
Computer Science and Information Systems 13(3):901–925 DOI: 10.2298/CSIS160802035M

Process and Project Alignment Methodology: A Case-

Study based Analysis

Paula Ventura Martins1 and Alberto Rodrigues da Silva2

1 Research Centre of Spatial and Organizational Dynamics,

Universidade do Algarve, Campus de Gambelas,

8005-139 Faro, Portugal

pventura@ualg.pt
2 INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa,

1049-001 Lisboa, Portugal

alberto.silva@tecnico.ulisboa.pt

Abstract. Process descriptions represent high-level plans and do not contain

information necessary for concrete software development projects. Processes that

are unrelated to daily practices or that are hardly mapped to project practices,

cause misalignments between processes and projects. We argue that software

processes should emerge and evolve collaboratively within an organization. With

this propose, this article describes the ProPAM methodology and explores the

details of its static view. We also present a case study to validate effectiveness of

the proposed methodology. The aim of the case study was to analyse the effects of

using ProPAM in a IT organization.

Keywords: Software Process Improvement, Process Management, Project

Management, ProPAM.

1. Introduction

Software process improvement (SPI) is a challenge to organizations that have tried to

continually improve their software quality and productivity and to keep up their

competitiveness [1]. Organizations tend to react to changes in the environment that they

operate, changes at a corporate level, unplanned situations not considered in the model,

or improve the quality of their final products. Such changes may be caused, for

example, by poor team performance, by new tools acquired by the company to support

its software development teams, changes in the marketing strategy or in customers’

expectations and requirements. Thus, an existing process model must be modified or

extended to reflect the evolution of the environment and/or internal changes. However,

existing process models – that mostly take into account descriptive aspects, such as

work related activities and technical work products – couldn’t address such features.

Several surveys and studies [2-4] have emphasized that the majority of small and very

small IT organisations are not adopting SPI standard models such as CMMI [5] or

ISO/IEC 15504 [6]. Another case is observed in Brazil where software industry and

universities are working cooperatively in implementing a successful SPI strategy that

902 Paula Ventura Martins and Alberto Rodrigues da Silva

take into account software engineering best practices and aligned to Brazilian software

organizations context [7].

We argue that the emphasis in SPI should be stressed on communication,

coordination, and collaboration within and among project teams in daily project

activities, and consequently the effort in process improvement should be minimized and

performed as natural as possible. Little attention had been paid to the effective

implementation of SPI models, which has resulted in limited success for many SPI

programs. SPI managers want guidance on how to implement SPI activities, rather than

what SPI activities do actually implement. Limited research has been carried out in

exploring new approaches to implement effectively SPI programs. However, to bridge

this gap some initiatives have emerged, such as MIGME-RRC methodology [8], on this

basis, we propose a new methodology to describe and improve software processes for

IT organizations with intensive projects experience. Table 1 presents key terms in the

domain of SPI.

Table 1. List of key terms

Key term Description

SPI model Basic philosophy for a disciplined, cyclical approach to software process

improvement

SPI standard

model

SPI model proposed by an international (or national) organizational like

ISO, CMMI or OMG

SPI initiative Work performed by investigators (or research group)

SPI program Action plan to be taken within the organization that intends to improve

their software process

SPI manager Professional with a wide range of knowledge topics on improving

software processes. Responsible for leading SPI programs

SPI activity Practice in the context of a SPI program

In this paper we propose a SPI methodology called “Process and Project Alignment

Methodology” (ProPAM). The main goal is to develop a SPI methodology that can

evolve with project’s knowledge and consequent improvement at software development

process level. ProPAM takes into consideration projects and organization’s views and

intends to integrate the best practices used in real projects to derive a customized and

organization-specific SPI. ProPAM is independent of the technologies, tools and

concrete software development processes that could be adopted by different

organizations or even in multiple projects of the same organization. For instance,

organizations should decide which industry standard shall ultimately prevail for a

concrete process; or stakeholders shall decide which modelling language to use, e.g.

Unified Modelling Language (UML) [9], Business Process Modelling Notation

(BPMN) [10], Archimate [11] or other modelling language.

ProPAM is grounded from personal experience and observations in real

organizations, and based on a comparative study of relevant SPI models, identified in

the literature review. ProPAM is focused on three main objectives: (1) further

understand how modelling and implementation of software processes can contribute to

successful SPI programs; (2) to provide a SPI methodology for SPI practitioners to

ensure a successful process implementation; and (3) to contribute to the body of

Process and Project Alignment Methodology: A Case-Study based Analysis 903

knowledge of SPI with a focus on implementation of software processes based on

project experience.

In 2006, the authors presented a case study [12] on an early version of the ProPAM

methodology, which they did not specify the two complementary views and the levels

of the process improvement methodology. That case study illustrated the application of

ProPAM considering only the temporal perspective (dynamic view) structured in phases

and iterations. The purpose of the methodology application was to obtain a detailed

description of the organization's software development process, following a top-down

approach, in order to validate the proposed approach. According to the applied research

methodology (research in action), that case study was intended to empirically collect

data to specify the static view of ProPAM.

This paper presents the latest version of ProPAM, introducing in detail the disciplines

that compose its static view. The strategy of this case study follows a bottom-up

philosophy, different from the first case study, the start point will be the project. The

focus of this paper is on project monitoring, problems identification, new practices

proposed and data analysis related to software process improvement performed by

stakeholders involved at both levels (project level and process level) and, if successful,

could lead an improved software process.
The remainder of this paper is organized as follows: Section 2 presents related work

and initiatives. Section 3 overviews ProPAM and describes the details of its static

viewas core and supporting disciplines in terms of activities, work products and roles.

