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Abstract. In this paper we solve the problem of static portfolio allocation based 

on historical Value at Risk (VaR) by using genetic algorithm (GA). VaR is a 

predominantly used measure of risk of extreme quantiles in modern finance. For 

estimation of historical static portfolio VaR, calculation of time series of 

portfolio returns is required. To avoid daily recalculations of proportion of 

capital invested in portfolio assets, we introduce a novel set of weight 

parameters based on proportion of shares. Optimal portfolio allocation in the 

VaR context is computationally very complex since VaR is not a coherent risk 

metric while number of local optima increases exponentially with the number of 

securities. We presented two different single-objective and a multiobjective 

technique for generating mean–VaR efficient frontiers. Results document good 

risk/reward characteristics of solution portfolios while there is a trade-off 

between the ability to control diversity of solutions and computation time. 

Keywords: Genetic algorithm, Static portfolio optimization, Value at Risk, 

Mean-VaR efficient frontier. 

1. Introduction 

Market risk, as defined by Alexander [2], is a risk resulting from adverse moves in 

prices of liquid financial instruments. Portfolio allocation is about choosing the best 

mix from the opportunity set of securities to achieve maximal level of expected return 

while minimizing risk. By investing in a portfolio of securities some of the risk of 

individual securities may be diversified away. The fundamental principle of 

diversification was formally introduced by Markowitz [25]. The Markowitz problem 

boils down to the determination of portfolio with minimal possible risk for a given 

level of return, where risk is measured by variance (standard deviation). A set of 
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solutions of Markowitz problem for different levels of return form the so-called 

efficient frontier which represents the optimal trade-off between the risk and return.  

When using variance to estimate risk we implicitly assume that returns are normally 

distributed, i.e. that distribution is fully explained by first two moments, return and 

standard deviation. However, empirical distributions of returns typically are 

asymmetric distributions with more events in tails relative to normal distribution 

suggesting that part of the risk is hidden in the higher moments of distribution. The 

importance of third moment in portfolio optimization was first suggested by Samuelson 

[29] while Markowitz [26] suggested semivariance for the measure of downside risk.  

Nowadays, investors and regulators are mostly concerned about the risk of extreme 

quantiles. The risk of extreme quantiles is typically measured by value at risk (VaR) 

and conditional value at risk (CVaR). Although it is not a coherent risk metric [30], 

VaR is a predominantly used risk measure of extreme quantiles, in particular upon the 

introduction of new banking regulations for market risk in 1996 [5]. 

By definition, VaR is the α-quantile of distribution. Unlike variance, VaR of a 

portfolio cannot be estimated analytically, as a function of underlying constituents’ 

parameters. Portfolio VaR can be estimated analytically, but only if we assume that 

portfolio data distribution (in value or return terms) can be accurately approximated by 

some theoretical distribution. In reality, especially during market turmoil, empirical 

return distributions of financial assets are typically asymmetric, with fat tail(s) and 

cannot be accurately approximated by any theoretical distribution. 

Further, in Danielsson et al. [12], the authors demonstrated that the set of feasible 

portfolios under VaR constraint need not to be connected or convex, while the number 

of local optima increases exponentially with the number of securities. 

In general, optimal portfolio allocation in the VaR context is very complex, often 

unsolvable by using classical optimization methods. In order to overcome drawbacks of 

classical optimization methods, several researchers applied metaheuristics (either 

single or multiobjective) for solving portfolio optimization problems. 

The focus of this paper is on the effectiveness of different GA techniques for static 

portfolio optimization when return and percentage historical VaR are set as 

optimization objectives. We employed standard single-objective technique and SPEA2 

method as a fully multiobjective technique to derive mean return-historical VaR 

efficient frontier. In addition, we introduced a novel single-objective GA technique, 

adjusted to specific characteristics of VaR measure. With the aim to improve execution 

efficiency, a novel set of weights which are constant over time for a static portfolio is 

introduced. We compared the differences between analyzed techniques and identified 

their relative advantages regarding risk/reward characteristics, diversity of solutions 

along efficient frontier and computational time. 

The remainder of this paper is organized as follows. Section 2 discusses related 

work. In Section 3 we introduce historical VaR model. In Section 4 decision variables 

are defined. In Section 5 portfolio optimization model is defined. The fundamentals of 

genetic algorithm operators are presented in Section 6. In Section 7 we provide the 

computational results. In Section 8 we discuss the results and conclude. 
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2. Related work 

Depending on the applied risk model, portfolio optimization may be a highly nonlinear 

problem, very difficult to solve using deterministic methods. In practice, portfolio 

optimization problems become even more complex since they include a lot of 

additional constraints such as: cardinality constraints, transaction cost, trading 

limitation etc. 

