Computer Science and Information Systems 13(3):759-778 DOI: 10.2298/CS1S160128027V

Features as Transformations: A Generative Approach to
Software Development

Valentino Vrani¢ and Roman Taborsky

Institute of Informatics, Information Systems and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
Ilkovicova 2, 84216 Bratislava 4, Slovakia
vranic @stuba.sk, crudecrude @ gmail.com

Abstract. The objective of feature modeling is to foster software reuse by enabling
to explicitly and abstractly express commonality and variability in the domain. Fea-
ture modeling is used to configure other models and, eventually, code. These soft-
ware assets are being configured by the feature model based on the selection of
variable features. However, selecting a feature is far from a naive component based
approach where feature inclusion would simply mean including the corresponding
component. More often than not, feature inclusion affects several places in models
or code to be configured requiring their nontrivial adaptation. Thus, feature inclu-
sion recalls transformation and this is at heart of the approach to feature model
driven generation of software artifacts proposed in this paper. Features are viewed
as transformations that may be executed during the generative process conducted
by the feature model configuration. The generative process is distributed in respec-
tive transformations enabling the developers to have a better control over it. This
approach can be applied to modularize changes in product customization and to
establish generative software product lines by gradual refactoring of existing prod-
ucts.

Keywords: feature modeling, transformation, metatransformation, generative pro-
cess, reuse, change, customization, software product lines, variability.

1. Introduction

Feature modeling is a widely known approach to capturing commonality and variability
proposed in 1990’s [18]. Although industrial applications of its academic form (not count-
ing in some cases of using the pure::variants notation and tool [5,6,4]) are unknown [17],
it is widely recognized that commonality and variability lie at heart of organizing software
development for reuse in software product lines. Based on commonality and variability,
appropriate implementation mechanisms can be selected [9].

Feature modeling is used to configure other models and, eventually, code. These soft-
ware assets are being configured by the feature model based on the selection of variable
features. However, selecting a feature is far from a naive component based approach
where feature inclusion would simply mean including the corresponding component.
More often than not, a feature inclusion affects several places in models or code that
belong to other features, requiring their nontrivial adaptation or—to use a more appro-
priate word—their transformation. This is known as feature interaction. In his keynote



760 Valentino Vrani¢ and Roman T4borsky

at Modularity 2016 [1], Sven Apel admitted that only after years of fighting it, he found
feature interaction is inevitable and actually necessary. By perceiving features as transfor-
mations, resolving feature interaction becomes their intrinsic part rather than something
that has to be tackled externally.

Modularizing other models and code by features has been recognized as a viable ap-
proach to implementing features in some of the so-called language based approaches, such
as GenVoca or AHEAD, that fall into the category of feature-oriented programming [2].
However, such approaches require language extensions, which are hard to keep compati-
ble with the ever changing host language without a dedicated support.

Another way to see feature interaction is crosscutting in the sense of aspect-oriented
programming, but aspect-oriented programming extensions that are stable and up-to-date
with the host language are not available for most programming languages. On the other
hand, crosscutting features have been reported to be perceived as problematic by devel-
opers [4]. Yet, a significant number of features exhibit a crosscutting nature [4] and such
features are often highly important [16].

The approach to feature model driven generation of software artifacts proposed in this
paper is intended to overcome the problems mentioned above. It does so by providing a
self-contained transformation framework realizable in a general purpose object-oriented
programming language capable of making model aware interventions and handling cross-
cutting features by modifying the transformations that implement other features. The gen-
erative process is distributed in respective transformations enabling the developers to have
practically unlimited control over it given by the power of the general purpose program-
ming language being used. At the same time, the developers have to implement and main-
tain only that much of the generative process that is really necessary.

The rest of the paper!' is organized as follows. Section 2 offers a view on features as
means for software modularization. Section 3 explains how features can be perceived as
transformations, which is the essence of the approach proposed in this paper. Section 4
presents the implementation of the approach in a form of a framework. Section 5 demon-
strates the application of the approach. Section 6 discusses how the approach can be ap-
plied in software product customization viewing changes as transformations and how this
can be extended to software product lines. Section 7 discusses related work. Section 8
concludes the paper.

2. Modularizing Software by Features

While there is no perfect software modularization and, ultimately, any kind of modular-
ization is condemned to tyrannize some developers or other stakeholders [29], features
are a particularly interesting form of software modularization from the perspective of the
application domain. Simply stated, a feature is an important property of a given concept
and any concept itself can be perceived as a feature of another concept [34]. Roughly
speaking, features imply from requirements and domain analysis [10], but feature mod-
eling actually does not deal with features themselves, but with their relationships. These
may be captured graphically by feature diagrams. In feature diagrams, features are usually

! This paper is an extended version of the paper selected among the papers presented at WAPL
2015 [30].



Features as Transformations: A Generative Approach to Software Development

organized hierarchically into trees, being easier for humans to follow trees than general
graphs, features are usually organized hierarchically into trees while additional relation-
ships are expressed textually [34,35].

Figure 1 shows an example feature diagram in Czarnecki—Eisenecker notation. Edges
and arc decorations denote the kind of feature variability: a filled circle ended edges stand
for mandatory features, an empty circle ended edges stand for optional features, and an
arc groups alternative features. A feature diagram defines a whole family of products or
product parts. Each member of a family is defined by a configuration of the features.
Figure 2 shows several valid configurations of the simple web site, including the minimal
one (with only one feature besides the root one). Depending on its variability constraints,
a feature may or may not be included in a configuration. A feature may not be included in
a configuration if its parent feature is not included.

Simple Web Site

N\
Generate Documentation

Custom HTML Header
Microformat Support

Contact Page

Static Content History

N\
Dynamic Content Access Log

Database Backend

<>

’ Dynamic Content Provider

ASP.NET MS SQL XML

Fig. 1. The feature diagram of the family of simple web sites.

