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Abstract. Workflow management systems (WfMSs) become the basic 

technology for organisations to build their Information Systems. To understand 

the business processes already implemented in the existing software systems and 

then build the workflow oriented Information System is a time-consuming and 

error prone process. This paper proposes a unified software re-engineering 

approach from a business process perspective. A workflow extraction method is 

developed to elicit the business processes from existing systems. A precondition-

based workflow model is designed for this purpose, which is an activity-centred 

method for program analysis. The calculation of the activity’s whole condition 

provides powerful analysis techniques to verify the correctness of the recovered 

workflow model. Through the proposed approach, the workflow procedures can 

be recovered from the existing system and verified by the precondition analysis. 

Keywords: computer software re-engineering, workflow management, 

precondition-based workflow model, whole-condition of an activity. 

1. Introduction 

Today’s business processes are becoming more and more complex and subject to 

frequent changes. Workflows are usually used to model the business processes and 

many organisations with complex business processes have identified the need for the 

management of workflows. Although it is possible to do workflow management 

without using a workflow management system, most people associate workflow 

management with workflow management systems (WfMSs) [2]. WfMSs are used to 

control, monitor, optimise and support business processes, which become the basic 

technology for organisations to build their Information Systems. However, today’s 

Information Systems are often designed and developed without utilising the workflow 

management building block. As a result, the business processes are hard-coded in the 
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applications, which is undesirable for the business change and integration [2]. 

Therefore, there is a clear need for re-engineering the underlying software systems to 

build the workflow oriented Information System, which is a time-consuming and error 

prone process. 

This research proposes a unified software re-engineering method from a business 

processes perspective. The main goal is to recover business process from the existing 

system and then build the workflow oriented Information System. The focus is on the 

reverse engineering rather than the forward engineering. The remainder of this paper 

is organised as follows. In Section 2, the related work is discussed. In Section 3, a 

precondition-based workflow model is introduced. In Section 4, a workflow extraction 

method is presented to elicit the business processes from existing systems. The concept 

of whole-condition of an activity is defined to analyse the precondition-based workflow 

model for optimisation and verification. In Section 5, several examples are investigated 

and discussed to validate the proposed method. Finally, in Section 6, the conclusion is 

drawn and further research directions are advocated. 

2. Related Work 

The technical context of the work is workflow oriented software re-engineering. In this 

section, the related research on business process re-engineering and software re-

engineering, workflow modelling and verification, software re-engineering and 

business logic extraction (workflow mining and recovery) will be reviewed with 

particular focus on workflow management systems. 

2.1. Business Process Re-engineering and Software Re-engineering 

A business process, as defined by Hammer and Champy, means a series of interrelated 

actions that take inputs, add value to them, and produce outputs that are of value to the 

customer [37]. In 1993, these authors also triggered the concept of Business Process 

Re-engineering (BPR) when they published a book about the business revolution [17]. 

In the same period, Davenport [12] defined BPR as a process that “encompasses the 

envisioning of new work strategies, the actual process design activity, and the 

implementation of the change in all its complex technological, human, and 

organisational dimensions.” BPR is regarded as an essential enabler for new sorts of 

working together either inside or outside an organisation [22]. While BPR software is 

used for business process design, workflow management tools are used to automate the 

managing of the execution of the business process when it is in production and being 

used on a daily basis [13]. 

The re-engineering of business processes most of the time is carried out 

simultaneously with the re-engineering of the underlying software systems. It is highly 

important to consider software legacy systems when redesigning business processes, 

because these systems are significant assets containing valuable information about 

current activities and business rules [23]. In order to facilitate the process of re-
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engineering the existing software to comply with the new business logic, there is a 

necessity to understand the business logic already implemented in the existing software 

systems. 

Since the 1980’s, the topic of program understanding has attracted many software 

engineers. A number of theoretical and empirical approaches on analysis methods have 

been introduced to ease and facilitate the process of understanding software. There 

exist different abstract levels of understanding of a software source code. Therefore, 

there are different types of elicitable information, along with their supporting 

techniques that aim to provide program comprehension at any level of abstraction. For 

examples, logic view and algebraic view can be elicited from a source code. Logic view 

provides a mechanism of automated reasoning. This is achieved by the production of 

the inter-modular data flow information acquired by the static analysis of code [8]. 

Algebraic view is a formal representation technique that describes a program algebraic 

specification. Algebraic specification uses equations to denote the relationships 

between the operations that a domain provides [10]. The supporting technique for 

generating logic view or algebraic view is flow analysis. There are several automatic 

code flowchart generator tools. These tools can create code flowchart directly from the 

source code using a code analyser engine. Examples of such tools are Code Visual to 

Flow Chart (http://www.fatesoft.com) and Flowchart4j (http://www.codeswat.com). 

In the area of software re-engineering, formal methods have been put forward as a 

means to formally specify and verify existing systems in particular those already 

operating in safety-critical applications, introduce new functionalities, and/or take 

advantage of the improvement in systems design techniques [25]. Formal methods can 

also increase the understanding of a system by revealing inconsistencies, ambiguities, 

and incompleteness that might go undetected [11]. By applying formal methods, it is 

possible to automate more of the process of software re-engineering [43]. 

2.2. Workflow Modelling and Verification 

The purpose of workflow modelling is to model business processes and hence the 

modelling methods must have certain characteristics: simple, easy to use, sufficiently 

expressive, well-structured and logically correct. There are plenty of methods for 

workflow modelling, e.g. graph-based, Petri-net based, ECA rule based and logic-

based method. All these methods describe workflow as a set of activities and 

transitions, and perform workflow schedule and execution based on various types of 

activities and transition rules. 

The workflow process diagrams are the most common and practical form of 

representation, which is a graph-based workflow modelling method. Currently, most 

workflow modelling tools in WfMSs are graph-based [14], e.g. the workflow process 

diagrams given by Workflow Management Coalition (WfMC) [38]. Activities in Petri-

net based workflow model are presented with transition nodes, and the routing 

relations are expressed by Petri-net transition rules. Therefore, conditional routing and 

concurrent routing can be expressed by Petri-net decision, concurrent and synchronous 

nodes. The workflow modelling method based on ECA rules [21, 28] describes the 

routing relations among activities with ECA rules, which disjoins activities from rules 
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of describing routing relations. It lets the activity be independent on routing, and hence 

its runtime scheduling algorithm [5, 21] is easy to be constructed, which is a natural 

way to build the big picture. Logic-based workflow models [27] are expressed with 

formulas and algebras, which are high-level abstract models for practical workflow, 

focusing on special characteristics for further analysis and mainly used in workflow 

theoretical research. Currently, temporal logic [36], predication logic [7], π calculus 

[42] and process algebra [40] have been used in workflow modelling. Strictly speaking, 

Petri-net can be treated as partial-order process algebra [6] and EAC rules can be 

expressed as transition rules or predication form of process algebra. The rule-based 

workflow model and the graph-based workflow model can be exchanged by defining 

the transformation rules. 

