Computer Science and Information Systems 11(1):69-88 D@P298/CSIS120825063Y

Optimizing Resource Allocation for Approximate
Real-Time Query Processing

Anna Yarygina and Boris Novikov

Saint Petersburg University
Universitetsky prosp. 28
198504 Saint Petersburg, Russia
anyasafonova@mail.ru, b.novikov@spbu.ru

Abstract. Query optimization techniques are proved to be essentiaidb perfor-
mance of database management systems. In the context oLieeyirnyg paradigms,
such as similarity based search, exact query evaluatioaifeer computationally
feasible nor meaningful, and approximate query evalugtidhe only reasonable
option.

In this paper a problem of resource allocation for approxémevaluation of com-
plex queries is considered. An approximate algorithm foearfoptimal resource
allocation is presented, providing the best feasible gualfi the output subject to
a limited total cost of a query. The results of experimentgerghown that the ap-
proximate resource allocation algorithm is accurate aficiefit.

Keywords: query optimization, approximate query evaluation, resealocation.

1. Introduction

Declarative query languages for database managementrsyate both effective as high
level tools for specification of data processing needs antpetationally efficient due to
availability of powerful optimizers.

Heterogeneous autonomous information resources, as svefler needs may require
diverse querying paradigms to be used in a declarative gbeergxample, the user might
need to combine data on company products extracted froiomdé database with sen-
timents from customer tweets on these products obtaineddanmof natural language
processing techniques. For some of data management medeltsas probabilistic and
similarity-based, the traditional exact queries are mgittomputationally feasible nor
pragmatically meaningful. Hence an approximate queryuatain is the only option.

Query evaluation is approximate if the output is, in a cersense, incomplete or
imprecise. There are different types of approximate queajuation: based on nature
of the query (similarity based processing) or algorithnvjating imprecise answer (ag-
gregation based on sampling). Obviously, approximateuat@in makes sense only if it
requires less resource (e.g. processing time) than an eractinformally, the result is
expected to be better if more resources are spent on the guaation.

In this research we consider a controllable approximateygeealuation based on
approximate algorithms implementing algebraic operatidie estimate how good the

* This research is supported by HP Labs.

70 Anna Yarygina and Boris Novikov

result is with a numeric value which is called data qualifyitarly the operation quality
shows how the operation affects the quality of processeal dat

A user query is translated into an algebraic expressiomywaluation plan) in terms
of a certain set of operations. Typically these operatiomstitute a variation or extension
of the relational algebra; however, the semantics of aljelwperations is not essential
for the algorithms presented in this paper, the considerasirestricted to the properties
of approximate execution. For each approximate operatiemelative quality of its out-
put depends on the amount of resources allocated. Usuallgritical resource is time.
Further we use the terms resource, time, and cost intereladhg

Thus the limited amount of resources has to be allocated groperations in query
evaluation plan to balance between the query evaluationacas quality. Further when
we talk about exact (in contrast to approximate) query etan plan we consider the
one with unlimited amount of resources for query evaluation

Let us illustrate the above with an example. Consider a query

Find least rated company products based on retailer ratings

The idea is to find products with low ratings to analyze thernth® first glance, the
answer to this query may be obtained from any retailer sitevéVer, to make results
more reliable, we might want to combine the output of seveeabices. An appropriate
query evaluation plan should include data extraction fraffei@nt sources followed by a
join on product name, with subsequent ranking.

1 rankand sort

2 join on product name

3 get ratings for company products from reatilerl
4 get ratings for company products from reatiler2

The exact evaluation of this query requires exhaustiveaeitin of data from both
sources, might be time consuming and, most likely, is notledeas the user is interested
in the few products which need detailed analysis. Thus thetiffom data sources should
be limited to certain abounds, resulting in a partial loseesfilts and hence affecting the
quality of final output. Just for this example, the qualityyne estimated as a percentage
of correctly returned objects in the query output.

Let us suppose that two data sources respond with a seriégeuts, at average rates
of 300 and 500 per second, respectively, and also suppossén@xpects an answer in
200 milliseconds and the best feasible output contains frtsh

The available amount of resources (200 msec in this exampég) be distributed
between operations differently, resulting in differentpit quality. To possible allocation
of resources for example query are demonstrated in figure 1.

Consider aresource allocation where the first data souitzzestl 50 msec and returns
45 objects, the second source utilizes 30 msec and returabj&bts, and remaining 20
msec are needed for join and ranking (see figure 1(a)). Thedirtput will contain at
most 15 objects and hence the quality estimation cannoeeXg@%o.

Much better results may be obtained if the first data sourdleutiiize 100 msec,
second - 60 msec, leaving 40 msec for subsequent join anthtpfdee figure 1(b)). Both
data sources will produce 30 objects and the output quality reach up to 60%.

Optimizing Resource Allocation for Approximate Real-TiQeery Processing 71

30 ms 150 ms

Fig. 1. Resource allocation for example query

To make this example simple, we ignore impact of paralletaken and used over-
simplified estimations for both cost and quality.

The example above suggests that the response time can lfecaigly improved if
the extraction of data from primary sources is restricted tmall number of items and
approximate algorithms to calculate join predicates apiegh. This restriction will affect
the quality of the result, as some potentially good item$ bélexcluded. Further, it does
not make sense to restrict some operations but leave othtyaahed, as the quality of
the result will be affected by the input of the worse qualityother words, allocation of
resources to operations should be balanced.

Optimization techniques should be re-considered in théestiof approximate eval-
uation. As soon as data quality is included into considenatihe optimization problem
becomes multi-objective, and hence trade-offs betweeectibgs appear on the stage.
Possible options are either “provide the minimal cost yrejcat least specified quality”,
or “provide the best possible quality for at most given amtaimesources”. The remain-
ing part of this paper considers the latter problem only.

The restriction on the amount of resources to be spent onubgygvaluation effec-
tively means that the response time is predictable. Comsgtyithe query optimization
problem addressed in our research is suitable for realdyatems, where predictability
of response time is one of the most essential requirements.