Feature modeling can be used to configure software assets—models and code—in or-
der to create software instances that exhibit desired features. One way to achieve this is by
employing so-called superimposed variants [3] where the software models or code contain
all the variants that are being reduced based on the features selected—or not selected—in
the corresponding feature model [11,15]. The FeatureHouse project [27] implements an
approach that uses these models and allows language independent source code generation.

The opposite way is to generate or add pre-built software artifacts according to the
features contained in the configuration. The pure::variants software tool [25] uses a spe-
cialized family model to represent a feature to architecture mapping. In this model, it is
necessary to specify the type of the impact on the software instance. There are several
possible impact specifications that allow for a wide scope of software artifact to be cre-
ated, such as files, file fragments, XSLT transformations, conditional XML or text, C/C++
flag files, makefiles, class alias files, or symbolic links to folders or files.

761



762 Valentino Vrani¢ and Roman T4borsky

Simple Web Site

Simple Web Site

Generate Documentation
Contact Page

Contact Page
Static Content History Custom HTML Header
Microformat Support

‘ Dynamic Content Access Log
./\‘ Simple Web Site

‘ Database Backend ‘

‘ Dynamic Content Provider

Fig. 2. Several simple web site configurations.

Custom HTML Header

Contact Page Static Content History

Features can represent anything. At some point, one may be tempted to use them
to extensively model structural concerns. The logical next step would then be to extend
feature modeling with multiplicities (cardinalities) and this has actually happened [13].
However, the original perception of features is different: a feature is like a proposition
and to include a feature several times would simply mean to state the same thing sev-
eral times [10]. This keeps feature models focused on the configurability aspect and is in
accordance with viewing features as transformations. While transformations, in general,
may be repeatable and their repetition may even make sense, that would unnecessarily
complicate the whole model. The same effect may be achieved by transformation param-
eters one of which may be the number of times to repeat the transformation.

3. Features as Transformations

Generating software artifacts independently for each included feature may be sufficient
only for simple situations. In reality, features may interact and this interaction may re-
sult in the necessity to generate different software artifacts for the affected features or
to change them if they are already generated. But changing already built things may re-
quire deep restructuring. To compare to more tangible artifacts, once a sculpture is cast,
it is very hard to modify it without making this obvious. A smoothly modified instance
of the sculpture can be obtained only by modifying the cast itself. Similarly, instead of
modifying generated software artifacts, in order to get a smooth result, it is more appro-
priate to modify the procedure that generated them. These procedures actually transform
the premanufactured software material into its final form. If each feature is viewed as a
transformation, this can be taken one step further: the transformation associated with the
affecting feature could modify the transformations associated with the affected features
instead of harshly modifying already generated software artifacts.

Although transformations will mainly have to result in generated functional code, a
transformation can represent virtually any kind of action, including those that reflect extra-



Features as Transformations: A Generative Approach to Software Development

functional requirements.? Thus, it is legitimate to have a transformation that will provide
logging or documentation.

This section explains the overall process of our approach to feature model driven
generation of software artifacts based on features as transformations (Section 3.1) and its
different aspects (Sections 3.2-3.5).

3.1. The Overall Process

The overall process of the approach to feature model driven generation of software ar-
tifacts based on features as transformations is depicted in Figure 3. The whole process
actually consists of two processes one of which is the transformation design, and the
other one is their application. This is analogous to distinguishing domain engineering
from application engineering [10].

- -
feature model D ine th Implement the Transformations Determine the Order feat del
and other T ete;mmet‘ i and Assign them I=>1of the Transformation|=> g?hure mo %
domain knowledge ransformations to the Features Execution with assigne
transformations

ﬁ\changes

Provide the
Transformation Parameters

Transformation Application

product code
and other
generated artifacts

" d Configure the
customer needs Feature Model

S Execute the >
Transformations

Fig. 3. The overall process.

The input to the transformation design process is a feature model and other domain
knowledge. This process embraces determining the transformations that are necessary,
implementing these transformations and assigning them to the corresponding features,
and determining the order in which the transformations are to be executed. Although not
indicated in Figure 3, this process is iterative and incremental.

The process of the transformation application starts with the customer needs, which
determine what features are to be included in the corresponding feature model configura-
tion. In turn, the selection of the features determines the set of the transformations to be
executed. The corresponding parameters are provided to the transformations and, finally,
the transformations are executed to obtain the product code and other generated artifacts
such as documentation.

Again, this process is also iterative and incremental requiring to experiment with the
selection of the features that suits best the customer needs. This embraces experimenting
with transformation parameters, too. Moreover, the need for changes may also propagate
into the transformation design process and even affect the feature model itself. Experi-
menting with transformation application is of particular importance in assuring the order
of their application is correct.

2 We use term extra-functional—as proposed by Mary Shaw [26]—to refer to requirements and
features that go beyond software system functionality instead of more widely used, but poten-
tially confusing term non-functional.

763



764 Valentino Vrani¢ and Roman T4borsky

3.2. Metatransformations

Some features may have a global effect that spans throughout the whole software product
or its significant part. Quality features, such as logging requirement or performance and
security constraints, represent a typical example. Other features rooted in extra-functional
requirements often have such effect, too. Including such a feature with the correspond-
ing transformation into the configuration leads to the necessity of accessing or modifying
other transformation parameters or actions. We denote the transformations capable of
this as metatransformations. They correspond to the concept of higher-order transforma-
tion [31] and in particular to two kinds of higher-order transformations: transformation
modification, with respect to modifying transformation actions or parameters, and trans-
formation analysis, with respect to accessing transformation actions or parameters. The
notion is also related to the concept of model metatransformations [33].

3.3. Associating Transformations with Features

One way of associating features with transformations is to include the transformations
directly in the feature model. There are two main problems connected with this approach:
the degree of the transformation reuse between different models is reduced and it is nec-
essary to parse the transformation information separately for every feature, even though
the type of the transformation they use may be the same (e.g., create a file).