There have been various studies applying genetic algorithms for solving portfolio 

optimization problems based on different risk measures and/or additional constraints. 

One of the earliest attempts of GA portfolio optimization is given by Arnone, Loraschi, 

and Tettamanzi [4]. The authors considered bi-objective, mean return-risk, 

unconstrained portfolio optimization problem, regarding downside, variance based risk 

measures. They transformed bi-objective problem to a single-objective problem using 

trade-off coefficient. Lin and Liu [24] presented a study about portfolio optimization 

based on Markowitz model with the minimum transaction lots constraint. The authors 

generated mean-variance efficient frontiers by minimizing risk for given return levels 

using single-objective GA. Chang et al. [7] presented GA approach to mean return-risk 

portfolio optimization problems with the cardinality constraint. As in [4], the authors 

applied bi-objective to a single-objective problem transformation by using trade-off 

coefficient. As risk measures, the authors considered semi-variance, mean absolute 

deviation and variance with skewness. Branke et al. [6] considered mean-variance 

problem with maximum exposure constraint. The authors generated mean-variance 

efficient frontiers by using multiobjective evolutionary algorithms (MOEAs). Recently, 

Anagnostopoulos and Mamanis [3] presented an interesting study about effectiveness 

of five state-of-the-art MOEAs together with a steady state evolutionary algorithm on 

the mean–variance, cardinality constrained portfolio optimization problem. All 

enumerated papers examine Markowitz mean-variance model imposing different set of 

additional constraints. 

Latest risk measurement practices trend toward quantifying and controlling risk of 

extreme quantiles, while VaR is a benchmark metric, as defined by regulators. 

Accordingly, there have been some attempts to tackle portfolio selection problems 

which consider VaR as risk measure using GA. Dallagnol et al. [11], presented single 

objective optimization techniques for obtaining portfolio with minimal historical 

(nonparametric) VaR. The authors employed and compared two different techniques, 

GA and particle swarm optimization (PSO). They demonstrated that PSO was faster 

than GA, while GA appears to be less sensitive to the initial set of individuals (solution 

portfolios). Lin and Ko [23] used GA to construct a portfolio with the highest success 

rate of forecasting VaR. They estimated analytical (parametric) VaR by using extreme 

value theory models to parametrize the left tail of portfolio return distribution. Hocklie 

and Zuhal [18] applied a GA for solving portfolio optimization problem using 

downside risk and value at risk values of individual securities from the opportunity set.  

We find that there is a need to explore into possibilities of using different GA 

techniques to obtain optimal trade-offs between return and risk of a portfolio when risk 

is defined as VaR, particularly in a market environment where portfolio VaR cannot be 

analitically (parametrically) estimated with appropriate accuracy. In this paper we 

examined bi-objective, mean return-risk, unconstrained portfolio optimization when 
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percentage historical VaR is used as a measure of risk. This is to the best of our 

knowledge the first attempt to do so in nonparametric VaR context by using GA 

approach. 

3. VaR model 

VaR can be interpreted as a loss that will be exceeded only in α  100% of the time, 

for a given significance level α and time horizon t. Mathematically, VaR is defined as 

α-quantile of distribution. Expressed in value terms, VaR is the α-quantile of profit and 

loss distribution, while expressed as a percentage of portfolio’s value it is the α-

quantile of return distribution.  

Formally, for the return r  such that  p r r    percentage VaR is defined as: 

VaR r   . (1) 

where α is significance level (i.e. 1-α is confidence level) and F-1(α) denotes α-quantile 

of return distribution r, that is, the inverse of distribution function at α. Minus sign is 

needed since VaR is defined as positive value. If the distribution function of returns, 

F(α), is known then α-quantile is calculated as 1r F

  .When empirical 

distribution of portfolio returns is used VaR is referred to as historical VaR. 

Historical VaR does not assume any parametric form of the distribution of risk 

factor returns (see [28] for more details on historical VaR and its variants). It is rather 

intuitive and easy to calculate measure at portfolio level. On the other hand, when 

using historical VaR there is potential risk to underestimate risk of future movements 

since historical VaR assumes that realized distribution would be repeated in the future. 

In addition, historical VaR estimates are dependent on a sample size and may result in 

conflicting results for different significance levels. Yet, Perignon and Smith [27] report 

that almost 75% of banks prefer to use historical VaR rather than alternative VaR 

models. 

In general, historical VaR cannot be expressed as a function of underlying 

constituents’ parameters. Thus, to perform portfolio optimization in VaR context, 

calculation of time series of portfolio returns is required. If using the definition Eq. (1), 

the estimate of historical VaR equals minus value of maximum of the subset containing 

α percentage of the lowest returns of considered portfolio (e.g. for time series consisted 

of 100 returns, 5% historical VaR would be minus value of 5-th lowest return). 