In this research a user query is translated into an algebrairession in terms of a
certain set of operations. Typically these operations titoms a variation or extension of
the relational algebra; however, the semantics of algelmaerations is not essential for
the algorithms presented in this paper, the consideragioestricted to the properties of
approximate execution. For each operation the relativédityua its output depends on
the amount of resources allocated to the operation. Ustlalyritical resource is time.
Further we use the terms resource, time, and cost intereladhg

The contribution of this paper is an algorithm for near-oyati allocation of limited
resources between operations in query evaluation planidingvthe best possible quality
of the output.

We define an extended abstract cost model providing trafiddsefween quality and
cost for all operations and proceed with the formal statdéroéthe resource allocation

72 Anna Yarygina and Boris Novikov

problem. We then provide a solution to the problem for soneeigh cases and proceed
with an algorithm for a general case.

As far as we know a research in the area of query optimizatidrapproximate query
evaluation do not cover the problem of optimal resourcecation for approximate query
evaluation. Approximate algorithms for operations likenjdop k, aggregation are a hot
topic in literature. However, the problem of distributioflimited amount of time among
controllable approximate algorithms implementing diéfier operations in a query is still
open.

This paper is an extended and substantially revised veddifhi7]. We included all
proofs omitted in the short version, relaxed the resticitim arity of operations, and
provided additional explanations and clarifying examples

The rest of the paper is structured as follows. Section 2rite=ca formal model of
operations, including the extended cost model and a fornshlem statement. The model
overview and auxiliary lemmas are followed by an algorithmadfication in section 3.
The experiments and the analysis of their results are ptegém section 4. Section 5
outlines the related work.

2. Abstract Model

2.1. Query Evaluation Plans

In this work we consider the query processing in the distatdienvironment which in-
cludes autonomous primary sources of data and operati@egsimg units which consti-
tute the query processing facility and run under controhefquery processor. We assume
that all information needed for query planning and optiriarais accessible to a single
coordinating service and do not consider distributed ogtition for autonomous pro-
cessing units. That is, a user query is translated into des@gcution plan consisting of
operations which may be executed on several units in aldiséd system.

The query processor operates with a query evaluation pfaesented as a tree. Our
main target is the set of operations outlined in [12], forrapée similarity join, fusion,
and top k; although the results of this research are appéidabany set of operations
admitting approximate execution.

Let P be an execution plan, that is, a set of operation calls orgdras a tree. In this
tree vertices are operation calls, and edges connect thémthgir arguments. We use
terms node, operation, and operation call interchangebbbause in this paper we do
not consider operations independently from its call in gesaluation plan. It is also im-
portantto note that in our query tree leaves are operatibitdweceive data from primary
sources, for example, streams, relations, files, and souwsthét the setrgs(l) C P will
denote arguments of an operatioa P or its child nodes in the corresponding query tree.
For any nodé € P except the rootparent(l) denotes its parent node. For an operation
I € P the subquery rooted ihwill be denoted as.

An example query execution plan tree is shown in figure 2. ltigrtteeP includes all
nodes,P = {ly,l1,12,13,14,15}, @ sub-tree rooted ity is Iy = {l, 14,5}, parent(ls) =
l2, andargs(lo) = {l1,12,(3}.

We assume that data may be imprecise or uncertain, and mperatimit approximate
evaluation which consumes less resource but may affectubéty) of the output. For

Optimizing Resource Allocation for Approximate Real-TiQeery Processing 73

Fig. 2. An example of query tree

example, an approximate calculation of an average valueseftain attribute based on a
sampling returns imprecise value but is usually faster thanl scan.

An actual (absolute) quality of data may be defined diffdyedépending on data
type. The quality of calculated aggregate values mentiabede might be based on the
accuracy, while the quality of information retrieval radsuinay be defined in terms of
precision and recall. Another dimension of quality is tfulstess of information sources.
In several cases the estimation of actual quality involweadn assessment.

Although the semantics of data quality is complex [11, 2is ieither elaborated nor
defined in this research. Instead we assume that the qubditgata set is estimated with
a single numeric value and the quality of different data Ee¢xpressed in a comparable
way. Further, (most of) operations in our model are appraxénand may produce differ-
ent quality of the output depending on the quality of the ingmod amount of allocated
resources. For example, the quality of an average valuetrbgbased on its accuracy,
and a larger size of sample is more expensive but, in gempemlides better quality.

To estimate the relative impact of a multi-argument operatin the output quality,
an estimation of the overall quality of all inputs is needidthis paper the we use the
minimal quality of arguments as an overall estimation.

We define the relative quality of an operation or a plan asia adithe achieved result
quality to the best one for given arguments.

Consequently, the quality of the output can be controlleith \mount of resources
assigned to an operation. Our goal is to distribute availagsources in such a way that
the overall quality of output for the query plan is maximized

We usequality function which returns estimated relative quality for any operatiod
amount of resources allocated to this operation. In thism®we derive certain necessary
conditions for an optimal resource allocation. These diont are stated in a series of
lemmas.

To prove that a condition is necessary for an optimal aliocatwe start from an
allocation which does not satisfy the condition and thetdoamother resource allocation
for the same plan which yields better quality (although &ihot necessarily optimal).

Subsequent paragraphs describe the approach more farmally

Let us consider unary operatidre P which receives input data with absolute quality
a;n. Even the best possible implementation of operatioray reduce the quality of the
result dataa,.;. Thus, the quality of operatiohequals®=. If the operationl € P
receives the unlimited resources for the fixed input dalt?idtjpces data with the best
feasible absolute quality,...(co). If I receives amount of resourcesvhich is less than

74 Anna Yarygina and Boris Novikov

needed for the best quality, the absolute quality of its ouia,.:(¢); thus, the relative
quality of operatiori is aat—f&)) Further we work only with relative quality of operations
in query evaluation plans.

For each operation the relative quality of its output deentthe amount of resources
allocated to it. Therefore, the behavior of each operatienP from the query tree can
be expressed with the relative quality functigid) : R — Q, wheref? andQ represent
resources and quality respectively.

Thus, if operatiori € P received the amount of resourdgse R it achieves quality
q() = q()(#;). Further, we use the notatigi(l) to indicate the achieved relative quality.