Another approach is to store transformation definitions outside the feature model as
demonstrated by this C# class:

public class CreateFile : Transformation {
public override void ExecuteTransformation() {
... // Create a file
}
}

A feature model then includes only the association itself:

<feature transformationClassName="CreateFile"
fileName="Samplefile.cs">
</feature>

Although a feature appears to be associated with the transformation class as such, it is
rather its instance it is associated with. This way, in addition to the actions to be performed
within the transformation common to all its instances, each such transformation instance
can have its own, independent state to operate upon. This state will usually depend on
transformation parameters, such as file or folder name in the creating a file or folder
transformation.

What transformations are to be executed is given by the selection of features in a
feature model configuration. It is obvious that the order of execution is significant. The
order may be defined externally, i.e., globally for the whole feature model, or internally,
i.e., locally for each feature. An internally defined order, where each feature defines what
other features have a priority over it, overcomes the necessity of a global rearrangement of
the feature order upon a change in feature model, which is unavoidable with the externally
defined order.



Features as Transformations: A Generative Approach to Software Development

3.4. Transformation Granularity and Modularization

Besides the features used merely to group other features under a common denominator,
which might have no corresponding transformations, such as Dynamic Access Log in
our family of simple web sites (recall Figure 1), any other feature would normally be
associated with a transformation.

This is in accordance with the separation of concerns principle, but may lead to con-
cern fragmentation which may cause difficulties in concern comprehension. To avoid this,
a general concern may be captured in one transformation modified by the metatransfor-
mations assigned to variable features depending on their selection in the feature model
configuration process. An extreme of this would be having only one general transforma-
tion presumably associated with the root feature.

On the other side, a transformation associated with one feature may actually comprise
several transformations that, in turn, may be individually associable with other features.
In general, such a composite transformation may invoke the transformations it comprises
within the its course of actions unconditionally, conditionally, or repeatedly. These trans-
formations can be composite themselves.

3.5. Transformation Reusability

The process of the transformation design requires interaction on part of a domain engi-
neer to provide the necessary domain information specific to the project and a software
engineer to design the transformations in such a way that they implement the information
provided by the domain engineer and the requirement analysis of the corresponding fea-
tures. For an effective cooperation between the domain and software engineer, it is useful
to distinguish different reusability levels of transformations:

Specialized transformations that can be used only for the specific features in a specific
configuration of the feature model

Specialized transformations that can be used only for the specific features, but in any
configuration of the feature model

Domain dependent generic transformations, which can be used across multiple soft-
ware product lines in the same domain

Domain independent generic transformations, which are the most reusable transfor-
mations as they can be included in different software product lines across multiple
domains

As with common object-oriented programming, inheritance can be used to realize
some aspects of transformation reuse. In this, actions play the role of methods and a
devised transformation can preserve the inherited actions, add new ones, remove some of
them, or override them.

The inheritance model can also be perceived as a way of organizing transformations
into logical groups or packages. With respect to this, the inheritance is purely a tool of
categorization and it is not necessary to maintain a typical parent—child class relationship,
i.e., if transformations are represented as classes, it is not necessary to support inheritance
mechanism at the level of methods and attributes.

765



766 Valentino Vrani¢ and Roman T4borsky
4. The Framework

We implemented the proposed approach to feature model driven generation of software
artifacts based on features as transformations as a framework in .NET using C#. The
approach itself is by no means limited to .NET. Also, can be implemented in other object-
oriented programming languages.

The overall architecture is depicted in Figure 4. The details are explained in Sec-
tions 4.1-4.5.

«interface»
|IFeatureModelParser

ParseFeatureModel(model: object): TransformationStore
ExecuteTransformationChain(store: TransformationStore): void
ParseMetaTransformations(model: object, store: TransformationStore): TransformationStore
CheckPrerequisites(): void

'

XMLModelParser «interface»
IMetaTransformation
ExecuteTransformation(model: object, store: TransformationStore): void
-store  |-metastore A
TransformationStore

+AddTransformation(transformation: ITransformation): void
+AddTransformation(transformation: Transformation): void
+AddTransformation(transformation: Composite Transformation): void
+AddTransformation(transformation: Transformation, priority: int): void -store {ordered}
+AddTransformation(transformation: Composite Transformation, priority: int): void

«interface»
-transformations ITransformation
+Transformations {ordered} _{checkPrerequisites(): void
ExecuteTransformation(): void
GetParameterNames(): void

&
CompositeTransformation E— Transformation
+InstantiateChain(): void +ID: int
+CheckPrerequisites(): void #parameters: Dictionary<string, object>
+ExecuteTransformation(): void K> +Priority: int
+GetParameterNames(): void %
MetaTransformation

+CheckPrerequisites(object model, TransformationStore store): void

Fig. 4. The overall architecture.

4.1. Transformations

All transformations in our implementation are objects of the Transformation class that im-
plements the ITransformation interface. The CheckPrerequisites() method performs some
basic parameter checking before the transformation is processed. In general, it is possible
to provide a model aware method at the level of a metatransformation that can check the
transformation dependencies, too.



Features as Transformations: A Generative Approach to Software Development

The ExecuteTransformation() method represents the action which is contained within
the transformation. This method is called in the final step of model processing.

The GetParameterNames() method is used in the XML file parsing to provide the
parameter names to be retrieved from the feature node attributes.

The GetMetaTransformations() method provides a way to retrieve the metatransfor-
mations that are connected with this transformation. This allows to connect a metatrans-
formation list with a transformation and by this provide it with model awareness, which
means that it can influence other transformations in the model within the possibilities
provided by the connected metatransformations.

The parameters are stored in the dictionary format in the parameters attribute.

4.2. Composite Transformations

A composite transformation contains an object of the TransformationStore class, which
is basically an ordered list of transformations. For processing these transformations, the
CheckPrerequisites() and ExecuteTransformation() methods have to be overridden. The
contained transformations are instantiated by overriding the InstantiateChain() method.
This method is automatically executed by the TransformationStore object when adding
the transformation to it during parsing. The contained transformations may themselves be
composite. As it is obvious from the implementation, such transformations are processed
recursively in a depth-first order.