The main results regarding adoption of the ProPAM in a case study are presented in

section 4. Finally, Section 5 presents the conclusions and discusses our perception that

this proposal has innovative contributions for the community.

2. Related Work

There are some SPI models, such as CMMI [5], ISO/IEC 15504 [6], ISO/IEC 29110

[13] and MPS.BR [14] which are well known among practitioners and researchers.

However, the implementation and adoption of SPI at software development

organizations is frequently unsuccessful [15, 16]. These SPI models are often

prescriptive and attuned to those relative areas for which they are intended and therefore

do not take into account other aspects like project and organization specific features.

Rather than just repair and adjust the process to specific areas imposed by these SPI

models. We claim that practitioners should refocus SPI to analyse the current

organization practices and introduce practices adapted to the organizations’ needs.

Table 2 compares characteristics of the most important SPI models. Due to time and

budget constraints, small and very small organizations have been unable to apply

standard approaches such as CMMI and ISO/IEC 15504. These standards target large

organizations and are too long to implement. Based on the new trends (see by

approaches like ISO/IEC 29110) and considering that organizations must be able to

adapt to new situations, we propose that SPI should be based on project’s experience

and learn from project team member. Software development is not a rigid or a

controlled industry. It has a strong creative and social interaction that cannot be totally

re-planned in a standardized and detailed process model elaborated by specific groups

and without active participation of all team members. SPI models, like CMMI, ISO/IEC

904 Paula Ventura Martins and Alberto Rodrigues da Silva

15504 and MPS-Br, identify what to improve but do not give information about how to

do it. Indeed, the ISO/IEC 15504 also pretends to mitigate this issue. So, given the

reported problems with existing SPI models, there is a need for a more comprehensive

model to SPI.

Table 2. Comparative study of SPI models

Category Characteristic CMMI v1.3 ISO/IEC 15504 ISO/IEC 29110 MPS-Br

G
en

er
a
l

Geographic

Origin/Spread

USA/World World/World World/World Brazil/Brazil

Scientific Origin

SW-CMM, ISO/IEC

15504

ISO 9000:2000,

ISO 9001:2000,

ISO 12207, CMMI

ISO/IEC 12207,

ISO/IEC 15289

CMMI, ISO/IEC

15504, ISO/IEC

12207

Development 2010 2004 2011 2003

Popularity Top (USA) Moderate Low Top(Brazil)

Software Specific No Yes No No

O
rg

a
n

iz
a
ti

o
n

 Actors/Roles

Management,

Engineering Process

Group, Partner

Management

(senior manager,

process owner)

Customer,

Project Manager

Customer,

Organization,

Assessor

Organization Size
All All Very Small Small and medium

enterprises

Coherence
Internal and external Internal and

external

Internal and

external

Internal and external

P
ro

ce
ss

Prescriptive/Descriptive
Both Both Descriptive Both

Adaptability Limited Yes No Yes

Assessment
Organization/

Process Maturity

Process Maturity Process Process Maturity

Philosophy
Goal-Oriented Goal-Oriented Purpose and

objectives

Purpose and results

Comparative
Yes, maturity and

capability level

Yes, capability

level

Yes, profiles Yes, maturity level

Certification Yes Yes Yes Yes

Appraisal method

SCAMPI Spice Doc. Part 7 Process

Assessment

Model (PAM)

MA-MPS

Analysis Techniques
CMMI appraisal/

Questionnaire

interviews or

questionnaires

Self-evaluation Interviews

Assessor
Internal and external Internal and

external

internal or

external

internal and external

Im
p

ro
v
em

en
t

Perspective Organizational Process Process Organizational

Improvement Initiation Top-down Process Instance Project Top-down

Maturity/Capability 5 6 - 7

Improvement Focus
Management

Processes

Management

Processes

Project

Management

Management

Processes

Process 25 process areas 48 processes 2 processes 23 processes

Progression
Stages and

Continuous

Continuous - Stages

E
m

p
ir

ic
a
l

E
v
id

en
ce

Goal

Process

improvement,

supplier capability

determination

Process assessment Process

Assessment and

Improvement

Process Assessment

and Improvement

Process Artefacts

Process

documentation,

assessment result

Process profile,

assessment record

Deployment

Package

Process

documentation,

assessment result

Empirical Validation
Survey and projects Surveys and

projects

Case studies Case studies

Process and Project Alignment Methodology: A Case-Study based Analysis 905

We argue that SPI initiatives requires further researches on SPI models based on real-

world projects experience. Following the trend of agile processes [17, 18], SPI

initiatives require that the organizational knowledge should be constructed through

strong collaboration of all team members. Therefore, we should include guidelines in a

SPI model that allow to incorporate project team knowledge in the software process

(without constraints imposed by a standard which limits embed tacit knowledge) and

that can address features not focused on existing SPI models.

3. Process and Project Alignment Methodology – The Static View

ProPAM is a SPI-based methodology with the purpose to capture process and project

representations and to allow project teams to imbibe and use knowledge, improving

their work [19]. ProPAM is different from existing models in which SPI is seen as

starting for the implementation of best practices according to a predetermined scheme.

ProPAM proposes to solve identified problems in software development projects carried

within the organizations.

A critical feature of ProPAM is the integration of SPI activities with software

development activities. In that way, ProPAM considers projects and project teams as the

baseline for improvement. Project managers and project teams, under the supervision of

the process manager, are the foremost responsible for keeping the organization’s

processes on the leading edge (table 3).

