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Abstract. Java 7 has included the new invokedynamic opcode in the Java vir-
tual machine. This new instruction allows the user to define method linkage at run-
time. Once the link is established, the virtual machine performs its common opti-
mizations, providing better runtime performance than reflection. However, this fea-
ture has not been offered at the abstraction level of the Java programming language.
Since the functionality of the new opcode is not provided as a library, the existing
languages in the Java platform can only use it at the assembly level. For this reason,
we have developed the JINDY library that offers invokedynamic to any program-
ming language in the Java platform. JINDY supports three modes of use, establishing
a trade-off between runtime performance and flexibility. A runtime performance and
memory consumption evaluation is presented. We analyze the efficiency of JINDY

compared to reflection, the MethodHandle class in Java 7 and the Dynalink li-
brary. The memory and performance costs compared to the invokedynamic op-
code are also measured.

Keywords: invokedynamic, Java Virtual Machine, dynamically generated classes,
reflection, runtime performance.

1. Introduction

The Java platform offers a set of features, such as platform independence and adaptive
HotSpot JIT compilation, which has led to its widespread use and general acceptance.
These features have contributed to the proliferation not only of libraries, frameworks or
applications, but also of languages implemented on the Java platform. An existing re-
search has identified more than 240 language implementations on this platform [28], in-
cluding some well-known examples such as Scala, JRuby, Groovy, Jython and Clojure.

Since its first release, the Java platform has gradually incorporated more features com-
monly supported by dynamic languages. Java 1.1 included reflection services to examine
the structures of objects and classes at runtime (i.e., introspection). These services also
allow creating objects and invoking methods of types discovered at runtime. The dynamic
proxy class API, added to Java 3, allows defining classes that implement an interface, and
dynamically funneling all the method calls of that interface to an InvocationHandler.
The Java instrument package (Java 5) provides services that allow Java agents to in-
strument programs running on the Java Virtual Machine (JVM). The Java Scripting API,
added to Java 6, permits scripting programs to be executed from, and have access to, the
Java platform. The last version, Java 7, adds a new invokedynamic instruction to the
virtual machine. This new opcode is mainly aimed at simplifying the implementation of
compilers and runtime systems for dynamically typed languages [21].
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Until the inclusion of the invokedynamic opcode, the dynamically typed lan-
guages implemented on the Java platform had to simulate the dynamic features that the
platform did not support. Reflection was the main feature to obtain dynamic method invo-
cation. However, this simulation usually causes a runtime penalty [24]. The key difference
between invokedynamic and the reflection API is the runtime checks upon method ac-
cess. Reflection performs these checks at every method call, whereas invokedynamic
perform this check upon method handle creation [28]. Another difference is the possibility
to avoid type conversions performed by the reflective approach (i.e., avoiding the use of
Object). These differences suggest that invokedynamic can be used to improve the
runtime performance of dynamic language implementations [33] and any library, frame-
work or Java application that makes significant use of reflection.

Despite the expected benefits of the new invokedynamic opcode, the Java pro-
gramming language has not been changed to support this feature. Furthermore, the new
java.lang.invoke package in Java 7 [22] does not provide a high-level mechanism
to use invokedynamic from within the platform. The new bytecode is expected to
be used mainly by compilers that generate binary code including the new JVM instruc-
tion. However, this fact makes it difficult to access this functionality from any high-level
language on the platform. A first use case from a high-level language could be as an alter-
native mechanism to reflection. There could be some other scenarios, such as the dynamic
separation of aspects [23] and the implementation of multi-methods [6].

The main contribution of this paper is the development of a Java library, called JINDY,
to support the invokedynamic opcode from any high-level language on the Java plat-
form. Additionally, we assess its runtime performance, compared to the existing ap-
proaches. We also measure the penalty introduced by our library in comparison with the
direct use of the invokedynamic opcode.

This paper is structured as follows. Section 2 describes the invokedynamic opcode
and the dynamic code generation technique used in the development of JINDY. The library
is described in Section 3, and Section 4 evaluates its runtime performance and memory
consumption. Section 5 discusses the related work and Section 6 concludes and presents
the future work.

2. Context

2.1. The invokedynamic instruction

The invokedynamic JVM opcode provides a new user-defined dynamic linkage mech-
anism, postponing type checking of method invocation until runtime. As shown in Fig-
ure 1, an invokedynamic instruction is initially in an unlinked state (state 0 in Fig-
ure 1). That means that each invokedynamic instruction (main method of the
Application class in Figure 1) does not statically specify the method responsible for
conducting the dynamic method selection. This method, in the invokedynamic docu-
mentation, is called bootstrap method (method of the Bootstrap class in Figure 1).

An invokedynamic instruction is linked just before its first execution (state 1 in
Figure 1). At runtime, the JVM calls the bootstrap method, evaluating the names of the
class and method (passed as strings). The bootstrap method is responsible for returning the
method dynamically resolved. The dynamic resolution consists in returning a CallSite
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Each invokedynamic instruction is originally in an unlinked state.

A non-constant call site may be relinked by changing its method handle. 

The call site then becomes permanently linked to the invokedynamic instruction.

An invokedynamic instruction is linked just before its first execution. 
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public class Functions {

public static int f(int x) {…}
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}
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Fig. 1. Runtime execution of invokedynamic.

holding the MethodHandle that represents the selected method (g of the Functions
class in Figure 1).

An invokedynamic instruction is considered permanently linked when the boot-
strap method returns a CallSite (state 2 in Figure 1). From that time on, the following
invocations simply call the method referenced by the returned MethodHandle. Be-
sides, the JVM will apply the usual optimizations performed for common statically typed
method invocations.