Workflow models are usually denoted by graphical symbols and descriptive 

language. The commonly used languages are BPMN [30] and XPDL [38]. BPMN uses 

standardised graphical symbols to express business workflow processes. XPDL, defined 

by WfMC (Workflow Management Coalition), is an XML-based Workflow Process 

Definition Language, which can be used to exchange between different XPDL 

compliant workflow systems. XPDL comes from BPEL [29], which is currently the 

best file format for exchange of BPMN diagrams [38]. BPMN is a standard notation 

which is easily understandable by business users. As a result, BPMN bridges the gap 

between the business process design and process implementation by providing a 

standard notation. BPEL4WS is a Business Process Execution Language for Web 

Services. BPMN can express BPEL4WS visually with a common standard notation 

[39]. 

Correctness verification is important no matter which workflow modelling method 

is adopted. The verification mainly includes the reasonability on workflow structure 

[31] and restriction on workflow runtime [26]. Most of verification methods are based 

on graph theory and Petri-net [31]. As a research tool of workflow in theory, Petri-net 

is formally used to study the correctness of workflow definition, operational 

mechanism, and other problems [1]. The Petri-net makes the structural verification 

easier with its own characters. The time Petri-net and colored Petri-net can be used to 

analyse and verify the time aspect of workflow model [24]. More complicated Petri-net 

model is needed to express resource utilisation in workflow [32]. The workflow model 

based on Petri-net is conditioned and needs to be verified step by step [3]. In recent 

years, temporal logics, predicate calculus, and process algebraic approaches are also 

used as research tools for workflow verification [7, 36, 40]. Little work has been done 

on ECA rule based workflow verification. 

The verification of workflows with cycle is more complicated. Recent research 

includes workflow model reducing and verifying based on T-invariant subnet model of 

Petri-net [41], and verifying based on decomposition method [9]. Restricted Loop 

WorkFlow Model (RLWFM) [22] is used to construct the loop sub-structure of 

workflow model based on well-behaviour sub-workflow and ‘repeat’ cyclic model. 
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2.3. Business Logic Extraction 

Business logic extraction includes static method and dynamic method. Typically, a 

workflow represents a business process. 

Static-Analysis Based Extraction. Sneed [33] presents an approach to recovering the 

business logic embedded in a legacy COBOL application. The approach is composed of 

four steps: restructuring, code slicing, multi-view analysis and integration. Single 

unified business logic documentation is generated from disjointed views at the 

transaction, subsystem and system level. 

Zou [45] proposes a framework for model-driven business process recovery. In the 

framework, business logics are identified from the source code through a static tracing 

method and a number of heuristics. An Eclipse plug-in tool is developed to do an 

automatic extraction from Java-based Web applications. As an extension to a previous 

work, Zou [44] proposes another automatic approach that captures business processes 

from the source code of e-commerce applications. The approach runs a comparison 

between the structural features of both types of workflows, as-specified and as-

implemented workflows. A structural comparison algorithm to recognise the structural 

resemblance between both types of workflows is designed.  

Hung [18] introduces a method to recover business processes for the three-tier 

architecture systems. The automatic recovery is achieved by identifying the business 

data and business policies in the source code. The approach employs forward and 

backward tracing to identify the exact location of the business logics. Hung [19] 

presents another technique to recover workflows from three-tier e-commerce software 

systems. The approach and the developed prototype tool identify the structure of 

workflows by tracing the navigation flow of the UI through the different UI pages. The 

generated workflow is depicted using a hierarchical view, and can be imported into the 

IBM WebSphere Business Modeller to inspect its low-level processing tasks. 

Dynamic-Analysis Based Extraction. In [34], Suenbuel and Shan propose an 

approach with experimental results for the extraction of high-level business process 

models from running enterprise systems. The complicated business processes are 

extracted using just a simple business process scheme and a few transformation and 

refinement rules. Based on this approach, a business process visualisation tool has been 

implemented. The tool automatically generates a Petri-net like diagram from the 

collected event data. 

Similarly, Aalst et al. [4] develop techniques of discovering workflow models by 

using workflow logs. Workflow logs contain real-time information about the workflow 

process as it is being carried out. A new algorithm is provided by this approach to 

derive a process model from the workflow log and then it is represented in the form of 

a Petri-net. The results have demonstrated that the proposed process mining method is 

possible for structured processes. 

Turner et al. [35] provide a different approach to business process mining by way of 

using a Genetic Programming (GP) technique in combination with a representation 

which is graph-based. The graph-based representation provides flexibility when 
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analysing process flowchart structure as well as making the mining of complex 

business processes from event logs, that are incomplete, possible.  

Foo et al. [15] introduce a technique for recovering business processes from e-

commerce applications and for verifying the recovered processes using dynamic and 

static analysis. User interface (UI) design patterns are utilised to identify tasks with 

appropriate granularity, and to separate different business processes. In addition, in 

order to create a complete usage scenario of a business process, the recorded 

information from each tier is merged and sorted by access time. They also develop a 

tool named Process Explorer [16]. By employing static and dynamic analysis 

techniques the tool automatically recovers business processes found in e-commerce 

systems. 

3. A Precondition-based Workflow Model 

Workflow oriented software re-engineering focuses on the reverse engineering process. 

In order to be successful in reverse engineering, the design of workflow model should 

meet following conditions: 

 the model should be formally defined to express general workflow specifications in 

terms of mathematical logic with suitable notations; 

 the model should support standard approaches to program analysis such as control-

flow analysis, data-flow analysis, etc; 

 the model should be applicable to optimisation and verification that is relevant for 

reverse engineering methods; 

 the model should be easily and efficiently implementable. 

The precondition-based workflow model is designed to meet above conditions. To 

illustrate the precondition-based workflow model, in Fig. 1, an order registration 

system selected from WfMC (WFMCTC-1025, V1.0) is used as an example. Here, only 

the routing structure is analysed and the details of each task are neglected. 

 

 

Fig. 1. Workflow process of order registration system 

The example is further symbolised as shown in Fig. 2. a1, a2, … a15 represent 

workflow activities of an order registration system. a1 is a start activity and a15 is an 
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end activity. x1, x2, … x5 are variables of workflow control data that are relevant to the 

choice of branch condition. Without loss of generality, during workflow modelling, 

every branch condition is expressed by a different variable. In this paper, the definition 

of basic control flow constructs is the same as the definition by the Workflow 

Management Coalition (WfMC). There are four structures: OR-Split, AND-Split, OR-

Join and AND-Join. The OR-Split is a point that only one of the alternative branches 

can be chosen, which is a XOR-Split. From Fig. 2, it is shown that the executive 

condition of a3 is that a2 is completed and x1=1; the executive condition of a8 is that a6 

is completed and x4=1, or a7 is completed and x5=1, and the executive condition of a13 

is that all a10, a11 and a12 are completed. 

 

Fig. 2. Symbolised workflow process of order registration system 

To sum up, the workflow model can be expressed as a composition of activities and 

their preconditions. An activity can be activated as long as its precondition becomes 

true. Since the execution of an activity is determined by its precondition, it is easy to 

judge the execution of an activity by checking whether the precondition of the activity 

is true or not. It means that the precondition-based workflow model can be constructed 

with only OR-Join and AND-Join structures. Meanwhile, since some preconditions of 

activities can be true at the same time, these activities can be dispatched concurrently. 