4. Decision variables 

By definition, percentage one-period portfolio return rp at time t is: 

,

1

1t

p t

t

P
r

P

   . (2) 
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where Pt denotes total value of portfolio at time t: 

,
1

N

t i i t
i

P n p


   . (3) 

N is total number of assets, ni is the number of shares of asset i and pi,t is the price 

per share of asset i at time t. 

In [1] it is shown that percentage one-period portfolio return can be expressed as 

weighted sum of the asset returns: 

, , 1 ,
1

N

p t i t i t
i

r w r


   . (4) 

where ri,t denotes percentage one-period return of asset i at time t, while wi,t denotes 

proportion of capital invested in asset i at time t, given as: 

,

, , 1,...,
i i t

i t

t

n p
w i N

P
   . (5) 

Expression (4) is fundamental relationship in portfolio mathematics [1]. 

For static (buy-and-hold) portfolio, which is the focus of the paper, number of 

shares ni remains the same for each asset i over the observed period. Consequently, the 

proportion of capital invested in each asset wi,t changes over time, whenever the price 

of any asset in portfolio changes. In typical portfolio optimization methods, starting 

with those applying Markowitz model, static portfolio is considered, while portfolio 

weights are defined as a proportion of capital invested (Eq. (5)) in each portfolio 

constituent. Basic assumption is that portfolio weights are constant over time. 

Assumption of constant weights implies frequent portfolio rebalancing which further 

implies transaction costs that affect overall portfolio performance.  

The main drawback of using wi,t weight parameters for calculating time series of 

“real” static portfolio returns is the fact that it requires recalculations of their values for 

every time interval during an observation period (e.g. for daily time series of portfolio 

returns daily recalculations of wi,t weights are needed).  

In order to overcome this drawback we introduce different set of weights iw . Here 

iw  is defined as the proportion of shares held in asset i: 

i

i

T

n
w

N
  . (6) 

and 
1

N

T i
i

N n


  . 

It can be seen that iw weights are properly defined since their values lie between 0 

and 1 for long-only portfolios (that is, for portfolios without short positions) and they 

sum up to 1. 

Using Eq. (3) and Eq. (6) expression (2) becomes: 
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 . (7) 

Weights 
iw  for static portfolio are, by definition, constant over observation period. 

Using Eq.(5) and Eq. (6), proportion of capital wi,t, which is of interest for an 

investor, is given as: 
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 . 
(8) 

In the portfolio optimization problem, presented in this paper, weights iw are 

adopted as decision variables. 

5. Optimization model 

Using definition of VaR (Eq. (1)),the portfolio optimization problem can be defined as 

follows: 

min ( )VaR r w  . (9) 

 
,

1max

T

p t
t

p

r

r
T




w  . (10) 

1

1
N

i
i

subject to w


  . (11) 

0 1, 1,...,iw i N    . (12) 

where 

w  denotes the vector of weights iw , VaR( w ) denotes the value at risk of a 

portfolio,  pr w is the expected return of portfolio and T denotes the time series length. 

Eq. (9) minimizes VaR of the portfolio. Eq. (10) maximizes the expected return of 

portfolio. Eq. (11) describes the standard budget constraint which requires that 

proportions (weights) must sum up to 1. 

Eq. (12) describes the constraint that no short sales are allowed, which means that 

none of the weights can be negative. 

The model presented above is a standard multiobjective optimization problem. 

Solutions of the presented optimization problem comprise the set of non-dominated or 

efficient portfolios. Non-dominated or efficient portfolio is every portfolio whose 

characteristics cannot be improved in terms of one objective function without 
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deteriorating in terms of the other one. Each efficient portfolio represents a point in the 

objective functions space. Hence, the set of efficient portfolios represents a curve in the 

return-risk space connecting the portfolio with maximum return and portfolio with 

minimum risk. Often, this curve is called the efficient frontier. The aim of the portfolio 

optimization presented by the model is to find portfolios along the efficient frontier. 

The presented optimization problem is the bi-objective optimization problem and 

can be solved using two different approaches. 

The first technique implies transformation of bi-objective problem to single-

objective problem using trade-off coefficient λ ( 0 1  ). The result is single-

objective fitness function instead of two separate objective functions. In that case 

optimization problem (Eq. (9), Eq. (10)) becomes: 

     max 1pf r VaR   w w  . (13) 

In Eq. (13) the case λ = 1 corresponds to portfolio with maximum expected return 

and λ = 0 corresponds to portfolio with minimum VaR (risk). Values of λ satisfying 0 < 

λ < 1 correspond to the portfolios lying on the efficient frontier. 

The advantage of presented approach is that a single-objective technique can be 

used. The additional advantage is that decision maker (investor) can predefine the 

importance of each objective. This approach is known as decision before search 

approach [20], [21]. 

