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Abstract. Query optimization techniques are proved to be essential for high perfor-
mance of database management systems. In the context of new querying paradigms,
such as similarity based search, exact query evaluation is neither computationally
feasible nor meaningful, and approximate query evaluationis the only reasonable
option.
In this paper a problem of resource allocation for approximate evaluation of com-
plex queries is considered. An approximate algorithm for a near-optimal resource
allocation is presented, providing the best feasible quality of the output subject to
a limited total cost of a query. The results of experiments have shown that the ap-
proximate resource allocation algorithm is accurate and efficient.
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1. Introduction

Declarative query languages for database management systems are both effective as high
level tools for specification of data processing needs and computationally efficient due to
availability of powerful optimizers.

Heterogeneous autonomous information resources, as well as user needs may require
diverse querying paradigms to be used in a declarative query. For example, the user might
need to combine data on company products extracted from relational database with sen-
timents from customer tweets on these products obtained by means of natural language
processing techniques. For some of data management models,such as probabilistic and
similarity-based, the traditional exact queries are neither computationally feasible nor
pragmatically meaningful. Hence an approximate query evaluation is the only option.

Query evaluation is approximate if the output is, in a certain sense, incomplete or
imprecise. There are different types of approximate query evaluation: based on nature
of the query (similarity based processing) or algorithms providing imprecise answer (ag-
gregation based on sampling). Obviously, approximate evaluation makes sense only if it
requires less resource (e.g. processing time) than an exactone. Informally, the result is
expected to be better if more resources are spent on the queryevaluation.

In this research we consider a controllable approximate query evaluation based on
approximate algorithms implementing algebraic operations. We estimate how good the

⋆ This research is supported by HP Labs.



70 Anna Yarygina and Boris Novikov

result is with a numeric value which is called data quality. Similarly the operation quality
shows how the operation affects the quality of processed data.

A user query is translated into an algebraic expression (query evaluation plan) in terms
of a certain set of operations. Typically these operations constitute a variation or extension
of the relational algebra; however, the semantics of algebraic operations is not essential
for the algorithms presented in this paper, the consideration is restricted to the properties
of approximate execution. For each approximate operation the relative quality of its out-
put depends on the amount of resources allocated. Usually the critical resource is time.
Further we use the terms resource, time, and cost interchangeably.

Thus the limited amount of resources has to be allocated among operations in query
evaluation plan to balance between the query evaluation cost and quality. Further when
we talk about exact (in contrast to approximate) query evaluation plan we consider the
one with unlimited amount of resources for query evaluation.

Let us illustrate the above with an example. Consider a query:

Find least rated company products based on retailer ratings.

The idea is to find products with low ratings to analyze them. At the first glance, the
answer to this query may be obtained from any retailer site. However, to make results
more reliable, we might want to combine the output of severalservices. An appropriate
query evaluation plan should include data extraction from different sources followed by a
join on product name, with subsequent ranking.

1 rank and sort
2 join on product name
3 get ratings for company products from reatiler1
4 get ratings for company products from reatiler2

The exact evaluation of this query requires exhaustive extraction of data from both
sources, might be time consuming and, most likely, is not needed as the user is interested
in the few products which need detailed analysis. Thus the input from data sources should
be limited to certain abounds, resulting in a partial loss ofresults and hence affecting the
quality of final output. Just for this example, the quality may be estimated as a percentage
of correctly returned objects in the query output.

Let us suppose that two data sources respond with a series of objects, at average rates
of 300 and 500 per second, respectively, and also suppose theuser expects an answer in
200 milliseconds and the best feasible output contains 50 objects.

The available amount of resources (200 msec in this example)may be distributed
between operations differently, resulting in different output quality. To possible allocation
of resources for example query are demonstrated in figure 1.

Consider a resource allocation where the first data source utilizes 150 msec and returns
45 objects, the second source utilizes 30 msec and returns 15objects, and remaining 20
msec are needed for join and ranking (see figure 1(a)). The final output will contain at
most 15 objects and hence the quality estimation cannot exceed 30%.

Much better results may be obtained if the first data source will utilize 100 msec,
second - 60 msec, leaving 40 msec for subsequent join and ranking (see figure 1(b)). Both
data sources will produce 30 objects and the output quality may reach up to 60%.
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Fig. 1. Resource allocation for example query

To make this example simple, we ignore impact of parallel execution and used over-
simplified estimations for both cost and quality.

The example above suggests that the response time can be significantly improved if
the extraction of data from primary sources is restricted toa small number of items and
approximate algorithms to calculate join predicates are applied. This restriction will affect
the quality of the result, as some potentially good items will be excluded. Further, it does
not make sense to restrict some operations but leave others untouched, as the quality of
the result will be affected by the input of the worse quality.In other words, allocation of
resources to operations should be balanced.

Optimization techniques should be re-considered in the context of approximate eval-
uation. As soon as data quality is included into consideration, the optimization problem
becomes multi-objective, and hence trade-offs between objectives appear on the stage.
Possible options are either “provide the minimal cost yielding at least specified quality”,
or “provide the best possible quality for at most given amount of resources”. The remain-
ing part of this paper considers the latter problem only.