The relative quality) (/) of a (sub-)query represents the achieved quality of the evhol
(sub-)query, wheréc P is a root operation.

The qualityQ(m) of each subquery: in the execution plan rooted in € P depends
on the quality of its child subqueries and properties of tiee bperation. Say, for a binary
operation it depends on 3 parameters: the quality of thestéfyueryQ (1), the quality of
the right subquerg)(7), and the quality which the root operation produgés.), where
l,r € args(m).

For multi-argument operations we assume that the impadteofvorst argument (in
terms of quality) dominates.

More formally, the output quality is estimated as a proddct relative quality for an

operation and overall (minimal) quality of its arguments:

Q) =ql)- min_Q(m).

meargs(l)

2.2. Problem Statement

Informally, the problem is to find the amount of resourtes R for any operatiort € P
such that the estimated quality of the final query result igimeed for any given total
resource specified.

Let us state the problem in exact terms.

We have a query tree organized as described above and fixathaofdimeT € 9A.
The settp = {t;,1 € P} is called a distribution of resources, whefec R is the
amount of resources allocated for operatian P. The amount of resources allocated to

the subquery rooted ihe P is denoted a§; € fA.

Problem 1 (Resource Allocation Problem). Given a query execution plaR with root
operation/ € P and amount of resourcésI" € 9, find a distribution of resources>

such that the quality functio@(!) is maximized subject to constrains, . t, < T
andt,, > 0forallm € P.

The distribution of resources which solves problem 1 willch#éed optimal distribu-
tion or optimal resource allocation.
2.3. Assumptions

We assume that the relative quality is a non-decreasingreanis bounded function of
the allocated amount of resources, i.e. the following ctiowi$ hold:

Optimizing Resource Allocation for Approximate Real-TiQeery Processing 75

— For each operatioh € P a minimal amount of resources needed to complete the
operation is knowrt,,;,,(I) € 2. This amount yields a certain level of the output
quality, and the operation cannot be completed for any emathount of resources.
Further, we will simply usé,,,;,, where it is clear from the context what the target is
operation.

— For each operatioh € P an amount of time,,,..(1) € % is known, such that any
additional resource does not improve the quality.

— For any amount of resources allocated between the minindateximal amount, the
quality estimation for the output is a non-decreasing fiomobf the amount allocated,
i.e.Vl PVt1,to € Rty < to q(l)(tl) < q(l)(f,g).

For the average aggregate evaluation, the minimal amougtitrbe the cost for a
sample of cardinality 1, while maximum is the cost of a fukhsc

If an approximate evaluation for a given operation is noilatsée or is meaningless,
then the minimal and maximal values for this operation areétp the cost of the exact
evaluation and resource allocation is trivial.

In this research we additionally assume that each opergtiality function can be
approximated with a continuous piecewise linear funcfidrat is, we assume that

0’ t< f’?nin
vl S P Q(l)(t) = ut(l) + Sl(l)(t - t}min)a f':m'n S t< t}maw
u' (l> + SIl (l)(tgrlzax - t'ﬁbin% trlrlmz <t

wherei € [0, I;] is the number of linear segments [t¢ . . t¢ 1 si(1)is the slope of the

min’ “max
corresponding linear segment, anid!) + s (1)(t}, 4 — thin) = u*T1(1). The linearity

assumption is not over-restrictive, as the quality funwdioeturn only estimations. We
also assume that each linear segment has non-zero slopé&(li.e> 0. Feasibility of this
kind of extended cost models supporting quality functiad@monstrated in [18], where
cost models for selected operations defined in [12] are edabad.

In the remaining part of this paper we will work with resouiterements and consider
only one linear segment at each moment of tilec P ¢(I)(7) = u(l) + s(I)7, where
t € [thins thmaz)s tmaz = thee =t 7 € [0,tmaz], andu(l) = q(1)(t) = u'(1) +
st (t — ¢t

min) .

2.4. Critical Subquery

As soon as the minimal needed resource is allocated to eaghtam in a query, addi-
tional resource may be allocated to some operations to wepitee quality of the final
result.

In order to simplify the notation, in the rest of the paper wasider only the amounts
to be allocated in addition to the amounts already allocadsdsoon as an incremental
amountis allocated to an operation, the quality functiorisalculated accordingly. After
this re-calculation the value of the quality functig(i)(0) always equals the relative
quality achieved for this operation.

Obviously, the resource should be allocated only to opematwhich have an impact
on the output quality. These operations constituteitical sub-query C. Any algorithm
solving the resource allocation problem has to operate thélcritical subquery only.

76 Anna Yarygina and Boris Novikov

The critical subquery is a set of nodes in the query tte€ P which can be con-
structed recursively:

— if [€ Pisrootof P then!l € C;

= if Q(I) = miny,cargs(parentr)) (Q(M), Whereparent(l) € C'thenl € C.

In other words operatiohe€ P belongs to the critical subtre@ if the quality of the
subtree rooted i equals the minimum among the quality of the sibling subtmaes
parent(l) is also critical. Edges in the critical subtree are thoseHerquery tree which
connect critical operations.

Now we are ready to prove the optimality of the resource alion along the critical
subtree.

Lemma 1. For eachl € P\ C t; = 0 for any optimal resource allocation.

Proof. Assume nodé ¢ C has sibling nodes. The quality of the whole query depends on
MmN, eargs(o) (Q(A)(Tr)) = Q(m)(T), whereargs(o) 3 1,m; andQ(l) < Q(m). We
have to allocate resource to the subquery rooted in hoteincrease this component, that
is T > 0. In case whell; > 0 resource allocated to the subquery rooted in operation
does not improve the result quality. Therefore, for eachraipm p in the corresponding
non-critical subquery, = 0.

Assume nodé ¢ C' has no sibling nodes. In this cakbas an ancestor node which
meets this conditions and therefafe= 0 as well.

Itis important to mention that the quality of the whole quiargqual to the quality of
its critical subquery.

