
Computer Science and Information Systems 11(1):1–27 DOI: 10.2298/CSIS121021064C

A Precondition-based Approach to Workflow Oriented

Software Re-engineering

Feng Chen1, Da Tang2, Hongji Yang1, and

Mohammed Alawairdhi3

1 Software Technology Research Laboratory,

De Montfort University, Leicester, LE1 9BH, England

{ fengchen, hyang}@dmu.ac.uk
2 Department of Computer Science and Engineering,

Dalian University of Technology, Dalian 116024, China

tangda@dlut.edu.cn
3 College of Computer and Information Sciences,

Al-Imam Muhammad Ibn Saud Islamic University, Saudi Arabia

awairdhi@ccis.imamu.edu.sa

Abstract. Workflow management systems (WfMSs) become the basic

technology for organisations to build their Information Systems. To understand

the business processes already implemented in the existing software systems and

then build the workflow oriented Information System is a time-consuming and

error prone process. This paper proposes a unified software re-engineering

approach from a business process perspective. A workflow extraction method is

developed to elicit the business processes from existing systems. A precondition-

based workflow model is designed for this purpose, which is an activity-centred

method for program analysis. The calculation of the activity’s whole condition

provides powerful analysis techniques to verify the correctness of the recovered

workflow model. Through the proposed approach, the workflow procedures can

be recovered from the existing system and verified by the precondition analysis.

Keywords: computer software re-engineering, workflow management,

precondition-based workflow model, whole-condition of an activity.

1. Introduction

Today’s business processes are becoming more and more complex and subject to

frequent changes. Workflows are usually used to model the business processes and

many organisations with complex business processes have identified the need for the

management of workflows. Although it is possible to do workflow management

without using a workflow management system, most people associate workflow

management with workflow management systems (WfMSs) [2]. WfMSs are used to

control, monitor, optimise and support business processes, which become the basic

technology for organisations to build their Information Systems. However, today’s

Information Systems are often designed and developed without utilising the workflow

management building block. As a result, the business processes are hard-coded in the

2 Feng Chen et al.

applications, which is undesirable for the business change and integration [2].

Therefore, there is a clear need for re-engineering the underlying software systems to

build the workflow oriented Information System, which is a time-consuming and error

prone process.

This research proposes a unified software re-engineering method from a business

processes perspective. The main goal is to recover business process from the existing

system and then build the workflow oriented Information System. The focus is on the

reverse engineering rather than the forward engineering. The remainder of this paper

is organised as follows. In Section 2, the related work is discussed. In Section 3, a

precondition-based workflow model is introduced. In Section 4, a workflow extraction

method is presented to elicit the business processes from existing systems. The concept

of whole-condition of an activity is defined to analyse the precondition-based workflow

model for optimisation and verification. In Section 5, several examples are investigated

and discussed to validate the proposed method. Finally, in Section 6, the conclusion is

drawn and further research directions are advocated.

2. Related Work

The technical context of the work is workflow oriented software re-engineering. In this

section, the related research on business process re-engineering and software re-

engineering, workflow modelling and verification, software re-engineering and

business logic extraction (workflow mining and recovery) will be reviewed with

particular focus on workflow management systems.

2.1. Business Process Re-engineering and Software Re-engineering

A business process, as defined by Hammer and Champy, means a series of interrelated

actions that take inputs, add value to them, and produce outputs that are of value to the

customer [37]. In 1993, these authors also triggered the concept of Business Process

Re-engineering (BPR) when they published a book about the business revolution [17].

In the same period, Davenport [12] defined BPR as a process that “encompasses the

envisioning of new work strategies, the actual process design activity, and the

implementation of the change in all its complex technological, human, and

organisational dimensions.” BPR is regarded as an essential enabler for new sorts of

working together either inside or outside an organisation [22]. While BPR software is

used for business process design, workflow management tools are used to automate the

managing of the execution of the business process when it is in production and being

used on a daily basis [13].

The re-engineering of business processes most of the time is carried out

simultaneously with the re-engineering of the underlying software systems. It is highly

important to consider software legacy systems when redesigning business processes,

because these systems are significant assets containing valuable information about

current activities and business rules [23]. In order to facilitate the process of re-

A Precondition-based Approach to Workflow Oriented Software Re-engineering 3

engineering the existing software to comply with the new business logic, there is a

necessity to understand the business logic already implemented in the existing software

systems.

Since the 1980’s, the topic of program understanding has attracted many software

engineers. A number of theoretical and empirical approaches on analysis methods have

been introduced to ease and facilitate the process of understanding software. There

exist different abstract levels of understanding of a software source code. Therefore,

there are different types of elicitable information, along with their supporting

techniques that aim to provide program comprehension at any level of abstraction. For

examples, logic view and algebraic view can be elicited from a source code. Logic view

provides a mechanism of automated reasoning. This is achieved by the production of

the inter-modular data flow information acquired by the static analysis of code [8].

Algebraic view is a formal representation technique that describes a program algebraic

specification. Algebraic specification uses equations to denote the relationships

between the operations that a domain provides [10]. The supporting technique for

generating logic view or algebraic view is flow analysis. There are several automatic

code flowchart generator tools. These tools can create code flowchart directly from the

source code using a code analyser engine. Examples of such tools are Code Visual to

Flow Chart (http://www.fatesoft.com) and Flowchart4j (http://www.codeswat.com).

In the area of software re-engineering, formal methods have been put forward as a

means to formally specify and verify existing systems in particular those already

operating in safety-critical applications, introduce new functionalities, and/or take

advantage of the improvement in systems design techniques [25]. Formal methods can

also increase the understanding of a system by revealing inconsistencies, ambiguities,

and incompleteness that might go undetected [11]. By applying formal methods, it is

possible to automate more of the process of software re-engineering [43].

2.2. Workflow Modelling and Verification

The purpose of workflow modelling is to model business processes and hence the

modelling methods must have certain characteristics: simple, easy to use, sufficiently

expressive, well-structured and logically correct. There are plenty of methods for

workflow modelling, e.g. graph-based, Petri-net based, ECA rule based and logic-

based method. All these methods describe workflow as a set of activities and

transitions, and perform workflow schedule and execution based on various types of

activities and transition rules.

The workflow process diagrams are the most common and practical form of

representation, which is a graph-based workflow modelling method. Currently, most

workflow modelling tools in WfMSs are graph-based [14], e.g. the workflow process

diagrams given by Workflow Management Coalition (WfMC) [38]. Activities in Petri-

net based workflow model are presented with transition nodes, and the routing

relations are expressed by Petri-net transition rules. Therefore, conditional routing and

concurrent routing can be expressed by Petri-net decision, concurrent and synchronous

nodes. The workflow modelling method based on ECA rules [21, 28] describes the

routing relations among activities with ECA rules, which disjoins activities from rules

4 Feng Chen et al.

of describing routing relations. It lets the activity be independent on routing, and hence

its runtime scheduling algorithm [5, 21] is easy to be constructed, which is a natural

way to build the big picture. Logic-based workflow models [27] are expressed with

formulas and algebras, which are high-level abstract models for practical workflow,

focusing on special characteristics for further analysis and mainly used in workflow

theoretical research. Currently, temporal logic [36], predication logic [7], π calculus

[42] and process algebra [40] have been used in workflow modelling. Strictly speaking,

Petri-net can be treated as partial-order process algebra [6] and EAC rules can be

expressed as transition rules or predication form of process algebra. The rule-based

workflow model and the graph-based workflow model can be exchanged by defining

the transformation rules.

Workflow models are usually denoted by graphical symbols and descriptive

language. The commonly used languages are BPMN [30] and XPDL [38]. BPMN uses

standardised graphical symbols to express business workflow processes. XPDL, defined

by WfMC (Workflow Management Coalition), is an XML-based Workflow Process

Definition Language, which can be used to exchange between different XPDL

compliant workflow systems. XPDL comes from BPEL [29], which is currently the

best file format for exchange of BPMN diagrams [38]. BPMN is a standard notation

which is easily understandable by business users. As a result, BPMN bridges the gap

between the business process design and process implementation by providing a

standard notation. BPEL4WS is a Business Process Execution Language for Web

Services. BPMN can express BPEL4WS visually with a common standard notation

[39].