4.3. Metatransformations

The metatransformations are implemented by the MetaTransformation class. The differ-
ence between this class and the Transformation class is that the MetaTransformation class
is model aware. This means that it can traverse the feature model and make changes to it.

For this, the ExecuteTransformation method() method takes as an argument all trans-
formations within the TransformationStore object. To allow for the modification of com-
posite transformations, this method is implemented in a recursive way.

4.4. Feature Model Configuration

In our implementation, feature model configurations are represented by XML files. The
structure of these files follows the tree structure of the feature diagram:

<?xml version="1.0" encoding="utf—8" 7>
<featuremodel>
<feature>
<feature>
<feature />
<feature />
</feature>
<feature />
< /feature>
</featuremodel>

Each XML feature node has three compulsory attributes:

767



768 Valentino Vrani¢ and Roman T4borsky

— name
- ID
— Transformation

Accordingly, the simplest feature node looks like this:

<feature name="DynamicContentProvider" ID="7" Transformation="Transformations.Empty" />

The name and ID attributes have solely the purpose of identifying the node when it is
being processed. The Transformation attribute specifies the transformation that will be
used with this feature.

The transformation attribute consists of two parts delimited by a comma. The first
part represents the dynamic link library that contains the transformation, and the second
part the full class name of the transformation. The dynamic link library has to be a .NET
managed library. Therefore, a filled transformation attribute looks like this example:

Transformation="org.crd.dp.CaseStudy.Simple WebFinal, Transformations.Empty"

The XML feature model configuration is afterwards transformed into an object model
contained within the TransformationStore object.

4.5. Parsing and Executing Transformations
The generative process consists of these steps:

1. Parse the feature model configuration from the XML file

2. Parse and execute the metatransformations contained within the transformation from
the XML file

3. Check the parameters of the parsed transformations

4. Execute the transformations

The step of checking the parameters before parsing the metatransformation is omitted
as it is contained within the metatransformation parsing step. The actual generation of
code and other artifacts is performed by the transformations making the whole generative
process distributed.

An abstract prescription of these steps is provided in a form of an interface denoted as
IFeatureModelParser. As has been mentioned in Section 4.4, in our implementation, fea-
ture model configurations are represented by XML files. Therefore, we implemented the
corresponding XML parser and transformation executor as the XMLModelParser class.
We will refer to it simply as “parser” in the following text.

The first step that is necessary is to translate the transformations from the XML feature
model configuration into an object model. The transformations are parsed in a top-down
order. It is possible to override this behavior using the Priority attribute at transforma-
tion nodes. First, the assembly and class name are parsed from the XML node and the
transformation instance is created using reflection:

var assembly = Assembly.Load(assemblyName);
var ttype = assembly.GetType(typeName);
var transformationInstance =
ttype.GetConstructor(Type.Empty Types).Invoke(null) as ITransformation;
transformationInstance.SetID(Convert. ToInt32((string) node.Attributes["ID"]. Value));



Features as Transformations: A Generative Approach to Software Development

Afterwards, the GetParameterNames() method is used to obtain the list of parameters
that this transformation uses and the XML node attributes that correspond to this list are
copied into the dictionary containing the parameter key—value pairs.

The transformations are stored in a list implemented by the TransformationStore class.
Its AddTransformation() method allows for priority based insertion of transformations.
The transformation type is preserved in order to enable distinguishing composite trans-
formations during their execution.

The IsSubclassOfClass() method uses .NET reflection to recursively check for a match
in all ancestor classes up to the Object class. Reaching the Object class signals that we
are at the top of inheritance hierarchy as in .NET the Object class is the topmost class
from which all classes implicitly inherit. This step ends by adding all the transformation
objects to the store, by which they become a part of the object model making the XML
model unnecessary.

After adding the transformations into TransformationStore, it is possible to perform
metatransformations over this object model. The metatransformations are separated from
all transformations preserving their order as in the transformation store.

After obtaining a complete metatransformation store, it is possible to proceed with
checking the prerequisites and perform the execution of metatransformations. Afterwards,
the changes to the transformations contained in the processed metatransformations have
been applied to the transformation object model and therefore it is possible to perform the
final prerequisite check over the model and proceed with executing the transformations.

To check their parameters, the CheckPrerequisites() method is executed for each trans-
formation in the TransformationStore object. The current implementation uses a simple
fault detection mechanism that is based on raising an exception when a problem occurs.
With metatransformations, it is possible also to check for transformation dependencies
using the enhanced model aware CheckPrerequisites() method with the necessary param-
eters.

To execute the transformations, the TransformationStore object has to contain a list of
transformations that is prepared in a way that the metatransformations have been applied
and the prerequisites checked. Afterwards, the ExecuteTransformation() method is called
in a loop for each of the transformations contained in the list. The order in which the
transformations are executed is defined by their order in the TransformationStore object.
Their execution finally creates the corresponding software artifacts.

5. Applying the Approach

To demonstrate its applicability, we used the framework for feature model driven gener-
ation of software artifacts based on features as transformations described in the previous
section to develop a family of simple web sites as present in Section 5.1. We have also
applied the ideas behind the approach in practice described in Section 5.2. The discussion
is provided in Section 5.3.

5.1. Using the Framework

The feature diagram of the family of simple web sites has been introduced in Figure 1.
Variability includes having static content history, dynamic content access log, microfor-
mat support, custom HTML header, and generated documentation.