2.5. Resource Allocation along Paths

In case when the critical subquery is a single path the gquialiiction of the query is a
product of the linear quality functions of its operations.

The following lemma 2 provides a necessary condition foouese allocation on a
vertical path for a special case when quality functions iaueslr.

Lemma 2. Let C be a critical path, 7" the amount of resources for allocation, for each
n € C the quality function is linear, that is q(n)(t) = u(n) + s(n)t, where ¢ is within
the limits for the quality function. For the optimal resources allocation the following two
conditions hold:

— ift,, =0andt, > 0 then ;‘((ll)) +1 < zg;’;)),

—ift; >0andt,, >0then%+tz = %Jrﬁm

wherem,l € C

Proof. The objective is to maximize the value of the function

Optimizing Resource Allocation for Approximate Real-TiQeery Processing 77

subject to constraints' =~ . t, andt, > 0, wheretc = {t,,0 € C'} is a resource
distribution. We skip the constant factor in the objectivadtion for the rest of the proof.
Letr(o) = Z((Z)) for anyo € C, and letz¢ be any distribution of resources satisfying
the constraints, thatis,, > 0 andT =) - 7.
We first prove that ifr(!) + ; < r(m) + x,, andz,, > 0 then the distribution:¢
is not optimal. Letd = min(z,,, Wm0ty gngg — rmteatrin e pyild
a distributiongc such thaty, = z; + d, ym = @ — d, andy, = z,,0 ¢ {l,m}. Letus
show that in this case the value of the objective functioaiigér, i.e.F'(gc) > F(Zc).
If ¥, = 0thenr(m) + xy, — r(l) — a1 > 22, Orr(m) — r(l) — x; > X,

Flye) —F(zo) _
[Licon t,my (r(@) + @)

(r() + y)(r(m) + ym) — (r(1) + 1) (r(m) + xm) =
(r(l) + z; + d)r(m) — (r(1) +) (r(m) +) =
(r() + z)r(m) + dr(m) — (r(1) + z)r(m) — (r(l) + z)Tm =
Tt (m) — (r(1) + @)z > 22, > 0.

. . _ r(m)Fzm—rl)—
Alternatively, ify,,, > 0 thend = “ A 2m—rl)=

(r(D) + y1) (r(m) + ym) = ¢°

(r(l) + z1)(r(m) + xm) = (g — d)(g + d) = g° — d°.

HenceF (jc) > F(Z¢).
Consequently, an optimal distributios has the following properties:

— if ¢, > 0 andt,,, > 0thenr(l) + ¢, = r(m) + tim,
— if t,, = 0andt; > 0thenr(l) + t; < r(m).

The following lemma 3 provides a necessary condition sintiathat of previous
lemma under additional constraints on the ranges of argtsrienquality functions of
operations on the path.

Lemma 3. Let C be a critical path, 7" the amount of resources for allocation, for each
I € C the quality function is linear, that is q(1)(t) = w(l) + s(I)t, where ¢ is within the
limits for the quality function. For any optimal resource allocation 3C+ C C : t,, > 0
iff m e C*; and

T 1 u(m u(l
tzmax<g+a Z ng;£,0>,

meC+

wherel € C,andn = |C™]|.

78 Anna Yarygina and Boris Novikov

Proof. The notations of lemma 2 will be used in this proof.

The first statement in lemma 2 suggests that resources shewtocated to opera-
tions with relatively smallr(l), and we define the subset of operati@i$ for which
resource will be allocated as follows.

To simplify the notation, assume that operations are ortierthe ascending order of
(1) and letn be the greatest number such tHat> nr(n) — >, (¢). Note that the
expression on the right side of the inequality equals to Onwhe- 1, hence such exists
foranyT.

According to the second statement of lemma 2 resourcesdbewdllocated to opera-
tions withr(¢) < r(n) to make the corresponding factors of the objective functigual.
The first step is to allocate the amount of resour¢es — (i) to eachi € C*. Thus, the
total of Y, (r(n) — r(¢)) will be distributed. Finally, leftoverg + >""_, (i) — nr(n)
are evenly distributed between these nodes. Formally:

T4 Y r(i) —nr(n) _ T+ X0 o)

ty=r(n)—r()+ - -

7T(l>a

wherel € C. _
Finally, we have to substitute al(7) with a ratioz((l? :

2.6. Resource Allocation between Siblings

The following lemma 4 suggests how to split resource betveeigical siblings.
The necessary condition for an allocation to be optimal & #mout of resources
allocated to each of siblings is proportional to invers @&f sfope of its quality function.

Lemma 4. Let C be a critical subtree; I; € C are root nodes of sibling subtrees with
linear quality functions, that is Q(1;)(t) = U(l;) + S(I;)t, where t isin the range for the

quality functions; T' € R isthe amount of resourcesfor allocation between these siblings.
For any optimal resource allocation 7}, = 21/18/% () 7.

Proof. The quality of the whole query depends on
mjin{Q(l})(Tz;)} = m].in{U(l}) +S(1;)Ty,),

wherez Iy, =T.To maximize the query quality we have to maximize this congrdn
Therefore we have to allocate resources suchhat; = T and for alli, k

U(lx) + S()Ty;, = Ul:) + STy,

The following equalities show that the quality of critic#blings remains equal after
the allocation of the increment

U(l) + ST, = U(l) + S(z‘k)% — U + %T _
Ui + — U@ + S <2y + s,

¥, 1/8(5) 1/5(> 1/8(05)

Optimizing Resource Allocation for Approximate Real-TiQeery Processing 79

and, finally, the constraint on the total allocated amousaissfied

ys@) . T80
2= 5 1/s Ssosa)

3. Resource Allocation Algorithm

3.1. The Algorithm and Data Structures

This section describes an approximate algorithm for ogtisource allocation for a
fixed query execution plan. To obtain an optimal plan for guaraluation under con-
strained resources, we start from a plan obtained with adiomal optimization tech-
niques, which do not account for the amount of resources,aapdly the resource al-
location algorithm to this plan. Of course, this plan is netessarily optimal globally.
However, our approach provides the optimal distributiarefioy fixed tree.