Correctness verification is important no matter which workflow modelling method

is adopted. The verification mainly includes the reasonability on workflow structure

[31] and restriction on workflow runtime [26]. Most of verification methods are based

on graph theory and Petri-net [31]. As a research tool of workflow in theory, Petri-net

is formally used to study the correctness of workflow definition, operational

mechanism, and other problems [1]. The Petri-net makes the structural verification

easier with its own characters. The time Petri-net and colored Petri-net can be used to

analyse and verify the time aspect of workflow model [24]. More complicated Petri-net

model is needed to express resource utilisation in workflow [32]. The workflow model

based on Petri-net is conditioned and needs to be verified step by step [3]. In recent

years, temporal logics, predicate calculus, and process algebraic approaches are also

used as research tools for workflow verification [7, 36, 40]. Little work has been done

on ECA rule based workflow verification.

The verification of workflows with cycle is more complicated. Recent research

includes workflow model reducing and verifying based on T-invariant subnet model of

Petri-net [41], and verifying based on decomposition method [9]. Restricted Loop

WorkFlow Model (RLWFM) [22] is used to construct the loop sub-structure of

workflow model based on well-behaviour sub-workflow and ‘repeat’ cyclic model.

A Precondition-based Approach to Workflow Oriented Software Re-engineering 5

2.3. Business Logic Extraction

Business logic extraction includes static method and dynamic method. Typically, a

workflow represents a business process.

Static-Analysis Based Extraction. Sneed [33] presents an approach to recovering the

business logic embedded in a legacy COBOL application. The approach is composed of

four steps: restructuring, code slicing, multi-view analysis and integration. Single

unified business logic documentation is generated from disjointed views at the

transaction, subsystem and system level.

Zou [45] proposes a framework for model-driven business process recovery. In the

framework, business logics are identified from the source code through a static tracing

method and a number of heuristics. An Eclipse plug-in tool is developed to do an

automatic extraction from Java-based Web applications. As an extension to a previous

work, Zou [44] proposes another automatic approach that captures business processes

from the source code of e-commerce applications. The approach runs a comparison

between the structural features of both types of workflows, as-specified and as-

implemented workflows. A structural comparison algorithm to recognise the structural

resemblance between both types of workflows is designed.

Hung [18] introduces a method to recover business processes for the three-tier

architecture systems. The automatic recovery is achieved by identifying the business

data and business policies in the source code. The approach employs forward and

backward tracing to identify the exact location of the business logics. Hung [19]

presents another technique to recover workflows from three-tier e-commerce software

systems. The approach and the developed prototype tool identify the structure of

workflows by tracing the navigation flow of the UI through the different UI pages. The

generated workflow is depicted using a hierarchical view, and can be imported into the

IBM WebSphere Business Modeller to inspect its low-level processing tasks.

Dynamic-Analysis Based Extraction. In [34], Suenbuel and Shan propose an

approach with experimental results for the extraction of high-level business process

models from running enterprise systems. The complicated business processes are

extracted using just a simple business process scheme and a few transformation and

refinement rules. Based on this approach, a business process visualisation tool has been

implemented. The tool automatically generates a Petri-net like diagram from the

collected event data.

Similarly, Aalst et al. [4] develop techniques of discovering workflow models by

using workflow logs. Workflow logs contain real-time information about the workflow

process as it is being carried out. A new algorithm is provided by this approach to

derive a process model from the workflow log and then it is represented in the form of

a Petri-net. The results have demonstrated that the proposed process mining method is

possible for structured processes.

Turner et al. [35] provide a different approach to business process mining by way of

using a Genetic Programming (GP) technique in combination with a representation

which is graph-based. The graph-based representation provides flexibility when

6 Feng Chen et al.

analysing process flowchart structure as well as making the mining of complex

business processes from event logs, that are incomplete, possible.

Foo et al. [15] introduce a technique for recovering business processes from e-

commerce applications and for verifying the recovered processes using dynamic and

static analysis. User interface (UI) design patterns are utilised to identify tasks with

appropriate granularity, and to separate different business processes. In addition, in

order to create a complete usage scenario of a business process, the recorded

information from each tier is merged and sorted by access time. They also develop a

tool named Process Explorer [16]. By employing static and dynamic analysis

techniques the tool automatically recovers business processes found in e-commerce

systems.

3. A Precondition-based Workflow Model

Workflow oriented software re-engineering focuses on the reverse engineering process.

In order to be successful in reverse engineering, the design of workflow model should

meet following conditions:

 the model should be formally defined to express general workflow specifications in

terms of mathematical logic with suitable notations;

 the model should support standard approaches to program analysis such as control-

flow analysis, data-flow analysis, etc;

 the model should be applicable to optimisation and verification that is relevant for

reverse engineering methods;

 the model should be easily and efficiently implementable.

The precondition-based workflow model is designed to meet above conditions. To

illustrate the precondition-based workflow model, in Fig. 1, an order registration

system selected from WfMC (WFMCTC-1025, V1.0) is used as an example. Here, only

the routing structure is analysed and the details of each task are neglected.

Fig. 1. Workflow process of order registration system

The example is further symbolised as shown in Fig. 2. a1, a2, … a15 represent

workflow activities of an order registration system. a1 is a start activity and a15 is an

A Precondition-based Approach to Workflow Oriented Software Re-engineering 7

end activity. x1, x2, … x5 are variables of workflow control data that are relevant to the

choice of branch condition. Without loss of generality, during workflow modelling,

every branch condition is expressed by a different variable. In this paper, the definition

of basic control flow constructs is the same as the definition by the Workflow

Management Coalition (WfMC). There are four structures: OR-Split, AND-Split, OR-

Join and AND-Join. The OR-Split is a point that only one of the alternative branches

can be chosen, which is a XOR-Split. From Fig. 2, it is shown that the executive

condition of a3 is that a2 is completed and x1=1; the executive condition of a8 is that a6

is completed and x4=1, or a7 is completed and x5=1, and the executive condition of a13

is that all a10, a11 and a12 are completed.

Fig. 2. Symbolised workflow process of order registration system

To sum up, the workflow model can be expressed as a composition of activities and

their preconditions. An activity can be activated as long as its precondition becomes

true. Since the execution of an activity is determined by its precondition, it is easy to

judge the execution of an activity by checking whether the precondition of the activity

is true or not. It means that the precondition-based workflow model can be constructed

with only OR-Join and AND-Join structures. Meanwhile, since some preconditions of

activities can be true at the same time, these activities can be dispatched concurrently.

Definition 1 (precondition-based workflow model): is defined as a 4-tuple: WF = <A,

V, C, F >, in which:

A={a1, a2, …}: a finite set of activities;

let pre(a) = {a’| a’ is the direct pre-activity of a}, which is the direct pre-activity set

of a;

let activity a’, a”  A, if ai, i=0,1,…,k, so that a’ pre(a0), a0  pre(a1),…, ak 

pre(a”), then a’ is the pre-activity of a” and is written as a’  a”;

let saA, pre(sa)=, aA-{sa}, saa, sa is the start activity of the workflow

model; let eaA, and aA-{ea}, aea, ea is the end activity of the workflow model;

V={x1, x2, … }: a finite set of variables of workflow control relevant data;

let Di be the domain of xi, namely, Di =dom(xi);

C={c1, c2, … }: a finite set of conditions (predicate formula);

F={f(ai)|aiA}: a finite set of activities’ preconditions, f: A(AC){normal,

andJoin, orJoin}, aA, f(a)=<AC, t >, f(a) is the precondition of an activity a, here:

8 Feng Chen et al.

AC={< a’, c’>|a’pre(a), c’C}(AC), a’ is the direct pre-activity of a, c’ is the

condition from a’ to a (default condition is True), (S) is the power set of S;

let fac:A(AC), fac(a)=AC={<a’, c’>|a’A; c’C}, fac(a)[a’]=c’;

let ft: A{normal, andJoin, orJoin}, ft(a)=t, t{normal, andJoin, orJoin}.