Table 3. List of main roles considered in ProPAM

Role Description Level

Process manager Concentrated in process definition and

implementation

Process

Project manager Plans and manages the project, coordinates interactions

with the stakeholders, and keeps the project team

focused

Project

Project team member Execute project activities. He avoids repeating mistakes

by studying lessons learned

Project

As Figure 1 illustrates, ProPAM includes SPI activities to monitoring and tracking

software projects (project level) besides the SPI activities that intend to develop and

implement the software process (process level). The scope of these levels is defined

considering that process and projects actors collaborate on SPI programs. However, to

manage the inherent complexity of these levels, namely ProPAM represented at process

level, it is common practice to include views on each level. In general, a view is defined

as a projection of a process model that focuses on selected features of the process [20].

ProPAM is organized in two correlated and complementary views: the static view and

the dynamic view. The static view describes aspects of the methodology as core and

supporting disciplines in terms of activities, work products and roles. On the other hand,

dynamic view shows the lifecycle aspects of ProPAM expressed in terms of stages and

milestones.

The remaining of the section is dedicated to details of the static view. Previous work

already described the dynamic view [19]. The ProPAM static view describes disciplines

906 Paula Ventura Martins and Alberto Rodrigues da Silva

involved in SPI and relations between them. Static view is expressed as workflow

diagrams, which show structural elements (roles, work products and activities) involved

in each ProPAM discipline. Swim lanes in the workflow diagram make obvious the

roles responsible to perform specific activities and also identifies involved input and

output work products. For each role, control flow transitions between activities are

omitted since activities are neither performed in sequence, nor done all at once.

Nevertheless, such representation does not describe SPI program changes with time

passing. A time-based perspective of the process is left to the dynamic view.

Fig. 1. ProPAM Levels (Process and Project)

At project level ProPAM helps organizations in their efforts to assess and manage

problematic situations of specific projects, and to develop and implement solutions to

manage these problems. The project level encompasses project(s) information needed to

systematically support or reject many of the decisions about the process. At project

level, team members work together to develop work products. This focus on project

Process and Project Alignment Methodology: A Case-Study based Analysis 907

team members and their collaborative process is important because no one embodies the

breadth and depth of knowledge necessary to comprehend large and complex software

systems. Project teams are concerned with concrete situations as experienced in all their

complexity during software development. Projects context is constantly being created

and recreated and it can’t be based on a static process model. Participating in a project

team is consequently not only a matter of developing software, but also to change

organization’s knowledge about software development.

On the other hand, at process level, project’s feedbacks conduct to process reviews

and iterative process improvement. The dynamic interplay between these two levels

shows the synergy between the activities performed by project roles (project manager

and team member) and the activities performed by the process roles (process manager)

involved in SPI. At process level, actors involved in SPI programs take time to express

its shared practices in a form that can meaningfully be understood and exploited by

other organizational actors. This includes not only the definition of concepts, models

and guidelines, but also the evaluation of success of the improvements.

The approach can benefit more from an integrated environment that allows to

describe process based in project information. We considered that ProPAM is tool-

agnostic since can be applied independent of the tools to support different software

development disciplines, for example: project management and software process

management. In order to validate proposed ideas and contributions of ProPAM, we

decide to develop a tool, called ProjectIT-Enterprise. This tool provides collaborative

features for process definition, project management as well as process and project

alignment. ProjectIT-Enterprise currently supports the two most relevant stages of

ProPAM methodology: (1) process definition and (2) apply process to projects. A

detailed description of this tool is out of scope of this paper and is given in [21].

ProPAM static view integrates project management, process management, SPI and

Knowledge Management (KM) disciplines. These disciplines assure alignment of

projects with organization vision and goals, and the adopted and improved software

process. Other disciplines of concern were omitted, like business modelling, analyse

and design, environment, requirements management or configuration management,

because those concerns are considered too specific for SPI programs.

Project Management. Project managers are usually interested in being informed about

how the project follows its base process and how to handle changes introduced in the

project that are not compliant with the respective process. It is important to detect

deviations from schedules (project control and project tracking activities) as soon as

possible in order to take corrective actions. Deviations allow identifying elements that

do not appear or are incorrectly described in the software process. Therefore, project

managers have to be informed about process states in a way that satisfies management

needs. This bridges the gap between process management and project management,

since project plans should reflect the exact set of activities defined for a given process.

To avoid creating detailed plans, project managers may create the plan incrementally,

and using only higher-level activities, leveraging lower level tasks only as a guide for

how to do the work. The most important goal is to address conflicts and align projects

and processes. Figure 2 illustrates the main roles, activities and work products involved

in the Project Management discipline.

908 Paula Ventura Martins and Alberto Rodrigues da Silva

Fig. 2. Project Management View

Software Process Management. Software process management discipline involves

actions performed to coordinate knowledge acquisition about software processes, to

model and to analyse the way teams develop software and, finally, to ensure that future

software processes are carried out on the basis of findings obtained in process analysis

[22]. Software process management is a collective work involving project managers,

senior engineers and the process manager. Nevertheless, at process level the process

manager must be concentrated in process definition and implementation. While at

project level the process manager coordinates the interaction with projects team

members with respect to process assessment. Software process roles should develop the

following activities with direct impact on SPI: (1) collect relevant material; (2) organize

interviews and questionnaires; (3) make interviews; (4) understand project experiences;

(5) define and implements the process model; (6) establish engineering practices; (7)

identify the technical infrastructure; and (8) participate in interviews/answer to

questionnaires.

Process and Project Alignment Methodology: A Case-Study based Analysis 909

Fig. 3. Software Process Management View

Figure 3 presents the main roles, activities and work products involved in the

Software Process Management discipline. Some details of the main activities allow

understanding the importance of this discipline. In this case, the project manager has the

same responsibilities of the other team members, so he isn’t seen as a specific role. The

most important goal is to design a set of solutions for the software process based on

performed projects. To help the viewer understanding the diagram in Figure 3, a

restriction on some flows from and to work products were omitted, since these work

products are inputs or outputs of almost all the activities of the discipline.