The main drawback of this approach is that each value of coefficient λ produces only 

one efficient portfolio, i.e. only one point of the efficient frontier. Therefore, if efficient 

frontier is needed, the set of separate calculations with different λ is required, which 

can be very time consuming. 

The second approach implies use of fully multiobjective techniques. In this paper, 

results obtained using the both approaches are presented. 

6. Genetic Algorithms 

The term evolutionary algorithms (EA) or evolutionary strategies, addresses a class of 

stochastic optimization methods which emulate the natural evolution. The origins of 

EAs can be found in the late 1950s, and since the 1970s several evolutionary 

methodologies have been proposed. This class of optimization methods addresses 

genetic algorithms, evolutionary programming, and evolution strategies [10]. 

In order to solve the portfolio optimization problems defined in previous sections, 

genetic algorithm is used. 

Genetic algorithm is a stochastic optimization technique invented by Holland based 

on the Darwin principle that in the nature only “the fittest survive” [19]. The main 

idea of Holland’s theory is the application of the basic phenomena of the biological 

evolution such as inheritance, crossover and mutation, in order to find (generate) a 

solution that fits best. In the case of the portfolio optimization problems, term “the 

fittest” corresponds to the optimal portfolio. 

So, in GA there is a set of individuals often called population. Each individual from 

population presents candidate solution of optimization problem. The individuals are 
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usually referred to as chromosomes. Each chromosome, i.e. candidate solution, 

represents a decision vector made of decision variables. In the vocabulary of genetic 

algorithms each decision variable in the chromosome is called a gene. 

In this research, each individual (chromosome) presents one weight vector w . 

Therefore, each gene corresponds to weight 
iw  defined by expression (6) 

Generally, genetic algorithm consists of the following steps: 

1. Initialization of population with random individuals, 

Initial population with the stated dimension of randomly chosen individuals is 

generated with the aim to uniformly cover the solution space. 

2. Fitness evaluation of the individuals in the population, 

Fitness value is assigned to each individual from the population defined by adopted 

fitness function. 

3. Generation of a new population, using crossover and mutation,  

Population of offspring is generated by applying crossover and mutation operators to 

population of parents. 

4. Selection of individuals according to their fitness using some strategy (e.g. a 

Roulette wheel selection), 

The aim of the selection process is to provide a set of offspring which “survived” 

and will be transmitted to the next generation. 

5. Stop if terminating condition is satisfied (e.g., a fixed number of iterations), 

otherwise go to step 2. 

In the following text the basic operators of genetic algorithm developed in this 

research are presented. 

6.1. Initialization 

First step of genetic algorithm is initialization of population. It is very important since 

initial population is supposed to cover the solution space in a best possible way. The 

second demand is to provide random and independent generation of individuals in 

order to ensure independence of each single run of GA. Therefore, each gene (weight 

parameter) within the individual has to be generated randomly and independently. At 

the same time, each individual constraint, defined by Eq. (12), must be satisfied. 

In order to realize independence and randomness of gene generation the following 

procedure is used: 

For each individual I in the population P: 

1. Generate vector o that contains randomly chosen indexes of weights in vector w : 

   int 1, , 1,2,...,o i rand N i N   

where N denotes the number of assets held in portfolio; randint() is random function 

with uniform distribution of integers within the range [1,N]. Vector o defines the order 

of genes’ initialization. 

2. Generate weights in the sequence determined by o using following expression: 
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     
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 
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 . (14) 

where randreal() denotes random function with uniform distribution of real numbers 

within the range [0,1]. 

6.2. Crossover 

In this research a basic (simple) crossover operator is implemented. The basic 

crossover operator involves two parents and produces two offspring (two new 

individuals). Idea is to divide both parents’ chromosomes in two segments at dividing 

point (gene) and then to swap obtained segments. Operator is stochastic one, because 

the dividing point is chosen randomly each time operator is applied. Usually, newborn 

offspring does not satisfy constraint defined by Eq. (12) and hence additional 

normalization of offspring is required. 

6.3. Mutation 

The mutation operator is implemented as follows. First, a set of randomly chosen 

individuals that will mutate is generated. For each individual from this set two genes 

are randomly selected. Then, the value of the first gene (weight parameter) is increased 

by some predefined value (e.g. 0.1) and the value of the second gene is decreased by 

the same value. In order to ensure satisfaction of constraint defined by Eq. (12) the 

following principle is applied. If new gene (weight) value is <0 then it is set to be =0. 

Also, if the new gene value is >1 it is set to be =1. For both cases, normalization of 

chromosome must be applied. 