The restriction on the amount of resources to be spent on the query evaluation effec-
tively means that the response time is predictable. Consequently, the query optimization
problem addressed in our research is suitable for real-timesystems, where predictability
of response time is one of the most essential requirements.

In this research a user query is translated into an algebraicexpression in terms of a
certain set of operations. Typically these operations constitute a variation or extension of
the relational algebra; however, the semantics of algebraic operations is not essential for
the algorithms presented in this paper, the consideration is restricted to the properties of
approximate execution. For each operation the relative quality of its output depends on
the amount of resources allocated to the operation. Usuallythe critical resource is time.
Further we use the terms resource, time, and cost interchangeably.

The contribution of this paper is an algorithm for near-optimal allocation of limited
resources between operations in query evaluation plan providing the best possible quality
of the output.

We define an extended abstract cost model providing trade-offs between quality and
cost for all operations and proceed with the formal statement of the resource allocation
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problem. We then provide a solution to the problem for some special cases and proceed
with an algorithm for a general case.

As far as we know a research in the area of query optimization and approximate query
evaluation do not cover the problem of optimal resource allocation for approximate query
evaluation. Approximate algorithms for operations like join, top k, aggregation are a hot
topic in literature. However, the problem of distribution of limited amount of time among
controllable approximate algorithms implementing different operations in a query is still
open.

This paper is an extended and substantially revised versionof [17]. We included all
proofs omitted in the short version, relaxed the restriction on arity of operations, and
provided additional explanations and clarifying examples.

The rest of the paper is structured as follows. Section 2 describes a formal model of
operations, including the extended cost model and a formal problem statement. The model
overview and auxiliary lemmas are followed by an algorithm specification in section 3.
The experiments and the analysis of their results are presented in section 4. Section 5
outlines the related work.

2. Abstract Model

2.1. Query Evaluation Plans

In this work we consider the query processing in the distributed environment which in-
cludes autonomous primary sources of data and operation processing units which consti-
tute the query processing facility and run under control of the query processor. We assume
that all information needed for query planning and optimization is accessible to a single
coordinating service and do not consider distributed optimization for autonomous pro-
cessing units. That is, a user query is translated into a single execution plan consisting of
operations which may be executed on several units in a distributed system.

The query processor operates with a query evaluation plan represented as a tree. Our
main target is the set of operations outlined in [12], for example similarity join, fusion,
and top k; although the results of this research are applicable to any set of operations
admitting approximate execution.

LetP be an execution plan, that is, a set of operation calls organized as a tree. In this
tree vertices are operation calls, and edges connect them with their arguments. We use
terms node, operation, and operation call interchangeably, because in this paper we do
not consider operations independently from its call in query evaluation plan. It is also im-
portant to note that in our query tree leaves are operations which receive data from primary
sources, for example, streams, relations, files, and so on. Further the setargs(l) ⊂ P will
denote arguments of an operationl ∈ P or its child nodes in the corresponding query tree.
For any nodel ∈ P except the root,parent(l) denotes its parent node. For an operation
l ∈ P the subquery rooted inl will be denoted as̄l.

An example query execution plan tree is shown in figure 2. For this treeP includes all
nodes,P = {l0, l1, l2, l3, l4, l5}, a sub-tree rooted inl2 is l̄2 = {l2, l4, l5}, parent(l5) =
l2, andargs(l0) = {l1, l2, l3}.

We assume that data may be imprecise or uncertain, and operations admit approximate
evaluation which consumes less resource but may affect the quality of the output. For



Optimizing Resource Allocation for Approximate Real-TimeQuery Processing 73

l
2

l
1

l
3

l
4

l
0

l
5

Fig. 2. An example of query tree

example, an approximate calculation of an average value of acertain attribute based on a
sampling returns imprecise value but is usually faster thana full scan.

An actual (absolute) quality of data may be defined differently depending on data
type. The quality of calculated aggregate values mentionedabove might be based on the
accuracy, while the quality of information retrieval results may be defined in terms of
precision and recall. Another dimension of quality is trustfulness of information sources.
In several cases the estimation of actual quality involves human assessment.

Although the semantics of data quality is complex [11, 2], itis neither elaborated nor
defined in this research. Instead we assume that the quality of a data set is estimated with
a single numeric value and the quality of different data setsis expressed in a comparable
way. Further, (most of) operations in our model are approximate and may produce differ-
ent quality of the output depending on the quality of the input and amount of allocated
resources. For example, the quality of an average value might be based on its accuracy,
and a larger size of sample is more expensive but, in general,provides better quality.

To estimate the relative impact of a multi-argument operation on the output quality,
an estimation of the overall quality of all inputs is needed.In this paper the we use the
minimal quality of arguments as an overall estimation.

We define the relative quality of an operation or a plan as a ratio of the achieved result
quality to the best one for given arguments.

Consequently, the quality of the output can be controlled with amount of resources
assigned to an operation. Our goal is to distribute available resources in such a way that
the overall quality of output for the query plan is maximized.

We usequality function which returns estimated relative quality for any operationand
amount of resources allocated to this operation. In this section we derive certain necessary
conditions for an optimal resource allocation. These conditions are stated in a series of
lemmas.