According to the lemmas 3 and 4 in section 2 we are able to afifirdistribute re-
sources among operations for two types of the plan struatareely, for plans consisting
of a single path from root to leaf (vertical path) or betweesatf Isiblings of a single parent
node. As the lemmas are valid only within linear ranges ofghality functions, several
distribution steps might be needed.

In order to exploit these lemmas for a general tree, we buitdal hypernodes from
certain parts of the query execution plan and then apply anogpiate lemma inside a
hypernode.

A node is called a splitting point if it has multiple child nesl Virtual hypernodes are
constructed for the critical tree according to the follogvinles:

— If the critical plan contains sibling leaf (hyper-)nodd®se siblings are retracted into
ahorizontal hypernode, which becomes a single child of the parent node.

— Any path from a leaf to a splitting point is retracted intgeatical hypernode, which
becomes a leaf child of the splitting point.

Obviously, at least one of two steps listed above is appliéc&b plan contains at least
two nodes. The process stops when the whole plan is retratted single hypernode
which is always vertical as a root cannot have siblings.

An example of a hypernode structure is shown in figure 3.

The quality functions for original tree nodes are providenhf cost models for corre-
sponding operations. Quality functions for hypernodesarestructed when the hypern-
odes are created.

The lemmas 3 and 4 require that the quality of each operatiodd) is a linear func-
tion of the allocated resource. Unfortunately, the qualftsg hypernode cannot be always
expressed as a linear function and it is replaced with adiapproximation, making our
algorithm approximate (except for few special cases). Thadity functions for horizon-
tal (sibling) hypernodes are linear by lemma 4. Functiomséstical nodes are not linear
in general, and are replaced with tangent approximatical&] @n a certain range of the
argument values.

The range for a hypernode is constructed in such a way thabtinesponding amount
of resources can always be distributed to the sub-nodessoffiyipernode without viola-
tion of the constraints inside the hypernode.

80 Anna Yarygina and Boris Novikov

®
\. N itical nod
on-critical node

7N
Vertical hypernodes

X Horizontal hypernodes
& () iz P

)

—0—o
([}
-9+
/

(N

Fig. 3. An example of hypernodes

The overall resource allocation control flow is displayedthe following pseudo
code:

Input: Query treeP, resources for allocatioh.
Output: For each operatiohe P, an allocated amount of resourdes
Initialization(P, T")
while T > 0 & lisMaxQualityReachedf) do
QualityEstimationf)
C=CriticalSubtreeConstructiof)
H=HypergraphConstructiotl)
ResourceAllocatiorff, T)
end while

The algorithm can now be outlined as follows.

During the initialization using the recursive tree des¢bhatamount of resources equal
to the minimal needed is allocated to each operatioR iand the quality functions are
adjusted to accept increments. If the sum of minimal resssiexceed¥’, the algorithm
fails, as the execution of the plan is not possible with a@dé resources.

Those nodes which received maximum resources needed fratmpeprocessing are
marked as saturated and are not considered in the furtheureesdistribution process,
however are taken into account during the hypernode gualitgtions construction.

After initial allocation of the minimally required resows the remaining amount of
resources is distributed in incremental amounts. The merds are subject to the follow-
ing constraints:

— boundaries of linear segments in piecewise linear operafi@lity functions are not
exceeded for any node, and

— the quality of a critical sub-query should not exceed theliaf its non-critical
siblings.

The incremental allocation is repeated until either alllatée resources are exhausted
or the maximal possible quality for the query is reached.

At the quality estimation step we apply the recursive tregcdet to recalculate the
achieved quality for all subtrees in the query evaluati@npl

Optimizing Resource Allocation for Approximate Real-TiQeery Processing 81

For each incremental step, the critical sub-tree and hygEsare re-calculated and
then allocation proceeds recursively into all hypernodstg the appropriate lemma for
allocation inside each hypernode.

The pseudo code presented below demostrates the hypeardtsiction step.

Input: Operation node € P.
Output: Hypernodéh(r).
tmp=r
loop
if |childrentmp)| > 1 then
for all child € childrentmp) do
child=Hypernodechild)
end for
children(tmp)= HorisontalHypernodeildren(tmp))
else if|childrentmp)| = 0 then
break
else
tmp=childrentmp)|0]
end if
end loop
r=VerticalHypernode()

3.2. Horizontal Hypernodes

According to lemma 4, the amount of resources allocatedddtrizontal hypernode is
distributed between the siblings so that the increase aftiadity function is same for all
siblings in the hypernode. Léf be a hypernode with operatiohsands;, be the slopes
for the quality functions, that is for ea¢hthe quality functionig(I;)(¢) = u(l;) +s(l;)t.

Let
S = Zl/sli

for brevity. If the total amount of resources allocated#ads 7', thent;, = SLTS.

The construction of the quality function for a horizontapleynode is straightforward:
the initial quality is the same as that of siblings, and tlepslis calculated from the slopes
of siblings and is equal t¢. Lett!: .. be the right boundaries for the linear segments of

the quality functions of the siblings, then the right bourydar the linear segment of the
hypernode i€}, = min{tk Ss;.}.

max

3.3. \Vertical Hypernodes

Handling of vertical hypernodes is more complex.

LetV be a vertical hypernode with nodess its elements, and letl;) = w(l;)/s(l;)
, whereu ands are defined as in lemma 3. Also I8t=), r(I). According to this
lemma, an optimal allocation of resourcEss reached when

; {(T+S)/nr(li), if (T+S)/n—r(;)>0
70 otherwise

82 Anna Yarygina and Boris Novikov

whereS andn are the sum and count, respectively, of thede) for which the
(T'+8)/n—r(l;) > 0.

Obviously, this expression will be positive for minimal vak ofr(l;), as.S/n is the
arithmetic mean of(;).

To construct the quality function for a hypernode the aligyni selects the subset
of sub-nodes with the minimal value @fp). The resource will be allocated to these
nodes only. The allocated amounts cannot exceed the rangésef quality functions
of respective nodes. In addition, the increased value ofjttadity functions should not
exceed that of the node with the second minim@d)), and the quality of non-critical
siblings also should not be exceeded.