It could be necessary to relink the linked method, due to some event occurred at run-
time (state 3 in Figure 1). After relinking, the MethodHandle will point to
Functions.f instead of to the original Functions.g method. For this purpose, the
new invoke package [22] offers three implementations of the CallSite abstract class:
the ConstantCallSite class for permanent method handles, and the Volatile-
CallSite and MutableCallSite classes for relinking a method handle with the
same type descriptor (MethodType) –VolatileCallSite supports multi-threading.

As mentioned, a resolved invokedynamic instruction is linked to a CallSite,
and each CallSite contains a MethodHandle. This MethodHandle is a refer-
ence to an underlying method, field or constructor. Therefore, an invokedynamic in-
struction performs the appropriate operation associated to the corresponding Method-
Handle.
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2.2. Dynamic code generation

Since invokedynamic is a JVM opcode, JINDY generates JVM code to provide its
functionality. Moreover, the code generation process should be performed dynamically,
because this opcode postpones linking until runtime.

ASM1 [5] is a code generation framework used to implement dynamic languages such
as JRuby [20], Jython [12] and Groovy [15]. It has also been used to implement other code
transformation tools such as JooFlux [26] and Soot [4]. This framework can be used to
modify existing classes and dynamically generate new ones, managing their binary rep-
resentation. ASM 4.0 supports the new invokedynamic opcode. For all these reasons,
we selected ASM to dynamically generate JVM code in the implementation of JINDY.

Figure 2 shows the process we follow to support invokedynamic from any high-
level language on the Java platform. An application calls JINDY (1) that, in turn, uses ASM
to generate JVM code at runtime (2). The generated code includes a class that implements
the Callable<T> interface shown in Figure 2. The generated invokemethod consists
in an invokedynamic JVM instruction specifying a bootstrap method. The parameters
JINDY passes to ASM to generate the appropriate invokedynamic statement are: a
String with the symbolic name of the method to be invoked; another String with
its type descriptor; and a Handle to identify the bootstrap method (the names of the
bootstrap class and method). More parameters can optionally be passed.

Once the binary class is generated, it is dynamically loaded and instantiated (3). To
load the binary class, JINDY implements a ClassLoader that loads the class after gen-
erating it. Once loaded, our library instantiates the class by calling its constructor (us-
ing reflection), returning a Callable<T> object (4). When the programmer calls the
invoke method of this interface (5), the invokedynamic opcode will be finally ex-
ecuted by the JVM (as described in Figure 1), since this opcode is the generated method
body. The first parameter of invoke is the object the underlying method is invoked
from, i.e. this (null if the method is static), and the rest of optional parameters are
the method arguments. As mentioned, an invokedynamic execution of an unlinked
method causes the execution of the bootstrap method (6), its linkage (7) and the final
execution.

Application JINDY

Callable

invoke(Object, Object…):T

CallableImp

invoke(Object, Object…):T

Boostrap

method(…):CallSite

T

(2) Code is 
generated
using ASM

(3) Generated 
code

Generated Code

(5) callable.

invoke(…)

(1) Generate
invokedynamic

(4) Reference to
callable

(6) The Boostrap
method is called

(7) Linked method

Fig. 2. The dynamic code generation process implemented by JINDY.

The dynamic code generation mechanism shown in Figure 2 has been previously ap-
plied in Groovy to perform dynamic method invocations [15]. Dynamic code generation

1 http://asm.ow2.org
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involves a runtime performance and memory consumption penalty, as discussed in Sec-
tion 4.4. We have reduced this penalty by implementing a cache of instantiated classes,
avoiding the generation existing classes.

3. JINDY

The implemented library allows the programmer to use the invokedynamic opcode
from any language implemented on the Java platform. JINDY can be used in all the sce-
narios where invokedynamic may be useful. Programmers may create their own boot-
strap methods to define how call sites must be dynamically linked. Besides, it also pro-
vides specific routines as a more efficient alternative to the reflection API. This section
shows examples of using JINDY in these scenarios.

The motivating example uses JINDY to implement a dynamically adaptable depen-
dency injection system. Dependency injection is a software design pattern that allows
removing hard-coded dependencies between software components (beans) [10]. Depen-
dencies are described in a separate document that is processed by the injector (sometimes
called container, assembler or provider), which creates instances of the appropriate classes
and interconnects them. We show how to perform this instantiation and interconnection
with JINDY. Besides, we extend the injector to support the dynamic modification of ob-
ject dependencies without changing the source code of the application, using invoke-
dynamic.

3.1. JINDY as an alternative to the reflection API

We first use JINDY to implement a typical dependency injection system (in the following
subsections we extend it to make it dynamically adaptable). This first scenario shows how
our library provides a more efficient alternative to the reflection API (see the performance
evaluation in Section 4). Both component instantiation and interconnection are done using
JINDY.

The top of Figure 3 shows an example class diagram, where a Timer class pro-
vides a set of methods. When these methods are called, the timer logs information by
using its associated logger. Similarly, an ILogger invokes the write method of
the associated IWritter (when the level of the message to be logged is greater or
equal to the level field of the logger [1]). Figure 3 presents two types of IWriters:
ConsoleWriter to show messages on the console, and CSVFileWrite to write in-
formation in comma-separated value text files.

We have used an XML document format similar to the Spring Framework to declare
the dependencies between components [29]. The example document in the bottom of
Figure 3 shows how a ConsoleWriter instance is assigned to the writer field of the
Logger class, and a Logger instance is also associated to a Timer. The dependency
injector will instantiate these objects, associating them as stated in the XML document.
Therefore, the object dependencies are not hard-coded in the application source code.