To prove that a condition is necessary for an optimal allocation, we start from an
allocation which does not satisfy the condition and then build another resource allocation
for the same plan which yields better quality (although still is not necessarily optimal).

Subsequent paragraphs describe the approach more formally.
Let us consider unary operationl ∈ P which receives input data with absolute quality

ain. Even the best possible implementation of operationl may reduce the quality of the
result dataaout. Thus, the quality of operationl equalsaout

ain
. If the operationl ∈ P

receives the unlimited resources for the fixed input data it produces data with the best
feasible absolute qualityaout(∞). If l receives amount of resourcest, which is less than
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needed for the best quality, the absolute quality of its output is aout(t); thus, the relative
quality of operationl is aout(t)

aout(∞) . Further we work only with relative quality of operations
in query evaluation plans.

For each operation the relative quality of its output depends on the amount of resources
allocated to it. Therefore, the behavior of each operationl ∈ P from the query tree can
be expressed with the relative quality functionq(l) : R → Q, whereR andQ represent
resources and quality respectively.

Thus, if operationl ∈ P received the amount of resourcestl ∈ R it achieves quality
q̄(l) = q(l)(tl). Further, we use the notation̄q(l) to indicate the achieved relative quality.

The relative qualityQ(l̄) of a (sub-)query represents the achieved quality of the whole
(sub-)query, wherel ∈ P is a root operation.

The qualityQ(m̄) of each subquerȳm in the execution plan rooted inm ∈ P depends
on the quality of its child subqueries and properties of the root operation. Say, for a binary
operation it depends on 3 parameters: the quality of the leftsubqueryQ(l̄), the quality of
the right subqueryQ(r̄), and the quality which the root operation producesq̄(m), where
l, r ∈ args(m).

For multi-argument operations we assume that the impact of the worst argument (in
terms of quality) dominates.

More formally, the output quality is estimated as a product of a relative quality for an
operation and overall (minimal) quality of its arguments:

Q(l̄) = q̄(l) · min
m∈args(l)

Q(m̄).

2.2. Problem Statement

Informally, the problem is to find the amount of resourcestl ∈ R for any operationl ∈ P
such that the estimated quality of the final query result is maximized for any given total
resource specified.

Let us state the problem in exact terms.
We have a query tree organized as described above and fixed amount of timeT ∈ R.
The set̄tP = {tl, l ∈ P} is called a distribution of resources, wheretl ∈ R is the

amount of resources allocated for operationl ∈ P . The amount of resources allocated to
the subquery rooted inl ∈ P is denoted asTl̄ ∈ R.

Problem 1 (Resource Allocation Problem). Given a query execution planP with root
operationl ∈ P and amount of resourcesTT ∈ R, find a distribution of resources̄tP
such that the quality functionQ(l̄) is maximized subject to constraints

∑

m∈P tm ≤ T
andtm ≥ 0 for all m ∈ P.

The distribution of resources which solves problem 1 will becalled optimal distribu-
tion or optimal resource allocation.

2.3. Assumptions

We assume that the relative quality is a non-decreasing continuous bounded function of
the allocated amount of resources, i.e. the following conditions hold:
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– For each operationl ∈ P a minimal amount of resources needed to complete the
operation is knowntmin(l) ∈ R. This amount yields a certain level of the output
quality, and the operation cannot be completed for any smaller amount of resources.
Further, we will simply usetmin where it is clear from the context what the target is
operation.

– For each operationl ∈ P an amount of timetmax(l) ∈ R is known, such that any
additional resource does not improve the quality.

– For any amount of resources allocated between the minimal and maximal amount, the
quality estimation for the output is a non-decreasing function of the amount allocated,
i.e.∀l ∈ P, ∀t1, t2 ∈ R : t1 < t2 q(l)(t1) ≤ q(l)(t2).

For the average aggregate evaluation, the minimal amount might be the cost for a
sample of cardinality 1, while maximum is the cost of a full scan.

If an approximate evaluation for a given operation is not available or is meaningless,
then the minimal and maximal values for this operation are equal to the cost of the exact
evaluation and resource allocation is trivial.

In this research we additionally assume that each operationquality function can be
approximated with a continuous piecewise linear function.That is, we assume that

∀l ∈ P q(l)(t) =







0, t < t0min

ui(l) + si(l)(t− timin), timin ≤ t < timax

ui(l) + sIl(l)(tIlmax − tIlmin), t
Il
max ≤ t

wherei ∈ [0, Il] is the number of linear segment,t ∈ [timin, t
i
max], s

i(l) is the slope of the
corresponding linear segment, andui(l) + si(l)(timax − timin) = ui+1(l). The linearity
assumption is not over-restrictive, as the quality functions return only estimations. We
also assume that each linear segment has non-zero slope, i.e. si(l) > 0. Feasibility of this
kind of extended cost models supporting quality functions is demonstrated in [18], where
cost models for selected operations defined in [12] are elaborated.

