
Computer Science and Information Systems 11(1):111–131 DOI:10.2298/CSIS130416020G

Using XPaths of Inbound Links to Cluster Template-

Generated Web Pages

Tomas Grigalis1 and Antanas Čenys1

1 Department of Information Systems,

Vilnius Gediminas Technical University,
Sauletekio av. 11,

LT–10223 Vilnius, Lithuania
{tomas.grigalis, antanas.cenys}@vgtu.lt

Abstract. Template-generated Web pages contain most of structured data on the

Web. Clustering these pages according to their template structure is an important
problem in wrapper-based structured data extraction systems. These systems
extract structured data using wrappers that must be matched to only particular
template pages. Selecting single type of template from all crawled Web pages is a
time consuming task. Although there are methods to cluster Web pages according
to their structural similarity, however, in most cases they are too computationally
expensive to be applicable at Web-Scale. We propose a novel highly scalable
approach to structurally cluster Web pages by employing XPath addresses of

inbound inner-site links. We demonstrate the effectiveness of our method by
clustering more than one million Web pages from many real world Websites in a
few minutes and achieving >90% accuracy.

Keywords: Web data extraction, structural clustering, template-generated pages,
wrapper induction.

1. Introduction

Many data intensive Web sites are backed by databases. Such databases contain data

that is retrieved upon a Web page request and displayed on it. For example, news

portals provide articles together with their title, date of publication, authors and

constantly growing number of user generated comments. E-commerce shopping sites

are full of products, their pictures, description, price, etc. All this information in stored

in a database and is freshly retrieved only when a Web page visitor opens the page in

his browser. In a same Web site each Web page with a news article or a product is

structurally similar. While browsing news stories or products in a same Web site only

required information related to the unique data record in a database is retrieved. As a

result, a Web site visitor sees structurally identical Web pages filled with different

information. Such Web pages are also called template-generated Web pages. Template-
generated Web site has a limited number of templates which are used to automatically

generate new instances of Web pages. Upon a Web page request Web server queries a

database, retrieves particular data record, and embeds that information into a template,

which in turn is returned to Web browser. So each time browsing the same template a

structurally similar Web page is returned.

112 Tomas Grigalis et al.

The structural similarity of template-generated Web pages is an important feature for

information extraction. It is possible to write simple data extraction rules, also known as
wrappers, for each kind of template, and later reuse these rules on all other Web pages

of the same template. Wrapper systems for data extraction are commercially popular

and are the subject of extensive research over the last two decades [1]. Much effort now

is directed to extracting data at Web-Scale [2–5]. Since the Web has enormous amount

of data embedded into billions of Web pages only highly efficient and unsupervised

approaches seem to be feasible to extract structured Web data at Web scale.

An equally important, but less recognized outcome of the new problem definition of

Web scale data extraction is the need to automatically organize pages of the same site

into clusters, such that each cluster contains structurally similar template-generated Web

pages [1]. Then using unsupervised wrapper generating technique a high quality

wrapper can be inferred for each cluster of Web pages. Here again, only unsupervised
and efficient method can be used to automatically identify and cluster Web pages.

Alternatively, if any of these two steps, i.e. wrapper generation or structural Web page

clustering require some human effort, then we cannot claim capability to extract data at

Web-Scale. Even though, as noted in [1], there exist structured data extracting

techniques [6–8], that explicitly do not require such Web page clustering, the latter can

definitely help in organizing and synthesizing extracted data [9]. Furthermore,

unsupervised structural clustering of Web pages can substantially improve the accuracy

and recall of data extraction techniques.

As we see, unsupervised clustering of Web pages is equally important problem as

wrapper induction and is studied in [1, 10–12]. However, most state-of-the-art structural

Web page clustering techniques are purely content based and in most cases have at least

quadratic running time complexity. The high dependency on Web page content analysis
creates a fundamental issue: these techniques do not scale to large Websites [1].

Database generated Websites can have millions of Webpages and there could be

thousands of those Websites that we are interested in clustering in a reasonable amount

of time. Even though state-of-the-art system in XML clustering, the Xproj [13], has a

linear complexity, it still requires an estimated time of more than 20 hours to cluster a

site with million pages [1]. There is a need of less content-dependent techniques to

cluster large amount of Web pages.

In this paper we present a novel scalable method to cluster template-generated Web

pages according to their structural similarity. The scalability of duplicate content

detection algorithms motivated us to come up with a system capable of structurally

clustering template-generated Web pages without the need of constant pair-wise
comparison of their content. Although there are highly efficient approaches [1, 14] to

this problem, they usually rely on URL pattern recognition and are prone to unusual and

unexpected formats of URLs. Contrary to them, we employ exact locations (XPaths) of

inbound inner-site links to cluster same template-generated Web pages. We call our

method UXClust (derived from URL XPath Clustering). The proposed UXClust method

exploits the observation that each unique XPath location containing a link usually points

to same template-generated Web pages.

The main contributions of our work are:

1. We study the problem of structurally clustering template-generated Web pages

and propose a novel idea to exploit XPath addresses of inbound inner-site links

to radically speed up clustering time.

Using XPaths of Inbound Links to Cluster Template-Generated Web Pages 113

2. We conduct extensive experimentations with more than 1 000 000 Web pages

from fourteen real world Web sites and demonstrate that proposed UXClust
approach is able to cluster them in less than 4 minutes achieving higher than

90% precision and recall.

3. We compare our UXClust approach to two state-of-the-art baseline algorithms

and achieve order of magnitude speed improvement while still maintaining

better precision and recall.

4. Since proposed method has very low computational complexity it is applicable

in Web-Scale structural data extraction and Web page clustering systems.

1.1. Running example

We now take an example to demonstrate the overall working of our system. In Fig. 1 a

set of two screenshots of visually rendered Web pages from argos.co.uk are shown.

Although these two pages contain information about totally different products, i.e. a

sunglass and a digital camera, they both share almost identical visual appearance. The

regularity of template style and its optimization for humans make each unique location

of inner site link to point to the same template Web page. If it was otherwise and there

were no regularities, then humans would find it difficult to navigate such Web site.