By definition, the workflow model of Fig. 2 can be expressed as:

WForder registration=<A, V, C, F>, in which:

A={a1,a2,…a15};

V={x1, x2, x3, x4, x5}, xiDi={0,1}, i=1,2,3,4,5;

C is a set of conditions: {x1=0, x1=1, x2=0, x2=1, x3=0, x3=1, x4=0, x4=1, x5=0,

x5=1};

F={f(a1),f(a2),…f(a15)},

f(a1)=f(sa)=<, normal>, f(a2)=<{<a1, T>}, normal>,

f(a3)=<{<a2, x1=1>}, normal>, f(a4)=<{<a2, x1=0>}, normal>,

f(a5)=<{<a3, x2=1>}, normal>, f(a6)=<{<a5, x3=1>}, normal>,

f(a7)=<{<a5, x3=0>}, normal>, f(a8)=<{<a6, x4=1>,<a7, x5=1>}, orJoin>,

f(a9)=<{<a8, T>}, normal>, f(a10)=<{<a9, T>}, normal>,

f(a11)=<{<a9, T>}, normal>, f(a12)=<{<a9, T>}, normal>,

f(a13)=<{<a10, T>,<a11, T>,<a12, T>}, andJoin>,

f(a14)=<{<a3, x2=0>,<a4, T>,<a6, x4=0>,<a7, x5=0>}, orJoin>,

f(a15)=f(ea)=<{<a13, T>,<a14, T>}, orJoin>.

Definition 2 (precondition-based workflow instance model): is defined as a 4-tuple:

DWF=< I = AN, V, C, F >, in which:

V, C are defined the same as in Definition 1;

I=AN: (a, i)AN is defined as the i-th instance of activity a, here i is an identity for

distinguishing the instances of the same activity;

F: the set of instances’ precondition, for any (a, i)I, f(a,i)=<IC, t >. f(a,i) is the

precondition of an instance (a, i), fac(a,i), ft(a,i) are defined the same as in Definition 1.

The precondition-based workflow instance model is designed to handle multiple cases

executed in parallel way, which is quite useful for workflow simulation.

Definition 3 (instantiation of an activity): in DWF, let ent: AN{T,F}, ent(a,i)=F

denotes that instance (a,i) has not been instantiated. Once ent(a,i)=T, it denotes that

(a,i) has been instantiated. f(a,i) is met indicates that:

1) When ft(a) = normal, let pre(a) = {a’}, and fac(a)[a’] = c’, then ent(a’,j)  c’=T.

2) When ft(a) = andJoin, let pre(a) = {a1’, a2’,…an’} and fac(a)[a1’, a2’,…an’] =

[c1’, c2’,…cn’], then (c1’ ent(a1’,j))(c2’ ent(a2’,j))…(cn’ ent(an’,j)) = T.

3) When ft(a) = orJoin, let pre(a) = {a1’, a2’,…an’} and fac(a)[a1’, a2’,…an’] = [c1’,

c2’,…cn’], then (c1’ent(a1’,j))(c2’ent(a2’,j))…(cn’ent(an’,j))=T.

If ent(a,i)=F, and f (a,i) is met, then the (a,i) is instantiated, namely, ent(a,i)=T.

A Precondition-based Approach to Workflow Oriented Software Re-engineering 9

4. The Workflow Oriented Software Re-engineering

In this section, the proposed precondition-based workflow oriented re-engineering

method is presented. The method aims to facilitate the re-engineering of software

systems in order to comply with the workflow technologies. The method follows a

systematic step-based approach to extract business processes from an existing system

by analysing the source code. The devised method is composed of 3 stages: program

analysis for workflow elicitation, workflow analysis for optimisation and verification,

system integration and testing. The system integration and testing stage is beyond the

scope of this research and will be proposed as future work. Although this paper aims to

be general and not limited to a specific programming language or software

development approach, the focus is on Object-Oriented software and the reverse

engineering aspect.

4.1. Program Analysis for Workflow Elicitation

Program analysis has the ultimate goal of enabling the comprehension of the

underlying functional and data concept of software. Software visualisation can help

software engineers to cope with the complexity of program comprehension by

displaying programs, program artefacts, and program behaviour. Reverse engineering

available techniques assist in software comprehension through exploiting the source

code as the main source of information about certain software. The application of such

techniques allows the extraction of a set of useful views provided to software engineers

in the form of diagrams. The key step in the proposed approach is to extract the

workflow models from the existing software. The extraction approach considers the

source code to be the only available documentation for the system. The result of this

step is a recovered workflow represented in the precondition-based workflow model.

There are several forms of source code representation which could be considered as

candidates for program analysis, e.g., an Abstract Syntax Tree (AST), a control flow

diagram, a data flow diagram and a UML diagram, etc. The Abstract Syntax Tree

(AST) represents plain source code in a tree form, which is convenient for static code

analysis. The information of a node is referred as structural properties. Comments and

other binding information can also be extracted by parsing the source code. Control

flow diagrams, data flow diagrams and UML diagrams can be derived from AST. In

this research, all these different views of source code will be synthesised to extract the

workflow model from an existing system.

10 Feng Chen et al.

Class Diagram Recovery and Class Grouping. A class diagram depicts the static

structure of the core classes that are used to build an Object Oriented system. The

attributes and methods of each class together with the optional indication of some of

their properties such as visibility and type are provided in the class diagram. The

relationships amongst the classes are also presented in the class diagram. Aggregation,

association and dependency relationships are shown in a class diagram to indicate that

a class has access to attributes or operations of other classes. The class diagram

recovery can be achieved by a syntactic analysis of the source code, provided that an

accurate definition of the interclass relationships is known.

There are three major types of classes defined by Rumbaugh, Jacobson and Booch

[20] in their analysis model of an object-oriented design: boundary (interface) classes,

control classes, and entity classes. Boundary classes are used to model interactions

between the system and its actors (i.e., users and external systems). Boundary classes

often represent abstractions of windows, forms, panes, communication interfaces,

printer interfaces, sensors, terminals, and other APIs. Each boundary class should be

related to one actor. Entity classes are used to model information that is long-lived and

often persistent. Control classes are used to coordinate sequence and generally control

the interaction between objects of other classes. Control classes typically encapsulate

the business process of a single use case.

Grouping as a general term means grouping entities or objects according to their

relationships or similarities, which has the same meaning of clustering. Grouping

techniques have been applied in many areas of software engineering. For instance, it

has been used to capture reusable legacy code segments in a legacy system. It is also

applied in the program understanding area through decomposing large software

systems into more manageable components. In software clustering literatures, several

clustering algorithms focus on the utilisations of the software structure. The algorithms

use structural dependences and relationships to decompose large software systems into

a set of meaningful modular clusters. Approaches that used attributes other than the

software structure have also demonstrated merit. Such approaches include grouping of

software entities based on file names, ownership or functionality. The details of

clustering method are out of the scope of this research.

Code Parsing and Abstraction. The control classes are more likely to hold the core

business functions of the application. These classes should be pre-processed for further

workflow extraction. The first step is parsing the source code and generating an

Abstract Syntax Tree (AST) of the source code. Parsing or syntactic analysis as it is

sometimes called is the process of analysing a sequence of tokens in order to determine

its grammatical structure with respect to a formal grammar. The generated AST can be

traversed by other tools to analyse the source code as a tree of nodes, where each node

represents a part of the source code.

The purpose of traversing the generated AST is to facilitate the code abstraction. In

the code abstraction operation, the elimination of non-business related code such as

supporting and error handling code is carried out by filtering out programming specific

features. The result of this operation is the abstracted source code which will be used in

the next step for the generation of the precondition-based workflow. The elimination of

the non-business-logic code is based on the 7 heuristic rules proposed in [45], which is

A Precondition-based Approach to Workflow Oriented Software Re-engineering 11

designed as the following abstraction algorithm. Although the developed algorithm is

not limited to a specific programming language, Java will be used in this paper to

describe the algorithm. Since some rules, e.g. utility code and exception code, may

have exceptional situations, the implementation of the algorithm can highlight unsure

segments of code for reengineer to make the final decision. The abstraction algorithm

contains two levels of abstractions: class level and method level.