In the remaining part of this paper we will work with resourceincrements and consider
only one linear segment at each moment of time:∀l ∈ P q(l)(τ) = u(l) + s(l)τ, where
t ∈ [timin, timax], tmax = timax − t, τ ∈ [0, tmax], andu(l) = q(l)(t) = ui(l) +
si(l)(t− timin).

2.4. Critical Subquery

As soon as the minimal needed resource is allocated to each operation in a query, addi-
tional resource may be allocated to some operations to improve the quality of the final
result.

In order to simplify the notation, in the rest of the paper we consider only the amounts
to be allocated in addition to the amounts already allocated. As soon as an incremental
amount is allocated to an operation, the quality function isre-calculated accordingly. After
this re-calculation the value of the quality functionq(l)(0) always equals the relative
quality achieved for this operation.

Obviously, the resource should be allocated only to operations which have an impact
on the output quality. These operations constitute acritical sub-query C. Any algorithm
solving the resource allocation problem has to operate withthe critical subquery only.
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The critical subquery is a set of nodes in the query treeC ⊆ P which can be con-
structed recursively:

– if l ∈ P is root ofP thenl ∈ C;
– if Q(l̄) = minm∈args(parent(l))(Q(m̄), whereparent(l) ∈ C thenl ∈ C.

In other words operationl ∈ P belongs to the critical subtreeC if the quality of the
subtree rooted inl equals the minimum among the quality of the sibling subtreesand
parent(l) is also critical. Edges in the critical subtree are those forthe query tree which
connect critical operations.

Now we are ready to prove the optimality of the resource allocation along the critical
subtree.

Lemma 1. For each l ∈ P \ C tl = 0 for any optimal resource allocation.

Proof. Assume nodel /∈ C has sibling nodes. The quality of the whole query depends on
minn∈args(o)(Q(n̄)(Tn̄)) = Q(m̄)(Tm̄), whereargs(o) ∋ l,m; andQ(l̄) < Q(m̄). We
have to allocate resource to the subquery rooted in nodem to increase this component, that
is Tm̄ > 0. In case whenTl̄ > 0 resource allocated to the subquery rooted in operationl
does not improve the result quality. Therefore, for each operationp in the corresponding
non-critical subquerytp = 0.

Assume nodel /∈ C has no sibling nodes. In this casel has an ancestor node which
meets this conditions and thereforetl = 0 as well.

It is important to mention that the quality of the whole queryis equal to the quality of
its critical subquery.

2.5. Resource Allocation along Paths

In case when the critical subquery is a single path the quality function of the query is a
product of the linear quality functions of its operations.

The following lemma 2 provides a necessary condition for resource allocation on a
vertical path for a special case when quality functions are linear.

Lemma 2. Let C be a critical path, T the amount of resources for allocation, for each
n ∈ C the quality function is linear, that is q(n)(t) = u(n) + s(n)t, where t is within
the limits for the quality function. For the optimal resources allocation the following two
conditions hold:

– if tm = 0 and tl > 0 then u(l)
s(l) + tl ≤

u(m)
s(m) ,

– if tl > 0 and tm > 0 then u(l)
s(l) + tl =

u(m)
s(m) + tm,

where m, l ∈ C

Proof. The objective is to maximize the value of the function

F (t̄C) =
∏

o∈C

(s(o))
∏

o∈C

(
u(o)

s(o)
+ to)
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subject to constraintsT =
∑

o∈C to andto ≥ 0, wheret̄C = {to, o ∈ C} is a resource
distribution. We skip the constant factor in the objective function for the rest of the proof.

Let r(o) = u(o)
s(o) for anyo ∈ C, and letx̄C be any distribution of resources satisfying

the constraints, that is,xo ≥ 0 andT =
∑

o∈C xo.

We first prove that ifr(l) + xl < r(m) + xm andxm > 0 then the distributionxC

is not optimal. Letd = min(xm, r(m)+xm−r(l)−xl

2 ) andg = r(m)+xm+r(l)+xl

2 . We build
a distributionȳC such thatyl = xl + d, ym = xm − d, andyo = xo, o /∈ {l,m}. Let us
show that in this case the value of the objective function is larger, i.e.F (ȳC) > F (x̄C).

If ym = 0 thenr(m) + xm − r(l)− xl ≥ 2xm or r(m) − r(l)− xl ≥ xm.

F (ȳC)− F (x̄C)
∏

i∈C\{l,m}(r(i) + xi)
=

(r(l) + yl)(r(m) + ym)− (r(l) + xl)(r(m) + xm) =

(r(l) + xl + d)r(m) − (r(l) + xl)(r(m) + xm) =

(r(l) + xl)r(m) + dr(m)− (r(l) + xl)r(m) − (r(l) + xl)xm =

xmr(m) − (r(l) + xl)xm ≥ x2
m > 0.

Alternatively, if ym > 0 thend = r(m)+xm−r(l)−xl

2 .

(r(l) + yl)(r(m) + ym) = g2

(r(l) + xl)(r(m) + xm) = (g − d)(g + d) = g2 − d2.

HenceF (ȳC) > F (x̄C).

Consequently, an optimal distribution̄tC has the following properties:

– if tl > 0 andtm > 0 thenr(l) + tl = r(m) + tm,

– if tm = 0 andtl > 0 thenr(l) + tl ≤ r(m).