Fig. 1. An screenshot example of two same template-generate Web pages taken from argos.co.uk

The goal of our system is to group all Web site pages into clusters, such that each

cluster contains only structurally similar pages that share the same template. To achieve

this goal we exploit the available information about each links’ exact location in a Web

page template. As we know, HTML source code of Web pages can be represented as a

tree structure where each tree node can be accessed by XPath query language
expression. This way each Web page link has its unique address (XPath expression) in a

Web page tree structure.

We take the XPath (e.g. /html/body/div[2]/ul/li[4]) and the URL (e.g.

www.argos.co.uk/static/Browse/ID72) of every Web page link and save this data as a

tuple: (/html/body/div[2]/ul/li[4], www.argos.co.uk/static/Browse/ID72). Links

extracted from the same template Web pages have many identical XPath expressions.

This way, we can cluster links according to their XPath addresses.

Then we determine to which template each unique XPath containing a link points to.

We calculate structural similarity of Web pages by comparing their tree structure.

Computationally intensive task of finding clusters of structural similar Web pages is

done only once per unique XPath location in HTML tree. If we later encounter a link

114 Tomas Grigalis et al.

from the same location in a Web page, we know that it points to the already determined

cluster.

1.2. Paper outline

The paper is organized as follows: related work is found in Section 2. Section 3 is

dedicated to presenting proposed approach to structurally cluster Web pages. First of all,

structural features of a modern Web page are presented. Then Web pages similarity

measures are introduced. Finally, proposed method is described in detail. In Section 4
we describe the experimental evaluation process and compare proposed approach to two

baseline algorithms. Conclusions are presented in Section 5.

2. Related Work

The idea that linkage among Web pages can reveal something about their similarity is
not new. For example, Small [15] claims that the relationship between two documents

can be calculated by analyzing how often they both are cited in the same source. Dean

et al. [16] and Spertus [17] brings the same idea to the context of Web pages. Both

works present methods to detect topically related pages without actually downloading

and analyzing their content. Instead, proposed algorithms analyze Web pages for co-

linkage and links placement. For example, densely placed links [17] or links having

many same parent nodes [16] in HTML tree are considered to be linking to topically

similar Web pages.

Crescenzi et al. [10] further demonstrate that the analysis of co-linkage and link

placement holds true and for structural similarity of Web pages. They propose an

algorithm that crawls given Web site and incrementally builds site model for it. Their
work is closely related to focused-crawling [18, 19] research field where focused-

crawling systems are usually built to crawl topically related Web pages, however,

Crescenzi et al. look for structurally similarity. The structural similarity is also

determined by comparing the placements of link collections. In other words, two pages

are considered to be structurally similar if they both have groups of links placed in the

same locations. One of the main observations they present and validate is that links

sharing the same layout and presentation properties usually point to pages that are

structurally similar. Same idea is also employed by Lin et al. [20] to hierarchically

cluster Web pages.

In this paper we further extend these ideas to exploit cross linkage to infer Web page

similarity. Our main observation is that different links from the exactly same position in
HTML tree usually point to structurally similar Web pages. Contrary to the approach of

Crescenzi et al. [10] where a group of densely placed links in the same page infer the

similarity of linked Web pages, we state that links found in the exactly same XPath

location and coming from different Web pages point to structurally similar Web pages.

In other words, Crescenzi et al. [10] finds structurally similar Web pages by extracting

their links from the same group of links in one page, while our approach requires to

extract one link from each new page from exactly same XPath location.

Using XPaths of Inbound Links to Cluster Template-Generated Web Pages 115

To simplify and speed up structural comparison of Web pages Buttler [21] proposed

to adapt the shingles based content similarity detection technique [22] to compare
structural content of Web pages. In this adapted technique Web pages are viewed as a

set of sequence of branches, paths from the HTML tree root node to a leaf node. In such

way HTML tree can be encoded as a list of these tokens. The proposed path similarity

measure finds the similarity of paths between two different Web pages.

Another early research field, related to Web document similarity detection,

concentrates on XML (Extensible Markup Language) document and their schema

comparison [1]. One widely adopted method, called tree edit distance, measures the

minimum number of node insertions, deletions, and updates required to convert one

XML document tree into another. This can be converted into a similarity metric by

normalizing the number of edit operations with the number of nodes in the tree

representing the larger document [21]. However, the computational complexity of
techniques involving tree edit distance calculation [23–26] is at least quadratic. To

overcome this limitation and reduce required running time Augsten et al. [27] propose

approximating tree edit distance calculation technique called pg-grams. This technique,

a reminiscent of Web page shingling method [22], splits XML tree into smaller trees

called pq-grams and uses them to compare documents.

Joshi et al. [12] proposed an alternative scheme for representing the structural

information of Web documents based on the paths contained in the corresponding

HTML tree model. Since proposed model includes partial information about parents,

children and siblings, it allows to derive meaningful and at the same time

computationally simple structural similarity measure. Later Chakrabarti et al. [11]

proved that in most cases it is not necessary to compare all XPaths of two documents to

determine their structural similarity. Instead, they observed that each template style in a
Web site has unique and important sections. For example, product page template can

have product title displayed on same particular location in instance of that template.

This way some HTML tree locations are more important than other and can aid in

discerning one template from another. Authors name these important locations in

HTML tree as “key” paths. The Webpages on the Website are then clustered using these

“key” paths.

All above proposed Web page structural similarity measures are purely based on

Web page content analysis and comparison. However, most efficient and scalable Web

page clustering techniques depend on meta-data about pages, such as those based on

Web page URL analysis and pattern search [1, 14]. Our own proposed method belongs

to this category. However, instead of comparing URLs we compare XPath addresses of
inbound-links in originating Web document.

3. Problem Definition and Proposed Approach

In this part of the paper we introduce structural features of Web pages, their similarity

measures and propose a novel method to efficiently cluster Web pages according to
their structural similarity.