Figure 4 shows an excerpt of our first dependency injection system (the full source
code is available for download2). The main Application class (bottom left corner)

2 http://www.reflection.uniovi.es/invokedynamic/Jindy
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<beans xmlns="http://www.springframework.org/schema/beans"

… >

<bean id="writer" class="ConsoleWriter" />

<bean id="logger" class="Logger"> <property name="writer" ref="writer" class="IWriter"/> </bean>

<bean id="timer" class="Timer"> <property name="logger" ref="logger" class="ILogger"/> </bean>

</beans>

Timer

+ getSeconds() : double
+ reset() : void
+ setLogger(ILogger) : void
+ start() : void
+ stop() : void

Logger

+ log(Level, String) : void
+ setLevel(Level) : void
+ setWriter(IWriter) : void

«interface»

ILogger

+ log(Level, String) : void

«interface»

IWriter

+ write(Level, String) : void

ConsoleWriter

+ write(Level, String) : void

CSVFileWriter

+ CSVFileWriter(String)
+ write(Level, String) : void

-writer

1

-logger

1

-level

1

«enumeration»
Level

off, fatal, error
warn, info, debug
trace, all

Fig. 3. Example application and its dependency injection XML document.

asks the BeanInjector to process the XML document in order to create the class in-
stances and inject their dependencies. Afterwards, the timer bean is retrieved and used.
The BeanInjector (top left of Figure 4) contains an ObjectTable collecting all the
bean instances. Upon construction, the BeanInjector calls the addBeanId method
of this ObjectTable (bottom right) for each bean element in the XML document. The
addBeanId method shows the first example use of JINDY. The ProxyFactory class
is provided to use the invokedynamic opcode through a set of methods. The bean
class is first loaded, and the generateConstructor method dynamically generates
a method that invokes the default constructor3 using invokedynamic; additionally, the
corresponding bootstrap method is also generated by JINDY.

The BeanInjector also interconnects class instances with the inject method
(Figure 4, top left). This is a second example of using JINDY for dynamic method invo-
cation. Once the two associated objects and their classes are retrieved, our library is used
to call the appropriate setter method (setter injection [10]). The generateCallable
method generates a new class at runtime, implementing the generic Callable<T> inter-
face provided by JINDY (Figure 4, top right). The generated class overrides the invoke
method, calling the specified setter method (as described in Figure 2). The generic T
type of the Callable interface corresponds to the return type of the invoke method.
Generics are used to avoid casting the return value, on contrast to reflection.

These two examples shows how JINDY can be used as an alternative to the reflection
API. The main difference between JINDY and reflection is that JINDY uses invoke-
dynamic by means of dynamic code generation, whereas reflection uses introspection.
Besides, JINDY implements a cache of the instantiated classes, performing better than
reflection (Section 4).

3 In our dependency injection example system, bean classes must support a constructor without
parameters.
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public class BeanInjector {

private ObjectTable objectTable;

public void inject(String beanId, String propertyName, String assocBeanId, String className) {

Object beanObject = this.objectTable.getObjectFromBeanId(beanId);

Object associatedObject = this.objectTable.getObjectFromBeanId(assocBeanId); 

Class<?> associatedObjectType = Class.forName(className);

Callable<?> callable = ProxyFactory.generateCallable(beanObject, "set" + capitalize(propertyName),

void.class, associatedObjectType);

callable.invoke(beanObject, associatedObject);

}

…

}

public class Application {

public static void main(String... args) {

BeanInjector injector = 

new BeanInjector("beans.xml");

Timer timer = injector.<Timer>getBean(

"timer");

while(true) {

timer.start(); Thread.sleep(1000);

timer.stop(); timer.getSeconds();

timer.reset();

}

}

}

package es.uniovi.reflection.invokedynamic.interfaces;

public interface Callable<T> {

T invoke(Object object,  Object... arguments); 

}

public class ObjectTable {

private Map<String, ClassObjectPair> beans = 

new HashMap<String, ClassObjectPair>();

public void addBeanId(String beanId, String className) {

ClassObjectPair pair = this.beans.get(beanId);

if (pair == null) {

Class<?> beanClass = Class.forName(className);

Object object = ProxyFactory.generateConstructor(

beanClass).newInstance();

pair = new ClassObjectPair(className, object);

}

this.beans.put(beanId, pair);

}

…

}

Fig. 4. Dynamic method invocation using JINDY.

3.2. Avoiding type conversions

In the previous section, the Callable JINDY interface receives Object type argu-
ments, similar to the reflection methods. This produces many runtime type conversions
that involve a runtime performance penalty. However, there are scenarios in which the pa-
rameter and return types can be known at compile time. For these cases, JINDY offers a set
of services to avoid type conversions, improving code robustness (static type checking)
and runtime performance (Section 4).

In the previous version of the dependency injection system, instances were created
and interconnected at startup, but changing the XML document at runtime did not im-
ply changing the running application. We now extend the example to allow the dynamic
modification of the application, permitting the user to instantiate new beans and changing
their interconnections at runtime without changing the application source code. Therefore,
invokedynamic is used to relink the method associated to specific CallSites. In
particular, we modify the meaning of field accesses (i.e., this.logger and
this.writer) changing the returned objects depending on the contents of the XML
dependency injection document.

Figure 5 shows the new Logger class4. JINDY returns a GetWriter object that
implements the access to the writer field (i.e., this.writer) as a method. The de-
veloper defines the GetWriter interface declaring a method (invoke) with the same
signature as the getter method of the writer field. JINDY dynamically generates a class
implementing GetWriter, which uses invokedynamic to access the writer field.

4 The bootstrap object will be discussed in the following subsection.
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Since no type conversion is performed at runtime, our library performs significantly better
than reflection (see Section 4).

public class Logger implements ILogger {

private IWriter writer;

private Level level = Level.ALL;

public void log(Level level, Object message) {

if (this.level.ordinal() >= level.ordinal())

ProxyFactory.<GetWriter>generateInvokeDynamic(bootstrap, GetWriter.class).invoke(this)

.write(level, message);

}

private static Bootstrap bootstrap = new Bootstrap("Bootstrap", "bootstrapMethod", 

Logger.class, "writer");

}

public interface GetWriter {

IWriter invoke(Logger logger);

}

Fig. 5. Avoiding type conversions in JINDY.