Algorithm 1: Code abstraction algorithm:
For each candidate class n filter out

 /* Import Statements are used when a program refers to

 a class the compiler needs to determine which

 package contains that class. */

 1: Import Statements

 /* A getter is a method that gets the value of a

 specific property. A setter is a method that sets

 the value of a specific property. These methods are

 trivial for business process. */

 2: Getters and Setter Methods

 /* GUI components Creation is not related to business

 process. */

 3: GUI Components Creation Methods

 /* GUI layout Management is not related to business

 process. */

 4: GUI Layout Management Methods

 For each candidate method m filter out

 /* The purpose of variable declaration is to warn the

 compiler that the variable exists and to notify

 the compiler the type of that variable. */

 01: Variables Declaration

 /* An exception is an event that occurs during the

 execution of a program that disrupts the normal

 flow of instructions. An exception object can be

 identified in try, catch and finally blocks in

 throw statements. Cases in which exception used to

 report error cases in the business logic handling

 are not handled in this algorithm. */

 02: Exception Handling Statements

 /* Utility Code Statements provide internal services,

 for instance, transaction initialisation,

 rollback, commitment, tracing or logging.

 Generally, utility methods are designed as public

 static methods. A catalog of utility classes can

 be established by consulting developers. */

 03: Utility Code Statements

 /* A Java type class, such as Enumeration, String and

 Vector, provides primitive building blocks to

 construct a Java program. */

 04: Type Objects Statements

 End For

End For

12 Feng Chen et al.

Control Flow Diagram and Precondition-based Workflow Generation. Subsequent

to the code abstraction step, control flow diagram will be automatically generated from

the abstracted source code entities. Control flow diagram generation is an age-old

problem. There are several automatic code flow chart diagram generators (software

tools) that can reverse engineer a program with a code analyser and create a

programming flowchart from the code. These available tools can be used to create

control flow diagrams from the source code of the abstracted classes. Since the non-

business logic code has been filtered out in the code abstraction step, the generated

control diagram will most likely represent the business control logic embedded in the

source code.

The final step of the method is to transform a control flow diagram into a

precondition-based workflow model. Unlike the first three steps of the process, which

were carried out automatically by using the appropriate software tools without the need

for human intervention, in this research a software engineer with adequate knowledge

in the domain of the application and the programming language used will be required.

The job of the software engineer in this step is to simplify the extracted control flow

diagram by replacing the code inside the diagram with more human readable

expressions and activities.

4.2. Analysis of the Precondition-based Workflow Models

Once the workflow models are recovered, it is important to ensure that the produced

models are correct, effective and efficient. For the system being reengineered, to

analyse the recovered workflow process definition before it is put into production will

greatly increase the quality of the new system.

Basically, there are three types of analysis: validation, verification, performance

analysis [1]. Simulation and testing can be used for validation and performance

analysis, which are supported by the precondition-based workflow instance model. For

verification, more advanced analysis techniques are needed. Based on the definition of

the precondition-based workflow, the execution of an activity is only related to its

precondition. If an activity can be instantiated, it means that its precondition is met,

which implies that some pre-conditions of the related pre-activities are met as well. In

order to analyse the properties of a workflow in a whole, the concept of the whole-

condition of an activity is presented, which is used to express the global property.

Whole-condition of an Activity. Informally, if WF is a precondition-based workflow

model, the whole-condition of an activity a is defined as all conditions along the path

from start activity sa to a that enable a to occur. The whole-condition of an activity is

not only the executive condition of the activity itself, but it implicates that all

conditions along the path should be met before the activity is instantiated, which

covers more comprehensive information than activity precondition.

It is easy to get the whole-condition of an activity for the workflow without cyclic

structures, but the work becomes complex for the workflow with cyclic structures since

an activity may be instantiated many times while the condition for each instance will

be changed accordingly. In general, a cycle in a workflow model must have at least one

A Precondition-based Approach to Workflow Oriented Software Re-engineering 13

entry node and one exit node. The precondition-based workflow model includes three

types of nodes: normal, andJoin and orJoin. A normal node has only one pre-activity

by its definition, so it cannot be the entry to a loop. If a loop is entered via an andJoin

node, the loop body can never be executed since one node within the loop body must be

triggered before the precondition of the entry node (andJoin node) is met. Therefore,

only the cyclic structures with orJoin-type nodes as entry points are taken into account

in the paper. Some related concepts are given below first.

Definition 4 (an acyclic path and its whole-condition): WF=<A, V, C, F> is a

precondition-based workflow model. An acyclic path of an activity a( A) is defined as

a route from the start activity sa to a without loop. Assuming there are m paths from sa

to a, the condition of ith path (i=1,2,…m), written as pcond(a,i), is defined as a

conjunction of all conditions along the whole path.

The whole-condition of a is defined as a disjunction of all path conditions:

wc(a)=pcond(a,1)pcond(a,2)…pcond(a,m). If any of path conditions of a is true,

the whole-condition of a is true. In other words, if the whole-condition of a is satisfied,

the precondition of a is satisfied, and a can be initiated and executed.

Algorithm 2: WF=<A, V, C, F> is a precondition-based workflow model. For every

aA, the method of calculating the whole-condition of acyclic paths of a is given

below. Here, wc(a) denotes the whole-condition of a:

1) The whole-condition of start node sa is: wc(sa) = T.

2) When ft(a)=normal, namely, a is a normal type, let pre(a)={a’}, and

fac(a)[a’]=c’. Then the whole-condition of acyclic paths of a is: wc(a) = c’ 

wc(a’).

3) When ft(a)=andJoin, let pre(a)={a1’,a2’,…an’} and fac(a)[a1’,a2’,…an’]=[c1’,

c2’,…cn’], the conditions of the acyclic branches of a are wci(a)=ci’wc(ai’), i=

1,2,…n, the whole-condition of the acyclic paths of a is:

 wc(a)=wc1(a)wc2(a)…wcn(a)=c1’wc(a1’)c2’wc(a2’)…cn’wc(an’).

4) When ft(a) = orJoin, let pre(a)={a1’,a2’,…an’} and fac(a)[a1’,a2’,…an’] = [c1’,

c2’,…cn’], the conditions of the acyclic branches of a are wci(a) = ci’  wc(ai’),

i= 1,2,…n, the whole-condition of the acyclic paths of a is:

 wc(a)=wc1(a)wc2(a)…wcn(a)=(c1’wc(a1’))(c2’wc(a2’)) …(cn’wc(an’)).

14 Feng Chen et al.

Definition 5 (a cycle and its whole-condition): WF= <A, V, C, F> is a precondition-

based workflow model with cyclic structures. A cycle of a is defined as a route from a,

through a loop of activities, to a itself, assuming there are n cycles of a, The condition

of jth cycle, written as lcond(a, j), (j=1,2,…n), is defined as a conjunction of all

conditions in the cycle, i.e., lcond(a, j) is calculated as the whole-condition of a path

from start node a to end node a itself. Let oa be an orJoin-type node and an entry point

of n cycles, awc(oa) denotes the whole-condition of the acyclic path from sa to oa, the

whole-condition of a through j-th cycle is defined as: wc(oa, j) = lcond(oa, j) 

awc(oa).

Naturally, wc(oa) can be defined as: wc(oa) = lcond(oa, 1)  lcond(oa, 2)  …

lcond(oa, n)  awc(oa), (j=1,2,…n). In this paper, the discussion is focused on the

whole-condition of one cycle, i.e. wc(a, j).

Algorithm 3: WF=<A, V, C, F> is a precondition-based workflow model with cycles.

oa is an orJoin-type node and an entry point of cycles. For every node aA, there exist

3 cases: aoa, a=oa and oaa. The method of calculating the whole-condition of j-th

cycle is given below.

1) When aoa, there is no loop from sa to a, wc(a) can be calculated with

Algorithm 2.

2) When a=oa, as defined in Definition 5, wc(a, j) = lcond(a, j)  awc(a).

3) When oaa, xwc(a) denotes the whole-condition of the acyclic path from oa to

a, wc(a, j) = awc(oa)  xwc(a)  lcond(a, j). awc(oa)  xwc(a) is the whole-

condition of acyclic paths from sa to a.

In the precondition-based workflow model, workflow relevant data are an important

factor to affect the workflow execution. Workflow relevant data can be accessed by

both applications and the workflow engine. Workflow relevant data are associated with

the workflow instance, and different values of relevant data can influence the routing

of instances. Since the values of workflow relevant data in loop condition may change

in later execution, to simplify the expression, it is necessary to introduce predicate

variables in lcond(a, i) for analysing workflow models with cyclic structures. In this

way, the relevant data can be assigned many times. For example, there are two

variables in lcond(a, 1), x{1, 2, 3}, y{T, F}, x=1, y=T. lcond(a, 1) can be expressed

as lcond(a, 1): X|x = 1, Y|y = T, in which, X indicates a predicate variable with the domain

of {1, 2, 3}, and the current value of X is x=1, Y indicates a predicate variable with the

domain of {T, F}, and the current value of Y is y=T. X and Y are called as associated

predicate variables.