116 Tomas Grigalis et al.

3.1. Structural Features of Web Pages

Each Web page can be represented as a tree data structure which is a fundamental data

structure in XML documents. See Fig. 2 for an example. Thus a very useful approach

for extracting data, such as links, from Hypertext Markup Language (HTML)

documents (Web pages) is to employ Extensible Markup Language (XML) technologies

to translate HTML to valid XML code. In this approach, HTML Web pages are first

normalized into Extensible HTML (XHMTL) and then then processed by XML

applications [28].

<html>

 <head>

<title>Google</title>

<style>...</style>

 </head>

 <body>

 <div>...</div>

<center>...</center>

 <div>...</div>

 </body>

</html>

Fig. 2. HTML source code represented as tree structure

The modeled HTML tree and XPath language for selecting and extracting data is

proved to be very robust technique useful in practical data extracting applications [6, 29,

30]. In the scope of this paper and for the clustering template-generated Web pages, we

use XPath expressions to select inner-site links. During the link extraction process we

preserve the original path from root node in the HTML tree to the particular link. This

tree path is called a location path (XPath) and is later used in clustering stage of our
proposed method.

Another important feature of modern Web pages is the widespread use of Cascading

Style Sheets (CSS) language [31] that allows authors and users to attach style (e.g.,

fonts and spacing) to structured documents. By separating the presentation style of Web

pages from their content, CSS simplifies Web authoring and site maintenance.

Furthermore, CSS absolute positioning property enables Web designers to put each

individual page element in specified locations regardless of the original position in

HTML source code. Recall, that we exploit the XPath positions of inbound links to

cluster Web pages. Naturally, some questions arise: what if links are positioned with

CSS properties, would our proposed UXClust approach still be valid? Our observations

indicate, that even most technologically sophisticated contemporary Web sites that fully
utilize CSS, such as amazon.com, cnn.com, bbc.co.uk, etc., still have big source code

HTML pages and thus big HTML trees. Even if links are positioned by CSS they still

have unique XPath address in HTML tree. Unique XPath locations are all we need to

enable the working of our proposed UXClust approach.

Using XPaths of Inbound Links to Cluster Template-Generated Web Pages 117

3.2. Structural Similarity of Web Pages

Structural similarity of Web pages describes how similar is their HTML source code.

Since we are only interested in structural similarity of template-generated Web pages

the actual text that does not belong to HTML markup code is not taken into account

when calculating similarity. In other words, the textual content that is visible to ordinary

Web site browser is the object of more importance to a related research field, i.e.

duplicate or near duplicate Web pages detection [22]. So in this Section we are going to

describe a few similarity measures that are used to compare structural similarity of Web

pages and not their textual content. These methods and measures often rely on HTML

tree and XPaths.
For notation purposes we assume P1 and P2 to be two HTML Web pages, Ti to be a

ordered tree structure of corresponding HTML code, and Ni to be a set of HTML tree

nodes of which Li are leaf nodes, and i={1,2}. Leaf nodes of HTML tree are those

nodes that themselves do not have any children nodes.

As noted in the previous Section of this paper, each Web page can be viewed as an

ordered tree structure. So the most straightforward technique to calculate similarity of

two Web pages is to calculate the cost of transforming one tree structure into another.

For this purpose basic operations like inserting, deleting, replacing or moving individual

tree nodes or entire sub-trees in the tree structure are associated with certain costs to

perform these operations. In case of structural trees created from HTML markup code,

the problem is usually a bit more simple, since the root node is known, the sibling nodes
are ordered and as the sub-trees (especially when documents are same template-

generated) are hardly ever changing their distance to the root node [32]. This can be

used as a similarity metric by normalizing the number of edit operations with the

number of nodes in the tree representing the larger Web page [21]. If, as noted before,

P1 and P2 are two Web pages to be compared, editDistance() is a function that calculates

basic Web page tree operations (like inserting, deleting, replacing) required to transform

P1 to P2 and max() is a function returning the biggest number, then tree edit distance

(TED) can be formalized into the following formula at (1):

TED(P1,P2)=(editDistance(P1,P2)) / (max(|N1|,|N2|)) (1)

However, basic tree edit distance algorithms [23–26] have a big drawback – they do

not scale well, because they have at least a linear dependence on the size of each HTML
tree and quadratic dependence on the combined size of the two trees. A faster method to

compare Web pages is to use the pq-gram distance [27], which approximately match

ordered labeled trees. The pq-grams of a tree are all its sub trees of a particular shape.

Intuitively, two trees are close to each other if they have many pq-grams in common.

For a pair of trees the pq-gram distance can be computed in O(n log n) time and O(n)

space, where n is the number of tree nodes [33]. For p > 0 and q > 0, the pq-gram

distance, pqGDist(T1,T2), between two trees T1 and T2 having corresponding sets of pq-

grams Pp;q(T1) and Pp;q(T2),is defined as follows [27]:

pqGDist(T1,T2) = 1 – 2 (|Pp;q(T1) ∩ Pp;q(T2)| / |P
p;q(T1) ∪ Pp;q(T2)|) (2)

Another way to measure structural similarity between two Web pages is to compare

tag paths of each leaf node [12]. Leaf nodes are those nodes in HTML tree that do not
have any children. Tag path of such node is concatenated string of tags name leading

from root node to the particular leaf node. Such concatenated string can be acquired by

118 Tomas Grigalis et al.

calculating absolute XPaths of particular leaf node. So in a such way each Web page Pi

can be represented as a bag of XPath strings, formally by set xp(Pi) of strings. A
common paths distance (CPD) measure can be calculated via intersection of two XPath

sets xp(P1) and xp(P2) generated from two Web pages P1 and P2. See the following

formula [32]:

CPD(P1,P2)= 1 - | xp(P1) ∩ xp(P2) | / max(|xp(P1)| , |xp(P2)|) (3)

3.3. Proposed Approach

In this Section of the paper we in detail discuss our proposed approach to cluster

structurally similar Web pages. See Fig. 3 where a general architecture of proposed

system is presented. The overall working process consists of four main steps: Web site

crawling, link extraction, URL and XPath tuple generation, first step approximate

clustering, and final clusters refinement stage. In the following paragraphs we describe

each of these steps with more details.