Notice how the Logger class provides no setter method. With this new approach
of dependency injection, neither setter methods no parameterized constructors need to
be implemented (i.e., setter and construction injection). The bean injector modifies the
semantics of field access, injecting the dependencies transparently depending on the XML
document, and considering its runtime changes.

3.3. Providing a custom bootstrap method

As shown in Figure 5, the programmer provides a bootstrap method to define how method
(or field access) linkage must be performed. Figure 6 details the implementation of the
bootstrap method. First, the XML document is read and loaded into the object table (Sec-
tion 3.1). Second, a getter method implementation is dynamically generated. This getter
method will be used to define the new semantics of field access, considering the depen-
dencies declared in the XML document. Third, a VolatileCallSite wrapping this
method is created; it is volatile because its wrapped method will be asynchronously mod-
ified at runtime. Finally, the call site is stored in a callSiteTable to allow the subse-
quent access, and returned.

In Figure 6, the new Application runs the bean injector as a daemon thread, while
the application keeps running. The BeanInjector thread (i.e., its run method) ana-
lyzes the XML document each 500 milliseconds (processXML), only if its modification
date has been changed. If one of the dependencies is modified, the setBeanProperty
method will be called by processXML. setBeanProperty gets the Volatile-
CallSite stored by the bootstrap, generates the corresponding getter method imple-
mentation (called getField), and dynamically changes the target method of the call
site to the one generated (getField). The result is an asynchronous modification of the
associated object (dynamically adaptable dependency injection), without changing the
application source code. Another benefit is that new implementations of IWriter and
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ILogger can be added and injected at runtime, without stopping the application execu-
tion. For instance, the example source code provided5 adds a new HtmlTextWriter
implementation of IWriter at runtime, and injects one instance as the new writer
property of the logger bean.

public class BeanInjector extends Thread {

public void run() {

while(true) {

Thread.sleep(500); this.processXML(); 

}

}

Map<FieldKey, VolatileCallSite> callSiteTable = 

new HashMap<FieldKey, VolatileCallSite>();

public void setBeanProperty(Class<?> klass, String fieldName, Class<?> fieldClass, 

String concreteFieldType) {

FieldKey fieldKey = new FieldKey(klass, fieldName, fieldClass);

VolatileCallSite callsite = callSiteTable.get(fieldKey);

String generatedClassName = this.generateGetter(klass, fieldName, fieldClass, concreteFieldType);

MethodHandle mh = MethodHandles.lookup().findStatic(Class.forName(generatedClassName), 

"getField", MethodType.methodType(fieldClass, klass));

callsite.setTarget(mh);

}

…

}

public class Bootstrap {

public static CallSite bootstrapMethod(Lookup lookup, String name, 

MethodType methodType, Class<?> klass, String member) {

beanInjector.processXML();

MethodHandle mh = beanInjector.generateGetter(klass, member, methodType);

VolatileCallSite callsite = new VolatileCallSite(mh);

beanInjector.callSiteTable.put(new FieldKey(klass, member, methodType.returnType()), 

callsite);

return callsite;

}

}

public class Application {

public static void main(String... args) {

BeanInjector injector = 

new BeanInjector("beans.xml");

Timer timer = injector.<Timer>getBean(

"timer");

injector.start();

while(true) {

timer.start(); Thread.sleep(1000);

timer.stop();  timer.getSeconds();

timer.reset();

} } }

Fig. 6. Using JINDY with a custom bootstrap method.

We have seen how the JINDY library provides high-level support for
invokedynamic. The library allows postponing until runtime class and instance method
invocations, constructor calls, and instance and static field accesses. It also supports user-
defined bootstrap methods to allow customized linkage. We have also shown how JINDY
can be used to dynamically relink methods, permitting the asynchronous adaptation of
call sites. A more detailed documentation of the library can be consulted in [7].

4. Evaluation

We have evaluated JINDY in the three use cases described in Section 3: as an alternative
to reflection, avoiding type conversions, and providing custom bootstrap methods (using
constant call sites). We measure the runtime performance and memory consumption of

5 http://www.reflection.uniovi.es/invokedynamic/Jindy
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JINDY compared to reflection, MethodHandle and the Dynalink library [32]. Addi-
tionally, we have measured the performance penalty of JINDY compared to the direct use
of invokedynamic, as well as the comparison of this new opcode to the corresponding
statically typed JVM instructions.

4.1. Methodology

A synthetic micro-benchmark has been developed to evaluate the above mentioned use
cases. This micro-benchmark takes into account the following scenarios:

1. The invokedynamic opcode. We compare the performance of the
invokedynamic opcode with JINDY, its corresponding statically typed opcode, re-
flection, the invokeExact method of MethodHandle, and Dynalink. Dynalink
is Java library that allows performing dynamic operations on objects without knowing
their static types [32]. It uses the services of the new Java 7 java.lang.invoke
package, including invokedynamic (a more detailed description is presented in
Section 5).

2. JINDY, as an alternative to the reflection API. In this case, we compare different types
of reflective scenarios. We measure the execution time used to obtain classes and
methods using introspection, apart from its invocation. JINDY is also used to optimize
a real third-party application, measuring the performance improvement obtained.

3. Performance and memory cost. We measure the increase of the memory consumption
and runtime performance of JINDY, compared to the direct use of the invoke-
dynamic opcode.

The developed synthetic micro-benchmark evaluates instance, class and interface
method invocations (one single parameter), as well as instance and class field accesses
(get and set). The methods simply increment a field value (receiving another value as a
parameter) and return the value of the incremented field. The return values of methods
and fields are assigned to local variables.

These scenarios have been implemented in JINDY following the three different use
cases described in Section 3. Firstly, as an alternative to the reflection API, performing
type conversions (JINDY TC in Figures 7, 8, 9 and 10). The second use case utilizes
customized interfaces to avoid type conversions, without providing a bootstrap (JINDY I).
The last scenario (JINDY BI) provides a custom bootstrap method, equivalent to those
used in the other two scenarios (i.e., returning constant call sites).