Precondition-based Workflow Verification. In a broad sense, the verification of a

workflow model is to ensure that the whole process, from the model setup/instantiation

to the end of execution, is correct. The definition of correctness is a set of minimal

requirements that the precondition-based workflow model should satisfy. Most of

definitions from literature can be described as the following three soundness

properties:

a) Workflow model without deadlocks. Since deadlock is resource-related, the

workflow liveness is usually used to ensure there are no deadlocks. Workflow

A Precondition-based Approach to Workflow Oriented Software Re-engineering 15

liveness means that, for every activity a, there is an executable path from start

node sa to a, and then to the end node ea of the workflow.

b) Workflow model without wrong synchronisation. Wrong synchronisation

means that concurrent activities cannot be converged in an andJoin-type node

but in an orJoin-type node.

c) Workflow model without infinite loops. For a workflow model with cycles, each

cycle should have at least one exit.

Point a) and point b) are easy to be understood. For point b), if an orJoin activity a4

is preceded by activities a2 and a3.The predecessor of activities a2 and a3 is an andSplit

activity a1. As a result, both activities a2 and a3 will run in parallel, and activity a4 has

to be instantiated twice. This is not desirable and is defined as wrong synchronisation.

In a precondition based workflow model, there is no definition of andSplit and

xorSplit. Actually, the information of andSplit and xorSplit has been implicitly

expressed in the preconditions of activities.

Only all above requirements are met, a workflow can be defined as correctness.

Obviously, the soundness property relates to the workflow instance model. Definition 6

gives a definition of the correctness of the precondition-based workflow.

Definition 6 (correctness of the precondition-based workflows): if a precondition-

based workflow instance model DWF meets the following conditions:

a) For every activity aA, asa, aea, if there exists a state ent(a,i) = T, then this

state is derived from ent(sa,1) = T and leads to the terminal state of DWF,

namely, ent(ea,1) = T. This point indicates that the precondition-based

workflow is live.

b) For every aA, a’, a’’ pre(a), ft(a)= orJoin, fac(a)[a’,a’’] = [c’, c’’], that <(a’,

k),c’> and <(a’’, l),c’’> cannot be satisfied simultaneously. This point asserts

that the precondition-based workflow has no wrong synchronisation.

c) It will not happen that ent(a,i) = T can always reach to a new state, ent(a,i+1) =

T (i >= 1). This point ensures that there is no infinite loop for the workflow

instance.

Then, the workflow model is correct.

Theorem 1 (correctness of workflows without cyclic structures): let WF be a

precondition-based workflow model without cyclic structures and ACOND be a set of

whole-conditions of activities in WF. wc(a)=wc(x1,x2,…xn)ACOND denotes the

whole-condition with relevant data xiV (i=1,2,…n) as variables, and Di as the

domain of xi. Then, WF is correct if the following conditions are met for every xi

(i=1,2,…n) with an assigned value in Di:

1) For any activity aA, there exists xi (i=1,2,…n) with an assigned value, such

that wc(a)=T.

2) For any activity aA with andJoin type, wc1(a)wc2(a)…wcn(a)=T, otherwise

wc1(a)=wc2(a)=…wcn(a)=F.

3) For any activity aA with orJoin type, pcond(a,k)  pcond(a,l)=F, in which

kl, k,l  {1,2,…n }.

16 Feng Chen et al.

Proof: To prove the correctness of a workflow model is equal to prove that the

workflow model meets the 3 conditions of definition 6.

It is obvious that the c) of definition 6 is met for a workflow model without cyclic

structure.

According to 1), for an instance (a,1), ent(a,1) = T, there exists a pre-instances

(a’,1), which has been instantiated, and so on. So ent(a,1) = T can be derived from

ent(sa,1) = T. On the other hand, for aj that apre(aj), j=1,2,…k, there exist values of

cj(xi), such that ent(a,1)cj = T, j=1,2,…k. If ft(aj)= normal or ft(aj)= orJoin, f(aj,1)

must be met, namely, wc(aj)= T. If ft(aj)=andJoin, according to 2),

wc1(a)wc2(a)…wcn(a)=T, wc(aj)= T. So ent(ea,1) = T can be derived from ent(a,1) =

T. Therefore, the a) of definition 6 is met.

For the orJoin-type node, the 3) indicates that different path conditions cannot be

met at the same time. For a’, a’’ pre(a), ft(a)= orJoin, a’ and a’’ are not in the same

path, <(a’, j), c’> and <(a”, k), c”> cannot be met at the same time, namely, the b) of

the definition 6 is met.

Proof End

Theorem 1 gives the sufficient conditions judging the correctness of a precondition-

based workflow model without cyclic structures. 1) and 2) of the Theorem 1 guarantee

there is no deadlock in the workflow model. 3) of the Theorem 1 guarantees there is no

wrong synchronisation. For an orJoin-type activity, if the full conditions of two paths

are true simultaneously, this activity will be instantiated twice, which is treated as

wrong synchronisation.

Since the whole-condition of an activity is a predicate formula, the correctness of

workflow models can be evaluated by analysing the activities’ whole-condition. This

theorem would be very useful since the problem of the workflow verification can be

translated into the problem of predicate determination by this theorem.

For a workflow model with cyclic structures, the following theorem ensures that a

workflow model with cyclic structures is correct.

Theorem 2 (correctness of workflows with cyclic structures): let WF be a precondition-

based workflow model with cyclic structures. If a workflow model is correct, it should

meet the following requirements:

1) For every (a, i), lcond(a,i) = F, the workflow model is correct.

2) For every orJoin-type node oa, the substructure, which begins from oa with

whole-condition of T and ends at oa itself with the whole-condition of

lcond(oa,i), is correct.

3) For an orJoin-type node oa, on which there is a cycle with the condition

lcond(oa,k), for every andJoin-type node a after oa, if a is inside the cycle,

when lcond(oa,k) is true, [lcond(oa,k)  T]  [wc1(a,k)  wc2(a,k) … 

wcm(a,k)] must be true. if a is outside the cycle, when lcond(oa,k) is false,

[lcond(oa,k)  F]  [wc1(a,k)  wc2(a,k) …  wcm(a,k)] must be true.

wc1(a,k), wc2(a,k), …, wcm(a,k) are branch conditions of a. This indicates that

item 2) in Theorem 1 is hold with cyclic structures.

4) wc(ea) and wc(a,i) cannot be true at the same time.

A Precondition-based Approach to Workflow Oriented Software Re-engineering 17

5) lcond (a,i) is not a tautology. Namely, If lcond (a,i) = F, there exists b, such

that wc(b) = T.

Proof: To prove the correctness of a workflow model is equal to prove that the

workflow model meets the 3 conditions of definition 6.

According to 1), 2), 3), both acyclic and cyclic branches and their combination are

correct. Based on Theorem 1, It is obvious that ent(a,1) = T can be derived from

ent(sa,1) = T and ent(ea,1) = T can be derived from ent(a,1) = T. Meanwhile, there is

no wrong synchronisation. Therefore, the a) and b) of definition 6 is met.

According to 4) and 5), there is no infinite loop in the model. Therefore, the c) of

definition 6 is met.

Proof End

5. Examples

First, a small example of a thesis defence application is selected as the case study to

experience the proposed approach. The goal of this example is to demonstrate the

feasibility of the proposed approach for software re-engineering. Then, several

representative examples are used to illustrate the abilities and the limitations of the

whole-condition based analysis methodology.

5.1. A Thesis Defence Application

The thesis defence application was taken from a university’s office automation system.

A modification was made to make the code more suitable for evaluating the proposed

approach. The scenario for this case study is to reengineer a Java based system to

extract the workflows by employing the precondition-based workflow oriented software

re-engineering approach.

Workflow Extraction. The first step of the approach is to group the code entities or

classes into boundary (interface) classes, control classes, and entity classes. In this case

study, only ApplyThesisDefenses class is considered for workflow extraction. The

second step is to parse the ApplyThesisDefenses class and filter out non-business-logic

code. The abstraction algorithm (Algorithm 1) is used to determine the candidate code.