Web site crawling step is used to collect Web pages from given Web sites. The

process begins with providing to the system a seed URL from which it begins crawling

process. We utilize breadth-first crawling strategy, where the algorithm recursively

follows collected hyperlinks. The priority to follow and download is given to first seen

URLs, in other words, first-in-first-out method is used. The main result of this Web site
crawling step is downloaded documents that are now ready to be processed.

Fig. 3. A sample set of XPaths from a Web page

Each downloaded Web page is processed to create a HTML tree from the source

code. This is done to simplify link extraction: we execute XPath expressions to select

URLs. Of course, a more straightforward approach would be to utilize regular

expressions to extract links; however, we are interested in obtaining not only URLs, but

also and their location in the document tree. Each unseen URL is forwarded to Web site

crawling process and saved into a tuple set consisting of extracted URL, XPath location

of URL in originating document, and ID of downloaded page. For an example, see Fig.

4(a) where a snippet of rendered Web page from argos.co.uk is shown. This snippet
contains a list of menu links pointing to different categories of the site, such as

“Technology”, “Home & Garden“, etc. Link collection process extracts these links

together with additional data describing the link: its XPath and the URL itself. Each

Using XPaths of Inbound Links to Cluster Template-Generated Web Pages 119

tuple also gets and DocID which later lets identify downloaded page and find

corresponding tuple.
It’s worth noting that during the Web site crawling process we download only unseen

unique links. In case a page contains several XPath locations with the same link (URL)

we extract only the first one, i.e. the one located in the top post part of the Web page

tree compared to the other locations. Only unique URLs are downloaded and later

forwarded to the clustering process.

(a) a snippet of rendered Web page with highlighted links

LINK TEXT URL XPATH DOCID

Technology http://www.argos.co.uk/...6169.htm /html/body/div[4]/ul/li[1]/a 1

Home & Garden http://www.argos.co.uk/...5908.htm /html/body/div[4]/ul/li[2]/a 2

Baby & Nursery http://www.argos.co.uk/...5732.htm /html/body/div[4]/ul/li[3]/a 3

Toys http://www.argos.co.uk/...6252.htm /html/body/div[4]/ul/li[4]/a 4
<...>

(b) a sample list of generated tuples

Fig. 4. An example of tuple generation process

The main task of clustering in this first stage (marked number 3 in Fig. 3) is to group

downloaded pages in a way that each group contains only pages whose URL originate

in the same XPath location in HTML tree. In this stage we do not analyze the content of
downloaded pages. Only associated tuples are used to cluster those pages. To be more

precise, we simply group pages according to their inbound link XPath address. For

example, if we have three XPaths [/html/body/div[2]/a, /html/body/div[2]/a,

/html/body/p[2]/center/a] then we will have two resulting clusters. One would contain

[/html/body/div[2]/a, /html/body/div[2]/a] and the other [/html/body/p[2]/center/a]. So

any resulting cluster contains only links with identical XPaths, i.e. links extracted from

the same location.

As it is discussed before, template-generated Web pages have visual and structural

regularity. Links in same template-generated Web pages appear on the same locations

and have same XPaths. Furthermore, each template based and database backed Web site

has only a limited number of different templates. This way, only a limited number of

unique locations in HTML tree containing links exist. So grouping Web pages by
XPaths of originating URL location is enough to approximately cluster them according

to their structural similarity. Another important outcome is that the computational

complexity of this clustering technique is very low compared to two other baseline

methods (see Table 2 in Experimental Evaluation Section of this paper).

The previous clustering process clusters Web pages according to their inbound-links

XPaths. Depending on the design of a Web site template there could be from tens to a

few hundred different XPaths with links, and Web pages are grouped into the same

amount of clusters. We call these clusters as unrefined clusters, because the clustering

process takes into account only XPaths of inbound links and do not compare the

120 Tomas Grigalis et al.

structural similarity of Web pages. It means that Web pages belonging to separate

clusters, indeed, can be structurally identical. Consider for example the list of links and
their XPath locations in Fig. 4. Although all those links have different XPath address,

they all point to structurally identical Web pages. These Web pages are same template-

generated and display list of subcategories in any of main categories, such as Toys,

Technology, Gifts, etc.

Depending on Web site template design there could be from a few hundreds to a few

thousands unrefined clusters. During pilot experiments we observed that many

unrefined clusters contain only a small amount of URLs. These URLs may often be

found in other unrefined clusters, where thousands of unique URLs are located. These

minor unrefined clusters may point to a top ten products page, news pages, policy

pages, “about us” pages, etc. As it is obvious, these kinds of pages usually do not

contain important structured data or that the data is redundant like in top ten products
page example. So we decided to introduce CUT-OFF threshold (we use value of 100) to

remove some unrefined clusters. This threshold is a limit of minimum unique URLs per

cluster. If any cluster contains less than a cut-off threshold amount of links, it is

removed. This way only high quality, many URL containing unrefined clusters are

pushed to the next final stage.

The final refinement stage of the proposed method takes a predefined (we use value

of 5) amount of sample pages from each of unrefined clusters. The content of sampled

Web pages is analyzed to generate a common template fingerprint of that particular

cluster. The idea to use Web page fingerprints instead of direct HTML tree comparison

comes from closely related research field addressing duplicate content detection on the

Web. The main idea there is to detect identical or near duplicate Web pages by

analyzing their structure and content. These works [22, 34] are motivated by the fact
that Web contains many Webpages on different domains with identical or near identical

content. A user searching the Web is only interested in unique content on each Web

page from search results list and duplicated content is no use for him. So search engines

try hard to remove similar Web pages from occurring in a search results. Since Web

pages come from thousands of domains and there could be literally millions of Web

pages to compare each against another a scalable technique was developed to be able to

cope with such big amount of comparisons. However, we do not directly utilize Web

page shingling [22] and min-hashing [34] techniques to generate the fingerprints.

Although they are very scalable but, on the other hand, they also are very

approximating, i.e. inner-site template differences can be ignored and whole site can be

seen as one template. So instead shingling and min-hashing to generate a fingerprint we
employ bag of paths method [12]. For each sampled Web page from a cluster we extract

all HTML tree paths that do not contain text. Then paths occurring only above threshold

value of 0.3 are taken to be included into a fingerprint. So our version of Web page

fingerprint is a set of selected tag paths.