6.4. Selection 

The aim of selection process is to choose the individuals from the current population 

who will survive. According to the analogy with living beings, the individuals that fit 

best will survive and be transmitted to the next generation. The fitness of each 

individual is determined by using of adequate fitness function. The strategy which 

implies that only the best fitted individuals survive is known as Elitistic strategy. 

Generally, using this strategy, search algorithm would relatively quickly find the 

optimized solution. The major drawback of this approach is tendency to get stuck on a 

local extremum.  

In order to prevent the search process from getting stuck on a local extremum, the 

combination of Elitistic and Roulette wheel selection is applied. Elitistic approach is 

realized in such a way that the best individual in each generation is isolated and 
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transferred to the next generation. In this way, the best individual (solution) obtained 

during the evolution process is kept. The rest of generation is processed throughout 

Roulette wheel selection. 

Roulette wheel selection is partly stochastic strategy which is commonly used in GA 

approaches to portfolio optimization problems (see for example [22], [31]). Selection 

process is random but based on fitness value of individuals. If an individual is with 

better fitness value it has more chance of being selected and vice versa. 

In order to apply Roulette wheel selection, relative fitness is introduced. Relative 

fitness of each individual is defined as 

, min , 1,...,r k kf f f k M    . (15) 

where fk is fitness value of k-th individual, fmin is minimal fitness value obtained in the 

current generation and M is population size. 

Using the relative fitness value, a fictive “roulette wheel” can be constructed. Each 

field of the fictive roulette wheel corresponds to one individual and the width of each 

field is proportional to relative fitness of that individual. The width of each roulette 

wheel field can be defined as range: 




1

, ,
1 1

1 ,1

, , 2,...,

0,

k k

k r i r i
i i

r

rwf f f k M

rwf f



 

  


 

 . (16) 

Now, k-th individual in the population will be selected if following expression is 

satisfied: 

 ,
1

0,
M

r i k
i

rand f rwf


  . (17) 

where randreal() is random function with uniform distribution of real numbers within 

the defined range. 

7. Data and research results 

In this section, we present the computational results obtained by performing 

experiments on a historical data set. For VaR we considered 5% 1-day historical 

percentage VaR of static long-only linear portfolios. Calculations are based on daily 

returns of sample of 10 exchange-traded funds (ETFs): iShares Barclays 7-10, iShares 

eb.rexx 5.5-10.5, iShares iBoxx € Liquid Sovereigns Capped 5.5-10.5, db x-trackers 

iBoxx € Sovereigns 5-7, db x-trackers iBoxx € Sovereigns 7-10, Lyxor EuroMTS 5-7, 

Lyxor EuroMTS 7-10. iShares eb.rexx DE, iShares iBoxx € Liquid Sovereigns Capped 

1.5-10.5 and db x-trackers iBoxx € Sovereigns overall. We used historical daily data 

for sample ETFs from February 2008 to December 2010. Returns are presented as 

annualized daily returns, as it is common in finance. The source of our data is the 

official websites of sample ETFs’ providers. 
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Underlying indices for sample ETFs are debt portfolios with exposure to euro zone 

sovereign debt. First 7 ETFs comprise representative sample of debt portfolios which 

target bonds from 5 to 10 years maturity segment1 while the latter 3 ETFs target 

overall bond indices which include different maturity segments.  

In times of market turmoil investors typically move towards less risky and more 

liquid financial products, such is sovereign debt. At the same time, current financial 

crisis strongly affected euro zone sovereign debt due to increased credit and liquidity 

risk concerns. Yield spreads rose sharply while correlations dropped. As a 

consequence, empirical return distributions of sovereign debt portfolios are more often 

characterized by extreme events. Investing in sovereign debt of euro zone countries 

through ETFs is arguably the most liquid way of getting desired exposure during the 

crisis while daily data are publicly available.2 The motivation for choosing 5-10 

maturity segment ETFs for the research is the fact that their return distributions are 

highly non-normal for chosen sample period (see more on characteristics of euro zone 

sovereign debt ETFs in [15] and [16]).  

We compare risk/return characteristic of optimized portfolios to those of individual 

assets and to the 1/n portfolio. DeMiquel et al. [14] evaluated the out-of-sample 

performance of Markowitz model of optimal asset allocation and its various extensions 

(in total 14 different models). The authors demonstrated that naïve optimization rule 

1/n of assets in portfolio is good proxy of optimal portfolio and can be challenged 

against more sophisticated portfolio designs. We employed static version of 1/n 

portfolio in order to be consistent with our basic assumption that all portfolios are buy-

and-hold portfolios.  

Table 1 shows 1-day historical VaR and average 1-day annualized return values for 

sample ETFs and naïve 1/n portfolio. 