The following lemma 3 provides a necessary condition similar to that of previous
lemma under additional constraints on the ranges of arguments for quality functions of
operations on the path.

Lemma 3. Let C be a critical path, T the amount of resources for allocation, for each
l ∈ C the quality function is linear, that is q(l)(t) = u(l) + s(l)t, where t is within the
limits for the quality function. For any optimal resource allocation ∃C+ ⊆ C : tm > 0
iff m ∈ C+; and

tl = max

(

T

n
+

1

n

∑

m∈C+

u(m)

s(m)
−

u(l)

s(l)
, 0

)

,

where l ∈ C, and n = |C+|.
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Proof. The notations of lemma 2 will be used in this proof.
The first statement in lemma 2 suggests that resources shouldbe allocated to opera-

tions l with relatively smallr(l), and we define the subset of operationsC+ for which
resource will be allocated as follows.

To simplify the notation, assume that operations are ordered in the ascending order of
r(l) and letn be the greatest number such thatT ≥ nr(n) −

∑n
i=1 r(i). Note that the

expression on the right side of the inequality equals to 0 whenn = 1, hence suchn exists
for anyT.

According to the second statement of lemma 2 resources should be allocated to opera-
tions withr(i) ≤ r(n) to make the corresponding factors of the objective functionequal.
The first step is to allocate the amount of resourcesr(n)− r(i) to eachi ∈ C+. Thus, the
total of

∑n
i=1(r(n)− r(i)) will be distributed. Finally, leftoversT +

∑n
i=1 r(i)− nr(n)

are evenly distributed between these nodes. Formally:

tl = r(n) − r(l) +
T +

∑n
i=1 r(i)− nr(n)

n
=

T +
∑n

i=1 r(i)

n
− r(l),

wherel ∈ C+.
Finally, we have to substitute allr(i) with a ratio u(i)

s(i) .

2.6. Resource Allocation between Siblings

The following lemma 4 suggests how to split resource betweencritical siblings.
The necessary condition for an allocation to be optimal is that amout of resources

allocated to each of siblings is proportional to invers of the slope of its quality function.

Lemma 4. Let C be a critical subtree; li ∈ C are root nodes of sibling subtrees with
linear quality functions, that is Q(l̄i)(t) = U(l̄i) + S(l̄i)t, where t is in the range for the
quality functions; T ∈ R is the amount of resources for allocation between these siblings.
For any optimal resource allocation Tl̄i =

1/S(l̄i)∑
j
1/S(l̄j)

T.

Proof. The quality of the whole query depends on

min
j

{Q(l̄j)(Tl̄j )} = min
j

{U(l̄j) + S(l̄j)Tl̄j},

where
∑

j Tl̄j = T. To maximize the query quality we have to maximize this component.
Therefore, we have to allocate resources such that

∑

j Tl̄j = T and for alli, k

U(l̄k) + S(l̄k)Tl̄k = U(l̄i) + S(l̄i)Tl̄i .

The following equalities show that the quality of critical siblings remains equal after
the allocation of the increment

U(l̄k) + S(l̄k)Tl̄k = U(l̄k) + S(l̄k)
1/S(l̄k)

∑

j 1/S(l̄j)
T = U(l̄k) +

1
∑

j 1/S(l̄j)
T =

U(l̄i) +
1

∑

j 1/S(l̄j)
T = U(l̄i) + S(l̄i)

1/S(l̄i)
∑

j 1/S(l̄j)
T = U(l̄i) + S(l̄i)Tl̄i ,
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and, finally, the constraint on the total allocated amount issatisfied

∑

j

Tl̄j =
∑

j

1/S(l̄j)
∑

i 1/S(l̄i)
T =

∑

j 1/S(l̄j)
∑

i 1/S(l̄i)
T = T.

3. Resource Allocation Algorithm

3.1. The Algorithm and Data Structures

This section describes an approximate algorithm for optimal resource allocation for a
fixed query execution plan. To obtain an optimal plan for query evaluation under con-
strained resources, we start from a plan obtained with conventional optimization tech-
niques, which do not account for the amount of resources, andapply the resource al-
location algorithm to this plan. Of course, this plan is not necessarily optimal globally.
However, our approach provides the optimal distribution for any fixed tree.

According to the lemmas 3 and 4 in section 2 we are able to optimally distribute re-
sources among operations for two types of the plan structure, namely, for plans consisting
of a single path from root to leaf (vertical path) or between leaf siblings of a single parent
node. As the lemmas are valid only within linear ranges of thequality functions, several
distribution steps might be needed.

In order to exploit these lemmas for a general tree, we build virtual hypernodes from
certain parts of the query execution plan and then apply an appropriate lemma inside a
hypernode.

A node is called a splitting point if it has multiple child nodes. Virtual hypernodes are
constructed for the critical tree according to the following rules:

– If the critical plan contains sibling leaf (hyper-)nodes, these siblings are retracted into
a horizontal hypernode, which becomes a single child of the parent node.

– Any path from a leaf to a splitting point is retracted into avertical hypernode, which
becomes a leaf child of the splitting point.