Definition 1 (precondition-based workflow model): is defined as a 4-tuple: WF = <A, 

V, C, F >, in which: 

A={a1, a2, …}: a finite set of activities; 

let pre(a) = {a’| a’ is the direct pre-activity of a}, which is the direct pre-activity set 

of a; 

let activity a’, a”  A, if ai, i=0,1,…,k, so that a’ pre(a0), a0  pre(a1),…, ak  

pre(a”), then a’ is the pre-activity of a” and is written as a’  a”; 

let saA, pre(sa)=, aA-{sa}, saa, sa is the start activity of the workflow 

model; let eaA, and aA-{ea}, aea, ea is the end activity of the workflow model; 

V={x1, x2, … }: a finite set of variables of workflow control relevant data; 

let Di be the domain of xi, namely, Di =dom(xi); 

C={c1, c2, … }: a finite set of conditions (predicate formula); 

F={f(ai)|aiA}: a finite set of activities’ preconditions, f: A(AC){normal, 

andJoin, orJoin}, aA, f(a)=<AC, t >, f(a) is the precondition of an activity a, here:  



8           Feng Chen et al. 

AC={< a’, c’>|a’pre(a), c’C}(AC), a’ is the direct pre-activity of a, c’ is the 

condition from a’ to a (default condition is True), (S) is the power set of S; 

let fac:A(AC), fac(a)=AC={<a’, c’>|a’A; c’C}, fac(a)[a’]=c’; 

let ft: A{normal, andJoin, orJoin}, ft(a)=t, t{normal, andJoin, orJoin}. 

By definition, the workflow model of Fig. 2 can be expressed as: 

WForder registration=<A, V, C, F>, in which: 

A={a1,a2,…a15}; 

V={x1, x2, x3, x4, x5}, xiDi={0,1}, i=1,2,3,4,5; 

C is a set of conditions: {x1=0, x1=1, x2=0, x2=1, x3=0, x3=1, x4=0, x4=1, x5=0, 

x5=1}; 

F={f(a1),f(a2),…f(a15)}, 

f(a1)=f(sa)=<, normal>, f(a2)=<{<a1, T>}, normal>, 

f(a3)=<{<a2, x1=1>}, normal>, f(a4)=<{<a2, x1=0>}, normal>, 

f(a5)=<{<a3, x2=1>}, normal>, f(a6)=<{<a5, x3=1>}, normal>, 

f(a7)=<{<a5, x3=0>}, normal>, f(a8)=<{<a6, x4=1>,<a7, x5=1>}, orJoin>, 

f(a9)=<{<a8, T>}, normal>, f(a10)=<{<a9, T>}, normal>, 

f(a11)=<{<a9, T>}, normal>, f(a12)=<{<a9, T>}, normal>, 

f(a13)=<{<a10, T>,<a11, T>,<a12, T>}, andJoin>, 

f(a14)=<{<a3, x2=0>,<a4, T>,<a6, x4=0>,<a7, x5=0>}, orJoin>, 

f(a15)=f(ea)=<{<a13, T>,<a14, T>}, orJoin>. 

Definition 2 (precondition-based workflow instance model): is defined as a 4-tuple: 

DWF=< I = AN, V, C, F >, in which: 

V, C are defined the same as in Definition 1; 

I=AN: (a, i)AN is defined as the i-th instance of activity a, here i is an identity for 

distinguishing the instances of the same activity; 

F: the set of instances’ precondition, for any (a, i)I, f(a,i)=<IC, t >. f(a,i) is the 

precondition of an instance (a, i), fac(a,i), ft(a,i) are defined the same as in Definition 1. 

The precondition-based workflow instance model is designed to handle multiple cases 

executed in parallel way, which is quite useful for workflow simulation. 

Definition 3 (instantiation of an activity): in DWF, let ent: AN{T,F},  ent(a,i)=F 

denotes that instance (a,i) has not been instantiated. Once ent(a,i)=T, it denotes that 

(a,i) has been instantiated. f(a,i) is met indicates that: 

1) When ft(a) = normal, let pre(a) = {a’}, and fac(a)[a’] = c’, then ent(a’,j)  c’=T. 

2) When ft(a) = andJoin, let pre(a) = {a1’, a2’,…an’} and fac(a)[ a1’, a2’,…an’] = 

[c1’, c2’,…cn’], then (c1’ ent(a1’,j))(c2’ ent(a2’,j))…(cn’ ent(an’,j)) = T. 

3) When ft(a) = orJoin, let pre(a) = {a1’, a2’,…an’} and fac(a)[ a1’, a2’,…an’] = [c1’, 

c2’,…cn’], then (c1’ent(a1’,j))(c2’ent(a2’,j))…(cn’ent(an’,j))=T. 

If ent(a,i)=F, and f (a,i) is met, then the (a,i) is instantiated, namely, ent(a,i)=T. 
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4. The Workflow Oriented Software Re-engineering 

In this section, the proposed precondition-based workflow oriented re-engineering 

method is presented. The method aims to facilitate the re-engineering of software 

systems in order to comply with the workflow technologies. The method follows a 

systematic step-based approach to extract business processes from an existing system 

by analysing the source code. The devised method is composed of 3 stages: program 

analysis for workflow elicitation, workflow analysis for optimisation and verification, 

system integration and testing. The system integration and testing stage is beyond the 

scope of this research and will be proposed as future work. Although this paper aims to 

be general and not limited to a specific programming language or software 

development approach, the focus is on Object-Oriented software and the reverse 

engineering aspect. 

4.1. Program Analysis for Workflow Elicitation 

Program analysis has the ultimate goal of enabling the comprehension of the 

underlying functional and data concept of software. Software visualisation can help 

software engineers to cope with the complexity of program comprehension by 

displaying programs, program artefacts, and program behaviour. Reverse engineering 

available techniques assist in software comprehension through exploiting the source 

code as the main source of information about certain software. The application of such 

techniques allows the extraction of a set of useful views provided to software engineers 

in the form of diagrams. The key step in the proposed approach is to extract the 

workflow models from the existing software. The extraction approach considers the 

source code to be the only available documentation for the system. The result of this 

step is a recovered workflow represented in the precondition-based workflow model. 

There are several forms of source code representation which could be considered as 

candidates for program analysis, e.g., an Abstract Syntax Tree (AST), a control flow 

diagram, a data flow diagram and a UML diagram, etc. The Abstract Syntax Tree 

(AST) represents plain source code in a tree form, which is convenient for static code 

analysis. The information of a node is referred as structural properties. Comments and 

other binding information can also be extracted by parsing the source code. Control 

flow diagrams, data flow diagrams and UML diagrams can be derived from AST. In 

this research, all these different views of source code will be synthesised to extract the 

workflow model from an existing system. 
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Class Diagram Recovery and Class Grouping. A class diagram depicts the static 

structure of the core classes that are used to build an Object Oriented system. The 

attributes and methods of each class together with the optional indication of some of 

their properties such as visibility and type are provided in the class diagram. The 

relationships amongst the classes are also presented in the class diagram. Aggregation, 

association and dependency relationships are shown in a class diagram to indicate that 

a class has access to attributes or operations of other classes. The class diagram 

recovery can be achieved by a syntactic analysis of the source code, provided that an 

accurate definition of the interclass relationships is known. 