Table 1. 5% 1-day historical VaR and average 1-day annualized return values for sample ETFs 

and naïve 1/n portfolio 

No. Name VaR(%) Return(%) 

1* eb.rexx 5.5-10.5 0.515 6.238 

2* iShares Bar 7-10 0.553 6.120 

3* eb.rexx DE 0.352 5.325 

4* db 5-7 0.418 4.527 

5* Lyxor GY 5-7 0.411 4.410 

6* db 7-10 0.524 4.089 

7* db overall 0.421 4.066 

8* Lyxor GY 7-10 0.517 3.885 

9* iBoxx 5.5-10.5 0.507 3.711 

10* iBoxx 1.5-10.5 0.443 3.544 

1/N Naïve 1/n portfolio 0.398 4.570 

                                                        
1 These are all European ETFs targeting 5-10 year maturity segment of euro zone sovereign debt 

with available time series of data long enough for this research. 
2 Sovereign debt markets are typically over-the-counter markets where data are not publicly 

available. In contrast, ETFs are traded on organized exchanges which provide daily time 

series of data. 
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Genetic algorithm, described in the previous sections, is coded in C# and run on 

personal computer with Intel Core(TM)2 Duo CPU E7300 2.66GHz processor and 

2GB of RAM. 

For solving optimization problem Eq. (9)-(12) three different techniques are applied 

(denoted as A1, A2 and A3, respectively). Therefore, results refer to three different sets 

of optimized portfolios, that is, on three different efficient frontiers.  

Techniques A1 and A2 are based on the transformation of bi-objective optimization 

problem into single-objective problem using trade-off coefficient λ (Eq. (13)). In the 

A1 technique we examined equidistant values of trade-off coefficient λ. Within A2 

technique we applied strategy of searching for optimized portfolios with predefined 

levels of return. For single-objective techniques we used following parameters: initial 

population size equals 200, number of generations equals 500 per single run, crossover 

rate equals 0.9, mutation rate equals 0.1. 

Technique A3 employs fully multiobjective optimization genetic algorithm, the 

SPEA2 method (Strength Pareto Evolutionary Algorithm 2). 

7.1. Single-objective technique A1 - Equidistant values of trade-off parameter 

In this section we present the results of solving portfolio optimization problem for 

transformed VaR model (Eq. (13)) using 21 equidistant values of trade-off parameter λ 

within the range [0,1]. 

 

Fig. 1. Mean-VaR efficient frontier for sample ETFs-A1 technique 
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Optimized portfolios are plotted in return and risk (VaR) coordinates are presented 

with filled dots (Fig. 1). Single asset values are presented with squared dots. Each 

filled dot in the following graph is obtained by execution of genetic algorithm using 

one single value of parameter λ. Different values of parameter λ correspond to different 

relative importance of merged objective functions (return and risk). Efficient frontier is 

generated by repeating optimization procedure for each predefined value of λ. 

Optimized portfolios are numerated in decreasing order by return. 5% 1-day historical 

VaR and average 1-day annualized return values for optimized portfolios are presented 

in the Table 2. Asterisk numeration corresponds to sample ETFs presented in Table 1. 

Table 2. 5% 1-day historical VaR and average 1-day annualized return values for optimized 

portfolios obtained using single-objective technique A1 

No. VaR(%) Return(%) No. VaR(%) Return(%) 

1 0.515 6.238 12 0.304 5.004 

2 0.515 6.238 13 0.303 4.997 

3 0.515 6.238 14 0.302 4.975 

4 0.515 6.238 15 0.304 4.970 

5 0.515 6.238 16 0.303 4.961 

6 0.515 6.238 17 0.302 4.954 

7 0.417 5.761 18 0.303 4.954 

8 0.351 5.381 19 0.303 4.949 

9 0.326 5.192 20 0.303 4.949 

10 0.306 5.021 21 0.304 4.705 

11 0.303 5.007  

 

It can be seen from Fig. 1 that A1 technique results in portfolios with superior 

risk/reward characteristics compared to the individual assets from the sample and to 

the naïve 1/n portfolio. The results motivate the need for portfolio diversification and 

bring some evidence about the effectiveness of chosen algorithm. However, the plots 

presented in the graph show that equidistant values of trade-off parameter do not 

provide uniform distribution of solution portfolios along the resulting efficient frontier. 

It should be emphasized that diversity of points along the efficient frontier is crucial in 

portfolio optimization. Higher level of diversity implies more alternative portfolios, 

suited for the investors with different risk-return profiles. 

7.2. Single-objective technique A2 - Imposing return levels 

In order to improve the diversity of solution portfolios we introduce the A2 technique. 

The objective of this technique is to generate solution portfolios with predefined return 

levels. To keep the predefined return level we search for a trade-off parameter λ which 

corresponds to the given return level. We considered 21 levels of return in order to 

maintain the dimensionality of solution set. Levels are predefined within the return 

range ( min max,p pr r ) using following expression: 
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where li denotes i-th return level. 