Regarding the data analysis, we have followed the methodology proposed in [11] to
evaluate the runtime performance of applications, including those executed on virtual ma-
chines that provide JIT compilation. In this methodology, two approaches are considered:
1) start-up performance is how quickly a system can run a relatively short-running ap-
plication; 2) steady-state performance concerns long-running applications, where start-up
JIT compilation does not involve a significant variability in the total running time, and
Hotspot dynamic optimizations have been applied.

To measure start-up performance, a two-step methodology is used:

1. We measure the execution time of running multiple times the same program. This
results in p (we have taken p = 30) measurements xi with 1 ≤ i ≤ p.
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2. The confidence interval for a given confidence level (95%) is computed to eliminate
measurement errors that may introduce a bias in the evaluation. The confidence in-
terval is computed using the Student’s t-distribution because we took p = 30 [17].
Therefore, we compute the confidence interval [c1, c2] as:

c1 = x− t1−α/2;p−1 s√
p c2 = x+ t1−α/2;p−1

s√
p

Where x is the arithmetic mean of the xi measurements, α = 0.05(95%), s is the
standard deviation of the xi measurements, and t1−α/2;p−1 is defined such that a
random variable T , that follows the Student’s t-distribution with p − 1 degrees of
freedom, obeys Pr[T ≤ t1−α/2;p−1] = 1− α/2.
The data provided is the mean of the confidence interval plus a percentage indicating
the width of the confidence interval relative to the mean.

The steady-state methodology comprises four steps:

1. Each application (program) is executed p times (p = 30), and each execution per-
forms at least k (k = 10) different iterations of benchmark invocations, measuring
each invocation separately. We refer xij as the measurement of the jth benchmark
iteration of the ith application execution.

2. For each i invocation of the benchmark, we determine the si iteration where steady-
state performance is reached. The execution reaches this state when the coefficient
of variation (CoV , defined as the standard deviation divided by the mean) of the last
k + 1 iterations (from si − k to si) falls below a threshold (2%).

3. For each application execution, we compute the mean xi of the k + 1 benchmark
iterations under steady state:

xi =

si∑
j=si−k

xij

k+1

4. Finally, we compute the confidence interval for a given confidence level (95%) across
the computed means from the different application invocations using the Student’s t-
statistic described above. The overall mean is computed as x =

∑p
i=1 xi/p. The

confidence interval is computer over the xi measurements.

To measure execution time of each benchmark invocation (in the steady-state method-
ology) we have instrumented the applications with code that registers the value of high-
precision time counters provided by the Windows operating system. This instrumenta-
tion calls the native function QueryPerformanceCounter of the kernel32.dll
library. This function returns the execution time measured by the operating system Per-
formance and Reliability Monitor [37]. We measure the difference between the beginning
and the end of each benchmark invocation to obtain the execution time of each benchmark
run.

The memory consumption has been measured following the start-up methodology to
determine the memory used by the whole process. For that purpose, we have used the
maximum size of working set memory employed by the process since it was started (the
PeakWorkingSet property). The working set of a process is the set of memory pages
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currently visible to the process in physical RAM memory. These pages are resident and
available for an application to be used without triggering a page fault. The working set
includes both shared and private data. The shared data comprises the pages that contain
all the instructions that the process executes, including those from the process modules
and the system libraries. The PeakWorkingSet has been measured with explicit calls
to the services of the Windows Management Instrumentation infrastructure [18].

All the tests were carried out on a lightly loaded 2.40 GHz Intel Core i5 2430M system
with 4 GB of RAM running an updated 64-bit version of Windows 7 Home Premium SP1.
We have used the Java Standard Edition 1.7 update 9 for 64 bits.

4.2. Evaluation of the invokedynamic opcode

We have evaluated the performance of invokedynamic, JINDY in the 3 use cases de-
fined (JINDY I, JINDY TC and JINDY BI), the corresponding statically typed opcodes,
reflection, invokeExact of MethodHandle and Dynalink. The 7 operations of the
synthetic micro-benchmark (instance, class and interface method; and class and instance
get and set field) have been executed in loops from 1 to 10,000 million iterations.

Since the test that uses invokedynamic cannot be directly written in Java, the
following method has been followed to implement it. We first take the statically typed
approach that measures the 7 operations mentioned above. This program is then dis-
assembled with the ASMifier tool of ASM, replacing the 7 statically typed opcodes
(invoke{virtual, interface, static} and {get, set}{field, static})
with the appropriate invokedynamic instruction. We implement 7 bootstrap methods
for the 7 types of invokedynamic operations. Finally, ASM is used to convert the new
assembly code into the JVM .class files.
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Fig. 7. Average execution time of the primitive operations (microseconds in logarithmic scale).
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Figure 7 shows the average execution time obtained for the 7 operations. The re-
sults for short-running (start-up) applications indicate that, for 1 million iterations, the
new invokedynamic opcode is 181.2% slower than the corresponding statically typed
opcode. The penalty of using JINDY I compared to invokedynamic is 2.49%, being
0.54% and 61.28% faster than JINDY BI and JINDY TC, respectively. Compared to re-
flection, MethodHandle and Dynalink, JINDY I is 2.22, 15.11 and 83.36 times faster,
respectively.

Figure 7, start-up, also shows how the performance of JINDY and invokedynamic
improves as the number of iterations increases. When reaching 100 million iterations,
the benefit of JINDY I and invokedynamic regarding reflection, MethodHandle
and Dynalink grows to 8.03, 27.88 and 197 factors, respectively. For the same number
of iterations, statically typed opcodes performs 0.51% and 8.57% better than invoke-
dynamic and JINDY I, respectively.