Software Process Improvement. The effort of supporting software processes is

encompassed by the SPI discipline of the ProPAM methodology. This discipline

extends the process management discipline, where the main difference is the scope: the

process management discipline is concerned with the process configuration for the

organization, while the SPI discipline addresses improvements in the process itself

based on assessment results. SPI is the discipline of characterizing, defining, measuring

and improving software management and development processes, leading to software

business success, and successful software development management. Success is defined

910 Paula Ventura Martins and Alberto Rodrigues da Silva

in terms of greater design innovation, faster cycle times, lower development costs, and

higher product quality, simultaneously [23]. SPI focus is related to establishing a set of

responsible roles and associated competences concerned to the software development

process with the aim of improving the organization’s software process. The main

activity of this discipline is the maintenance of software process knowledge and the

improvement of coordination and monitoring activities.

Fig. 4. Software Process Improvement View

The organization must plan to create a stable environment and monitor these

activities in order to have clear commitments for current and future projects. The most

important goals to be achieved are: (1) software development process and improvement

activities are coordinated throughout the organization; (2) the strengths and weakness of

the used software process are identified relative to a base process, if it was previously

defined; and (3) improvement activities are always planned. ProPAM also suggests that

organizations should identify a group of software managers composed by skilled

persons and (internal or external to the organization) advisors, who contribute to

identify the process strengths and to improve it when weakness are identified. Figure 4

Process and Project Alignment Methodology: A Case-Study based Analysis 911

presents the workflow diagram that illustrates the main roles, activities and work

products involved in the SPI discipline.

Knowledge Management (KM). Data is organized into information by combining with

prior knowledge and the person's self-system to create a knowledge representation. This

is normally done to solve a problem or make sense of a phenomenon. This knowledge

representation is consistently changing as we receive new inputs, such as learning,

feelings, and experiences. Knowledge is dynamic, that is, our various knowledge

representations change and grow with each new experience and learning. Due to the

complexity of knowledge representations, most are not captured by documents; rather

they only reside within the creator of the representation. In many cases, the knowledge

representation stays within the creator, in which case the "flow of knowledge" stops.

Fig. 5. Knowledge Management View

A KM system, which may be as simple as a story or as complex as an expensive

computer program, captures a snapshot of the person's knowledge representation.

Others may make use of the knowledge representation "snapshot" by using the story or

tapping into the KM system and then combining it with their prior knowledge. This in

turn forms a new or modified knowledge representation. This knowledge representation

is then applied to solve a personal or business need, or explain a phenomenon. The main

goal is to connect knowledge providers with seekers concerning software processes.

912 Paula Ventura Martins and Alberto Rodrigues da Silva

Figure 5 presents the main roles, activities and work products involved in the

Knowledge Management discipline.

4. Case Study

This section introduces a case study conducted by the authors in the context of a small-

size IT organization. This case study allowed us to evaluate pros and cons of ProPAM

as a suitable methodology for SME organizations. We collaborate with a software house

that had demonstrated interest to define and improve their software development

process. The case study included observation of three different projects and application

of the proposed methodology to define and improve their software development

process. A SPI program was conducted in order to monitor, control and analyse projects

developed by this organization (the data in this article only refers to one of these

projects due to page limit).

The case study was restricted to Portuguese software organizations which

significantly increased the prospects of obtaining the historical informational required to

understand process foundation and evolution which would not be the case of

multinationals operating in the country, as their processes would likely been initially

developed and used within the parent company prior to being disseminated to the

Portuguese subsidiary. Because the organization required to remain anonymous, we will

refer to as “NISO (Not Identified Software Organization)”.

NISO was established in 1996 and currently employs 35 people of whom 25 are

directly involved in software development activities (services sector), the others 10

belong to the commercial sector. Actually, NISO provides enterprise and mobile

solutions for information management, development and integration. NISO enables

clients of all sizes to unwire their enterprises and make information available from the

data center to the point of action, and back, anytime, anywhere.

Recently, this organization concentrates on the quality aspect of software

development. As a first step, the organization recognized the need to introduce a

formalised process. The overall goal was to successfully implement a knowledge

management system for the software process in order to assess its effectiveness and, if

possible, to still improve it. Having recognized the need to improve its process, the

organization sought guidance from our SPI research project through ProPAM

methodology.

Prior to this SPI program, this organization had never applied CMMI or other SPI

model to diagnose their current maturity level or even improving their software

development process. The main problem was high costs incurred for standard

certification process and full-time resources allocated to SPI programs. NISO has no

financial or resource conditions to accomplish a maturity assessment using CMMI

based assessment method.

The aim of the case study was to follow project teams and refine their working

practices applying ProPAM. Initially, this meant carrying out a study of current

practices employed within the company. Following this, a set of software engineering

practices were established which formed the basis of the adopted process. Project

Management was one of the areas which showed obvious weakness and, therefore, was

chosen as the most important area for the SPI program.

Process and Project Alignment Methodology: A Case-Study based Analysis 913

The following sub-section describes the main facts of this case study, namely general

data about the three project analysed. The others sub-sections present data of only one

of these projects (as justified before). Sub-section 4.2 details the first stage (process

definition) of this SPI program. Sub-section 4.3 introduces “the apply process to

project(s) and monitoring stage” of this SPI program. Final feedback about process

assessment and refinement stage is discussed in sub-section 4.4.