For each return level an optimization process is executed. Each execution represents 

bisection iterative method implemented to determine λ corresponding to the considered 

return level. Finally, each iteration of the bisection method implies one single run of 

genetic algorithm which results in one solution portfolio.  

Since it is impossible to reach the exact value of requested return level, for each 

execution of bisection iterative method we applied the following stop criterion: 
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(19) 

where n denotes number of iterations, n

pr  denotes return of the portfolio obtained in n-

th iteration. 

In the Fig. 2 we present mean-VaR efficient frontier for sample ETFs obtained using 

A2 technique. Corresponding 5% 1-day historical VaR and average 1-day annualized 

return values for optimized portfolios are presented in the Table 3. 

 

Fig. 2. Mean-VaR efficient frontier for sample ETFs-A2 technique 
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Table 3. 5% 1-day historical VaR and average 1-day annualized return values for optimized 

portfolios obtained using single-objective technique A2  

No. VaR(%) Return(%) No. VaR(%) Return(%) 

1 0.515 6.238 12 0.353 5.392 

2 0.497 6.165 13 0.343 5.314 

3 0.483 6.086 14 0.332 5.245 

4 0.471 6.002 15 0.324 5.162 

5 0.458 5.929 16 0.320 5.091 

6 0.442 5.854 17 0.305 5.012 

7 0.423 5.778 18 0.303 4.962 

8 0.408 5.704 19 0.300 4.862 

9 0.400 5.622 20 0.301 4.788 

10 0.382 5.543 21 0.304 4.705 

11 0.364 5.465  

 

Fig. 2 shows that A2 technique results in portfolios that are better distributed along 

the efficient frontier compared to solutions computed by A1 technique. Also, it should 

be noticed that for all, except for one predefined return level, proposed iterative 

procedure reached portfolio with return within targeted range. 

Since VaR is not a coherent risk metric, it is very important to emphasize that 

solution portfolios obtained by single-objective techniques are not necessarily efficient 

portfolios in terms of given definition. It can be noticed from Fig. 2 that the solution 

portfolios corresponding to the two lowest return levels are not efficient portfolios since 

they are dominated. These points are not excluded in order to demonstrate the 

specificity of VaR. 

7.3. Multiobjective technique A3 - SPEA2 method 

In this section, we present the results obtained using multiobjective evolutionary 

algorithm (MOEA). Several different MOEA techniques can be found in the modern 

literature such as: Strength Pareto evolutionary algorithm 2 (SPEA2) [32], 

nondominated sorting genetic algorithm II (NSGA-II) [13], Pareto envelope-based 

evolutionary algorithm (PESA) [8], Niched Pareto genetic algorithm 2 (NPGA2) [9], 

e-multiobjective evolutionary algorithm (e-MOEA) [17]. 

In this research, we applied Strength Pareto evolutionary algorithm 2 (SPEA2). For 

more details see [32]. 

Common to all MOEAs techniques is the performance of full multiobjective 

optimization without transformation of multiobjective problem into single-objective.  

Therefore, the input optimization problem for SPEA2 method is defined by Eq. (9)-

(12). 

Initial population size is set equal to 200, number of generations is set equal to 

10,000, crossover rate is set equal to 0.9 and mutation rate is set equal to 0.1. 
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Fig. 3. Mean-VaR efficient frontier for sample ETFs-A3 technique 

Table 4. 5% 1-day historical VaR and average 1-day annualized return values for optimized 

portfolios obtained using multiobjective technique A3 (portfolios are numerated in decreasing 

order by return, M stands for multiobjective technique) 

No. VaR(%) Return(%) No. VaR(%) Return(%) 

1M 0.503 6.092 21M 0.404 5.625 

2M 0.498 6.080 22M 0.395 5.591 

3M 0.497 6.047 23M 0.390 5.541 

4M 0.492 6.021 24M 0.386 5.433 

5M 0.484 6.020 25M 0.384 5.427 

6M 0.483 5.982 26M 0.382 5.416 

7M 0.480 5.944 27M 0.379 5.407 

8M 0.461 5.929 28M 0.369 5.382 

9M 0.457 5.856 29M 0.367 5.351 

10M 0.453 5.841 30M 0.364 5.323 

11M 0.446 5.824 31M 0.355 5.281 

12M 0.444 5.823 32M 0.347 5.260 

13M 0.440 5.799 33M 0.337 5.208 

14M 0.430 5.763 34M 0.336 5.163 

15M 0.428 5.758 35M 0.334 5.142 

16M 0.421 5.747 36M 0.327 5.139 

17M 0.420 5.744 37M 0.310 5.020 

18M 0.419 5.711 38M 0.310 4.976 

19M 0.416 5.664 39M 0.308 4.956 

20M 0.413 5.643  
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Fig. 3 shows mean-VaR efficient frontier for sample ETFs obtained using SPEA2 

method (no filled dots). In order to compare A2 and A3 techniques we keep the results 

presented in the Fig. 2 (A2 efficient frontier and sample ETFs). A3 optimized 

portfolios are not numerated in the figure for clarity reasons, but 5% 1-day VaR and 

average 1-day annualized return values are given in the Table 4. 