Generated fingerprints for each template of clustered Web pages are used to detect

similarities among clusters. As discussed above, two or more clusters may actually

contain same template-generated Web pages. If such similarity among two clusters is

detected and it is greater than predefined (we use value of 0.8) threshold value, the

refinement process merges those two clusters and forms a new one. The process is

repeated until no new clusters can be formed. Here basically we employ the union-find

algorithm.

Using XPaths of Inbound Links to Cluster Template-Generated Web Pages 121

4. Experimental Evaluation

In this Section of the paper we experimentally evaluate proposed approach to

structurally cluster template-generated Web pages. We also compare our proposed

approach to two baseline methods: common XPaths [12] and pq-grams [27]. Since, to

the best of our knowledge, there is no benchmark dataset suitable for our system, we

need to create it. Most of datasets containing crawled Web pages at best contain saved

Web pages and their URLs. However, our proposed approach utilizes XPath addresses

of inbound inner-site links. So in addition to physically saved Web pages we also need

to have those XPath addresses. And as noted before, no dataset can provide that

necessary meta-data about saved Web pages. Experiments were conducted on laptop

computer with Ubuntu 12.04 operating system, Intel® Core™ i7-2670QM CPU @
2.20GHz, 8 GB RAM, 7200 RPM hard drive.

4.1. The Dataset

To create a dataset consisting of Web pages with required additional information about

inner-linkage we programmed a basic Web site crawler. We utilize a breadth-first

crawling approach where all neighboring Web pages are crawled first. This is contrary
to a depth-first crawling which prioritizes exploring Web site as far as possible along

each linking branch before backtracking. It is demonstrated [35] that traversing the Web

graph in breadth-first search order is a good crawling strategy, as it tends to discover

high-quality pages early in the crawl. Implemented crawler does not uses cookies and is

single-threaded, thus it is suitable to download one page from one site at a time.

However, during the crawling process we ran multiple instances of the crawler – each

for different Web site. The crawling algorithm encompasses a URL cleaning procedure,

which removes forced session id tokens, such as phpsessid, cfid, aspsessionid, etc.

We chose 14 Websites containing structured data in template-generated Web pages.

In Table 1 data about each Website is presented. The data include Web site address,

total amount of downloaded pages, total size of Web pages in gigabytes, average size of

downloaded Web page in kilobytes, total amount of unique XPath locations containing
inner-site links, and total amount of unique XPath locations with cut-off threshold

applied, i.e. XPath locations containing more than 100 unique inner-site links. The last

row contains aggregated data among all Web sites. As we can see from the table, more

than one million Web pages where downloaded totaling in size of 119 gigabytes on

disk. Average size of single Web page among all Web sites is 99 kilobytes. A more

complicated design of a Web site results in more XPath locations where inner-site links

can be found. Some sites, such as argos.co.uk and bigbox.lt, have such sophisticated

design that there are round five thousands XPath locations. Each such XPath

corresponds to one unrefined cluster. To simplify similarity calculation among such big

amount of clusters and to reduce running time, we introduced a cut-off threshold. The

cut-off threshold lets us to disregard all clusters that have less than predefined threshold
limit of unique pages. In our experiments the threshold was equal to 100. In the last

column of the table a number of filtered clusters are listed.

All data about each downloaded Web page is stored in a relational MySQL database.

One table is dedicated to store all data: URL, XPath, DocID, and Web site ID.

122 Tomas Grigalis et al.

Downloaded Web pages are stored in file folders. There is one folder for each Web site.

The file names of stored Web pages are identical to DocIDs, which are stored in a
database table. Running time for structural clustering of saved Web pages includes

database queries to retrieve and save data.

Table 1. Basic data about each Web site used in experimental evaluation

Nr. Web site Pages Total size

in GB

Average

Size in KB

URL

XPaths

URL

XPaths

(cut-off)

1. argos.co.uk 111142 7.33 69.20 4472 224

2. azon.lt 102313 18.28 187.32 306 86

3. bigbox.lt 120557 27.03 235.12 5055 145

4. citylights.com 13698 0.34 26.29 553 19

5. currys.co.uk 9993 0.67 70.42 1078 9

6. elshop.lt 90001 2.27 26.44 246 36

7. ikea.com 122686 10.16 86.83 1754 117

8. ilterzogirone.it 66404 3.64 57.55 1317 109

9. imk.lt 74295 14.46 204.14 1864 116

10. iristorante.it 116410 5.35 48.21 1196 119

11. kompiutera.lt 21623 1.08 52.24 368 35

12. smartbuy.lt 15638 0.41 27.62 441 29

13. tesco.com 88773 15.64 184.76 3618 192

14. varle.lt 117514 12.44 110.96 875 61

Average: 76503 8.51 99.08 1653 92

4.2. Ground Truth and Measurements

For each Website we identified one kind of template with most interest to us. In many

cases these are template-generated pages containing product data, such as title, price,

picture, description, etc. Then we manually analyze URLs of these pages to identify

repeating patterns, such as keywords or URL structure. A regular expression is written

for each Web site to match those URLs with high interest to us. This way we generate a
ground truth (golden data) that is used to calculate precision, recall, of our proposed

clustering method. The precision of a given cluster is the fraction of Web pages in its

computed cluster that are also found in the corresponding ground truth cluster. The

recall of a given cluster is the fraction of Web pages from the corresponding ground

truth cluster that were grouped into the same computed cluster. To calculate these

measures, that are taken from information retrieval research field, we first need to

describe all possible outcomes of clustering process. Our main goal is to assign two or

more Web pages to the same cluster if and only if they are similar. A true positive (TP)

decision assigns two structurally similar Web pages to the same cluster, a true negative

(TN) decision assigns two structurally dissimilar Web pages to different clusters. There

are two types of errors that can occur. A false positive (FP) decision assigns two
structurally dissimilar Web pages to the same cluster. A false negative (FN) decision

assigns two structurally similar Web pages to different clusters. Then the precision (P),

recall (R) is calculated as follows:

Using XPaths of Inbound Links to Cluster Template-Generated Web Pages 123

P = TP / (TP+FP); R = TP / (TP+FN) (4)

4.3. Selecting Parameters for Two Baseline Algorithms

Since pg-Grams and Common Paths (CP) methods are very computationally expensive

and result in a long running time (for detailed comparison of running times please see

Table 3), we decided to take a much smaller amount of Web pages from each Web site

to benchmark them. First, we test the two baseline algorithms with the first Web site

from the dataset, namely with argos.co.uk. We check if the different number of selected
Web pages has any significant impact on precision and recall. As seen in Fig. 5 and Fig.