There are three major types of classes defined by Rumbaugh, Jacobson and Booch 

[20] in their analysis model of an object-oriented design: boundary (interface) classes, 

control classes, and entity classes. Boundary classes are used to model interactions 

between the system and its actors (i.e., users and external systems). Boundary classes 

often represent abstractions of windows, forms, panes, communication interfaces, 

printer interfaces, sensors, terminals, and other APIs. Each boundary class should be 

related to one actor. Entity classes are used to model information that is long-lived and 

often persistent. Control classes are used to coordinate sequence and generally control 

the interaction between objects of other classes. Control classes typically encapsulate 

the business process of a single use case. 

Grouping as a general term means grouping entities or objects according to their 

relationships or similarities, which has the same meaning of clustering. Grouping 

techniques have been applied in many areas of software engineering. For instance, it 

has been used to capture reusable legacy code segments in a legacy system. It is also 

applied in the program understanding area through decomposing large software 

systems into more manageable components. In software clustering literatures, several 

clustering algorithms focus on the utilisations of the software structure. The algorithms 

use structural dependences and relationships to decompose large software systems into 

a set of meaningful modular clusters. Approaches that used attributes other than the 

software structure have also demonstrated merit. Such approaches include grouping of 

software entities based on file names, ownership or functionality. The details of 

clustering method are out of the scope of this research. 

Code Parsing and Abstraction. The control classes are more likely to hold the core 

business functions of the application. These classes should be pre-processed for further 

workflow extraction. The first step is parsing the source code and generating an 

Abstract Syntax Tree (AST) of the source code. Parsing or syntactic analysis as it is 

sometimes called is the process of analysing a sequence of tokens in order to determine 

its grammatical structure with respect to a formal grammar. The generated AST can be 

traversed by other tools to analyse the source code as a tree of nodes, where each node 

represents a part of the source code. 

The purpose of traversing the generated AST is to facilitate the code abstraction. In 

the code abstraction operation, the elimination of non-business related code such as 

supporting and error handling code is carried out by filtering out programming specific 

features. The result of this operation is the abstracted source code which will be used in 

the next step for the generation of the precondition-based workflow. The elimination of 

the non-business-logic code is based on the 7 heuristic rules proposed in [45], which is 



A Precondition-based Approach to Workflow Oriented Software Re-engineering           11 

 

designed as the following abstraction algorithm. Although the developed algorithm is 

not limited to a specific programming language, Java will be used in this paper to 

describe the algorithm. Since some rules, e.g. utility code and exception code, may 

have exceptional situations, the implementation of the algorithm can highlight unsure 

segments of code for reengineer to make the final decision. The abstraction algorithm 

contains two levels of abstractions: class level and method level. 

Algorithm 1: Code abstraction algorithm: 
For each candidate class n filter out 

  /* Import Statements are used when a program refers to 

     a class the compiler needs to determine which 

     package contains that class. */ 

  1: Import Statements 

  /* A getter is a method that gets the value of a 

     specific property. A setter is a method that sets 

     the value of a specific property. These methods are 

     trivial for business process. */  

  2: Getters and Setter Methods 

  /* GUI components Creation is not related to business     

     process. */ 

  3: GUI Components Creation Methods  

  /* GUI layout Management is not related to business 

     process. */  

  4: GUI Layout Management Methods  

  For each candidate method m filter out 

    /* The purpose of variable declaration is to warn the 

   compiler that the variable exists and to notify 

   the compiler the type of that variable. */ 

    01: Variables Declaration 

    /* An exception is an event that occurs during the 

   execution of a program that disrupts the normal 

   flow of instructions. An exception object can be 

   identified in try, catch and finally blocks in 

   throw statements. Cases in which exception used to 

   report error cases in the business logic handling 

   are not handled in this algorithm. */ 

    02: Exception Handling Statements 

    /* Utility Code Statements provide internal services, 

   for instance, transaction initialisation, 

   rollback, commitment, tracing or logging. 

   Generally, utility methods are designed as public 

   static methods. A catalog of utility classes can 

   be established by consulting developers. */ 

    03: Utility Code Statements  

    /* A Java type class, such as Enumeration, String and 

   Vector, provides primitive building blocks to 

   construct a Java program. */  

    04: Type Objects Statements 

  End For  

End For 
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Control Flow Diagram and Precondition-based Workflow Generation. Subsequent 

to the code abstraction step, control flow diagram will be automatically generated from 

the abstracted source code entities. Control flow diagram generation is an age-old 

problem. There are several automatic code flow chart diagram generators (software 

tools) that can reverse engineer a program with a code analyser and create a 

programming flowchart from the code. These available tools can be used to create 

control flow diagrams from the source code of the abstracted classes. Since the non-

business logic code has been filtered out in the code abstraction step, the generated 

control diagram will most likely represent the business control logic embedded in the 

source code. 

The final step of the method is to transform a control flow diagram into a 

precondition-based workflow model. Unlike the first three steps of the process, which 

were carried out automatically by using the appropriate software tools without the need 

for human intervention, in this research a software engineer with adequate knowledge 

in the domain of the application and the programming language used will be required. 

The job of the software engineer in this step is to simplify the extracted control flow 

diagram by replacing the code inside the diagram with more human readable 

expressions and activities.  

4.2. Analysis of the Precondition-based Workflow Models 

Once the workflow models are recovered, it is important to ensure that the produced 

models are correct, effective and efficient. For the system being reengineered, to 

analyse the recovered workflow process definition before it is put into production will 

greatly increase the quality of the new system. 

Basically, there are three types of analysis: validation, verification, performance 

analysis [1]. Simulation and testing can be used for validation and performance 

analysis, which are supported by the precondition-based workflow instance model. For 

verification, more advanced analysis techniques are needed. Based on the definition of 

the precondition-based workflow, the execution of an activity is only related to its 

precondition. If an activity can be instantiated, it means that its precondition is met, 

which implies that some pre-conditions of the related pre-activities are met as well. In 

order to analyse the properties of a workflow in a whole, the concept of the whole-

condition of an activity is presented, which is used to express the global property. 

Whole-condition of an Activity. Informally, if WF is a precondition-based workflow 

model, the whole-condition of an activity a is defined as all conditions along the path 

from start activity sa to a that enable a to occur. The whole-condition of an activity is 

not only the executive condition of the activity itself, but it implicates that all 

conditions along the path should be met before the activity is instantiated, which 

covers more comprehensive information than activity precondition. 

It is easy to get the whole-condition of an activity for the workflow without cyclic 

structures, but the work becomes complex for the workflow with cyclic structures since 

an activity may be instantiated many times while the condition for each instance will 

be changed accordingly. In general, a cycle in a workflow model must have at least one 
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entry node and one exit node. The precondition-based workflow model includes three 

types of nodes: normal, andJoin and orJoin. A normal node has only one pre-activity 

by its definition, so it cannot be the entry to a loop. If a loop is entered via an andJoin 

node, the loop body can never be executed since one node within the loop body must be 

triggered before the precondition of the entry node (andJoin node) is met.  Therefore, 

only the cyclic structures with orJoin-type nodes as entry points are taken into account 

in the paper. Some related concepts are given below first. 