The exact quality function fov” is a produc{ [, (u() 4 s(1)t;). This function is re-
placed with a linear tangent approximation. The range isutaled from the constraints.
As soon as the amount of resources allocated to a hypernadécidated, it is divided
between the selected sub-nodes evenly and this completésciiemental step for a hy-
pernode.

Our algorithm is approximate because linear approximatare used instead of pre-
cise quality functions. However, the smaller are time inzeats allocated at each iteration
the smaller error we obtain and more iterations are spemégmurce allocation. This fact
enables us to balance the distribution cost with the acguwéihe output.

3.4. The Complexity

We provide a very rough estimation for the complexity of thegmsed algorithm, leaving
more precise estimations for a future work.

The complexity of the algorithm described above dependsiemumberN of oper-
ations in the query and the number of linear segments of thétgdunctions for each
node. In addition to operation nodes, the algorithm operafth hypernodes. As each
hypernode includes at least one edge from the original theepnumber of hypernodes
cannot exceed — 1, and the total number of nodes and hypernodes can be estiamted
2N.

During each incremental iteration a number of tree traversaneeded. The worst
case complexity of the tree traverse is estimated as a nuofilmades, that is2V. This
estimation applies to calculation of sub-query qualityuesl, adjustment of quality func-
tions, and allocation of increments. This also applies #itfitial allocation of minimal
resources, which is executed before the main loop and hemckecneglected.

Further, the calculation of constraints related to notieaisiblings requires a traverse
of sub-queries for each node in a vertical hypernode. Thewvease complexity can be
estimated as the number of subqueridés— 1 multiplied by the number of all nodes
2N. Consequently, the overall complexity of one iteration carebtimated a3(2N) +
(2N)(N — 1) = O(N?).

Let M be the maximum of numbers of linear segments for quality ions. The
rough worst case estimation for the number of linear segsnet/ IV, additional break
points are coming from constraints on non-critical sibéiragnd the cardinality of vertical
hypernodes, both having upper bound\af

Optimizing Resource Allocation for Approximate Real-TiQeery Processing 83

Each iteration increment cannot span multiple linear sedswar break points. Hence
the upper bound for the number of iterationgigV3, and finally the overall complexity
of the algorithm is not worse thab(M N°®).

Actually some of the values estimated above can never réschpgper bound at the
same time. Consider, for example, the length of a verticdi.péit is equal toN, then all
nodes of the tree are included into this path and hence themoesiblings at all, neither
critical nor non-critical, reducing corresponding muitp to 1. Similarly, if the critical
sub-tree includes alN nodes, there are no non-critical siblings and hence no need t
check these constraints.

Thus, the proposed algorithm is polynomial and can provateptable performance
for queries containing tens of operations.

4. Experiments

To analyze the behavior of the proposed approximate resallacation algorithm we
have performed a set of experiments. All experiments areas Java implementation,
running on i5 2.67 GHz CPU, 8 Gb RAM, 64 bit operating system.

We evaluated both the efficiency and the effectiveness af¢lieloped technique. The
performance is measured in terms of the amount of time nefdedsource allocation
and the number of iterations in the main loop of the algorithm

To analyze the accuracy of the algorithm, a value of the cgtimlative quality for
a plan is needed. As an optimal resource allocation algarighnot available, we use an
approximation obtained as described in the following pexpl.

The error of our algorithm is caused by use of linear appraxioms instead of pre-
cise quality functions. Obviously, this error becomes igglgle for sufficiently small in-
crements. To obtain an estimation of the optimal resoutdceaton, the algorithm was
executed with additional restriction on the size of the émeent at each iteration. The
results were used as a substitute for the optimal solution.

It is important to emphasize that the algorithm under irigasion deals with esti-
mations obtained from the cost and quality models, rathesn tictual executions of the
operations or properties of data sets. The characterafite algorithm to be measured
depend on the number of operations in the query, the topabthe query plan, and the
number of linear segments of the quality functions. To emsucomprehensive analysis,
all experiments were run on synthetic query plans and quiiitctions.Use of any real
data would not add any value. Of course, real data sets wauddrbust for evaluation of
cost or quality models, however, such evaluation is noténsitppe of this paper.

A number of random query trees were generated Wwithodes, where

N € {5,10,15,20,25}.

Quality functions for each operation in the query were gategt with the number of

linear segments varying from 1 fowith [€ {1,2,3,4,5}. Minimum and maximum

amounts of resources for each operation were also chosdomdy from the range [0,

100]. The topology of the query tree was defined randomly had the number of splits

was calculated in order to estimate how this parametertafthe approximate algorithm.
The most interesting findings from our experiments are desdbelow.

84 Anna Yarygina and Boris Novikov

Figure 4(a) shows how the number of iterations needed tecathoall available re-
sources depends on the query tree: the number of operatichtha number of linear
segments in the operation quality functions. For each (irl) 300 trees were con-
structed for the experiment. For each tree we allocated byafiproximate algorithm
resourc€l’ = Tyin, + P(Tinaz — Tmin), Wherep € {0,0.25,0.5,0.75, 1}. Similar results
with absolute time measurements are presented in figure @(® may see that the av-
erage number of iterations and the average absolute tindedder resource allocation
goes up with the increase of the number of operations in tieeygand the number of
linear segments in each node.

90 10000
20 -+-5 nodes 10 nodes
70 -4-15 nodes —<20 nodes 1000
a P X___)ew
260 25 nodes g 100
©
£ 50 / g) S S . S—
= £ 10
240 E
8 g
£ 30 / £ 1
3 [
Z20 4 -
0,1
10 ‘—./.’_F/_, W
0 1 0,01
1 2 3 4 5 1 2 3 4 5
Max number of segments Max number of segments
@) (b)

Fig. 4. Average number of iterations and absolute time for variaierigs

The results of experiments on accuracy of the proposed ajppate resource allo-
cation algorithm are presented in figure 5. For each @@¥ir) 100 trees were randomly
constructed for the experiment, and for each tree 10 quialitgtions were generated in
order to collect enough number of examples for trees with tapologies. We allocated
T = Tin + 0.5 % (Tinaz — Tinin) resource. Figure 5(a) shows on the Y-axis the relative
quality produced by the proposed approximate algorithmpamed to the one with arti-
ficially restricted resource increments allocated on esafation to be equal 5% of the
maximum amount of resources needed for the query. The Xsixaws the “bushiness”
of trees, which is calculated as a ratio between the numtsglit$ in the randomly gener-
ated tree and the maximum number of splits in binary tree Witlodes. One may see the
relative quality decreases when the number of splits grtves,is, a tree becomes bushy.
In this case trees contain enough paths to use tangent amation of the sub-query
quality functions and enough splits to use them in the resoallocation process.