4.1. Case Study Overview

Three projects were conducted and analysed within NISO. However, the customer

organizations were different. The first and second project share the same organization

was the same entity. While the third project has a different customer. NISO could not

justify the support of a full-time process improvement due to cost constraints and its

reduced number of collaborators. At the beginning of this SPI program, the organization

assigned small project teams due to these reasons.

This SPI program was organized throughout three stages. The first stage was

dedicated to an initial process specification based on previous projects information. In

the second stage, several activities had been realized at process and project level. At

project level, three projects had been under inspection to detect, introduce and validate

new software development practices. Then, these practices had been analysed at process

level as candidates for future improvements in the base process. Final stage was

dedicated to specify the improved process and also included a final feedback meeting to

discuss introduced practices.

SPI roles planned and performed improvement activities over a period of ten months,

which resulted in the definition of the process (a process model, process documentation

guidelines) and a knowledge base (documents, guidelines, projects data, template

library). At the end, the changed process had been presented to senior manager and

project teams and further improved based on their feedback. Table 4 presents a brief

description of the three projects followed.

Table 4. Brief description of the three projects analysed within NISO

Project Name NGRID PIS FTF

Application
Web-based

development

Web-based

development

Portal (front-end and

back-office)

Weeks
7 weeks (planned)

10 weeks

6 weeks (planned)

9 weeks

18 weeks (planned)

25 weeks

Iterations 5 iterations 4 iterations 12 iterations

Project team size 5 4 4

Critical work of a SPI program was developed during the second stage of this case

study. At project level, the third project had been monitored during 12 (twelve)

iterations, two or three weeks’ time each. The first and second project were monitored

during fewer iterations, respectively 5 (five).

914 Paula Ventura Martins and Alberto Rodrigues da Silva

At process level, only one iteration took place during the second stage. As we can

see, at process level, iterations act in a different time scale expressed in months. In this

case study, this iteration lasted six months. The nature of the project and process level

iterations won't necessarily change much, so we recommend at least one SPI program

each year. Figure 6 illustrates the difference between the time scale of the iterations at

process and project level. It also identifies main activities and demonstrates the

interaction between these two levels.

Fig. 6. SPI program at NISO

In the project that we describe here, the software product development focused on

implementing a portal supporting several user groups: tennis front-end customer

services and back-office management services. The timeframe as well as the cost of the

project were supposed to be fixed, based on a commercial contract. Originally, the

schedule of this project was set at eighteen weeks. Although, this project had no critical

problems considering requirements elicitation, others cases happened pointing towards a

substantial project delay. As a result, the planned project of eighteen weeks evolved into

a total of twenty-five weeks. In all, twelve software development iterations were

conducted in the project. The first, second and third iterations lasted for two weeks and

the fourth iteration lasted for one week. Subsequent iterations took three weeks each.

The last iteration was concerned with system-testing and final fixing the defects found

in the product. The project team was not dedicated in full time to this project, project

members were also acting in other projects, so the project duration was set considering

the maximal development effort per day.

Process and Project Alignment Methodology: A Case-Study based Analysis 915

4.2. Stage 1: Process Definition

In the beginning, an informal meeting with senior managers at NISO showed that their

organization needed process improvement. At that time, senior managers had not

detailed knowledge of the depth of the problem and how to define and improve the

software process. However, they were aware that their administrative capability to solve

problems was diminishing. Our goal was to initiate a SPI program to analyse and

understand the problems of their software project practices and to contribute to, if

possible, to improve their software development process.

The organization did not know when and where to start improvement efforts. After

two initial meetings with senior managers to present ProPAM methodology, the SPI

program finally starts. The first step was to establish the composition of the project team

and the process manager. Project groups were compound by a project manager

(responsible for planning, monitoring and controlling projects) and developers

(responsible for performing technical activities). The SPI group also included the

process manager (responsible for documenting the process and the SPI program) and

two project members (responsible for executing the SPI program).

ProPAM proposes four initial activities in this first stage: (1) Initial Meeting; (2)

Interviews and Questionnaires; (3) Process Definition; and (4) Kick-off Meeting.

Although, the methodology advices these activities (not all of them are mandatory).

This time, considering the constraints imposed by the organization, Interviews and

Questionnaires were not followed. The initial software development process was

defined based on information of previous projects of NISO.

4.3. Stage 2: Apply Process to Project(s) and Monitoring

The second stage (apply process to project(s) and monitoring) identifies and defines the

problem with existing procedures, proposes new practices to address these problems

and observes the application of the new proposed practices. A comprehensive

description of the project monitored will be presented before identifying problems and

propose new practices.

Project Monitoring. Considering the reduced number of collaborators, multiple roles

were played by the same person in these inspected projects. This condition also was

presented for the SPI program. Some collaborators performed several of the following

activities: requirements gathering, requirements analysis, project planning, project

monitoring and controlling, design, programming and testing. Some compromises may

be forced to ignore or diminish some of the activities mentioned above due to the

problem of biased judgment. The objectivity of performing reviews, testing, and quality

assurance activities may be compromised in this situation. In all projects, the customer

was in a central role by iteratively evaluating the quality of the system.

Within this SPI program, several individuals and groups were involved and they were

organized as process manager, internal support team, project managers, software

development teams and senior manager. Process manager was an external researcher,

not a member of NISO, considered as an important element of independent thought. The

project manager of the project was permanently associated with the SPI-effort.

916 Paula Ventura Martins and Alberto Rodrigues da Silva

Improvements were validated with one or more of the projects and subsequently

implemented in the software process. An internal support team helped the process

manager in several initiatives to implement the improved process. In the future, senior

managers may play process manager roles, while he also has to meet management

responsibilities or business goals with strict deadlines. When the top manager is the

leader of the process manager, priorities and guidelines to provide status effort must be

established.

