1660 (Aug 2015)

34. Lawrie, D., Feild, H., Binkley, D.: Extracting meaning from abbreviated identifiers. In: Sev-
enth IEEEInternational Working Conference on Source Code Analysis and Manipulation. p.
213–222 (Sept 2007)

35. Liu, F., Shi, Y., Yu, J., Wang, T., Wu, J.: Measuring similarity of web services based on wsdl.
In: Web Services (ICWS), 2010 IEEE International Conference on. pp. 155–162 (July 2010)

36. Liu, L., Sun, T., Fang, W., Liu, N.: Usability evaluation of the subway train dispatching system.
In: Information Science and Technology (ICIST), 2011 International Conference on. pp. 1123–
1128 (March 2011)

37. Lu, X., Lin, J., Zou, Y., Peng, J., Liu, X., Zha, L.: Investigating, modeling, and ranking interface
complexity of web services on the world wide web. In: Services (SERVICES-1), 2010 6th
World Congress on. pp. 375–382 (July 2010)

38. Miranda, E., Berón, M., Montejano, G., Pereira, M.J.V., Henriques, P.R.: NESSy: a New
Evaluator for Software Development Tools. In: 2nd Symposium on Languages, Applica-
tions and Technologies, SLATE 2013, June 20-21, 2013 - Porto, Portugal. pp. 21–37 (2013),
http://dx.doi.org/10.4230/OASIcs.SLATE.2013.21

39. Mirtalebi, A., Khayyambashi, M.: Enhancing security of web service against wsdl threats. In:
Emergency Management and Management Sciences (ICEMMS), 2011 2nd IEEE International
Conference on. pp. 920–923 (Aug 2011)

40. Montazer, G.A., Saremi, H.Q., Ramezani, M.: Design a new mixed expert decision aiding sys-
tem using fuzzy electre iii method for vendor selection. Expert Syst. Appl. 36(8), 10837–10847
(Oct 2009), http://dx.doi.org/10.1016/j.eswa.2009.01.019

41. Mousseau, V., Slowinski, R., Zielniewicz, P.: A user-oriented implementation of the
ELECTRE-TRI method integrating preference elicitation support. Comput. Oper. Res. 27(7-8),
757–777 (Jun 2000), http://dx.doi.org/10.1016/S0305-0548(99)00117-3

42. Nandigam, J., Gudivada, V., El-Said, M.: Teaching web services using wsexplorer. 2013 IEEE
Frontiers in Education Conference (FIE) 0, S3H–20–S3H–25 (2007)

43. Newcomer, E.: Understanding Web Services: XML, WSDL, SOAP, and UDDI. Addison-
Wesley Professional (2002)

44. Ni, Y., Fan, Y.: Ontology based cross-domain enterprises integration and interoperability. Ser-
vices Part II, IEEE Congress on 0, 133–140 (2008)

45. Olsina, L., Rossi, G.: Measuring Web Application Quality with WebQEM. IEEE MultiMedia,
2002 09(4), 20–29 (2002)

46. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. ”big”’ web services:
Making the right architectural decision. In: Proceedings of the 17th International Conference

806 Berón et. al.

on World Wide Web. pp. 805–814. WWW ’08, ACM, New York, NY, USA (2008), http:
//doi.acm.org/10.1145/1367497.1367606

47. Romero, C.: Teorı́a de la Decisión Multicriterio: Conceptos, Técnicas y Aplicaciones. Alianza
Editorial: Madrid. (1993)

48. Roy, B.: Problems and methods with multiple objective functions. Mathematical Programming
1, 239–266 (1971), http://dx.doi.org/10.1007/BF01584088

49. S. Ahuja, K. Umapathy, Z.P.: Comparing performance of web service interaction styles: Soap
vs. rest. In: Conference on Information Systems Applied Research, 2012 Proceedings of the
(2012)

50. Saaty, T.: How to make a decision: The analytic hierarchy process. European Journal of Oper-
ational Research 48(1), 9–26 (Sep 1990)

51. Segev, A., Toch, E.: Context-based matching and ranking of web services for composition.
IEEE Transactions on Services Computing 2(3), 210–222 (2009)

52. Shahgholi, N., Mohsenzadeh, M., Seyyedi, M., Qorani, S.: A new soa security framework de-
fending web services against wsdl attacks. In: Privacy, Security, Risk and Trust (PASSAT) and
2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third
International Conference on. pp. 1259–1262 (Oct 2011)

53. Simon, A., Rischbeck, T.: Service contract template. In: IEEE SCC. p. 511. IEEE Computer So-
ciety (2006), http://dblp.uni-trier.de/db/conf/IEEEscc/scc2006.html#
SimonR06

54. Sneed, H.: Measuring web service interfaces. In: Web Systems Evolution (WSE), 2010 12th
IEEE International Symposium on. pp. 111–115 (Sept 2010)