769



770 Valentino Vrani¢ and Roman T4borsky

The actual content is provided by transformation parameters. Consider the Creat-
eStaticHTMLPage transformation as an example. This transformation embraces a pro-
totype HTML file in its htmIContent attribute:

protected string htmlContent =
"<!DOCTYPE html PUBLIC \"—//W3C//DTD XHTML 1.0 Strict/EN\"
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1 —strict.dtd\">" +
"<html xmlns=\"http://www.w3.0rg/1999/xhtml\" xml:lang=\"en\"> <head> " +
"<meta http—equiv=\"content—language\" content=\"en\" />" +
"
"<title>Title placeholder</title>" +
"</head>" +
"
"<body>" +
"Content placeholder" +
"</body>" +
"</html>";

This transformation has four parameters used to adjust the prototype HTML file:

PageName: the file name under which the HTML file will be created

htmITemplate: the template that is set up can be customized with this parameter
htmlITitle: the text that replaces the Title placeholder text

htmlContent: the text that replaces the Content placeholder text (different from the
htmIContent attribute explained above)

If the corresponding feature to which this transformation is associated is included
in the feature model with the following parameter configuration (with htmlTemplate left
default):

<feature name="StaticContent—History" ID="2"
Transformation="org.crd.dp.CaseStudy.Simple WebFinal, org.crd.dp.CaseStudy.
SimpleWebFinal. Transformations.CreateStaticHTMLPage"
htmlContent="&lIt;h1&gt;History&lt;/h1&gt; &lt;p&egt; Lorem Ipsum&lt;/p&gt;”
htmITitle="StaticPage— History"
PageName="Site\\History.html" />

the following HTML file will be created:

<!DOCTYPE html PUBLIC "—//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1 —strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<meta http—equiv="Content—Type"
content="text/html; charset=utf—8" />
<meta http—equiv="content—language" content="en" />
<title>StaticPage— History
</title>
</head>
<body><h1>History</h1>
<p>Lorem Ipsum
</p>
</body>
</html>



Features as Transformations: A Generative Approach to Software Development

The page features—Contact Page, Static Content History, and Dynamic Content Ac-
cess Log—embrace two ways of creating the text content: statically, by an HTML doc-
ument, as with the Contact Page and Static Content History features, or dynamically,
by a script that generates the HTML document, as with the Dynamic Content Access Log
feature. The Static Content History feature is implemented as a composite transformation.

A model aware transformation is introduced with the dynamic page feature, i.e., the
Dynamic Content Access Log feature, with the utilization of a metatransformation provid-
ing the model traversal. Variability is introduced with the data provider, i.e., the Dynamic
Content Provider feature, providing an XML or Microsoft SQL database backend.

The optional features connected to the root feature—Microformat Support, Custom
HTML Header, and Generate Documentation—represent crosscutting features: they af-
fect other features not directly connected with them. The transformations for such features
either have to comprise the metatransformations to change the respective transformations,
as it is with the Microformat Support and Custom HTML Header features, or they can
appear as parameters to influence these transformations, such as the Generate Documen-
tation feature.

5.2. Applying the Approach in Practice

We applied the ideas of the approach to feature model driven generation of software ar-
tifacts based on features as transformations in practice in three industrial projects. The
application was partial and emergent. It concerned security management in one project
and partially in two other projects in ASPNET emerging out of the needs for reuse. Al-
though no explicit feature model was created during the application itself, a featural de-
composition was applied. Also, no dedicated framework was used, so the transformations,
implemented in T-SQL and XSLT, were executed manually.

Figure 5 shows a reconstructed feature model. It abstracts from platform specific fea-
tures and corresponding transformations such as modifications of the Visual Studio solu-
tion and project files.

Security Management

’ User Management ’ Security Model

Extended Properties

Application Security

Permissions User Session Support

N4
Organizational Unit

Session Provider

Fig. 5. The feature diagram of the security management subsystem.

771



772 Valentino Vrani¢ and Roman T4borsky

Security Management is the top level feature that represents the whole subsystem. It
implements the transformation that collects the T-SQL scripts, deploys them to database,
and then generates the ORM layer.

User Management represents the management of the user and password store. No
transformation is associated directly with this feature, but there are transformations as-
sociated with its subfeatures. User Store represents the data store for user records. This
feature could be extended by allowing for more types of data stores. Currently, only T-
SQL is used. The transformation that generates the CREATE TABLE script for the user
store is associated with it. Extended Properties is an optional feature that stands for the
addition of custom properties of user records. A composite transformation that consists
of three transformations that create scripts for regulating custom properties is associated
with it.

Security Model stands for what its name says. No transformation is associated directly
with this feature, but a composite transformation is associated with each of its subfeatures.
These composite transformations follow a common pattern consisting of three transfor-
mations to generate the scripts that create the corresponding database tables. Thus, the
Permissions feature regulates user permissions, Roles covers the addition of roles to man-
age permissions and Organizational Unit manages the relation of users to organizational
units. In addition, the metatransformation altering the transformation associated with User
Store to add the role column is associated with the Roles feature.

Application Security controls in which way the user is authenticated. Composite
transformations that copy files from template files are associated with it. User Session
Support is only a container feature that allows to choose a session provider based on its
optional subfeatures. With InProc no action is performed (the default provider), while
SQL and Redis activate the metatransformations that alter the files copied in the Appli-
cation Security feature transformation.

5.3. Discussion

The two example applications presented in the previous two sections demonstrated the
approach applicability. With respect to reusability, since our web site family example
comprised only one feature model, by the means of implementation, we actually proved
achieving only the level of specialized transformations. These can be used only for the
specific features, but in any configuration of the feature model (recall Section 3.5). How-
ever, several transformations such as those associated with Database Backend or Gen-
erate Documentation, are potentially domain dependent generic transformations or even
domain independent generic transformations.

We go beyond this with the security management example. The whole set of trans-
formations associated with it is actually at the domain dependent generic level proven by
their use in three projects.

The validity of these claims is on one side threatened by the small extent of the web
site family example, while on the other hand, the security management example com-
prises no supporting framework with transformations being executed manually. However,
the two applications are complementary with each one targeting what is weak in the other
one. Also, it is important to note that both examples embrace the application of all three
kinds of transformations: general transformations, composite transformations, and meta-
transformations.