The project adopted NISO process model, described in the first stage of the SPI

program. The software development process was incrementally built during and

between the projects and evolved from a simplified version of NISO process to a new

improved process version. These process models had been specified through the PIT-

ProcessM metamodel [24]. The ProPAM methodology was incrementally validated and

improved during these projects.

PIT-ProjectM metamodel [19] had been important as a visual language to facilitate

communication with project team members. Through several projects iterations, project

models identified the work (activities and work products) assigned to team members.

These early models often served as documentation of progress and allow to identify

changes introduced in their daily work that had not been reported till this moment.

These kinds of models were very important to the project manager in order to track and

control the project. At personal view, project team members maintained an overview of

their individual work. These allowed them to manage their work, elaborate SPI change

proposals and keep a perspective of the current developed work to produce periodic

reports. These were the main advantages of PIT-ProjectM metamodel, not only to

control projects but also to improve the process based on the new practices introduced

in these projects.

This sub-section describes the phases of project PTF: commercial proposal phase and

software development phase.

Commercial Proposal phase. This project emphasized the need for a documented and

well understood architecture for the developed system. Although the commercial

proposal of this project had been written before this SPI program begin, activities

performed during this phase followed a pattern common to other proposals that we had

opportunity to formally observe and analyse.

This phase has two goals: (1) specify user requirements which will guide commercial

proposal terms and (2) define the commercial proposal. Initial effort was oriented to

capturing the most important and stable user requirements. Typically, project manager

writes the project proposal that describe everything that the project encompasses. This

document embodies at a higher level: (1) Project and Organization Structure; (2)

Commercial Specifications; (3) Technical Specifications (system architecture, system

requirements); (4) Project Schedule and (5) Financial Aspects.

In the Commercial Proposal phase, considering reports submitted by team members

and information from the iteration workshop, the process manager identified several

problems: (1) customer’s representation (sponsor) from different areas were not really

motivated to participate (some of them change the meetings date several times); (2) the

organization didn’t preserve their knowledge about different architectures used in

previous project (knowledge repository). So, system architect had to do some research

in order to identify the best architecture that fit this solution. Previous experience from

others members from the organization could be considered if they had a common

Process and Project Alignment Methodology: A Case-Study based Analysis 917

reposition; (3) the project manager spent a lot of time defining the project plan. He also

spent additional time confirming project schedule with other team members.

During this phase relevant business requirements were gathered, costs and benefits

are defined and quantified. Commercial proposal outlines project plan, associated costs,

system architecture and the business solution. Final documents delivered at the end of

commercial phase were the commercial proposal, requirements document and analysis

and design document.

Software development phase. A summary of qualitative observations carried out during

this project development phase is presented below and organized according to process

disciplines. Activities of different disciplines had specific problems encountered during

this project life cycle.

This phase started with a detailed requirements analysis to help ensure consistent and

sound decision-making throughout the system development. However, the phase

consisted in two different development sub-phases. In the first sub-phase, front-end

system was analysed and a detailed requirements description was done. In the second

sub-phase, the same approach was applied to the back-office system. A two sub-phases

approach was taken considering the volatility of requirements and the costs of adapting

the developed product based upon latter discoveries when interacting with the customer.

At the beginning of each sub-phase, system analyst meets with the customer to

identify and negotiate the requirements to be implemented in this sub-phase. During

these meetings, customers suggested additional requirements and provided more data

about requirements identified in the commercial proposal phase. The approach followed

in this project facilitated customer involvement by increasing the frequency of meetings

with the customer. Frequent meetings allowed the project team to have continuous

feedback from the customer and adjust the activities as the project progressed.

Project planning started with a global project plan view. Across the project, project

manager detailed plan only on the features and requirements to be implemented in a

specific iteration that enabled project team to incorporate changes in requirements in a

later time with less impact to the project. Regular project meetings allowed project team

to be adaptable and re-evaluate the requirements addressed in development activities of

each iteration.

Although, project team members produced requirements spreadsheets, they didn’t

control how often software requirements evolved. Software developers should be the

first ones to adopt these newer practices. The main problem was that requirements

control was performed manually and continuous changes in requirements introduced

inconsistencies after some time. So, requirements management and tracking continued a

problem throw this project. Everyone knew how important it was requirements

management, but no one was committed to check consistency of multiply requirements

documents from different team members.

No project’s software quality plan was produced, the subsequent lack of control on

products quality leads to higher defects in work products and less customer satisfaction.

The main reason was the complicated procedure of supervising several projects and

support developers in their activities at same time. In the end of the project, project

assessment report focused on implementation issues and physical and financial

achievements, and less on lessons learned and impact. An example of a supporting

activity performed by the project manager is reported here and the respective solution

described. Programmers sometimes get stuck or frustrated and needed help to found a

918 Paula Ventura Martins and Alberto Rodrigues da Silva

solution. The project manager or a more experience programmer stopped his work and

gave some guidelines about how to solve the problem. Pair programming is an

alternative approach and proposed solution. Nevertheless, each actor should switch roles

frequently, changing from the driver (code writer) to the partner and so on. This

approach also involves design decisions, less chance of both actors neglected test,

spreads knowledge throughout the team and frequent code reviews.