Figure 5(b) shows the ratio of the number of iterations usgtié approximate algo-
rithm and in the nearly exact one. The number of iteratiorteénapproximate algorithm
decreases as the portion of available splits grows. Thendashat horizontal hypernodes
accept larger increments of resources compared to theakoties.

The results of the experiments have shown that the apprdgireaource allocation
algorithm is quite precise and efficient.

Optimizing Resource Allocation for Approximate Real-TiQeery Processing 85

1 1

0,98 N 0,9

0,96 0,8
e 8

094 3 £07

F092 Eos
T 5 nodes ©

o 09 \’< o 0,5
2 a

E 0,88 —=<10 nodes Ol 204
[7) k=]

® 0,86 -+-15 nodes 203
-3

0,84 20 nodes 0,2

0,82 -#-25 nodes 01

0,8 0

0 0,2 0,4 0,6 0,8 1 0 0,2 0,4 0,6 0,8 1
Portion of available splits Portion of available splits
CY (b)

Fig. 5. Cost-quality trade-off

5. Related Work

Query optimization became both required and enabled simeedvent of high-level
declarative query languages, mostly in the context of thetiomal database model. A
brief overview of classical query optimization techniqeas be found in [10]. The opti-
mization techniques for distributed systems are summaiiz€d]. An optimizer for dis-
tributed heterogeneous systems is proposed in [13]. They@qpimization techniques
based on hypergraphs are analyzed in [14].

The algorithm proposed in this research uses the outputraid@ional optimizer as
its starting point.

The approximate query evaluation techniques were coresidarthe context of very
large data warehouses and mobile networks [1, 4, 3, 7]. Theoapnation is typically
based on sampling, wavelets, or synopsis. However, in baglscthe query optimiza-
tion was not extensively studied. For data warehouses, dh@rthting cost is produced
by accesses to a single huge table, hence the performaneediemostly on the perfor-
mance of a single operation, namely, data extraction frasitaiole. For mobile networks,
the queries are typically very simple and the optimizat®nat an issue. Note that the
critical resource might depend on the context: in contrast large databases and data
warehouses, where time is the most important, the energhitrbigg more valuable for
mobile or sensor devices. Our approach does not depend oatine of the resources to
be allocated and might be applicable in both contexts.

Handling of time constraints on complex SQL queries is peggin [6]. The authors
distinguish an approximate (based on sampling) and péialk) query evaluation. The
proposed approach is based on extendibility of an optimizé¢ine commercial DBMS
and does not consider the resource allocation problem.

The quality and performance trade-offs for stream proogssie discussed in [19, 8].

Approximate query evaluation of the web is discussed in.[15]

Optimal resource allocation was studied in the context stfithiuted query evaluation
and load balancing [20, 16, 5]. Although our algorithm reb&ss load balancing, it is not

86 Anna Yarygina and Boris Novikov

specifically related to a distributed system and allocatssurce to operations rather than
to processing units.

The approximate query evaluation is a must in contexts ssidghfarmation retrieval,
however, in these contexts the primary objective is theityuef result (usually measured
as precision and recall), while resources are considessdiieportant. Further, complex
queries and hence query optimization are not common in tt@sexts. In contrast, our
work is focused on complex queries with mixed querying papad and efficiency of
query evaluation.

The extensive research on data and information quality nsnsarized in [11]. Al-
though the nature of data quality is essential, in our reseae rely on a quantitative
estimation of quality expressed as a single number andaadb$tom any specific aspects
of data quality. Further, our goal is to estimate relativalijy, that is, how the operations
and the whole query affects and depends on the quality ofstateces and final output,
rather than the absolute quality.

A lot of research is done in the area of query optimization apgroximate query
evaluation. However, as far as we know, the problem of ogdtmesource allocation for
approximate query evaluation was not considered.

6. Conclusion

High-level declarative querying facilities both requiredeenable sophisticated query op-
timization. In the context of data spaces and/or heteragemnaformation resources an
approximate query evaluation turns out to be a dominatimggigm.

To address the need in controlled trade-offs between guatitl performance, opti-
mization techniques should be augmented with additiorfzdlogities.

We presented an approximate polynomial algorithm for ogtiresource allocation
suitable for real-time systems where predictability ofp@sse time is critical. The re-
source allocation algorithm provides best possible quafithe result subject to the con-
strained total amount of resources for a query.

The experimental evaluation shows that the algorithm plevigood approximation,
especially on queries with small number of operations, Whice likely to dominate in
real applications.

There are still some unresolved issues concerning the mesallocation problem in
the context of approximate query evaluation and optimiratFirst of all, the selected
exact query evaluation plan may not support approximatetgian and in this case the
subsequent application of the resource allocation tecienig| not applicable. In future
work we are planning to consider the approach which solvesgjttery optimization and
resource allocation problems simultaneously. Anothelehge is adaptive resource al-
location capable to dynamically re-allocate resourcemduhe query evaluation.

References

1. Babcock, B., Chaudhuri, S., Das, G.: Dynamic sample setedor approximate query
processing. In: Proceedings of the 2003 ACM SIGMOD inteomatl conference on
Management of data. pp. 539-550. SIGMOD '03, ACM, New Yorky, USA (2003),
http://doi.acm.org/10.1145/872757.872822

10.

11.

12.

13.

14.

15.

16.

17.

18.