Obviously, at least one of two steps listed above is applicable if a plan contains at least
two nodes. The process stops when the whole plan is retractedinto a single hypernode
which is always vertical as a root cannot have siblings.

An example of a hypernode structure is shown in figure 3.
The quality functions for original tree nodes are provided from cost models for corre-

sponding operations. Quality functions for hypernodes areconstructed when the hypern-
odes are created.

The lemmas 3 and 4 require that the quality of each operation (node) is a linear func-
tion of the allocated resource. Unfortunately, the qualityof a hypernode cannot be always
expressed as a linear function and it is replaced with a linear approximation, making our
algorithm approximate (except for few special cases). The quality functions for horizon-
tal (sibling) hypernodes are linear by lemma 4. Functions for vertical nodes are not linear
in general, and are replaced with tangent approximations, valid on a certain range of the
argument values.

The range for a hypernode is constructed in such a way that thecorresponding amount
of resources can always be distributed to the sub-nodes of this hypernode without viola-
tion of the constraints inside the hypernode.
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Horizontal hypernodes

Vertical hypernodes

Non-critical node

Fig. 3. An example of hypernodes

The overall resource allocation control flow is displayed inthe following pseudo
code:

Input: Query treeP , resources for allocationT .
Output: For each operationl ∈ P, an allocated amount of resourcestl.

Initialization(P, T )
while T > 0 & !isMaxQualityReached(P ) do

QualityEstimation(P )
C=CriticalSubtreeConstruction(P )
H=HypergraphConstruction(C)
ResourceAllocation(H,T )

end while

The algorithm can now be outlined as follows.
During the initialization using the recursive tree descentthe amount of resources equal

to the minimal needed is allocated to each operation inP and the quality functions are
adjusted to accept increments. If the sum of minimal resources exceedsT , the algorithm
fails, as the execution of the plan is not possible with available resources.

Those nodes which received maximum resources needed for operation processing are
marked as saturated and are not considered in the further resource distribution process,
however are taken into account during the hypernode qualityfunctions construction.

After initial allocation of the minimally required resources the remaining amount of
resources is distributed in incremental amounts. The increments are subject to the follow-
ing constraints:

– boundaries of linear segments in piecewise linear operation quality functions are not
exceeded for any node, and

– the quality of a critical sub-query should not exceed the quality of its non-critical
siblings.

The incremental allocation is repeated until either all available resources are exhausted
or the maximal possible quality for the query is reached.

At the quality estimation step we apply the recursive tree descent to recalculate the
achieved quality for all subtrees in the query evaluation plan.
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For each incremental step, the critical sub-tree and hypernodes are re-calculated and
then allocation proceeds recursively into all hypernodes,using the appropriate lemma for
allocation inside each hypernode.

The pseudo code presented below demostrates the hypernodesconstruction step.

Input: Operation noder ∈ P .
Output: Hypernodeh(r).
tmp=r
loop

if |children(tmp)| > 1 then
for all child ∈ children(tmp) do

child=Hypernode(child)
end for
children(tmp)= HorisontalHypernode(children(tmp))

else if |children(tmp)| = 0 then
break

else
tmp=children(tmp)[0]

end if
end loop
r=VerticalHypernode(r)

3.2. Horizontal Hypernodes

According to lemma 4, the amount of resources allocated to the horizontal hypernode is
distributed between the siblings so that the increase of thequality function is same for all
siblings in the hypernode. LetH be a hypernode with operationsli, andsli be the slopes
for the quality functions, that is for eachli the quality function isq(li)(t) = u(li)+s(li)t.
Let

S =
∑

i

1/sli

for brevity. If the total amount of resources allocated toH is T, thentli =
T

sliS
.

The construction of the quality function for a horizontal hypernode is straightforward:
the initial quality is the same as that of siblings, and the slope is calculated from the slopes
of siblings and is equal to1S . Let tlimax be the right boundaries for the linear segments of
the quality functions of the siblings, then the right boundary for the linear segment of the
hypernode isTmax = min{tlimaxSsli}.

3.3. Vertical Hypernodes

Handling of vertical hypernodes is more complex.
LetV be a vertical hypernode with nodesli as its elements, and letr(li) = u(li)/s(li)

, whereu ands are defined as in lemma 3. Also letS =
∑

l∈V r(l). According to this
lemma, an optimal allocation of resourcesT is reached when

tli =

{

(T + S)/n− r(li), if (T + S)/n− r(li) > 0
0 otherwise
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whereS andn are the sum and count, respectively, of thoser(li) for which the

(T + S)/n− r(li) > 0.

Obviously, this expression will be positive for minimal values ofr(li), asS/n is the
arithmetic mean ofr(li).

To construct the quality function for a hypernode the algorithm selects the subset
of sub-nodes with the minimal value ofr(p). The resource will be allocated to these
nodes only. The allocated amounts cannot exceed the ranges for the quality functions
of respective nodes. In addition, the increased value of thequality functions should not
exceed that of the node with the second minimalr(li), and the quality of non-critical
siblings also should not be exceeded.