Definition 4 (an acyclic path and its whole-condition): WF=<A, V, C, F> is a 

precondition-based workflow model. An acyclic path of an activity a( A) is defined as 

a route from the start activity sa to a without loop. Assuming there are m paths from sa 

to a, the condition of ith path (i=1,2,…m), written as pcond(a,i), is defined as a 

conjunction of all conditions along the whole path. 

The whole-condition of a is defined as a disjunction of all path conditions: 

wc(a)=pcond(a,1)pcond(a,2)…pcond(a,m). If any of path conditions of a is true, 

the whole-condition of a is true. In other words, if the whole-condition of a is satisfied, 

the precondition of a is satisfied, and a can be initiated and executed. 

Algorithm 2: WF=<A, V, C, F> is a precondition-based workflow model. For every 

aA, the method of calculating the whole-condition of acyclic paths of a is given 

below. Here, wc(a) denotes the whole-condition of a: 

1) The whole-condition of start node sa is: wc(sa) = T. 

2) When ft(a)=normal, namely, a is a normal type, let pre(a)={a’}, and 

fac(a)[a’]=c’. Then the whole-condition of acyclic paths of a is: wc(a) = c’  

wc(a’). 

3) When ft(a)=andJoin, let pre(a)={a1’,a2’,…an’} and fac(a)[a1’,a2’,…an’]=[c1’, 

c2’,…cn’], the conditions of the acyclic branches of a are wci(a)=ci’wc(ai’), i= 

1,2,…n, the whole-condition of the acyclic paths of a is: 

            wc(a)=wc1(a)wc2(a)…wcn(a)=c1’wc(a1’)c2’wc(a2’)…cn’wc(an’). 

4) When ft(a) = orJoin, let pre(a)={a1’,a2’,…an’} and fac(a)[a1’,a2’,…an’] = [c1’, 

c2’,…cn’], the conditions of the acyclic branches of a are wci(a) = ci’  wc(ai’), 

i= 1,2,…n, the whole-condition of the acyclic paths of a is: 

           wc(a)=wc1(a)wc2(a)…wcn(a)=(c1’wc(a1’))(c2’wc(a2’)) …(cn’wc(an’)). 
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Definition 5 (a cycle and its whole-condition): WF= <A, V, C, F> is a precondition-

based workflow model with cyclic structures. A cycle of a is defined as a route from a, 

through a loop of activities, to a itself, assuming there are n cycles of a, The condition 

of jth cycle, written as lcond(a, j), (j=1,2,…n), is defined as a conjunction of all 

conditions in the cycle, i.e., lcond(a, j) is calculated as the whole-condition of a path 

from start node a to end node a itself. Let oa be an orJoin-type node and an entry point 

of n cycles, awc(oa) denotes the whole-condition of the acyclic path from sa to oa, the 

whole-condition of a through j-th cycle is defined as: wc(oa, j) = lcond(oa, j)  

awc(oa). 

Naturally, wc(oa) can be defined as: wc(oa) = lcond(oa, 1)  lcond(oa, 2)  … 

lcond(oa, n)  awc(oa), (j=1,2,…n). In this paper, the discussion is focused on the 

whole-condition of one cycle, i.e. wc(a, j). 

Algorithm 3: WF=<A, V, C, F> is a precondition-based workflow model with cycles. 

oa is an orJoin-type node and an entry point of cycles. For every node aA, there exist 

3 cases: aoa, a=oa and oaa. The method of calculating the whole-condition of j-th 

cycle is given below. 

1) When aoa, there is no loop from sa to a, wc(a) can be calculated with 

Algorithm 2. 

2) When a=oa, as defined in Definition 5, wc(a, j) = lcond(a, j)  awc(a). 

3) When oaa, xwc(a) denotes the whole-condition of the acyclic path from oa to 

a, wc(a, j) = awc(oa)  xwc(a)  lcond(a, j). awc(oa)  xwc(a) is the whole-

condition of acyclic paths from sa to a. 

In the precondition-based workflow model, workflow relevant data are an important 

factor to affect the workflow execution. Workflow relevant data can be accessed by 

both applications and the workflow engine. Workflow relevant data are associated with 

the workflow instance, and different values of relevant data can influence the routing 

of instances. Since the values of workflow relevant data in loop condition may change 

in later execution, to simplify the expression, it is necessary to introduce predicate 

variables in lcond(a, i) for analysing workflow models with cyclic structures. In this 

way, the relevant data can be assigned many times. For example, there are two 

variables in lcond(a, 1), x{1, 2, 3}, y{T, F}, x=1, y=T. lcond(a, 1) can be expressed 

as lcond(a, 1): X|x = 1, Y|y = T, in which, X indicates a predicate variable with the domain 

of {1, 2, 3}, and the current value of X is x=1, Y indicates a predicate variable with the 

domain of {T, F}, and the current value of Y is y=T. X and Y are called as associated 

predicate variables. 

Precondition-based Workflow Verification. In a broad sense, the verification of a 

workflow model is to ensure that the whole process, from the model setup/instantiation 

to the end of execution, is correct. The definition of correctness is a set of minimal 

requirements that the precondition-based workflow model should satisfy. Most of 

definitions from literature can be described as the following three soundness 

properties: 

a) Workflow model without deadlocks. Since deadlock is resource-related, the 

workflow liveness is usually used to ensure there are no deadlocks. Workflow 
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liveness means that, for every activity a, there is an executable path from start 

node sa to a, and then to the end node ea of the workflow. 

b) Workflow model without wrong synchronisation. Wrong synchronisation 

means that concurrent activities cannot be converged in an andJoin-type node 

but in an orJoin-type node. 

c) Workflow model without infinite loops. For a workflow model with cycles, each 

cycle should have at least one exit. 

Point a) and point b) are easy to be understood. For point b), if an orJoin activity a4 

is preceded by activities a2 and a3.The predecessor of activities a2 and a3 is an andSplit 

activity a1. As a result, both activities a2 and a3 will run in parallel, and activity a4 has 

to be instantiated twice. This is not desirable and is defined as wrong synchronisation. 

In a precondition based workflow model, there is no definition of andSplit and 

xorSplit. Actually, the information of andSplit and xorSplit has been implicitly 

expressed in the preconditions of activities. 

Only all above requirements are met, a workflow can be defined as correctness. 

Obviously, the soundness property relates to the workflow instance model. Definition 6 

gives a definition of the correctness of the precondition-based workflow. 