For long-running applications (steady-state in Figure 7), runtime performance shows
lower dependence on the number of iterations. For 1 million iterations, the smallest dif-
ference between JINDY I, JINDY BI, invokedynamic and the statically typed invo-
cations is lower than 2.5%. As the number of iterations increases, the differences lightly
decreases, reaching values lower than 0.5% for 10,000 million iterations. In the start-up
methodology, the JVM reaches its steady state with 1,000 million iterations. At this state,
the results for short-running applications are very similar to those obtained for server
applications (Figure 7).

Figure 8 shows the execution times of the seven operations for 1,000 million iter-
ations, running long-running applications (steady-state). Performance values have been
divided by those obtained by the corresponding statically typed opcode. For all the op-
erations, differences among invocations using the statically typed opcode, invoke-
dynamic, JINDY I, and JINDY BI are barely appreciable. Average penalties of JINDY I
and JINDY BI compared to invokedynamic are 0.48% and 0.79%, with a standard
deviation of 1.45% and 0.68%, respectively.

When using reflection, the worst results are obtained getting and setting field val-
ues. For example, setting the value of instance fields using reflection is 13.72 and 1.97
times slower than JINDY I and JINDY TC, respectively. A similar behavior is seen with
invokeExact of MethodHandle, where reading an instance field is 50.58 times
slower than the static opcode. The smallest difference between JINDY and the rest
of approaches is exhibited in the invocation of static methods. In this case, JINDY TC
and reflection obtain practically the same performance, and JINDY TC is 370.53% and
1,763% faster than MethodHandle and Dynalink. In this scenario, JINDY I and
JINDY BI are 824.20% and 821.34% faster than reflection; perform 25 and 24.92 times
better than MethodHandle; and are 168 factors faster than Dynanlink.

The results obtained with JINDY TC for method invocation confirm the cost of type of
conversions (the argument and return types are long). The penalties of JINDY TC com-
pared to reflection are 3.53%, 3.67% and 1.42% for instance, class and interface methods
invocation, respectively. However, if type conversions are avoided (JINDY I), our library
turns out to be 713.07%, 713.76% and 797.38% faster.
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4.3. JINDY evaluation as an alternative to the reflection API

In the previous subsection, reflective method invocations have been measured considering
the execution time of the invoke method in the Method class. However, the execution
time of obtaining the class and the appropriate method using reflection have not been mea-
sured. Similarly, we have not evaluated the execution time of the dynamic class generation
performed by JINDY. Therefore, in this section we consider the cost of these operations.
Prior to the invokedynamic execution, we obtain an instance of the class that supports
this invocation, using the JINDY ProxyFactory factory methods defined in Figure 4.
These operations are now included in the micro-benchmark, for the three use cases of
JINDY (JINDY I, JINDY TC and JINDY BI) and reflection. The MethodHandle and
Dynalink approaches are not considered here because of their low runtime performance.

Figure 9 shows the average execution time obtained for the 7 operations. Iterations
have been reduced to 1,000 million due to the high execution times obtained. Execution
times are computed as the arithmetic mean of the 7 operations described in Section 4.1.
As in the previous subsection, runtime performance of short- (start-up) and long-running
(steady-state) applications show a different dependence on the number of iterations. Long-
running applications do not show a significant difference when increasing the number of
iterations. For 1 million iterations JINDY I, JINDY TC and JINDY BI are 23.02, 16.55
and 6.29 times faster than reflection, respectively. JINDY BI is the scenario where the
lowest benefit is obtained, because of the penalty caused by the use of custom bootstrap
methods.

For short-running applications (start-up), the performance benefit of JINDY compared
to reflection increases as the number of iterations grows. For 1 million iterations, JINDY I,
JINDY TC and JINDY BI obtain a performance benefit of 340.07%, 283.06% and 231.66%,
respectively, compared to reflection. With 1,000 million iterations these benefits grow to
1,197%, 973% and 565%.
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Fig. 9. Average execution time for reflective scenarios (microseconds in logarithmic scale).

Figure 10 shows the results per operation for 1,000 million iterations, when the ap-
plication has reached a steady state. The results have been divided by the execution time
of JINDY BI. The major benefits of using JINDY, as an alternative to reflection, are ob-
tained when getting field values of both instances (JINDY I, JINDY BI and JINDY TC
are 24.76, 7.75 and 21.75 times faster than reflection) and classes (27.05, 8.34 and 23.78
times faster than reflection). The lowest performance benefit is obtained when invoking
interface methods, being JINDY I, JINDY BI and JINDY TC 9.62, 2.67 and 6.01 times
faster than reflection.
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Comparing this data with the one presented in the previous subsection, we can see
have the benefit of JINDY in this case is even higher. The performance benefits are, on
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average, 807.23% greater than those in the previous subsection. Therefore, the cost of
generating the invokedynamic opcode seems to be lower than the reflective retrieval
of a method and its class.

Evaluation of a real application

We have also evaluated the performance improvement of JINDY when applied to a
real application that makes extensive use of reflection. In the previous synthetic micro-
benchmark, only the execution time of reflective operations were measured. In this case,
a real application executes both reflective and statically typed code. Therefore, we assess
how JINDY can optimize the overall application execution.

The application we have selected for this test is OVal, a pragmatic and extensible
validation framework for any kind of Java objects (not only JavaBeans) [35]. OVal al-
lows defining dynamic constraints on Java properties, methods and constructors. The
constraints can be defined with Java annotations or XML files. Constraint validation is
performed by OVal at runtime, using the reflection API.

Analyzing the source code of OVal, we identified 16 reflective method invocations. We
modified the OVal implementation, replacing these reflective operations with the appro-
priate invocations to the JINDY library. Besides, we created a third version using Dynalink
instead of JINDY. The three different versions were executed, and their execution times
were measured following the methodology described in Section 4.1.