55. Sripairojthikoon, P., Senivongse, T.: Concept-based readability measurement and adjustment
for web services descriptions. In: 16th Int. Conf. on Advanced Communication Technology
(ICACT). pp. 378–388 (Feb 2014)

56. Su, S., Dujmovic, J., Batory, D.S., Navathe, S.B., Elnicki, R.: A Cost-benefit Decision Model:
Analysis, Comparison and Selection of Data Management. ACM Trans. Database Syst. 12(3),
472–520 (Sep 1987), http://doi.acm.org/10.1145/27629.33403

57. Tekli, J., Damiani, E., Chbeir, R., Gianini, G.: Soap processing performance and enhancement.
vol. 5, pp. 387–403 (Third 2012)

58. Tibermacine, O., Tibermacine, C., Cherif, F.: A Practical Approach to the Measurement of
Similarity between WSDL-basedWeb Services. RNTI: Revue des Nouvelles Technologies de
l’Information Special Issue CAL 2013(RNTI-L-7), 03–18 (2014)

59. Wang, L., Xu, L., Yu, J., Xue, Y., Zhang, G., Luo, X.: Search of web service based on as-
sociation rule. In: Cognitive Informatics Cognitive Computing (ICCI*CC), 2015 IEEE 14th
International Conference on. pp. 262–266 (July 2015)

60. Wang, L., Liu, F., Zhang, L., Li, G., Xie, B.: Enriching descriptions for public web services
using information captured from related web pages on the internet. In: The Fifth IEEE Inter-
national Symposium on Service-Oriented System Engineering, SOSE 2010, June 4-5, 2010,
Nanjing, China. pp. 141–150 (2010), http://dx.doi.org/10.1109/SOSE.2010.28

Mario Berón obtained a PhD in Computer Science from National University of San Luis
(UNSL/Argentina) also recognized by Minho University (Portugal). He is Adjunct Pro-
fessor and a researcher at UNSL. He is a professor of postgraduate course in Master of
Software Engineering and a member of the Software Engineering group at UNSL. His
research interests are in the área of Program Comprehension, Reverse Engineering, Pro-
gramming Languages, Security Informatics and Embedded Systems, among others.

Hernán Bernardis obtained his bachelor degree in Computer Science from National
University of San Luis (UNSL). He is teacher assistant and researcher at this institution.

Measuring the understandability of WSDL specifications 807

He is finishing a Master on Software Engineering also at UNSL where he is a member
of the Software Engineering group. His research interests include Reverse Engineering,
Program Comprehension, Software Engineering and Programming Languages.

Enrique A. Miranda obtained his bachelor degree in Computer Science from National
University of San Luis (UNSL). He is teacher assistant and researcher at this institution.
He pursues a PhD in Informatics Engineering with a PhD scholarship from National Sci-
entific and Technical Research Council (CONCIET). He is member of the Software En-
gineering group at UNSL. His research interests include Reverse Engineering, Program
Comprehension, Software Engineering and Programming Languages.

Daniel Riesco has a PhD from University of Vigo (Spain) and a Master from Polytechnic
University of Madrid (Spain). He is Associate Professor at National University of San
Luis (Argentina) of Informatics Engineering. He is director of a research project with
15 members and co-director of the Software Engineering Group. He has more than 100
referred research articles in international journals, congress and workshops from IEEE,
ACM, Springer, among others.

Maria João Tinoco Varanda Pereira has a PhD and a Master on Computer Science
and Software Engineering from Minho University (Portugal). She is Adjunt Professor
at Polytechnic Institute of Bragança (also in Portugal) and member of Processing Lan-
guage Group at Minho University. Her research work and teaching activity is deeply
related with formal specification of languages, automatic construction of compilers and
other language-based tools, conception and implementation of visual domain specific lan-
guages, visualization and animation of programs and program comprehension. She has 19
journal articles and 56 international conference papers.

Pedro Rangel Henriques has a PhD on Computer Science and is an Associate Professor
at Minho University. His main research areas are Language Specification and Processing
(methods & tools): Grammar development and Parsing algorithms, Attribute Grammars
and Attribute Evaluation, Attributed Tree Transformation, Code Generation and Opti-
mization, Language Processor Generators (compiler compilers), Visual Language pars-
ing and translation, Program Visualizers and Animators; Programming Languages and
Paradigms (imperative, declarative, OO); Program Comprehension (models, approaches,
and tools); Document Specification and Processing (markup languages), Knowledge Rep-
resentation and Discovery (data-mining and text-mining). Pedro Henriques has an exten-
sive experiencie in teaching and researching. He teaches several disciplines, at Minho
University, related with Language Processing, Programming Paradigms and Programming
Methods. He has been a leader of several research projects, in this context, and has su-
pervised many master and phd thesis; he has produced more than 100 referred articles in
international journals, books, congress and workshops.

Received: January 25, 2016; Accepted: July 31, 2016.