The third step is to generate control flow diagram by using available tools. Normally,

the flowchart tool depicts the control flow of the abstracted code in a familiar graphical

form. A flowchart based on the control flow diagram was drawn to visualise the thesis

defence application process as shown in Fig. 3.

18 Feng Chen et al.

Fig. 3. A flowchart of the thesis defence application process

Then a precondition-based workflow model can be created formally after analysing

the activities of business processes in above application:

WFApplyforDefence=<A, V, C, F>, in which:

A={Start(sa), AppForDefense, ThesisModi, NotpassEval, FormatModi,

AppInSuccess, TutorOpinion, Review1, Review2, Evalution, FormatCheck, End (ea)},

V={opinion, format, g1, g2},

Dopinion= {yes, no}, Dformat = {yes, no}, Dg1 = {1..5}, Dg2 = {1..5},

C is a set of formula generated from following atomic formula: T, F, opinion=‘no’,

opinion=‘yes’, format=‘no’, format=‘yes’, g1>2, g2>2, g1+g2>7,

F={f(sa), f(AppForDefense), … f(ea)},

f(sa)=<, normal>, f(AppForDefense)=<{<sa, T>}, normal>,

f(TutorOpinion)=<{<AppForReply, T>,<ThesisModi, T>}, orJoin>,

f(ThesisModi)=<{<TutorOpinion, opinion=‘no’>}, normal>,

f(Review 1)=<{<TutorOpinion, opinion=‘yes’>}, normal>,

f(Review 2)=<{<TutorOpinion, opinion=‘yes’>}, normal>,

f(Evalution)=<{<Review1, T>,< Review2, T>}, andJoin>,

f(FormatCheck)=<{<Evalution,((g1>2)(g2>2)) (g1+g2>7)>, <FormatModi,

T>}, orJoin>,

f(FormatModi)=<{<FormatCheck, format=‘no’>}, normal>,

f(NotpassEval)=<{<Evalution,(((g1>2)(g2>2))(g1+g2>7))>}, normal>,

f(AppInsuccess)=<{<FormatCheck, format=‘yes’>}, normal>,

f(ea)=<{<AppInsuccess, T>,<NotPassEval, T>}, orJoin>.

A Precondition-based Approach to Workflow Oriented Software Re-engineering 19

Workflow Verification. For the thesis defence application workflow model, the

whole-conditions of acyclic paths in the workflow are calculated as below:

wc(AppForDefense)=T, wc(TutorOpinion) = T, ...

wc(FormatCheck)=(((g1>2)(g1>2))(g1+g2>7))(opinion=‘yes’), …

wc(ea)={(format=‘yes’)(((g1>2)(g1>2))(g1+g2>7))(opinion=‘yes’)}

 { (((g1>2)(g1>2))(g1+g2>7))(opinion=‘yes’)}

The whole-conditions after one cycle for orJoin-type nodes are calculated as below:

wc(TutorOpinion, 1)=(opinion=‘no’),

wc(FormatCheck, 1)=(format=‘no’)(((g1>2)(g1>2))(g1+g2>7))

 (opinion=‘yes’).

In this example, there are two loops produced separately on orJoin-type nodes:

TutorOpinion and FormatCheck. Let variable Option be assigned with values of

{opinion=’no’, opinion=’yes’}, and Format be assigned with values of

{format=’no’,format=’yes’}. The cyclic condition lcond(TutorOpinion,1):

opinion=’no’ can be re-expressed as lcond(TutorOpinion,1): Opinion|opinion=’no’. The

cyclic condition lcond(FormatCheck,2): format=’no’ can be re-expressed as

lcond(FormatCheck,2): Format|format=’no’. Because two cycles are produced on different

nodes, there is no interaction between each other, two whole-conditions can be put

together with different label i{1,2}. For example,

wc(TutorOpinion, i)=wc(TutorOpinion)lcond(TutorOpinion, 1)

 =T Opinion |opinion=‘no’= Opinion |opinion=‘no’.

The following is the verification of the precondition-based workflow model with two

cycles on nodes: TutorOpinion and FormatCheck:

 It is easy to verify that 1) of the Theorem 2 is met.

 The cycle from TutorOpinion, through ThesisModi, to TutorOpinion can be

regarded as a non-cyclic structure from TutorOpinion with whole-condition T, to

TutorOpinion itself with whole-condition opinion=‘no’. It is easy to verify that this

sub-structure is correct. Similarly, FormatCheck can also be verified to be correct.

Thus, 2) of the Theorem 2 is met.

 Since wc1(Evaluation)  wc2(Evaluation), item 3) of the Theorem 2 is met.

 If wc(TutorOpinion)  lcond(TutorOpinion,1)  opinion=‘no’, then wc(ea)=F, and

if wc(FormatCheck)  lcond(FormatCheck,2)  ((g1>2  g2>2)  (g1+g2>7)) 

(opinion=‘yes’)  (format=‘no’), then wc(ea)=F, therefore, 4) of the Theorem 2 is

met.

 If lcond(TutorOpinion,1)  opinion=‘no’ and lcond(FormatCheck,2) 

format=‘no’, then lcond(TutorOpinion,1)  lcond(FormatCheck,2) 

(opinion=‘no’)  (format=‘no’) is not a tautology, namely, 5) of the Theorem 2 is

met.

The verification is over showing that the model is correct.

5.2. Several Representative Workflow Models

Fig. 4 shows two workflow models without cycles.

20 Feng Chen et al.

(a)

(b)

Fig. 4. Workflow models without cycles

Fig. 4(a) is a workflow model with overlapping structure. No matter what value, T

or F, is assigned to variable a, every node will be arrived, namely, item 1) of Theorem

1 is met. For the andJoin-type node, marked as 12, wc1(12)=wc(10) and

wc2(12)=wc(10), so wc1(12)wc2(12), namely, item 2) of Theorem 1 is met. For the

orJoin-type nodes, marked as 10 and 11, they have path conditions, pcond(i,1)=a,

pcond(i,2)=a (i=10,11), such that pcond(i,1)pcond(i,2)=F, item 3) of Theorem 1 is

met. Therefore, the workflow model with overlapping structure is correct.

Fig. 4(b) is used to illustrate several cases of workflow models without cycles. Let

WF= <{sa,a0,a1,a2,a3,a4,a5}, {x1,x2}, {c1,c2,c3,c4}, {f(a0),… f(a5)}>

Case 1: let the domain of x1, D1, and the domain of x2, D2, be an integer set, and c1:

T, c2: T, c3: x2=1, c4: x21, and f(a0)=<{<sa, T>}, normal >, f(a1)=<{<a0, c1>},

normal>, f(a2)=<{<a0, c2>}, normal>, f(a3)=<{<a1, T>,<a2, c3>}, andJoin>,

f(a4)=<{<a2, c4>}, normal>, f(a5)=<{<a3, T>,<a4, T>}, orJoin >, f(ea)=<{<a5, T>},

normal>, then the conditions of the acyclic branch of a3 are wc1(a3): T and wc2(a3):

x2=1. If the value of x2 is not 1, namely, wc2(a3) is false, item 2) in theorem 1 is not

met, therefore, the workflow model is not correct. In this situation, a1 will be executed

and waiting for the completion of a2 that will never happen. The workflow will run

into a deadlock status.

Case 2: make a type change on a3 and a5: f(a3)=<{<a1, T>,<a2, c3>}, orJoin> and

f(a5)=<{<a3, T>,<a4, T>}, andJoin >, then the path conditions from sa to a3 are

pcond(a3,1): T and pcond(a3,2): x2=1. When the value of x2 is 1, pcond(a3,1) and

pcond(a3,2) are met at the same time, namely, item 3) in Theorem 1 is not met, and

therefore the model is not correct. This situation is the wrong synchronisation.

Case 3: make a change to case 1 so that, c1: x1=1, c2: x11, c3: x2<0, c4: x2>0, and

the type of a3 is orJoin, f(a3)=<{<a1, x1=1>,<(x11)(x2<0)>}, orJoin>, it is easy to

verify that the item 2) and item 3) in Theorem1 are met. However, if the value of x2 is

assigned to 0 (this may happen in a2 or its predecessors), the item 1) in Theorem 1

cannot be met, and therefore the model is not correct. It shows that the successors of a2

cannot be instantiated and executed. This is an example of how the relevant data can

affect the workflow correctness.