In the final part of the project, team members delivered period report through the new

reporting tool, however periodic meetings were important to inform project team about

project progress and problems. Requirements changes were discussed at these meetings

and the course of action (project plan) decided by the team but under project manager

supervision. Members of the project team were assigned to implement changes in their

respective areas of responsibility. Project meetings included risk identification and

evaluation. However, no risk mitigation plan was produced. In this project, the team

demonstrated a higher level of awareness of risks than at the other two projects. The

team (and especially project manager) should always regard risk identification in a

positive way to ensure contribution of as much information as possible about the risks it

faces. A negative perception of risk causes team members to feel reluctant to

communicate risks. Risk identification, analysis, planning, tracking, control and

learning are logical activities and that project teams do not need to be followed in strict

chronologic order for any given risk. Teams will often cycle iteratively through the

identification-analysis-planning activities as they develop experience on the project for

a class of risks and only periodically visit the learning step for capturing knowledge for

the organization.

Project meetings and SPI iteration meetings provided immediate feedback to process

manager considering data provided by project team members, and experience on

whether and how the SPI mechanisms needed to be modified. The main idea of SPI

meetings was to base process improvement on the obstacles and problems that were

identified by the project team.

Without training opportunities at proposed testing approaches, testers are not

equipped to meet the rigors of testing, especially in technically difficult situations. Test

cases were proposed as an approach to reduce defects reported by final users and

maximize customer satisfaction. Since, programmers (at same time testers) were not

always in direct contact with the customer, customer acceptance tests were the effective

validation technique to ensure the developed system meets their requirements. Despite,

the process manager provided support on employing Test Driven Development (TDD)

methods, developers reacted negatively considering the absence of adequate tools and

lack of training.

New practices introduced in previous projects, evolved within this project.

Nevertheless, new methods were proposed, such as pair programming, peer code

review, risk management, customer acceptance tests and TDD method.

Improvements were made to data collection practices, especially to collect quality

data (such as the number of development defects). Within all the projects, complaints

concerning defects collection mechanisms declined toward the end. Consequently,

project team’s response to improvements in defects detection can be seen as a positive

finding.

In this phase several final work products were produced: prototypes, requirements

documents, models, code, project plan, project presentation, meeting notes, bug report,

test cases and traceability matrix with test cases and interviews. Nevertheless, new work

Process and Project Alignment Methodology: A Case-Study based Analysis 919

products were introduced to improve the process, namely: an analysis and design

document, a software configuration management (SCM) plan, a quality plan and a risk

mitigation plan.

Problems with existing procedures. Figure 7 presents a simplified schema of some

most important problems identified through the SPI program.

Different
information
repositories

Information
silos for each

team

Low automation
of business
processes

Actual

Context
Blocking

Factors

Diversity of
sources and
documents

Distribution of
knowledge in

different project
teams

Deterioration of the
administrative

capacity to solve
problems

Lost of
productivity

and
operational

efficiency

Fig. 7. Problems identified

The following table describes the main problems faced during the second stage of the

SPI program.

Table 5. List of problems with existing procedures

Problem Problem Description

P1 SCM requires extra activities in order to have an operational SCM system

P2 Team members were not motivated because of the time spend in a manual activity

with constant updates

P3 Lack of consistency in different requirement documents

P4 No tool support to control requirements.

P5 Team members were not confident about the benefits of test cases (lack of

knowledge how to act)

P6 Team members reacted negatively when asked to write test cases

P7 No tool was available to support requirements traceability. Team members has to

produce spreadsheets with the traceability matrix

P8 Since they fail in writing test cases, Cross-reference between requirements and test

cases was not done

P9 Data from the first project was not available in a knowledge base

P10 Estimation and planning support was weak. No data available in a knowledge base to

estimate and create feasible plans

P11 Integrated project management tool not available (NISO intends to produce a

supporting tool adapted to their organizational culture)

P12 Initially, spreadsheets are used as templates to periodic reports (reporting tool not

available)

920 Paula Ventura Martins and Alberto Rodrigues da Silva

Problem Problem Description

P13 Control bugs were manually implemented (customers do not differentiate new

requirements from defects in software products)

P14 Courses were not administrated in this period

P15 Team were not motivated for pair programming because of the time spend in a

common activity and the small amount of human resources available to the project

P16 Pair programming not applied (peer code review was proposed to be performed by

an extra person)

P17 Risk management not performed, or not effective or results ignored

P18 Client acceptance tests was not an organized and structured process

P19 Team members were not confident about Test Driven Development (TDD)

Concerning the initial process, two disciplines revealed the most problematic cases:

project management (planning and estimation, software configuration management and

metrics collection) and tests (unit tests and customer tests).

Proposal of New Practices. A new discipline was identified through the SPI program

which is knowledge management. Knowledge management revealed as an essential

discipline focused on learning of the team members and preserve this knowledge to

future projects (knowledge transfer). Organizational practices and guidelines to support

project teams in concrete improvements should be managed for future projects and other

project teams. These observations reflected the collaborative work of process manager,

project manager and other project team members. Altogether, the findings of the

projects were group in a total of 17 different improvement practices. Table 6

summarizes all the new practices identified through this project.

Table 6. New practices proposed

Proposed Practice Proposed Work product Related Problem

Software Configuration

Management (SCM)

SCM plan

SCM repository

P1

Specify and control requirements Requirements spreadsheet P2, P3, P4

Write test cases Test case P5

Customer participation on test

cases

Test case P6

Requirements traceability

through design

Traceability matrix with design P7

Cross-reference between

requirements and test cases

Traceability matrix with test

cases

P8

Historical data Knowledge base P9

Estimation and planning Project plan P10

Formal procedures for project

planning and tracking

Project management

environment

P11

Automate periodic reports Periodic timesheet P12

Control bugs reported Bugs spreadsheet P13

Project teams training P14

Pair programming P15

Peer code review Bugs spreadsheet P16

Process and Project Alignment Methodology: A Case-Study based Analysis 921

Proposed Practice Proposed Work product Related Problem

Risk management Risk mitigation plan P17

Client acceptance tests Client acceptance document P18

TDD (test-driven development) Test cases P19

4.4. Stage 3: Project and Process Assessment

During the period of the pilot case study, we collect data from the project already

described. All the data presented in this section were obtained through analysis of

project work products and SPI documents. Proposals were written to improve the

software development process based on the analysis of the qualitative data collected, the

software process improvement literature, and other quality improvement findings from

developed projects.