Fig. 3 shows that A3 technique results in portfolios that are well distributed along 

efficient frontier. At the same time solution portfolios are slightly dominated by 

solution portfolios computed by A2 technique. Opposing the A2 technique, efficient 

frontier provided by A3 technique, lacks solution portfolios around maximum return, 

as well as, around minimum risk. 

8. Concluding remarks 

In this paper we presented different GA techniques for the optimization of static 

portfolios in the context of historical VaR. In general, historical VaR cannot be 

expressed as a function of underlying constituents’ parameters. Thus, to perform 

portfolio optimization in VaR context, calculation of time series of portfolio returns is 

required. If considering static (buy-and-hold) portfolio, commonly used portfolio 

weights, given as proportion of capital invested in individual assets, are function of 

time. Therefore, when applying these weights to calculate daily time series of returns, 

one needs daily recalculations of weights. In order to avoid daily recalculations, for 

decision variables we adopted alternative portfolio weights which are based on 

proportion of shares of individual assets. For static portfolios, proposed weights are 

constant during the sample period. We showed that commonly used weights can be 

easily expressed as a function of the weights that we adopted. 

In general, optimal portfolio allocation in the VaR context is computationally very 

complex and, very often, alternatives to existing exact optimization methods are 

required. In order to generate mean-VaR efficient frontier we used genetic algorithm. 

We tested two single-objective GA techniques and one multiobjective technique. 

We first applied single-objective technique which uses the set of equidistant trade-

off parameter values. It is clear from Fig. 1 that solution portfolios offer much better 

risk/reward characteristics compared to individual assets from our sample. However, 

results also showed that chosen set of trade-off parameter does not provide uniform 

distribution of portfolios along the resulting efficient frontier. The second shortfall of 

this technique is that it is time consuming. Namely, for each value of trade-off 

parameter single run of genetic algorithm is needed. Execution time of single genetic 

algorithm was approximately 15 seconds. Hence, for portfolio optimization with 21 

different values of trade-off parameter total execution time was approximately 5 

minutes. 

The second technique is an improvement of the first technique. In order to overcome 

poor diversity of portfolios along efficient frontier, we implemented iterative search 

(bisection method) over trade-off parameter. The aim of this technique was to generate 

efficient frontier consisting of portfolios which returns correspond to predefined return 



106          Vladimir Ranković et al. 

levels. As a result, we achieved the same level of diversification as was the case for the 

former technique, and, at the same time, returns of solution portfolios are well 

distributed along efficient frontier and satisfy predefined return levels. However, 

adding bisection method in the optimization algorithm further increased time needed 

for determination of each solution portfolio. In this research approximately 25 

iterations of bisection method were needed. Therefore, execution time of second 

technique is on average 25 times longer than execution time of first technique. In 

particular, for portfolio optimization with 21 predefined levels of portfolio return 

execution time was approximately 125 min. 

We emphasize that, formally speaking, single-objective techniques applied to VaR 

based portfolio optimization do not necessarily result in a set of efficient portfolios. 

The reason is that VaR is not a coherent risk measure while single-objective techniques 

are based on a sequence of independent executions. 

As an alternative to single-objective approach we applied multiobjective 

evolutionary algorithm – SPEA2 method. Results show that solution portfolios are well 

distributed along efficient frontier, but it should be noticed that solution portfolios are 

slightly dominated by solution portfolios computed by A2 technique. On the other 

hand, when using multiobjective evolutionary algorithm we are not able to impose 

return levels of solution portfolios. The main advantage of SPEA2 method is 

computation time which in this research was approximately 3 minutes. 

From an investor’s point of view, eligible portfolio optimization technique should 

provide her with: 

1. efficient portfolios with returns distributed within the given range, 

2. possibility to obtain portfolio with minimum risk for desired level of return, 

3. acceptable computation time. 

We showed that presented single-objective technique with imposed return levels 

(A2) satisfy conditions 1 and 2, while multiobjective technique (A3) satisfies 

conditions 1 and 3. 

Financial implications of presented results would be of interest for all those 

investors who employ historical analysis for portfolio structuring, which is imposed by 

constraints in the context of VaR measure. In this respect, out-of-sample performance 

analysis of VaR optimized portfolios would be an interesting topic for further research. 
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