6, there is no significant difference on precision and recall with both algorithms if we

select a different number of Web pages.

Fig. 5. The effect on recall, precision and running time by selecting different numbers of pages
for Common Paths algorithm

However, there is a significant difference in terms of running time: the more pages

are selected to cluster, the longer the running time. Actually, the running time increases

almost exponentially with both algorithms.
Thus for pg-Grams we take only 100 Web pages from each Web site and use p=2 and

q=3 values as suggested in original paper [27]. Similarly, for a faster Common Paths

method we take 1000 Web pages. The amount of taken Web pages is also indicated in

parentheses next to the algorithm name in Table 2 and 3. For our UXClust method we

take all Web pages as seen in Table 1. This way, of course, the size of ground truth

clusters differs among three benchmarked methods. The GT-P columns under each

method in Table 2 indicate the number of ground truth pages for each Web site. For

each of three tested methods we use the same 0.8 Web page similarity threshold value.

124 Tomas Grigalis et al.

Fig. 6. The effect on recall, precision and running time by selecting different numbers of pages
for pg-Grams algorithm

4.4. Results

Table 2 lists the precision (P) and recall (R) of applying our proposed (UXClust) and

two baseline (pg-Grams and Common Paths) clustering algorithms on each Web site.

Table 2. The results of using the proposed and two baseline algorithms to cluster structurally
similar Web pages

Nr. Website UXClust pg-Grams (100) CP (1000)

 GT-P P R GT-P P R GT-P P R

1. argos.co.uk 30460 0.92 0.72 40 1 0.15 332 0.94 0.49

2. azon.lt 36643 1 1 34 1 0.32 370 1 0.87

3. bigbox.lt 10282 0.68 0.94 13 0.88 0.54 176 0.8 0.96

4. citylights.com 2026 1 0.64 22 0.33 0.36 190 1 0.56

5. currys.co.uk 2009 1 0.81 56 1 0.3 627 1 0.45

6. elshop.lt 22019 1 1 22 1 0.55 244 1 0.76

7. ikea.com 4909 1 1 9 1 0.56 99 1 1

8. ilterzogirone.it 2866 1 1 10 1 0.7 49 1 0.98

9. imk.lt 10173 0.96 1 16 0.82 0.56 191 0.95 0.93

10. iristorante.it 967 1 0.9 4 1 1 35 1 0.74

11. kompiutera.lt 11440 0.54 1 41 0.44 1 528 0.53 1

12. smartbuy.lt 3632 1 1 36 1 0.25 396 1 0.99

13. tesco.com 13066 0.97 0.96 30 0.81 0.83 274 0.79 0.15

14. varle.lt 59450 1 1 48 1 0.73 483 0.98 0.98

Average: 14996 0.93 0.93 27 0.88 0.56 285 0.93 0.78

Using XPaths of Inbound Links to Cluster Template-Generated Web Pages 125

As seen in Table 2, our proposed UXClust method achieves 0.93 average precision

and recall and outperforms two other baseline methods. The pg-Grams algorithm
performs worst. We believe it is possible to tune up this algorithm to achieve better

results with structurally sophisticated Web pages, however, it is beyond the reach of this

paper. Common Paths and our UXClust approaches achieve the same precision as in

both of them the same Jaccard similarity measure over the XPaths of Web pages is used

to determine structurally similar templates. However the use of XPath clustering in

UXClust significantly increases recall from 0.78 to 0.93.

As we further look to the results of proposed UXClust approach we see that on

almost all Web sites it achieves very high recall, except for the site number 4

(citylights.com). Here the recall result is just 0.64. A closer look relieved, that this

happens due to unexpected behavior of citylights.com template engine. Each time a

requested URL resource does not contain corresponding entry in underlying database,
the Web server returns a “sorry” message (as a small inclusion) and displays a regular

Web page with list of books. The template of this page is different from the one that

should be returned if book data would be found. The only way to be sure of returned

template is to verify each response. However, parsing each downloaded page takes a lot

of time, and our proposed method tries to avoid it. That way, the clustering recall of the

citylights.com Web pages cannot be further improved using our proposed method. We

consider this site to be an exception.

Table 3. Running time comparison between proposed and two baseline methods

Nr. Website UXClust pg-Grams (100) CP (1000)

 Time (s) GT-P/s Time (s) GT-P/s Time (s) GT-P/s

1. argos.co.uk 31 982 49 0.82 61 5.44

2. azon.lt 12 3053 66 0.52 71 5.21

3. bigbox.lt 35 293 123 0.11 190 0.93

4. citylights.com 01 2026 21 1.05 26 7.31

5. currys.co.uk 01 2009 61 0.92 67 9.36

6. elshop.lt 05 4403 16 1.38 37 6.59

7. ikea.com 18 272 65 0.14 89 1.11

8. ilterzogirone.it 12 238 70 0.14 38 1.29

9. imk.lt 25 406 108 0.15 153 1.25

10. iristorante.it 13 74 50 0.08 46 0.76

11. kompiutera.lt 05 2288 54 0.76 100 5.28

12. smartbuy.lt 02 1816 21 1.71 31 12.77

13. tesco.com 56 233 165 0.18 229 1.20

14. varle.lt 17 3497 83 0.58 132 3.66

Total: 235 893 950 0.40 1271 3.14

The precision of UXClust drops when Web pages from different templates are

clustered together. This happens on 6 out of all 14 Web sites. The main difficulty here is

to determine the similarity of two Web pages. Our experiments revealed that the bag of

XPaths approach (Common Paths), which we use in our algorithm, is not always

working on modern Web pages. In some sites, there are very small differences between

different templates. Furthermore, a template of a product page may differ a little

126 Tomas Grigalis et al.

depending on the product type. In those cases only a human viewer could tell if those

two pages are similar and the similarity may be more semantic one, than a visually
structural.