Features as Transformations: A Generative Approach to Software Development

6. Changes as Transformations

So far, we assumed an exclusive application of the approach to feature model driven
generation of software artifacts based on features as transformations. However, it is also
possible to apply this approach non-exclusively and non-primarily using an existing code
base, which, in general, would not be modularized by features. In such case, the features
to be added could be viewed as changes. It is not necessary to create a complete feature
model for this: the technique of partial feature modeling can be applied [38,20]. In the
first line, only the new features would be singled out. Consider again our simple web site.
Assume it was developed manually, perhaps with all the features in the feature model
presented in Figure 1 and that this feature model was never actually created. It is not
known to which features the changing features are to be attached and this is indicated by
a dashed line.

Simple Web Site
_--7 | T~
Simple Web Site - ! S~
’\/ - Navigation Map Search Content Dynamic HTML Header

N
>
Simple Web Site
Navigation Map Search Content Dynamic HTML Header - =~

- | ~<
- | S~a
Navigation Map Search Content | | Custom HTML Header
|
|
Dynamic HTML Header

Fig. 6. A partial feature model: extending the simple web site with new features.

Having changes modularized is very useful in product customization, where a gen-
eral application is being adapted to the client’s needs by a series of changes [37]. These
changes have to be reapplied to each new version as schematically indicated in Figure 7.
It has been demonstrated how such changes could be modularized by implementing them
as aspects [37]. Similar effects may be achieved by modularizing changes as transforma-
tions. This approach is potentially applicable where aspect-oriented programming is not
available or not appropriate.

Intermediate features can be factored out and reimplemented as transformations, too.
For example, Dynamic HTML Header, one of our change features (recall Figure 1), can
be found out to be a Custom HTML Header variant uncovering this feature. In effect, this
is gradual refactoring of a monolithic software product into a generative software product
line. This process can be conducted without considering any changes to the initial product
or even a set of products. This way of thinking would lead to identifying the most obvious
common features. However, if the process is driven by the need to adjust the product to
accommodate the variability required by clients, these features become variable. This can
be considered as an economically feasible way of establishing a software product line
not requiring a big upfront investment as would be necessary if the software product line
would be developed from scratch [7].

773



774 Valentino Vrani¢ and Roman T4borsky

— customize Application v1.0
Application v1.0 - Client 1 Customization
'
ext[act /

main development o
: VFiop Customization Changes

I
rea?ply
A
licati customize Application v1.1
Application v1.1 5 Client 1 Customization

Fig. 7. Customization [36] (adapted).

8 [T

7. Related Work

In this section we attempt to put our approach to feature model driven generation of soft-
ware artifacts based on features as transformations into the context of related work. We
have identified several approaches that address similar issues or that appear to be comple-
mentary to our approach.

The pure::variants approach [28], mentioned in Section 2, embraces a large set of
predefined transformations that are assigned to individual features in the family model.
The difference lies in the implementation: pure::variants relies on XML transformation
definitions, and the solution proposed here uses C# classes. While XML is only a markup
language, C# is a full-fledged programming language allowing for the transformations
to gain the full control over their target. The approach itself is not bound to C#: other
programming languages can be used instead.

Edicts [8] is another approach that aims at the mapping of features to source code
parts. In addition, Edicts supports variable binding times allowing for optimal solutions
for different contexts. In general, earlier binding times are more time efficient, while later
binding times offer a greater flexibility up to runtime feature selection [39]. In our ap-
proach, this concern could be addressed by metatransformations.

XANA [32] strives for bringing closer the development process to end users using
feature modeling. It decouples software product line design and implementation, which
is to be performed by more technically knowledgeable users or professional developers,
from application derivation, which is intended to be manageable by non-technical end
users. Application derivation assumes not merely feature selection, but also providing pa-
rameters for parameterized features. A similar kind of decoupling could be applied in our
approach: generic transformations could be provided as a framework, while being accom-
panied by an appropriate development environment extension to make them accessible to
end users for selection.

The superimposed variants approach [12] provides a way of mapping features to vari-
abilities in external models, which can be used to activate or deactivate particular parts of
the superimposed architectural framework. Our transformation based approach is related
to the idea of superimposed variants with respect to the external system of transformations
used as the superimposed architecture or model. Differently than in our approach, the su-
perimposed variants approach utilizes external models that are being configured [12]. An



Features as Transformations: A Generative Approach to Software Development

analogy in our approach would be to create such transformations that would prepare and
configure additional models.

One of the actions that is realized by metatransformations in our approach is parameter
replacement. This is similar to the template text replacement based on generic methods in
generative programming for C and C++ [10]. Moreover, in our approach, a transformation
can represent a complex set of actions, and not just a simple text replacement.

Dynamic code structuring [22,21,24] is based on explicit representation of possibly
overlapping concerns in code for providing different perspectives, which can help in pre-
serving intent comprehensibility [40]. In our approach, dynamic code structuring can be
applied to the code that defines transformations. However, dynamic structuring is poten-
tially applicable to feature models themselves. In its essence, featural software decompo-
sition is a decomposition by concerns with features representing concerns, including the
crosscutting ones [35]. Feature models with different organization of features in feature
diagrams can be equivalent [10]. Moreover, a feature can have alternative decompositions
into subfeatures, including not being decomposed at all. Different representations of the
same feature model may suit different stakeholders or situations and the transformation
code attached to it can be presented in different ways accordingly.

Our approach employs the basic Czarnecki—Eisenecker notation, but it is not limited to
it. Feature models can be represented as grammars [14], in which case grammar refactor-
ing could be applied [19] to obtain different views. For dealing with large feature models,
design pattern detection techniques [23] may be of interest.

8. Conclusions and Challenges

This paper proposes an approach to feature model driven generation of software artifacts
in which features are viewed as solution space transformations that may be executed dur-
ing the generative process conducted by the feature model configuration. The approach
was implemented as a framework in .NET. Two examples of the approach application
were presented one of which constitutes a practical application.