The entity model of the example application is shown in Figure 11. The application
creates three instances of Person, two Banks, and one instance of Company, Job and
Marriage. We defined 28 constraints on properties and methods, using Java annota-
tions. Example constraints are parents of one person can be neither descendants nor his
or her spouse, and a person cannot have two different jobs in the same company6. OVal is
programmatically called to check if the set of constraints are fulfilled at a specific point of
execution (i.e., on demand validation). This validation is performed an increasing number
of times.

Table 1 presents the execution times and error percentages of the three approaches,
from 1 to 1 million invocations in the steady-state methodology (start-up showed high per-
centage errors). For 1 and 10 invocations, the difference between reflection and JINDY is
lower than the error percentage (they cannot be considered to differ). For 100 invocations
JINDY is 7.14% faster than reflection, and this benefit grows to 75.07% for 1,000 invo-
cations. The benefit of JINDY compared to reflection seems to converge towards 79.18%
(the benefit difference between 100,000 and 1 million invocations is 0.9%).

Table 1 also shows the execution time of OVal, when reflective invocations have been
replaced with Dynalink. JINDY performs 324% better than Dynalink for one single in-
vocation. This benefit grows up to 296 factors for one million invocations. Therefore,
the dynamic generation of invokedynamic opcodes (the JINDY approach) compared
to the use of MethodHandles (using Dynalink from Java) involves a significant per-
formance benefit. In the execution of this test, JINDY has required 15% more memory
resources than reflection, but 29.92% less memory than Dynalink.

6 The rest of constraints can be consulted in the code available for download.
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Bank

- name:  String

Person

- age:  int
- birthDate:  Date
- firstName:  String
- gender:  Gender
- isMarried:  boolean
- isUnemployed:  boolean
- lastName:  String
- maidenName:  String

+ currentSpouse() : Person
+ descendants() : Set<Person>
+ income() : double

Job

- salary:  double
- startDate:  Date
- title:  String

Marriage

- date:  Date
- ended:  boolean
- place:  String

Company

- name:  String
- numberEmployees:  int

+ hireEmployee(Person) : void
+ stockPrice() : double

«enumeration»
Gender

female
male

-parents 0..1-children *

-wife 0..1

-husband 0..1

-manager

1

-managedCompanies

*

-employee

*

-employer

*

accountNumber:int

*

-customer 0..1

Fig. 11. Entity model used in the evaluation of the OVal framework.

4.4. Performance and memory cost

The dynamic generation of classes performed by JINDY (Section 2.2) produces a runtime
performance and memory consumption penalty compared to the direct use of invoke-
dynamic. To evaluate this penalty, we have measured the average execution time of
the 7 common operations. In the computer used, the constant average execution time is
22,068.38 microseconds. However, as discussed in the previous subsections, the relative
cost of JINDY compared to invokedynamic decreases as the number of invocations
increases, becoming 2.59% for 1,000 invocations and 0.69% for 10 million invocations.

Using the developed micro-benchmark, we have also evaluated the memory consump-
tion of our library. The average memory consumption of JINDY, when using custom inter-
faces (JINDY I), is 2.55% higher than invokedynamic. Comparing it with the corre-

Invocations JINDY Reflection Dynalink
1 8,342±5.2% 8,141±6.6% 35,358±6.6%

10 14,160±4.2% 13,653±3.8% 58,480±3.3%
100 25,207±5.9% 27,008±7.6% 314,659±1.9%

1,000 77,103±1.9% 134,985±1.9% 3,468,511±1.8%
10,000 876,993±1.6% 1,453,619±1.9% 147,744,785±2.1%

100,000 6,502,597±1.6% 11,592,832±2.4% 1,895,077,469±2.6%
1,000,000 63,674,864±1.7% 114,093,201±1.9% 18,950,774,685±3.6%

Table 1. Average execution time (microseconds) and error percentages of the OVal validation frame-
work.
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sponding statically typed opcode, reflection and MethodHandle, these increments are
8.31%, 7.47% and 5.94%, respectively; Dynalink requires 27.37% more memory than
JINDY I. Using our library in scenarios that require type conversions (JINDY TC) and
providing a custom bootstrap method (JINDY BI), JINDY requires 0.057% and 1.30%
more memory, respectively, than JINDY I. These results were calculated with a 95% con-
fidence level and error intervals lower than 2%.

5. Related Work

Dynalink is an invokedynamic-based high-level linking and meta-object protocol li-
brary [32]. Dynalink allows performing dynamic operations on objects without know-
ing their static types. It can be used from Java to facilitate the creation of Method-
Handles that the programmer later invokes to perform the dynamic operations. It can
also be used from a JVM assembler (e.g., ASM) to make the generation of invoke-
dynamic instructions easier. Dynalink provides a set of bootstrap method implementa-
tions, and a set of conventions for common dynamic operations on objects. For instance,
the "dyn:getProp:color" string represents the dynamic access to the color prop-
erty (i.e., both the color field and the getColor method). Therefore, it provides a
form of duck typing [27]. In its current version 0.6, Dynalink does not generate invoke-
dynamic opcodes when used from Java; MethodHandles should be invoked instead.
It provides services to facilitate the use of invokedynamic when used from a JVM
assembler.

The Da Vinci Machine (or MLVM, Multi-Language Virtual Machine) [31] is an Open-
JDK project aimed at extending the JVM with first-class architectural support for lan-
guages other than Java, especially dynamic ones. This project prototypes a number of ex-
tensions to the JVM, so that it can run non-Java languages efficiently, with a performance
level comparable to that of Java itself. The Da Vinci project has several subprojects such as
the JSR 292, aimed at supporting dynamically typed languages on the Java platform [30],
including the new invokedynamic opcode. In 2010, Chanwit Kaewkasi conducted a
preliminary study of the efficiency of invokedynamic in MLVM. He presented the
results of running an invokedynamic version of the SciMark2 benchmark compared
to a refactored version of the original program. The experimental results showed that the
execution of method handles in the server VM was 2-5 times slower than native Java
invocations [14].