Definition 6 (correctness of the precondition-based workflows): if a precondition-

based workflow instance model DWF meets the following conditions: 

a) For every activity aA, asa, aea, if there exists a state ent(a,i) = T, then this 

state is derived from ent(sa,1) = T and leads to the terminal state of DWF, 

namely, ent(ea,1) = T. This point indicates that the precondition-based 

workflow is live. 

b) For every aA, a’, a’’ pre(a), ft(a)= orJoin,  fac(a)[a’,a’’] = [c’, c’’], that <(a’, 

k),c’> and <(a’’, l),c’’> cannot be satisfied simultaneously. This point asserts 

that the precondition-based workflow has no wrong synchronisation. 

c) It will not happen that ent(a,i) = T can always reach to a new state, ent(a,i+1) = 

T (i >= 1). This point ensures that there is no infinite loop for the workflow 

instance. 

Then, the workflow model is correct. 

Theorem 1 (correctness of workflows without cyclic structures): let WF be a 

precondition-based workflow model without cyclic structures and ACOND be a set of 

whole-conditions of activities in WF. wc(a)=wc(x1,x2,…xn)ACOND denotes the 

whole-condition with relevant data xiV  (i=1,2,…n) as variables, and Di as the 

domain of xi. Then, WF is correct if the following conditions are met for every xi 

(i=1,2,…n) with an assigned value in Di: 

1) For any activity aA, there exists xi (i=1,2,…n) with an assigned value, such 

that wc(a)=T. 

2) For any activity aA with andJoin type, wc1(a)wc2(a)…wcn(a)=T, otherwise 

wc1(a)=wc2(a)=…wcn(a)=F. 

3) For any activity aA with orJoin type, pcond(a,k)  pcond(a,l)=F, in which 

kl, k,l  {1,2,…n }. 
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Proof: To prove the correctness of a workflow model is equal to prove that the 

workflow model meets the 3 conditions of definition 6. 

It is obvious that the c) of definition 6 is met for a workflow model without cyclic 

structure. 

According to 1), for an instance (a,1), ent(a,1) = T, there exists a pre-instances 

(a’,1), which has been instantiated, and so on. So ent(a,1) = T can be derived from 

ent(sa,1) = T. On the other hand, for aj that apre(aj), j=1,2,…k, there exist values of 

cj(xi), such that ent(a,1)cj = T, j=1,2,…k. If ft(aj)= normal or ft(aj)= orJoin, f(aj,1) 

must be met, namely, wc(aj)= T. If ft(aj)=andJoin, according to 2), 

wc1(a)wc2(a)…wcn(a)=T, wc(aj)= T. So ent(ea,1) = T can be derived from ent(a,1) = 

T. Therefore, the a) of definition 6 is met. 

For the orJoin-type node, the 3) indicates that different path conditions cannot be 

met at the same time. For a’, a’’ pre(a), ft(a)= orJoin, a’ and a’’ are not in the same 

path, <(a’, j), c’> and <(a”, k), c”> cannot be met at the same time, namely, the b) of 

the definition 6 is met.  

Proof End 

Theorem 1 gives the sufficient conditions judging the correctness of a precondition-

based workflow model without cyclic structures. 1) and 2) of the Theorem 1 guarantee 

there is no deadlock in the workflow model. 3) of the Theorem 1 guarantees there is no 

wrong synchronisation. For an orJoin-type activity, if the full conditions of two paths 

are true simultaneously, this activity will be instantiated twice, which is treated as 

wrong synchronisation. 

Since the whole-condition of an activity is a predicate formula, the correctness of 

workflow models can be evaluated by analysing the activities’ whole-condition. This 

theorem would be very useful since the problem of the workflow verification can be 

translated into the problem of predicate determination by this theorem. 

For a workflow model with cyclic structures, the following theorem ensures that a 

workflow model with cyclic structures is correct. 

Theorem 2 (correctness of workflows with cyclic structures): let WF be a precondition-

based workflow model with cyclic structures. If a workflow model is correct, it should 

meet the following requirements: 

1) For every (a, i), lcond(a,i) = F, the workflow model is correct. 

2) For every orJoin-type node oa, the substructure, which begins from oa with 

whole-condition of T and ends at oa itself with the whole-condition of 

lcond(oa,i), is correct. 

3) For an orJoin-type node oa, on which there is a cycle with the condition 

lcond(oa,k), for every andJoin-type node a after oa, if a is inside the cycle, 

when lcond(oa,k) is true, [lcond(oa,k)  T]   [wc1(a,k)  wc2(a,k) …  

wcm(a,k)] must be true. if a is outside the cycle, when lcond(oa,k) is false, 

[lcond(oa,k)  F]   [wc1(a,k)  wc2(a,k) …  wcm(a,k)] must be true. 

wc1(a,k), wc2(a,k), …, wcm(a,k) are branch conditions of a. This indicates that 

item 2) in Theorem 1 is hold with cyclic structures. 

4) wc(ea) and wc(a,i) cannot be true at the same time. 
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5) lcond (a,i) is not a tautology. Namely, If lcond (a,i) = F, there exists b, such 

that wc(b) = T. 

Proof: To prove the correctness of a workflow model is equal to prove that the 

workflow model meets the 3 conditions of definition 6. 

According to 1), 2), 3), both acyclic and cyclic branches and their combination are 

correct. Based on Theorem 1, It is obvious that ent(a,1) = T can be derived from 

ent(sa,1) = T and ent(ea,1) = T can be derived from ent(a,1) = T. Meanwhile, there is 

no wrong synchronisation. Therefore, the a) and b) of definition 6 is met. 

According to 4) and 5), there is no infinite loop in the model. Therefore, the c) of 

definition 6 is met. 

Proof End 

5. Examples 

First, a small example of a thesis defence application is selected as the case study to 

experience the proposed approach. The goal of this example is to demonstrate the 

feasibility of the proposed approach for software re-engineering. Then, several 

representative examples are used to illustrate the abilities and the limitations of the 

whole-condition based analysis methodology. 

5.1. A Thesis Defence Application 

The thesis defence application was taken from a university’s office automation system. 

A modification was made to make the code more suitable for evaluating the proposed 

approach. The scenario for this case study is to reengineer a Java based system to 

extract the workflows by employing the precondition-based workflow oriented software 

re-engineering approach. 

Workflow Extraction. The first step of the approach is to group the code entities or 

classes into boundary (interface) classes, control classes, and entity classes. In this case 

study, only ApplyThesisDefenses class is considered for workflow extraction. The 

second step is to parse the ApplyThesisDefenses class and filter out non-business-logic 

code. The abstraction algorithm (Algorithm 1) is used to determine the candidate code. 