A Precondition-based Approach to Workflow Oriented Software Re-engineering 21

Fig. 5 shows several representative workflow models with cycles.

(c) (d)

Fig. 5. Several representative workflow models with cycles

(a): lcond(1,1)=B|bA|a, and wc(ea,1)=(B|bA|a)(B|bA|a)(B|bA|a), when

ba is true, lcond(1,1) and wc(ea,1) are true at the same time. This means the

workflow ends while the cycle is not terminated. The item 4) of Theorem 2 is not met.

Therefore, the workflow model in (a) is not correct.

(b), (c) and (d) indicate three kinds of situations related to the concurrency. For

these situations, four items 1), 2), 4) and 5) of Theorem 2 are met and item 3) of

Theorem 2 should be checked.

The node 6 in (b) is an andJoin-type node and its whole-condition is wc(6,1) = T 

A|a. = a. Since the node locates outside the cycle, when lcond(3,1) = a is false,

whether wc1(6,1) and wc2(6,1) are logically equivalent should be checked, Since

[lcond(3,1)  F]  [wc1(6,1)  wc2(6,1)] is true. So workflow model (b) is correct.

The node 7 in (c) has whole-condition wc(7,1) = A|a  A|a. Because the node

locates outside the cycle, when lcond(1,1) = a is false, whether wc1(7,1) = A|a and

wc2(7,1) = A|a are logically equivalent should be checked. Since [lcond(1,1)  F] 

[wc1(7,1)  wc2(7,1)] is false, the workflow model (c) is not correct.

(a) (b)

22 Feng Chen et al.

The node 7 in (d) has whole-condition wc(7,1) = T  A|a. Because it locates inside

the cycle, when lcond(4,1) = a is true, whether wc1(7,1) = T and wc2(7,1) = A|a are

logically equivalent should be checked. Since formula [lcond(4,1)  T]  [wc1(7,1)

 wc2(7,1)] is true, the workflow model (d) is correct.

5.3. Discussion of Several Significant Technical Issues

The aim of this research is to build a unified software re-engineering approach to

recovering business process from the existing system for the development of workflow

oriented Information System. While the case study and the examples have shown the

success of this research, several significant technical issues need to be further

addressed.

Why is the proposed precondition-based workflow model suitable for software re-

engineering?

For a large-scale complicated business process, it is rather hard for an analyser to

have a complete concept of the system to describe the complex work procedures of the

whole business. Facing a practical business process, it is easier to analyse each activity

and its preconditions, and in turn to construct a reasonable workflow process diagram

in a “bottom-up” way. This simplicity of the model makes it very suitable for software

re-engineering. Especially, the model is applicable to optimisation and verification by

introducing the concept of whole-condition, which is easily and efficiently

implementable.

What is the relationship between the source code and the proposed precondition-based

workflow model?

The main goal of the method is to be able to recover consistent and validated

workflow models corresponding to the legacy code. Source code is at the lowest level.

The workflow model is the business process concern at the higher level. Abstraction

techniques have to be used to produce high level models/views from low level source

code. Program transformation can be used as a pre-process of this abstraction process.

Since the proposed workflow model has the similar control flow structure of the source

code, the gap between the code and the model is easy to be bridged.

What is the expressiveness of the proposed precondition-based workflow model?

Normally, an activity-centred workflow model includes choice, concurrent and

synchronised structures, namely OR-Split, AND-Split, OR-Join and AND-Join, e.g. the

activity diagram defined by OMG. The precondition-based workflow model can be

constructed with only orJoin and andJoin structures without andSplit and xorSplit

structures. Actually, andSplit and xorSplit has been implicitly expressed in the

preconditions of activities. It is also a natural way to extend the precondition of an

activity by encapsulating time, resource and other elements, which is a powerful

expression with great flexibility. This feature can also be used to transform other

workflow models into precondition-based workflow models. The relative data is also

considered in this research. Colored Petri-nets seem to be more powerful and

appropriate for dealing with relative data. However, there is always a trade-off between

the expressiveness of the model and the efficiency of using the model.

A Precondition-based Approach to Workflow Oriented Software Re-engineering 23

Which kinds of incorrectness can be verified in the precondition-based workflow

model?

The verification of the proposed precondition-based workflow model method

remains the features of the known analysis methods, i.e. three soundness properties: no

deadlock (liveness), no wrong synchronisation and no infinite loop (non-termination).

Particularly, the precondition of an activity consists of conditions with relative data,

which makes it possible to analyse the impact of data on workflow correctness.

What is the automation degree of the proposed approach?

Since the abstraction process is knowledge-based, although a transformation tool

can be developed to support this process, human intervention is still essential to

complete the final transformation. For example, the determination of the granularity of

an activity is granted to a software engineer. The software engineer is to simplify the

extracted control flow diagram by replacing the code inside the diagram with more

human readable expressions and activities. Since the gap between the control flow

diagram and the precondition-based workflow model is very small, most jobs are quite

direct and simple.

6. Conclusion

This research proposes a unified software re-engineering approach from a business

process perspective. A precondition-based workflow extraction method is developed to

elicit the business processes from existing systems. Several reverse engineering

techniques and tools have been employed. The fact that human interventions are still

required indicates that it is only semi-automatic. The initial results underline the

feasibility of the proposed approach. Concretely, the key contributions of this research

are as follows:

 New Workflow Model: The precondition-based workflow model is formally defined

in this research. The simplicity and formality of the precondition-based workflow

model make it very suitable for software re-engineering.

 Precondition-based Method for Workflow Modelling and Verification: The

correctness of the workflow model is formally defined. The concept of the whole-

condition of an activity is proposed to translate the verification of the precondition-

based workflow model into the problem of predicate determination.

 Unified Approach: The proposed approach in this paper starts with understanding

the source code of the system. A code abstraction algorithm is designed to filter out

the non-business-logic related code from the source code. The proposed re-

engineering method utilises the re-engineered control flow to build the

precondition-based workflow model and ends with the desired reengineered

workflow oriented system.

This research focuses mainly on reverse engineering aspects. However, the recovered

workflows should be integrated and tested in the new systems. The BPEL and BPMN

are currently widely used by business professionals and there are plenty of tools based

on BPEL and BPMN to support the new system development. So the possible future

24 Feng Chen et al.

work is to link the precondition-based workflow model to standards, i.e. BPEL and

BPMN, for modelling the workflows, which would be an important contribution.

References

1. Aalst, W.: Petri-net-based Workflow Management Software. In Proceeding of the NFS

Workshop on Workflow and Business Process Automation in Information System. Georgia,

114-8. (1996)

2. Aalst, W.: The Application of Petri Nets to Workflow Management. Journal of Circuits,

Systems, and Computers, 8(1), 21-66. (1998)

3. Aalst, W.: Workflow Verification: Finding Control-flow Errors Using Petri-net-based

Techniques. In Proceeding of the Business Process Management, Models, Techniques, and

Empirical Studies. London, 161-83. (2000)

4. Aalst, W., Weijters, T., and Maruster, L.: Workflow Mining: Discovering Process Models

from Event Logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128-42.