The exact quality function forV is a product
∏

l∈V (u(l)+s(l)tl). This function is re-
placed with a linear tangent approximation. The range is calculated from the constraints.
As soon as the amount of resources allocated to a hypernode iscalculated, it is divided
between the selected sub-nodes evenly and this completes the incremental step for a hy-
pernode.

Our algorithm is approximate because linear approximations are used instead of pre-
cise quality functions. However, the smaller are time increments allocated at each iteration
the smaller error we obtain and more iterations are spent forresource allocation. This fact
enables us to balance the distribution cost with the accuracy of the output.

3.4. The Complexity

We provide a very rough estimation for the complexity of the proposed algorithm, leaving
more precise estimations for a future work.

The complexity of the algorithm described above depends on the numberN of oper-
ations in the query and the number of linear segments of the quality functions for each
node. In addition to operation nodes, the algorithm operates with hypernodes. As each
hypernode includes at least one edge from the original tree,the number of hypernodes
cannot exceedN − 1, and the total number of nodes and hypernodes can be estimatedas
2N.

During each incremental iteration a number of tree traversals is needed. The worst
case complexity of the tree traverse is estimated as a numberof nodes, that is,2N. This
estimation applies to calculation of sub-query quality values, adjustment of quality func-
tions, and allocation of increments. This also applies to the initial allocation of minimal
resources, which is executed before the main loop and hence can be neglected.

Further, the calculation of constraints related to non-critical siblings requires a traverse
of sub-queries for each node in a vertical hypernode. The worst case complexity can be
estimated as the number of subqueriesN − 1 multiplied by the number of all nodes
2N. Consequently, the overall complexity of one iteration can be estimated as3(2N) +
(2N)(N − 1) = O(N2).

Let M be the maximum of numbers of linear segments for quality functions. The
rough worst case estimation for the number of linear segments isMN, additional break
points are coming from constraints on non-critical siblings and the cardinality of vertical
hypernodes, both having upper bound ofN.
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Each iteration increment cannot span multiple linear segments or break points. Hence
the upper bound for the number of iterations isMN3, and finally the overall complexity
of the algorithm is not worse thanO(MN5).

Actually some of the values estimated above can never reach the upper bound at the
same time. Consider, for example, the length of a vertical path. If it is equal toN , then all
nodes of the tree are included into this path and hence there are no siblings at all, neither
critical nor non-critical, reducing corresponding multiplier to 1. Similarly, if the critical
sub-tree includes allN nodes, there are no non-critical siblings and hence no need to
check these constraints.

Thus, the proposed algorithm is polynomial and can provide acceptable performance
for queries containing tens of operations.

4. Experiments

To analyze the behavior of the proposed approximate resource allocation algorithm we
have performed a set of experiments. All experiments are based on Java implementation,
running on i5 2.67 GHz CPU, 8 Gb RAM, 64 bit operating system.

We evaluated both the efficiency and the effectiveness of thedeveloped technique. The
performance is measured in terms of the amount of time neededfor resource allocation
and the number of iterations in the main loop of the algorithm.

To analyze the accuracy of the algorithm, a value of the optimal relative quality for
a plan is needed. As an optimal resource allocation algorithm is not available, we use an
approximation obtained as described in the following paragraph.

The error of our algorithm is caused by use of linear approximations instead of pre-
cise quality functions. Obviously, this error becomes negligible for sufficiently small in-
crements. To obtain an estimation of the optimal resource allocation, the algorithm was
executed with additional restriction on the size of the increment at each iteration. The
results were used as a substitute for the optimal solution.

It is important to emphasize that the algorithm under investigation deals with esti-
mations obtained from the cost and quality models, rather than actual executions of the
operations or properties of data sets. The characteristicsof the algorithm to be measured
depend on the number of operations in the query, the topologyof the query plan, and the
number of linear segments of the quality functions. To ensure a comprehensive analysis,
all experiments were run on synthetic query plans and quality functions.Use of any real
data would not add any value. Of course, real data sets would be a must for evaluation of
cost or quality models, however, such evaluation is not in the scope of this paper.

A number of random query trees were generated withN nodes, where

N ∈ {5, 10, 15, 20, 25}.

Quality functions for each operation in the query were generated with the number of
linear segments varying from 1 tol, with l ∈ {1, 2, 3, 4, 5}. Minimum and maximum
amounts of resources for each operation were also chosen randomly from the range [0,
100]. The topology of the query tree was defined randomly and then the number of splits
was calculated in order to estimate how this parameter affects the approximate algorithm.