The third step is to generate control flow diagram by using available tools. Normally, 

the flowchart tool depicts the control flow of the abstracted code in a familiar graphical 

form. A flowchart based on the control flow diagram was drawn to visualise the thesis 

defence application process as shown in Fig. 3.  
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Fig. 3. A flowchart of the thesis defence application process 

Then a precondition-based workflow model can be created formally after analysing 

the activities of business processes in above application: 

WFApplyforDefence=<A, V, C, F>, in which: 

A={Start(sa), AppForDefense, ThesisModi, NotpassEval, FormatModi, 

AppInSuccess, TutorOpinion, Review1, Review2, Evalution, FormatCheck, End (ea)}, 

V={opinion, format, g1, g2}, 

Dopinion= {yes, no}, Dformat = {yes, no}, Dg1 =  {1..5}, Dg2 =  {1..5}, 

C is a set of formula generated from following atomic formula: T, F, opinion=‘no’, 

opinion=‘yes’, format=‘no’, format=‘yes’, g1>2, g2>2, g1+g2>7, 

F={f(sa), f(AppForDefense), … f(ea)}, 

f(sa)=<, normal>, f(AppForDefense)=<{<sa, T>}, normal>, 

f(TutorOpinion)=<{<AppForReply, T>,<ThesisModi, T>}, orJoin>, 

f(ThesisModi)=<{<TutorOpinion, opinion=‘no’>}, normal>, 

f(Review 1)=<{<TutorOpinion, opinion=‘yes’>}, normal>, 

f(Review 2)=<{<TutorOpinion, opinion=‘yes’>}, normal>, 

f(Evalution)=<{<Review1, T>,< Review2, T>}, andJoin>, 

f(FormatCheck)=<{<Evalution,((g1>2)(g2>2)) (g1+g2>7)>, <FormatModi, 

T>}, orJoin>, 

f(FormatModi)=<{<FormatCheck, format=‘no’>}, normal>, 

f(NotpassEval)=<{<Evalution,(((g1>2)(g2>2))(g1+g2>7))>}, normal>, 

f(AppInsuccess)=<{<FormatCheck, format=‘yes’>}, normal>, 

f(ea)=<{<AppInsuccess, T>,<NotPassEval, T>}, orJoin>. 



A Precondition-based Approach to Workflow Oriented Software Re-engineering           19 

 

Workflow Verification. For the thesis defence application workflow model, the 

whole-conditions of acyclic paths in the workflow are calculated as below:  

wc(AppForDefense)=T, wc(TutorOpinion) = T, ... 

wc(FormatCheck)=(((g1>2)(g1>2))(g1+g2>7))(opinion=‘yes’), … 

wc(ea)={(format=‘yes’)(((g1>2)(g1>2))(g1+g2>7))(opinion=‘yes’)}  

             { (((g1>2)(g1>2))(g1+g2>7))(opinion=‘yes’)} 

The whole-conditions after one cycle for orJoin-type nodes are calculated as below: 

wc(TutorOpinion, 1)=(opinion=‘no’), 

wc(FormatCheck, 1)=(format=‘no’)(((g1>2)(g1>2))(g1+g2>7)) 

                                    (opinion=‘yes’). 

In this example, there are two loops produced separately on orJoin-type nodes: 

TutorOpinion and FormatCheck. Let variable Option be assigned with values of 

{opinion=’no’, opinion=’yes’}, and Format be assigned with values of 

{format=’no’,format=’yes’}. The cyclic condition lcond(TutorOpinion,1): 

opinion=’no’ can be re-expressed as lcond(TutorOpinion,1): Opinion|opinion=’no’. The 

cyclic condition lcond(FormatCheck,2): format=’no’ can be re-expressed as 

lcond(FormatCheck,2): Format|format=’no’. Because two cycles are produced on different 

nodes, there is no interaction between each other, two whole-conditions can be put 

together with different label i{1,2}. For example, 

wc(TutorOpinion, i)=wc(TutorOpinion)lcond(TutorOpinion, 1) 

                                =T Opinion |opinion=‘no’= Opinion |opinion=‘no’. 

The following is the verification of the precondition-based workflow model with two 

cycles on nodes: TutorOpinion and FormatCheck: 

 It is easy to verify that 1) of the Theorem 2 is met. 

 The cycle from TutorOpinion, through ThesisModi, to TutorOpinion can be 

regarded as a non-cyclic structure from TutorOpinion with whole-condition T, to 

TutorOpinion itself with whole-condition opinion=‘no’. It is easy to verify that this 

sub-structure is correct. Similarly, FormatCheck can also be verified to be correct. 

Thus, 2) of the Theorem 2 is met. 

 Since wc1(Evaluation)  wc2(Evaluation), item 3) of the Theorem 2 is met. 

 If wc(TutorOpinion)  lcond(TutorOpinion,1)  opinion=‘no’, then wc(ea)=F, and 

if wc(FormatCheck)  lcond(FormatCheck,2)  ((g1>2  g2>2)  (g1+g2>7))  

(opinion=‘yes’)  (format=‘no’), then wc(ea)=F, therefore, 4) of the Theorem 2 is 

met. 

 If lcond(TutorOpinion,1)  opinion=‘no’ and lcond(FormatCheck,2)  

format=‘no’, then lcond(TutorOpinion,1)  lcond(FormatCheck,2)  

(opinion=‘no’)  (format=‘no’) is not a tautology, namely, 5) of the Theorem 2 is 

met. 

The verification is over showing that the model is correct. 

5.2. Several Representative Workflow Models 

Fig. 4 shows two workflow models without cycles. 
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(b) 

Fig. 4. Workflow models without cycles 

Fig. 4(a) is a workflow model with overlapping structure. No matter what value, T 

or F, is assigned to variable a, every node will be arrived, namely, item 1) of Theorem 

1 is met. For the andJoin-type node, marked as 12, wc1(12)=wc(10) and 

wc2(12)=wc(10), so wc1(12)wc2(12), namely, item 2) of Theorem 1 is met. For the 

orJoin-type nodes, marked as 10 and 11, they have path conditions, pcond(i,1)=a, 

pcond(i,2)=a (i=10,11), such that pcond(i,1)pcond(i,2)=F, item 3) of Theorem 1 is 

met. Therefore, the workflow model with overlapping structure is correct.  

Fig. 4(b) is used to illustrate several cases of workflow models without cycles. Let 

WF= <{sa,a0,a1,a2,a3,a4,a5}, {x1,x2}, {c1,c2,c3,c4}, {f(a0),… f(a5)}> 

Case 1: let the domain of x1, D1, and the domain of x2, D2, be an integer set, and c1: 

T, c2: T, c3: x2=1, c4: x21, and f(a0)=<{<sa, T>}, normal >, f(a1)=<{<a0, c1>}, 

normal>,  f(a2)=<{<a0, c2>}, normal>, f(a3)=<{<a1, T>,<a2, c3>}, andJoin>, 

f(a4)=<{<a2, c4>}, normal>, f(a5)=<{<a3, T>,<a4, T>}, orJoin >, f(ea)=<{<a5, T>}, 

normal>, then the conditions of the acyclic branch of a3 are wc1(a3): T  and wc2(a3): 

x2=1. If the value of x2 is not 1, namely, wc2(a3) is false, item 2) in theorem 1 is not 

met, therefore, the workflow model is not correct. In this situation, a1 will be executed 

and waiting for the completion of a2 that will never happen. The workflow will run 

into a deadlock status. 

Case 2: make a type change on a3 and a5: f(a3)=<{<a1, T>,<a2, c3>}, orJoin> and 

f(a5)=<{<a3, T>,<a4, T>}, andJoin >, then the path conditions from sa to a3 are 

pcond(a3,1): T and pcond(a3,2): x2=1. When the value of x2 is 1, pcond(a3,1) and 

pcond(a3,2) are met at the same time, namely, item 3) in Theorem 1 is not met, and 

therefore the model is not correct. This situation is the wrong synchronisation. 