(2004)

5. Bae, J., Bae, H., Kang, S., and Kim, Y.: Automatic Control of Workflow Processes Using

ECA Rules. IEEE Transaction on Knowledge and Data Engineering, 16(8), 1010-23. (2004)

6. Baeten, J.C.M. and Basten, T.: Partial-order Process Algebra (and its Relation to Petri

Nets). In Handbook of Process Algebra: Elsevier Science, Amsterdam, 769-872. (2001)

7. Bi, H. and Zhao, J.: Applying Propositional Logic to Workflow Verification. Information

Technology and Management, 5(3), 293-318. (2004)

8. Canfora, G., Cimitile, A., and Carlini, U.: A Logic-Based Approach to Reverse Engineering

Tools Production. IEEE Transactions on Software Engineering, 18(12), 1053-64. (1992)

9. Choi, Y. and Zhao, J.: Decomposition-based Verification of Cyclic Workflows. In

Automated Technology for Verification and Analysis, Lecture Notes in Computer Science

Volume 3707: Springer Berlin / Heidelberg, 84-98. (2005)

10. Cimitile, A. and Carlini, U.: Reverse Engineering: Algorithms for Program Graph

Production. Software: Practice and Experience, 21(5), 519-37. (1991)

11. Clarke, E.M. and Wing, J.M.: Formal Methods: State of the Art and Future Directions.

ACM Computing Surveys, 28(4), 626-43. (1996)

12. Davenport, T.: Process Innovation: Reengineering Work Through Information Technology:

Harvard Business School Press, (1993)

13. Elsawy, O.: Redesigning Enterprise Processes for E-Business: McGraw-Hill Inc., (2001)

14. Fan, Y.: Fundamentals of Workflow Management Technology: Tsinghua University

Press/Springer-Verlag, (2001)

15. Foo, D., Guo, J., and Zou, Y.: Verifying Business Processes Extracted from E-Commerce

Systems Using Dynamic Analysis. In Proceeding of the 3rd International Workshop on

Program Comprehension through Dynamic Analysis. Vancouver, BC, Canada, 43-8. (2007)

16. Guo, J., Foo, K., Barbour, L., and Zou, Y.: A Business Process Explorer: Recovering

Business Processes from Business Applications. In Proceeding of the 30th International

Conference on Software Engineering. Leipzig, Germany, 871-4. (2008)

17. Hammer, M. and Champy, J.: Reengineering the Corporation: A Manifesto for Business

Revolution: Harper Business, (1994)

18. Hung, M. and Zou, Y.: Extracting Business Policies and Business Data from the Three-Tier

Architecture Systems. In Proceeding of the International Workshop on Reverse Engineering

To Requirements. Pittsburgh, Pennsylvania, USA, 212-7. (2005)

A Precondition-based Approach to Workflow Oriented Software Re-engineering 25

19. Hung, M. and Zou, Y.: Recovering Workflows from Multi Tiered E-commerce Systems. In

Proceeding of the 15th IEEE International Conference on Program Comprehension. Alberta,

Canada, 198-207. (2007)

20. Jacobson, I., Booch, G., and Rumbaugh, J.: The Unified Software Development Process:

Addison Wesley, (1999)

21. Kappel, G., Rausch-Schott, S., and Retschitzegger, W.: Coordination in Workflow

Management Systems - a Rule-based Approach. In Proceeding of the Coordination

Technology for Collaborative Applications - Organizations, Processes, and Agents [ASIAN

1996 Workshop], 99-120. (1998)

22. Kiepuszewski, B., Hofstede, A., and Bussler, C.: On Structured Workflow Modelling. In

Proceeding of the 12th International Conference on Advanced Information Systems

Engineering. London, 431-45. (2000)

23. Koehler, J., Tirenni, G., and Kumaran, S.: From Business Process Model to Consistent

Implementation: A Case for Formal Verification Methods. In Proceeding of the 6th IEEE

International Enterprise Distributed Object Computing Conference. Lausanne, Switzerland,

96-106. (2002)

24. Liu, D., Wang, J., Chan, S.C.F., Sun, J., and Zhang, L.: Modeling Workflow Processes with

Colored Petri Nets. Computers in Industry, 49(3), 267-81. (2002)

25. Liu, X. Abstraction: A Notation for Reverse Engineering. PhD Thesis, De Montfort

University, England, (1999)

26. Marjanovic, O. and Orlowska, M.E.: On Modelling and Verification of Temporal

Constraints in Production Workflows. Knowledge and Information Systems, 1(2), 157-92.

(1999)

27. Mukherjee, S., Davulcu, H., Kifer, M., Senkul, P., and Yang, G.: Logic Based Approaches

to Workflow Modeling and Verification. In Logics for Emerging Applications of Databases:

Springer Verlag, (2003)

28. Müller, R., Greiner, U., and Rahm, E.: Agent work: A Workflow System Supporting Rule-

based Workflow Adaptation. Data & Knowledge Engineering, 51(2), 223-56. (2004)

29. OASIS: Web Services Business Process Execution Language Version 2.0. OASIS Standard,

(11 April 2007)

30. OMG: Business Process Modeling Notation, V2.0. OMG Document: formal/2011-01-03,

(Jan 2011)

31. Sadiq, W. and Orlowska, M.E.: Analyzing Process Models Using Graph Reduction

Techniques. Information Systems, 25(2), 117-34. (2000)

32. Salimifard, K. and Wright, M.: Petri Net-based Modelling of Workflow Systems: An

Overview. European Journal of Operational Research, 134(3), 664-76. (2001)

33. Sneed, H.: Extracting Business Logic from Existing COBOL Programs as a Basis for

Redevelopment. In Proceeding of the 9th International Workshop on Program

Comprehension. Toronto, Canada, 167-75. (2001)

34. Suenbuel, A. and Shan, M.: Towards Enterprise Archeology: Extracting Business Processes

from Runtime Event Data. In Proceeding of the 6th IEEE International Conference on Data

Mining. Hong Kong, 468-73. (2006)

35. Turner, C., Tiwari, A., and Mehnen, J.: A Genetic Programming Approach to Business

Process Mining. In Proceeding of the 10th Annual Conference on Genetic and Evolutionary

Computation. Atlanta, Georgia, USA, 1307-14. (2008)

36. Wang, Y. and Fan, Y.: Using Temporal Logics for Modeling and Analysis of Workflows. In

Proceeding of the E-Commerce Technology for Dynamic E-Business, IEEE International

Conference. Beijing, 169-74. (2004)

37. Weske, M.: Business Process Management: Concepts, Languages, Architectures: Springer

Publishing, (2007)

26 Feng Chen et al.

38. WfMC: Workflow Process Definition Interface-XML Process Definition Language.

Workflow Management Coalition Workflow Standard, WFMCTC-1025, Version 2.2

(August 2012)

39. White, S.A., Miers, D., and Fischer, L.: BPMN Modelling and Reference Guide. Future

Strategies Inc., (August 2008)

40. Wong, P. and Gibbons, J.: A Process-algebraic Approach to Workflow Specification and

Refinement. In Software Composition: Springer Berlin / Heidelberg, 51-65. (2007)

41. Xiao, Z., Qi, C., and Huang, Q.: Verification and Reduction of Cyclic Structure in

Workflow Model. In Proceeding of the 4th International Conference on Machine Learning

and Cybernetics. Guangzhou, 1487-92. (2005)

42. Xu, F. and Yu, Z.: A Workflow Verification Method Based on Calculus. In Proceeding of

the First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering, 188-

96. (2007)

43. Yang, H. and Ward, M.: Successful Evolution of Software Systems: Artech House, Inc.,

(2003)

44. Zou, Y. and Hung, M.: An Approach for Extracting Workflows from E-Commerce

Applications. In Proceeding of the 14th IEEE International Conference on Program

Comprehension. Athens, Greece, 127-36. (2006)

45. Zou, Y., Lau, T., Kontogiannis, K., Tong, T., and McKegney, R.: Model-Driven Business

Process Recovery. In Proceeding of the 11th Working Conference on Reverse Engineering.

Delft, Netherlands, 224-33. (2004)

Feng Chen was awarded his BSc, Mphil and PhD at Nankai University, Dalian

University of Technology and De Montfort University in 1991, 1994 and 2007. As

research outputs, he has published over 30 research papers in the area of software

evolution and distributed computing.

Da Tang was awarded his BSc and Mphil at Dalian University of Technology in 1982

and 1985. He is currently an associate professor at Dalian University of Technology.

His research interests include software engineering, workflow system, system

modelling and verification.

Hongji Yang is currently a professor at De Montfort University. He has published five

books and well over 300 research papers in the area of Software Evolution, Distributed

Computing and Creative Computing. He served as a Programme Chair at IEEE

International Conference on Software Maintenance 1999 and IEEE International

Computer Software and Application Conference 2002. He is editing the International

Journal of Creative Computing.

A Precondition-based Approach to Workflow Oriented Software Re-engineering 27

Mohammed Alawairdhi obtained his BSc, MSc from King Saud University and

California State University. He earned his Ph.D. degree in Computer Science from De

Montfort University in 2009. He is currently working as an assistant professor in the

college of Computer and Information Sciences, Al - Imam Muhammad ibn Saud

Islamic University. He is also acting as the dean of the Computing and Informatics

College in the Saudi Electronic University. His research interests include software

engineering, ubiquitous computing, business process re-engineering and human

computer interaction.

Received: October 24, 2012; Accepted: June 24, 2013