The main advantages of this approach are that the transformation framework is basi-
cally self-contained and does not require additional modeling techniques except for the
enhanced feature model. The code within the transformations is not limited with respect
to its effects on the resulting software system behavior, i.e., anything that can be achieved
by manual code writing can be achieved by appropriate transformations. In large part,
the flexibility of the proposed approach lies in the concept of metatransformation. Meta-
transformations transfer the impact of crosscutting features to the implementation level
by modifying the transformations associated with the features being crosscut before they
are executed by changing their input parameters or by modifying their actions.

There are several research challenges with respect to having features implemented as
transformations. A practical adoption of the approach could be significantly supported by
providing directly reusable transformations, transformation templates (i.e., parameterized
transformations), or even just transformation schemes or examples to be adapted man-
ually to the application context. It should be explored further how the approach could
be utilized in establishing software product lines out of existing products. With respect to
this, implementing use cases as transformations could be an interesting research direction.
In particular, this is related to extension use cases, which exhibit a crosscutting nature.

775



776 Valentino Vrani¢ and Roman T4borsky

Actual feature models are huge and therefore are more effectively presented by indi-
vidual concepts [35]. In general, a concept is an understanding of a class or category of
elements in a domain [34]. Syntactically, in feature modeling, the root node of a feature
diagram represents a concept [10]. Thus, raising a feature to the level of a concept is a
matter of choice. Having a feature model decomposed into a set of feature diagrams in-
volves maintaining the references between these diagrams (i.e., concept references [34]).
It is necessary to explore how this affects feature model driven generation of software
artifacts.

Acknowledgments. The work reported here was supported by the Scientific Grant Agency of Slo-
vak Republic (VEGA) under the grant No. VG 1/0808/17. This contribution/publication is also a
partial result of the Research & Development Operational Programme for the project Research of
Methods for Acquisition, Analysis and Personalized Conveying of Information and Knowledge,
ITMS 26240220039, co-funded by the ERDF.

References

1. Apel, S.: From crosscutting concerns to feature interactions: A tale of misunderstandings
and enlightenments (keynote). In: MODULARITY Companion 2016, Companion Proceedings
of the 15th International Conference on Modularity, Modularity 2016. ACM, Malaga, Spain
(2016)

2. Apel, S., Batory, D., Kistner, C., Saake, G.: Feature-Oriented Software Product Lines: Con-
cepts and Implementation, chap. Advanced, Language-Based Variability Mechanisms, pp. 129—
174. Springer (2013)

3. Apel, S., Kastner, C., Lengauer, C.: FEATUREHOUSE: Language-independent, automated
software composition. In: 2009 IEEE 31st International Conference on Software Engineering,
ICSE 2009. IEEE, Vancouver, BC, Canada (2009)

4. Berger, T., Lettner, D., Rubin, J., Griinbacher, P., Silva, A., Becker, M., Chechik, M., Czar-
necki, K.: What is a feature? a qualitative study of features in industrial software product lines.
In: Proceedings of 19th International Software Product Line Conference, SPLC *15. ACM,
Nashville, TN USA (2015)

5. Berger, T., Nair, D., Rublack, R., Atlee, J.M., Czarnecki, K., Wasowski, A.: Three cases of
feature-based variability modeling in industry. In: Proceedings of ACM/IEEE 17th Interna-
tional Conference on Model Driven Engineering Languages and Systems, MODELS 2014.
vol. LNCS 8767. Springer, Valencia, Spain (2014)

6. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wasowski, A.: A
survey of variability modeling in industrial practice. In: Proceedings of 7th International Work-
shop on Variability Modelling of Software-Intensive Systems, VaMoS 2013. ACM (2013)

7. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product-Line
Approach. Addison-Wesley (2000)

8. Chakravarthy, V., Regehr, J., Eide, E.: Edicts: Implementing features with flexible binding
times. In: Proceedings of 7th International Conference on Aspect-Oriented Software Devel-
opment, AOSD *08. ACM, Brussels, Belgium (2008)

9. Coplien, J.O.: Multi-Paradigm Design for C++. Addison-Wesley (1999)

10. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley (2000)

11. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based on
superimposed variants. In: Gliick, R., Lowry, M.R. (eds.) Proceedings of 4th International Con-
ference on Generative Programming and Component Engineering, GPCE 2005. pp. 422-437.
LNCS 3676, Springer, Tallinn, Estonia (2005)



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Features as Transformations: A Generative Approach to Software Development

Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based on
superimposed variants. In: Proceedings of 4th International Conference on Generative Pro-
gramming and Component Engineering, GPCE 2005. LNCS 3676 (2005)

Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.W.: Generative programming for embed-
ded software: An industrial experience report. In: 1st ACM SIGPLAN/SIGSOFT Conference
on Generative Programming and Component Engineering, GPCE 2002. LNCS 2487, Pitts-
burgh, PA, USA (2002)

Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models and
their specialization. Software Process: Improvement and Practice 10(1), 7-29 (2005)
Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specialization and
multi-level configuration of feature models. Software Process: Improvement and Practice 10,
143-169 (2005)

Ferber, S., Haag, J., Savolainen, J.: Feature interaction and dependencies: Modeling features
for reengineering a legacy product line. In: Proceedings of 2nd International Software Product
Line Conference, SPLC 2. Springer, San Diego, CA, USA (2015)

Hubaux, A., Classen, A., Mendonca, M., Heymans, P.: A preliminary review on the application
of feature diagrams in practice. In: Proceedings of 4th International Workshop on Variability
Modelling of Software-Intensive Systems, VaMoS 2010. ICB Research Report 37 (2010)
Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (FODA): A feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, USA (1990)

Kolldr, J., Halupka, 1., Chodarev, S., Pietrikova, E.: pLERO: Language for grammar refactoring
patterns. In: Proceedings of 2013 Federated Conference on Computer Science and Information
Systems, FedCSIS 2013. pp. 1491-1498. IEEE, Krakéw, Poland (2013)