Optimizing Resource Allocation for Approximate Real-TiQeery Processing 87

Batini, C., Cappiello, C., Francalanci, C., Maurino, Atethodologies for data qual-
ity assessment and improvement. ACM Comput. Surv. 41(3)1-16:52 (Jul 2009),
http://doi.acm.org/10.1145/1541880.1541883

. Chaudhuri, S., Das, G., Narasayya, V.. Optimized steatifisampling for ap-

proximate query processing. ACM Trans. Database Syst. 32ne(J 2007),
http://doi.acm.org/10.1145/1242524.1242526

. Dell’Aquila, C., Di Tria, F., Lefons, E., Tangorra, F.: &aracy estimation in approximate query

processing. In: Proceedings of the 14th WSEAS internationiaference on Computers: part
of the 14th WSEAS CSCC multiconference - Volume Il. pp. 458-4CCOMP’10, World
Scientific and Engineering Academy and Society (WSEAS)yeste Point, Wisconsin, USA
(2010), http://dl.acm.org/citation.cfm?id=198436@84974

. Epimakhov, I., Hameurlain, A., Dillon, T., Morvan, F.: 8&mirce scheduling methods for query

optimization in data grid systems. In: Proceedings of thth i6ternational conference on
Advances in databases and information systems. pp. 185-ADBIS’11, Springer-Verlag,
Berlin, Heidelberg (2011), http://dl.acm.org/citaticim?id=2041746.2041765

. Hu, Y., Sundara, S., Srinivasan, J.: Supporting timestamed sql queries in oracle. In: Pro-

ceedings of the 33rd international conference on Very ldega bases. pp. 1207-1218. VLDB
'07, VLDB Endowment (2007), http://dl.acm.org/citatiofm?id=1325851.1325989

. Jermaine, C., Arumugam, S., Pol, A., Dobra, A.: Scalaljpr@imate query process-

ing with the dbo engine. ACM Trans. Database Syst. 33, 2854 (December 2008),
http://doi.acm.org/10.1145/1412331.1412335

. Jiang, Q.: A framework for supporting quality of servieguirements in a data stream man-

agement system. Ph.D. thesis, Arlington, TX, USA (2005),3481900

. Kossmann, D.: The state of the art in distributed querggssing. ACM Comput. Surv. 32(4),

422-469 (Dec 2000), http://doi.acm.org/10.1145/371578598

Kossmann, D., Stocker, K.: Iterative dynamic prograngnia new class of query
optimization algorithms. ACM Trans. Database Syst. 25(#3-82 (Mar 2000),
http://doi.acm.org/10.1145/352958.352982

Madnick, S.E., Wang, R.Y., Lee, Y.W., Zhu, H.: Overviewdaframework for data and
information quality research. J. Data and Information @ual(1), 2:1-2:22 (Jun 2009),
http://doi.acm.org/10.1145/1515693.1516680

Novikov, B., Vassilieva, N., Yarygina, A.: Querying higta. In: Proceedings of the 13th In-
ternational Conference on Computer Systems and Techeslogp. 1-10. CompSysTech '12,
ACM, New York, NY, USA (2012), http://doi.acm.org/10.11/2823607.2023609

Pentaris, F., loannidis, Y.: Query optimization in disited networks of au-
tonomous database systems. ACM Trans. Database Syst., 3%2)-583 (Jun 2006),
http://doi.acm.org/10.1145/1138394.1138397

Scarcello, F., Greco, G., Leone, N.. Weighted hypertrdecompositions and
optimal query plans. J. Comput. Syst. Sci. 73(3), 475-506 ay(M 2007),
http://dx.doi.org/10.1016/j.jcss.2006.10.010

Tran, T., Ladwig, G., Wagner, A.: Approximate and incegital processing of complex queries
against the web of data. In: Proceedings of the 22nd intemeltconference on Database and
expert systems applications - Volume Part . pp. 171-18&XB11, Springer-Verlag, Berlin,
Heidelberg (2011), http://dl.acm.org/citation.cfm?2033546.2033567

Yang, R., Bhulai, S., van der Mei, R., Seinstra, F.: Ogptinresource allo-
cation for time-reservation systems. Perform. Eval. 68,4-428 (May 2011),
http://dx.doi.org/10.1016/j.peva.2011.01.003

Yarygina, A., Novikov, B.: Optimizing the resource alition for approximate query process-
ing. In: ADBIS 2012 (to appear). pp. 1-12. Advances, Springalag (2012)

Yarygina, A., Novikov, B., Dolmatova, O.: Cost models &pproximate query evaluation. In:
Baltic DBIS 2012 (to appear). pp. 1-12. Short communica&idithuanian Computer Society
(2012)

88 Anna Yarygina and Boris Novikov

19. Zhang, R., Koudas, N., Ooi, B.C., Srivastava, D., Zhou, $treaming multiple
aggregations using phantoms. The VLDB Journal 19, 557-58Rgyst 2010),
http://dx.doi.org/10.1007/s00778-010-0180-z

20. Zhao, H.C., Xia, C.H., Liu, Z., Towsley, D.: A unified mdihg framework for dis-
tributed resource allocation of general fork and join pesteg networks. In: Proceed-
ings of the ACM SIGMETRICS international conference on Meament and modeling of
computer systems. pp. 299-310. SIGMETRICS '10, ACM, NewkYddY, USA (2010),
http://doi.acm.org/10.1145/1811039.1811073

Anna Yarygina is a PhD student at the Department of Analytical InformaBgstems at
Saint-Petersburg University, Russia. She obtained her iM.Gomputer Science in June
2011 from Saint-Petersburg University, Russia. Her re$emterests include advanced
information management and retrieval, fuzzy query optatitn and processing, approx-
imate query evaluation.

Boris Novikov is a professor and chair, Analytical Information systemStaPetersburg
University. Boris received his PhD in Comp.Sci.in 1981, &mdSci. degree in 1994 from
St. Petersburg University. His research interests inallesdégn of database systems, trans-
actions, indexing and data structures, query processidgoptimization, performance
tuning, and management of distributed heterogeneousiv#iion resources.

Received: September 26, 2012; Accepted: August 4, 2013.