In Table 3 we compare the running time of our proposed and two baseline methods.

Recall that each method in run with different amount of Web pages. Thus we calculate

two scores: the whole running time in seconds and normalized measure of ground truth

pages clustering speed per second (GT-P/s). The latter reveals how quickly ground truth

cluster is formed. As we see in Table 3, our proposed method outperforms two other

approaches by order of magnitude: UXClust is able to cluster 893 ground truth pages

per second, while Common Paths method clusters just 3.14 ground truth pages per

second and pg-Grams – just 0.40. Proposed UXClust approach is able to structurally

cluster more than a million Web pages in just 235 seconds.

4.5. Thresholds impact on overall precision, recall and running time

We also investigate the trade-offs between precision, recall and running time. To do that

we vary values of all four thresholds used in proposed UXClust method, i.e. the Web

page similarity threshold, XPath occurrence threshold, XPath sampling threshold and

CUT-OFF threshold (for a detailed explanation of each threshold please refer to 3.3

Section of this paper). We show the running time curve only with those thresholds that
have considerable effect on running time.

Fig. 7. Similarity threshold parameter effect on average precision and recall

In Fig. 7 we see what happens to average precision and recall on all Web sites when

Web page similarity threshold increases from 0 to 1. As we see, precision starts from

around 0.3 and reaches its maximum at around 0.9, while recall starts from 1 and drops

to 0.8. The precision and recall intersects when similarity threshold is around 0.8. This

is the exactly same value of Web page similarity threshold that is used in our proposed
algorithms.

Using XPaths of Inbound Links to Cluster Template-Generated Web Pages 127

While conducting experiments we also noticed that precision and recall for each Web

site may differ a few percent on each new run of our algorithms. This happens because
Web page sampling algorithm uses random function to select a few samples of Web

pages to calculate their fingerprint. Depending on sampled Web pages the resulting

fingerprint may differ a bit. This leads to different similarity calculation results in

clusters refinement stage. However, those differences on precision and recall are no

more than a few percent. Move over the similarity threshold has no effect on running

time.

Fig. 8. XPath occurrence threshold parameter effect on average precision and recall

As shown in Fig. 8 the best results in terms of precision and recall are achieved when

setting the XPath occurrence threshold between 0.2 and 0.3.Varying XPath occurrence

threshold value has small effect on precision and recall. These results mean that in

clusters fingerprint generation process there is a small difference between selecting all

found unique XPaths from sampled Web pages or including just most common ones.

This threshold also does not have any effect on running time, thus we do not include

running time axis.

As seen in Fig. 9 the more Web pages are taken into sampling (higher threshold

value) the longer UXClust method runs. Actually, we can see exponential growth in

running time as XPath sampling threshold parameter increases. While selecting

appropriate value for the threshold the results of recall and precision must be taken into
considerations. Here we see the best fit at 3 where running time is still low and

precision and recall are above 0.9.

CUT-OFF threshold value determines the smallest size of XPath clusters that are

taken into Web page structural clustering process. Naturally, as seen in Fig. 10, the

bigger the threshold, the less XPath clusters are compared to be merged, the less the

running time. However, if we would select enormously high value of this threshold –

depending on the Web site, there could be no clusters left to merge and thus large part

of Web pages would be discarded from clustering. Our observation demonstrates that

CUT-OFF threshold value of 100 lets to achieve good results.

128 Tomas Grigalis et al.

Fig. 9. XPath sampling threshold parameter effect on precision, recall and running time

Fig. 10. CUT-OFF threshold parameter effect on precision, recall and running time

5. Conclusions

In this paper we presented a novel completely unsupervised method to structurally

cluster template-generated Web pages. The method leverages XPath locations of inner-

site links to drastically speed up clustering process. Using this approach more than a one

million of Web pages are clustered in less than 4 minutes. In addition to speed

efficiency, the proposed method achieves > 90% precision and recall.

Even though these results are very encouraging, there remain a few open challenges
to be solved:

(1) Web page similarity measurement is a bottleneck of precision and recall in our

algorithms. Experimental evaluation of our proposed algorithms revealed that current

Using XPaths of Inbound Links to Cluster Template-Generated Web Pages 129

Web page structural similarity measures find it difficult dealing with contemporary Web

pages, which size, in fact, can reach >200 KB of HTML code. And the real differences
between two same site templates can be traced to just a few lines of code. We stipulate

that there is need to include semantic analysis step to better understand the purpose of

each template in a site. This could help to identify key locations or text strings that

discern one template from another. Only then it will be possible to further increase

precision and recall of structural clustering process.

(2) Since our approach employs XPath locations of URLs, there is need to extend

current Web crawlers to save this kind of additional information about downloaded Web

pages. We could not identify any publicly available Web crawler with such

functionality.

(3) There is a need to come up with methods dealing with unexpected Web server

behavior. For example, we ran into a problem when some products are somehow
“turned off” or not found in a database but their URL remains valid. Then Web server

quietly redirects request to Web pages of different template, such as category list. So

some kind of procedures detecting those unexpected behaviors should be employed.

References

1. Blanco, L., Dalvi, N., Machanavajjhala, A.: Highly efficient algorithms for structural

clustering of large websites. Proc. of the 20th international conference on World wide web.
pp. 437–466. ACM Press, New York, New York, USA (2011).

2. Bohannon, P., Dalvi, N., Filmus, Y.: Automatic web-scale information extraction. Proc. of
the 2012 ACM SIGMOD International Conference on Management of Data. pp. 609–612
(2012).

3. Gulhane, P., Madaan, A., Mehta, R.: Web-scale information extraction with vertex. IEEE
International Conference on Data Engineering (ICDE). pp. 1209–1220 (2011).