Menkyna, R., Vranié, V.: Aspect-oriented change realization based on multi-paradigm design
with feature modeling. In: Proc. of 4th IFIP TC2 Central and East European Conference on
Software Engineering Techniques, CEE-SET 2009. LNCS 7054, Springer, Krakéw, Poland
(2009)

Nosal’, M., Porubin, J., Nosdl’, M.: Concern-oriented source code projections. In: Proceedings
of 2013 Federated Conference on Computer Science and Information Systems, FedCSIS 2013.
pp. 1541-1544. IEEE, Krakéw, Poland (2013)

Nosdl’, M., Porubén, J.: Supporting multiple configuration sources using abstraction. Central
European Journal of Computer Science 2(3), 283-299 (2012)

Polasek, 1., Liska, P., Kelemen, J., Lang, J.: On extended similarity scoring and bit-vector algo-
rithms for design smell detection. In: Proceedings of 2012 IEEE 16th International Conference
on Intelligent Engineering Systems, INES 2012. pp. 115-120. IEEE, Lisbon, Portugal (2012)
Porubin, J., Nosdl', M.: Leveraging program comprehension with concern-oriented source code
projections. In: Proceedings of Slate’ 14, 3rd Symposium on Languages, Applications and Tech-
nologies. pp. 35-50. Braganca, Portugal (2014)

pure-systems GmbH: pure::variants: Variant management, http://www.pure—-systemns.
com/pure_variants.49.0.html

Shaw, M.: What can we specify? issues in the domains of software specification. In: Proceed-
ings of 3rd International Workshop on Software Specification and Design. pp. 214-215. IEEE
CS (1985)

Software Product Line Group, Programming Group, Univeristit Passau: FeatureHouse:
Language-independent, automated software composition, http://www.infosun.fim.uni-
passau.de/spl/apel/th/

pure systems: pure::variants user guide (2015), http://www.pure-
systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf

Tarr, P, Ossher, H., Harrison, W., Staneley M. Sutton, J.: N degrees of separation: Multi-
dimensional separation of concerns. In: Proceedings of 21st International Conference on Soft-
ware Engineering, ICSE’99. ACM (1999)

771


http://www.pure-systems.com/pure_variants.49.0.html
http://www.pure-systems.com/pure_variants.49.0.html

778 Valentino Vrani¢ and Roman T4borsky

30. Taborsky, R., Vranié, V.: Feature model driven generation of software artifacts. In: Proceedings
of 2015 Federated Conference on Computer Science and Information Systems, FedCSIS 2015.
IEEE, £.6dz, Poland (2015)

31. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order model
transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) Model Driven Architecture —
Foundations and Applications, Proceedings of 5th European Conference, ECMDA-FA 2009.
LNCS 5562, Springer, Enschede, The Netherlands (2009)

32. Tzeremes, V., Gomaa, H.: A software product line approach for end user development of smart
spaces. In: Proceedings of 5th International Workshop on Product LinE Approaches in Software
Engineering, PLEASE 2015. pp. 23-26. IEEE (2015)

33. Varrd, D., Balogh, A.: The model transformation language of the VIATRA?2 framework. Sci-
ence of Computer Programming 68(3), 214-234 (2007)

34. Vrani¢, V.. Reconciling feature modeling: A feature modeling metamodel. In: Weske,
M., Liggsmeyer, P. (eds.) Proceedings of 5th Annual International Conference on Object-
Oriented and Internet-Based Technologies, Concepts, and Applications for a Networked World,
Net.ObjectDays 2004. pp. 122—-137. LNCS 3263, Springer, Erfurt, Germany (2004)

35. Vranié, V.: Multi-paradigm design with feature modeling. Computer Science and Information
Systems Journal (ComSIS) 2(1), 79-102 (2005)

36. Vrani¢, V.: Aspect-Oriented Change Realization. Habilitation thesis, Slovak University of
Technology in Bratislava, Slovakia (2010)

37. Vranié, V., Bebjak, M., Menkyna, R., Dolog, P.: Developing applications with aspect-oriented
change realization. In: Proceedings of 3rd IFIP TC2 Central and East European Conference
on Software Engineering Techniques, CEE-SET 2008, Revised Selected Papers. LNCS 4980,
Springer, Brno, Czech Republic (2011)

38. Vrani¢, V., Menkyna, R., Bebjak, M., Dolog, P.: Aspect-oriented change realizations and their
interaction. e-Informatica Software Engineering Journal 3(1), 43-58 (2009)

39. Vranié, V., Sipka, M.: Binding time based concept instantiation in feature modeling. In: Mori-
sio, M. (ed.) Proceedings of 9th International Conference on Software Reuse, ICSR 2006. pp.
407-410. LNCS 4039, Springer, Turin, Italy (2006)

40. Vrani¢, V., Porubin, J., Bystricky, M., Frt'ala, T., Polasek, 1., Nosal’, M., Lang, J.: Challenges
in preserving intent comprehensibility in software. Acta Polytechnica Hungarica 12(7), 57-75
(2009)

Valentino Vrani¢ is an associate professor of software engineering at the Slovak Univer-
sity of Technology in Bratislava. He explores different aspects of software development.
In particular, he is interested in preserving intent comprehensibility in code and mod-
els using advanced modularization, as well as in effective agile and lean organization of
people in software development and its wider social connotations.

Roman Taborsky received an MSc. in software engineering from the Slovak University

of Technology in Bratislava. He works as a software developer aiming at exploiting the
ideas of generative approaches in practice.

Received: January 28, 2016, Accepted: September 29, 2016.



	Introduction
	Modularizing Software by Features
	Features as Transformations
	The Overall Process
	Metatransformations
	Associating Transformations with Features
	Transformation Granularity and Modularization
	Transformation Reusability

	The Framework
	Transformations
	Composite Transformations
	Metatransformations
	Feature Model Configuration
	Parsing and Executing Transformations

	Applying the Approach
	Using the Framework
	Applying the Approach in Practice
	Discussion

	Changes as Transformations
	Related Work
	Conclusions and Challenges