The most interesting findings from our experiments are described below.
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Figure 4(a) shows how the number of iterations needed to allocate all available re-
sources depends on the query tree: the number of operations and the number of linear
segments in the operation quality functions. For each pair(N, l) 300 trees were con-
structed for the experiment. For each tree we allocated by the approximate algorithm
resourceT = Tmin + p(Tmax − Tmin), wherep ∈ {0, 0.25, 0.5, 0.75, 1}. Similar results
with absolute time measurements are presented in figure 4(b). One may see that the av-
erage number of iterations and the average absolute time needed for resource allocation
goes up with the increase of the number of operations in the query and the number of
linear segments in each node.
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Fig. 4. Average number of iterations and absolute time for various queries

The results of experiments on accuracy of the proposed approximate resource allo-
cation algorithm are presented in figure 5. For each pair(N, l) 100 trees were randomly
constructed for the experiment, and for each tree 10 qualityfunctions were generated in
order to collect enough number of examples for trees with rare topologies. We allocated
T = Tmin + 0.5 ∗ (Tmax − Tmin) resource. Figure 5(a) shows on the Y-axis the relative
quality produced by the proposed approximate algorithm compared to the one with arti-
ficially restricted resource increments allocated on each iteration to be equal 5% of the
maximum amount of resources needed for the query. The X-axisshows the “bushiness”
of trees, which is calculated as a ratio between the number ofsplits in the randomly gener-
ated tree and the maximum number of splits in binary tree withN nodes. One may see the
relative quality decreases when the number of splits grows,that is, a tree becomes bushy.
In this case trees contain enough paths to use tangent approximation of the sub-query
quality functions and enough splits to use them in the resource allocation process.

Figure 5(b) shows the ratio of the number of iterations used in the approximate algo-
rithm and in the nearly exact one. The number of iterations inthe approximate algorithm
decreases as the portion of available splits grows. The reason is that horizontal hypernodes
accept larger increments of resources compared to the vertical ones.

The results of the experiments have shown that the approximate resource allocation
algorithm is quite precise and efficient.
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Fig. 5. Cost-quality trade-off

5. Related Work

Query optimization became both required and enabled since the advent of high-level
declarative query languages, mostly in the context of the relational database model. A
brief overview of classical query optimization techniquescan be found in [10]. The opti-
mization techniques for distributed systems are summarized in [9]. An optimizer for dis-
tributed heterogeneous systems is proposed in [13]. The query optimization techniques
based on hypergraphs are analyzed in [14].

The algorithm proposed in this research uses the output of a traditional optimizer as
its starting point.

The approximate query evaluation techniques were considered in the context of very
large data warehouses and mobile networks [1, 4, 3, 7]. The approximation is typically
based on sampling, wavelets, or synopsis. However, in both cases the query optimiza-
tion was not extensively studied. For data warehouses, the dominating cost is produced
by accesses to a single huge table, hence the performance depends mostly on the perfor-
mance of a single operation, namely, data extraction from this table. For mobile networks,
the queries are typically very simple and the optimization is not an issue. Note that the
critical resource might depend on the context: in contrast with large databases and data
warehouses, where time is the most important, the energy might be more valuable for
mobile or sensor devices. Our approach does not depend on thenature of the resources to
be allocated and might be applicable in both contexts.

Handling of time constraints on complex SQL queries is proposed in [6]. The authors
distinguish an approximate (based on sampling) and partial(top k) query evaluation. The
proposed approach is based on extendibility of an optimizerin the commercial DBMS
and does not consider the resource allocation problem.

The quality and performance trade-offs for stream processing are discussed in [19, 8].
Approximate query evaluation of the web is discussed in [15].
Optimal resource allocation was studied in the context of distributed query evaluation

and load balancing [20, 16, 5]. Although our algorithm resembles load balancing, it is not
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specifically related to a distributed system and allocates resource to operations rather than
to processing units.

The approximate query evaluation is a must in contexts such as information retrieval,
however, in these contexts the primary objective is the quality of result (usually measured
as precision and recall), while resources are considered less important. Further, complex
queries and hence query optimization are not common in thesecontexts. In contrast, our
work is focused on complex queries with mixed querying paradigms and efficiency of
query evaluation.

The extensive research on data and information quality is summarized in [11]. Al-
though the nature of data quality is essential, in our research we rely on a quantitative
estimation of quality expressed as a single number and abstract from any specific aspects
of data quality. Further, our goal is to estimate relative quality, that is, how the operations
and the whole query affects and depends on the quality of datasources and final output,
rather than the absolute quality.

A lot of research is done in the area of query optimization andapproximate query
evaluation. However, as far as we know, the problem of optimal resource allocation for
approximate query evaluation was not considered.

6. Conclusion

High-level declarative querying facilities both require and enable sophisticated query op-
timization. In the context of data spaces and/or heterogeneous information resources an
approximate query evaluation turns out to be a dominating paradigm.

To address the need in controlled trade-offs between quality and performance, opti-
mization techniques should be augmented with additional capabilities.

We presented an approximate polynomial algorithm for optimal resource allocation
suitable for real-time systems where predictability of response time is critical. The re-
source allocation algorithm provides best possible quality of the result subject to the con-
strained total amount of resources for a query.

The experimental evaluation shows that the algorithm provides good approximation,
especially on queries with small number of operations, which are likely to dominate in
real applications.

There are still some unresolved issues concerning the resource allocation problem in
the context of approximate query evaluation and optimization. First of all, the selected
exact query evaluation plan may not support approximate execution and in this case the
subsequent application of the resource allocation technique is not applicable. In future
work we are planning to consider the approach which solves the query optimization and
resource allocation problems simultaneously. Another challenge is adaptive resource al-
location capable to dynamically re-allocate resources during the query evaluation.
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