4. Cafarella, M.J., Halevy, A., Wang, Z.D., Wu, E.: WebTables : Exploring the Power of Tables

on the Web. International Conference on Very Large Data Bases. pp. 538–549 (2008).
5. Elmeleegy, H., Madhavan, J., Halevy, A.: Harvesting relational tables from lists on the web.

VLDB J. 20, 209–226 (2011).
6. Zhai, Y., Liu, B.: Structured Data Extraction from the Web Based on Partial Tree Alignment.

IEEE Trans. Knowl. Data Eng. 18, 1614–1628 (2006).
7. Liu, W., Meng, X., Meng, W.: ViDE : A Vision-Based Approach for Deep Web Data

Extraction. IEEE Trans. Knowl. Data Eng. 22, 447–460 (2010).
8. Grigalis, T., Radvilavičius, Čenys, A., Gordevičius, J.: Clustering visually similar web page

elements for structured web data extraction. Web Eng. 435–438 (2012).
9. Nguyen, H., Fuxman, A., Paparizos, S.: Synthesizing products for online catalogs. In Proc. of

the VLDB. pp. 409–418 (2011).
10. Crescenzi, V., Merialdo, P., Missier, P.: Clustering Web pages based on their structure. Data

& Knowledge Engineering. 54, 279–299 (2005).
11. Chakrabarti, D., Mehta, R.: The paths more taken: matching DOM trees to search logs for

accurate webpage clustering. Proc. of the 19th international conference on World Wide Web.
pp. 211–220 (2010).

12. Joshi, S., Agrawal, N., Krishnapuram, R., Negi, S.: A bag of paths model for measuring
structural similarity in Web documents. Proc. of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 577–582. ACM Press, New York,
New York, USA (2003).

130 Tomas Grigalis et al.

13. Aggarwal, C., Ta, N., Wang, J.: Xproj: a framework for projected structural clustering of xml
documents. In Proc. of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. pp. 46–55 (2007).

14. Hernández, I., Rivero, C.R., Ruiz, D., Corchuelo, R.: A statistical approach to URL-based
web page clustering. Proc. of the 21st international conference companion on World Wide
Web. pp. 525–526. ACM Press, New York, New York, USA (2012).

15. Small, H.: Co-citation in the scientific literature- A new measure of the relationship between
two documents.pdf. J. Am. Soc. Inf. Sci. 4, 28–31 (1973).

16. Dean, J., Henzinger, M.: Finding related pages in the World Wide Web. Comput. networks.
11, 1467–1479 (1999).

17. Spertus, E.: ParaSite: Mining structural information on the Web. Comput. Networks ISDN
Syst. 587–595 (1997).

18. Chakrabarti, S., van den Berg, M., Dom, B.: Focused crawling: a new approach to topic-
specific Web resource discovery. Comput. Networks. 31, 1623–1640 (1999).

19. Diligenti, M., Coetzee, F.M., Lawrence, S., Giles, C.L., Gori, M.: Focused Crawling Using
Context Graphs. In Proc. of the VLDB. pp. 527–534 (2000).

20. Lin, C., Yu, Y., Han, J., Liu, B.: Hierarchical web-page clustering via in-page and cross-page
link structures. Adv. Knowl. Discov. Data Min. 222–229 (2010).

21. Buttler, D.: A short survey of document structure similarity algorithms. The 5th International
Conference on Internet Computing. pp. 3–9 (2004).

22. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of the Web.
Comput. Networks ISDN Syst. 29, 1157–1166 (1997).

23. Nierman, A., Jagadish, H.: Evaluating structural similarity in XML documents. WebDB. 2,
61–66 (2002).

24. Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance between Trees and
Related Problems. SIAM J. Comput. 18, 1245–1262 (1989).

25. Tai, K.: The tree-to-tree correction problem. J. ACM. 422–433 (1979).
26. Demaine, E., Mozes, S.: An optimal decomposition algorithm for tree edit distance. Autom.

Lang. Program. 146–157 (2007).
27. Augsten, N., Böhlen, M., Gamper, J.: Approximate matching of hierarchical data using pq-

grams. In Proc. of the VLDB. pp. 301–312 (2005).
28. Myllymaki, J., Jackson, J.: IBM Research Report Robust Web Data Extraction with XML

Path Expressions. Tech. Report, IBM. (2002).
29. Simon, K.: ViPER: augmenting automatic information extraction with visual perceptions.

ACM Int. conference on Information and knowledge management. pp. 381–388 (2005).
30. Hong, J.L., Siew, E.-G., Egerton, S.: Information extraction for search engines using fast

heuristic techniques. Data Knowl. Eng. 69, 169–196 (2010).
31. Bos, B., Celik, T., Hickson, I., Lie, H.L.: CSS Level 2 Revision 1. 1, 1–487 (2011).
32. Gottron, T.: Clustering template based web documents. Adv. Inf. Retr. 40–51 (2008).
33. Augsten, N., Böhlen, M., Gamper, J.: The pq-gram distance between ordered labeled trees.

ACM Trans. Database Syst. V, 1–35 (2010).

34. Manku, G.S., Jain, A., Das Sarma, A.: Detecting near-duplicates for web crawling. Proc.
16th Int. Conf. World Wide Web. 141–150 (2007).

35. Najork, M., Wiener, J.: Breadth-first crawling yields high-quality pages. Proc. 10th Int. Conf.
World Wide Web. 114–118 (2001).

Tomas Grigalis received the B.Sc. and M.Sc. from Vilnius University in 2004 and

2008 respectively. Currently he is a PhD student in Vilnius Gediminas Technical

University, Lithuania. His research interests include automatic structured Web data

extraction and integration, Deep Web.

Using XPaths of Inbound Links to Cluster Template-Generated Web Pages 131

Professor Antanas Čenys has published more than 70 articles in refereed scientific

journals, more than 60 publications in international conference proceedings. His articles
are cited more than 500 times. In 1999 has won Lithuanian National Award of Science.

He also is Lithuanian representative at NATO RTO Information Systems Panel.

Research interests include information systems, information and systems security, data

extraction.

Received: April 16, 2013; Accepted: October 25, 2013