Case 3: make a change to case 1 so that, c1: x1=1, c2: x11, c3: x2<0, c4: x2>0, and 

the type of a3 is orJoin, f(a3)=<{<a1, x1=1>,<(x11)(x2<0)>}, orJoin>, it is easy to 

verify that the item 2) and item 3) in Theorem1 are met. However, if the value of x2 is 

assigned to 0 (this may happen in a2 or its predecessors), the item 1) in Theorem 1 

cannot be met, and therefore the model is not correct. It shows that the successors of a2 

cannot be instantiated and executed. This is an example of how the relevant data can 

affect the workflow correctness. 



A Precondition-based Approach to Workflow Oriented Software Re-engineering           21 

 

Fig. 5 shows several representative workflow models with cycles. 

 

  

(c) (d) 

Fig. 5. Several representative workflow models with cycles 

(a): lcond(1,1)=B|bA|a, and wc(ea,1)=(B|bA|a)(B|bA|a)(B|bA|a), when  

ba is true, lcond(1,1) and wc(ea,1) are true at the same time. This means the 

workflow ends while the cycle is not terminated. The item 4) of Theorem 2 is not met. 

Therefore, the workflow model in (a) is not correct. 

(b), (c) and (d) indicate three kinds of situations related to the concurrency. For 

these situations, four items 1), 2), 4) and 5) of Theorem 2 are met and item 3) of 

Theorem 2 should be checked. 

The node 6 in (b) is an andJoin-type node and its whole-condition is wc(6,1) = T  

A|a. = a. Since the node locates outside the cycle, when lcond(3,1) = a is false, 

whether wc1(6,1) and wc2(6,1) are logically equivalent should be checked, Since 

[lcond(3,1)  F]   [wc1(6,1)  wc2(6,1)] is true. So workflow model (b) is correct. 

The node 7 in (c) has whole-condition wc(7,1) = A|a  A|a. Because the node 

locates outside the cycle, when lcond(1,1) = a is false, whether wc1(7,1) = A|a and 

wc2(7,1) = A|a are logically equivalent should be checked. Since [lcond(1,1)  F]   

[wc1(7,1)  wc2(7,1)] is false, the workflow model (c) is not correct. 

  
(a) (b) 
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The node 7 in (d) has whole-condition wc(7,1) = T  A|a. Because it locates inside 

the cycle, when lcond(4,1) = a is true, whether wc1(7,1) = T and wc2(7,1) = A|a are 

logically equivalent should be checked. Since formula  [lcond(4,1)  T]   [wc1(7,1) 

 wc2(7,1)] is true, the workflow model (d) is correct. 

5.3. Discussion of Several Significant Technical Issues  

The aim of this research is to build a unified software re-engineering approach to 

recovering business process from the existing system for the development of workflow 

oriented Information System. While the case study and the examples have shown the 

success of this research, several significant technical issues need to be further 

addressed. 

Why is the proposed precondition-based workflow model suitable for software re-

engineering?  

For a large-scale complicated business process, it is rather hard for an analyser to 

have a complete concept of the system to describe the complex work procedures of the 

whole business. Facing a practical business process, it is easier to analyse each activity 

and its preconditions, and in turn to construct a reasonable workflow process diagram 

in a “bottom-up” way. This simplicity of the model makes it very suitable for software 

re-engineering. Especially, the model is applicable to optimisation and verification by 

introducing the concept of whole-condition, which is easily and efficiently 

implementable. 

What is the relationship between the source code and the proposed precondition-based 

workflow model? 

The main goal of the method is to be able to recover consistent and validated 

workflow models corresponding to the legacy code. Source code is at the lowest level. 

The workflow model is the business process concern at the higher level. Abstraction 

techniques have to be used to produce high level models/views from low level source 

code. Program transformation can be used as a pre-process of this abstraction process. 

Since the proposed workflow model has the similar control flow structure of the source 

code, the gap between the code and the model is easy to be bridged. 

What is the expressiveness of the proposed precondition-based workflow model? 

Normally, an activity-centred workflow model includes choice, concurrent and 

synchronised structures, namely OR-Split, AND-Split, OR-Join and AND-Join, e.g. the 

activity diagram defined by OMG. The precondition-based workflow model can be 

constructed with only orJoin and andJoin structures without andSplit and xorSplit 

structures. Actually, andSplit and xorSplit has been implicitly expressed in the 

preconditions of activities. It is also a natural way to extend the precondition of an 

activity by encapsulating time, resource and other elements, which is a powerful 

expression with great flexibility. This feature can also be used to transform other 

workflow models into precondition-based workflow models. The relative data is also 

considered in this research. Colored Petri-nets seem to be more powerful and 

appropriate for dealing with relative data. However, there is always a trade-off between 

the expressiveness of the model and the efficiency of using the model. 
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Which kinds of incorrectness can be verified in the precondition-based workflow 

model? 

The verification of the proposed precondition-based workflow model method 

remains the features of the known analysis methods, i.e. three soundness properties: no 

deadlock (liveness), no wrong synchronisation and no infinite loop (non-termination). 

Particularly, the precondition of an activity consists of conditions with relative data, 

which makes it possible to analyse the impact of data on workflow correctness. 

What is the automation degree of the proposed approach? 

Since the abstraction process is knowledge-based, although a transformation tool 

can be developed to support this process, human intervention is still essential to 

complete the final transformation. For example, the determination of the granularity of 

an activity is granted to a software engineer. The software engineer is to simplify the 

extracted control flow diagram by replacing the code inside the diagram with more 

human readable expressions and activities. Since the gap between the control flow 

diagram and the precondition-based workflow model is very small, most jobs are quite 

direct and simple. 

6. Conclusion 

This research proposes a unified software re-engineering approach from a business 

process perspective. A precondition-based workflow extraction method is developed to 

elicit the business processes from existing systems. Several reverse engineering 

techniques and tools have been employed. The fact that human interventions are still 

required indicates that it is only semi-automatic. The initial results underline the 

feasibility of the proposed approach. Concretely, the key contributions of this research 

are as follows: 

 New Workflow Model: The precondition-based workflow model is formally defined 

in this research. The simplicity and formality of the precondition-based workflow 

model make it very suitable for software re-engineering. 

 Precondition-based Method for Workflow Modelling and Verification: The 

correctness of the workflow model is formally defined.  The concept of the whole-

condition of an activity is proposed to translate the verification of the precondition-

based workflow model into the problem of predicate determination. 

 Unified Approach: The proposed approach in this paper starts with understanding 

the source code of the system. A code abstraction algorithm is designed to filter out 

the non-business-logic related code from the source code. The proposed re-

engineering method utilises the re-engineered control flow to build the 

precondition-based workflow model and ends with the desired reengineered 

workflow oriented system. 

This research focuses mainly on reverse engineering aspects. However, the recovered 

workflows should be integrated and tested in the new systems. The BPEL and BPMN 

are currently widely used by business professionals and there are plenty of tools based 

on BPEL and BPMN to support the new system development. So the possible future 
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work is to link the precondition-based workflow model to standards, i.e. BPEL and 

BPMN, for modelling the workflows, which would be an important contribution. 
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