The invokedynamic opcode has been used in different language implementations
to improve their runtime performance, avoiding the use of reflection. Since its publica-
tion in July 2011, there are languages such as JRuby and Groovy that have included
the new opcode; others, such as Jython and Rhino [19], are still in process of includ-
ing it. JRuby is the Ruby implementation for the Java platform. Its version 1.7 sup-
ports invokedynamic, obtaining a significant performance improvement [34]. How-
ever, current released versions of OpenJDK 7 sometimes error out or fail to optimize code
as expected [34]. In order to provide a consistent JRuby experience, the use of invoke-
dynamic is disabled by default in Java 7. However, the use of invokedynamic is
enabled by default when running on OpenJDK 8 builds.

Groovy is a dynamic language created to be run on the Java platform. Groovy 2.0
supports invokedynamic. Groovy, similar to JRuby, by default disables the use of the
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new opcode, giving the user the possibility to activate it. Groovy conducted some tests
on version 2.0. The results indicated that runtime performance was increased in some
scenarios, while other programs shower slower execution [16].

Jython is an implementation of the Python language for the Java platform. Although
this language does not offer full support of the invokedynamic opcode, developers are
working on restructuring its code to improve its runtime performance using invoke-
dynamic [2]. Shashank Bharadwaj presented a preliminary assessment of the opcode
performed on the latest version of Jython. This evaluation showed a 4% improvement
across the suite of the evaluated benchmarks [3].

invokedynamic is also being applied to newly created dynamic languages such as
Nashorn, a project to be launch for the Java 8 platform. Nashorn is a new implementation
of JavaScript [8] that uses the invokedynamic opcode. Nashorn is intended to replace
Rhino (the Mozilla implementation of JavaScript for Java platform), which requires a
significant rewrite to take advantage of the JSR-292 invokedynamic opcode [36].

Apart from dynamic languages, there are other tools that allow the use of the JVM
invokedynamic instruction for different purposes. JooFlux is a JVM agent that pro-
vides the dynamic replacement of application aspects and method implementations [26].
invokedynamic allows relinking the method associated to a call site at runtime, a be-
havior that can be used to implement dynamic aspect-oriented weavers [25]. JooFlux has
been compared with Clojure, JRuby, Groovy, JavaScript and Jython, obtaining significant
runtime performance benefits [26].

Dynamate is a framework designed to allow the Java implementation of different types
of method dispatch, such as multiple dispatch (multi-methods) and the late binding dis-
patch implemented by dynamic languages [9]. They use invokedynamic to separate
method invocation from method dispatch, mapping a different method dispatch technique
when a method is called, depending on the desired behavior. Dynamate has been used to
prototypically reimplement the JRuby, Jython and Groovy dynamic languages, and the
MultiJava, JCop and JastAdd systems [9].

Soot is a Java optimization framework for static analysis and transformation of Java
programs, which has been recently extended to support the invokedynamic opcode [4].
Soot provides the Jimple intermediate representation of JVM applications,
including invokedynamic. Therefore, Jimple can be used to perform bytecode anal-
ysis and optimizations, transforming existing code to invokedynamic; it can also be
used to generate invokedynamic instructions with an abstraction level higher than
code manipulation tools such as ASM [4].

jDart is a compiler that takes Dart [13] programs and generates binary JVM code to
be executed in the Java 7 platform [13]. jDart generates an invokedynamic instruc-
tion for every method invocation (except constructors), postponing the method linkage
until runtime. A bootstrap included in the language runtime searches for the appropriate
method and, once it is linked, the JVM applies the usual optimizations performed for com-
mon statically typed code. This language implementation shows the simplicity of using
invokedynamic in the implementation of efficient dynamic languages.
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6. Conclusions

Dynamic code generation is a suitable technique to build an efficient library that supports
the new JVM invokedynamic opcode from any high-level language running on the
Java platform. In those scenarios where invokedynamic may be appropriate, JINDY
frees the programmer from generating code that uses this new opcode. A typical use is as
an alternative to the reflection API. For this task, JINDY provides a set of services similar
to the reflection library. The average performance benefit obtained for this scenario is
14.83 factors for long-running applications, and 9.73 for short-running programs. The
library also offers the possibility of avoiding type conversions, reducing the type casts
performed with the reflective approach. In this case, the performance benefit increases to
19.97 and 11.97 factors for long- and short-running applications, respectively.

JINDY also allows the developer to provide a custom mechanism to select the method
to be invoked, and replaced it at runtime. This alternative is more versatile, making JINDY
suitable for in any scenario where the invokedynamic opcode can be employed. Com-
pared to reflection, this alternative has an average benefit of 618.53% for long-running
applications and 565.42% for short-running programs.

We have also used JINDY to optimize a real application. The OVal validation frame-
work has been re-implemented using our library instead of reflection. For the first con-
straint validation, our library performs the same as reflection. However, if the number of
validations is increased, the performance benefit of the overall application grows up to
79%.

The dynamic code generation technique implemented by JINDY involves a runtime
performance and memory consumption penalty. In our computer, we have measured a
constant runtime performance cost of 22,068.38 microseconds. When the number of invo-
cations increases, the runtime performance penalty is lower than 1%. The average memory
consumption is 3.02%, comparing JINDY with invokedynamic.

We plan to use JINDY for the optimization of more real applications that make exten-
sive use of reflection. We will replace the reflective calls with invocations to the JINDY
services, and measure runtime performance and memory consumption. We are also con-
sidering using JINDY to optimize the implementation of existing dynamic languages that
use reflection to provide its dynamically typed services.

The JINDY library, its source code, documentation, and the examples and bench-
marks included in this paper can be downloaded from: http://www.reflection.
uniovi.es/invokedynamic/Jindy
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