Quantitative research methods are used to establish general laws and principals and

its approach can provide answers which have a grounded base. Therefore, the study of

software processes lends itself to the application of qualitative methods, as they are

oriented towards how project teams view and understand their world and get knowledge

from their experiences. As the goals of these projects relate to define and improve the

software process of this organization, we also applied qualitative methods as an

appropriate technique to take decisions and improve the process.

Three distinct problematic areas were determined through the SPI program,

concerning project management (planning and estimation, software configuration

management, metrics collection and technical environment), knowledge management

(technical environment) and testing (unit testing and technical environment). In the

following, these areas are examined to evaluate project practices and improve the

process. Figure 8 shows suggested practices (unused, adopted and proposed) organized

by disciplines.

Concerning project management, planning/re-planning, estimation and data

collection (historical data) were the most problematic areas in all three projects. The

lack of method concerned effort estimation, inaccurate definition and re-planning of

activities, project tracking and risk management during iterations of project were among

the initially most reported problems. However, planning/re-planning of iterations,

project tracking and risk management were successfully included in project PTF.

Metrics collection was carried out extensively and manually through data collections

spreadsheets in the project, for research proposes, however it consumed a lot of time

and effort from project manager and process manager. For project proposes, technical

infrastructure was not available to support data collection and further estimation.

Unit testing problems were most related to the approach followed by project teams.

Figure 9 shows defect rates (bugs reported and changes in requirements requested by

the customer) and provide a particularly good view of the state of customer’s tests for

the project. As illustrated in Figure 9, defect trends follow a fairly predictable pattern in

a customer testing cycle. The trend reflected in this analysis shows that new defects are

discovered and opened quickly at the beginning of the project, and that they decrease

over time. The trend for open defects is similar to that for new defects, but lags slightly

behind. The trend for closing defects increases over time as open defects are fixed and

verified. These trends depict a successful effort. Since in this project, trends deviated

922 Paula Ventura Martins and Alberto Rodrigues da Silva

slightly from these, it indicated a problem and identified when additional resources are

needed in specific areas of development or testing.

Fig. 8. Quantity of improvement practices by disciplines

Fig. 9. Defect rates (project PTF)

The trend reflected in this analysis shows that new defects are discovered and opened

quickly at the beginning of the project, and that they decrease over time. The trend for

open defects is similar to that for new defects, but lags slightly behind. The trend for

closing defects increases over time as open defects are fixed and verified. These trends

depict a successful effort. Since in this project, trends deviated slightly from these, it

indicated a problem and identified when additional resources are needed in specific

areas of development or testing.

Most frequent problems derived from the fact that testers reviewed the code they

wrote and do not have enough time to do required tests. Alternative techniques must be

used, such as peer code review process and test cases. Despite, these improvements

were not enough to solve defects or even requirements problems. Senior managers need

to take concrete actions and namely, decide to acquire a new tool for TDD activities and

invest in improving the TDD training of project teams. Project teams should allocate

0

2

4

6

8

10

Project

Management

Tests Analyse and

design

Development Deployment

Unused Adopted Proposed

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7

N
u

m
b
er

 o
f

d
ef

ec
ts

iteration

New_bugs

Closed_bugs

Open_bugs

New_changes

Closed_changes

Open_changes

Process and Project Alignment Methodology: A Case-Study based Analysis 923

more time to planning test cases, elaborate test cases before actual development and, as

a consequence, ensure rapid feedback after any change.

This case study reported on the beneficial effects of adequately structuring the

development process to improve project management (planning and tracking activities)

and get at least an indication of the influences on defect occurrence and defect

detection. The main goal was to assess defects that can be prevented by adequate

application of defect measures in specific cycles of a project. On the basis of the results

of experiences, five improvement proposals were produced, with a specific focus on: (1)

process definition and documentation; (2) project management; (3) knowledge

management; (4) quality management; and (5) requirements engineering. However,

technical environment issue, common to all three areas, was not addressed in this SPI

assessment as a priority. Its problems were largely dependent on the internal capacity to

develop this kind of supporting tools rather than on the learning of the project team or

the state of the process itself. Devices and tools available on the market are not an

option since NISO intends to develop their own tools considering the lack of

adaptability and costs of existing tools.

After presenting these results to senior managers, SPI group gave priority to

knowledge management through:

 Creation a knowledge base that would support all areas of interest identified by the

process manager;

 Creation of a document management system to support documentation and sharing of

projects results;

 Definition of the software process.

5. Conclusion

In the state of the art of SPI, several problems are identified in what concerns the cost

and difficulty of implement effective SPI programs based on the most popular SPI

standard models. ProPAM is proposed as a complementary approach to SPI focused on

gaps and problems identified on such existing SPI standard models.

A case study was conducted in a small IT organization (e.g. without conditions to

accomplish a maturity assessment using CMMI). The main goal of this case study was

to give us real world and effective insights into how SPI programs can best suit

organizational goals and also showed us the impact on the organization and the

strengths and weaknesses of a methodology such as ProPAM. Nevertheless, the

adoption of this methodology requires that the involved practitioners be aware on the

following limitations of ProPAM: First, ProPAM is based on projects experience, so it is

highly context sensitive. There are many factors affecting final results, such as people,

facilities and culture. It is important to separate individual practices and process practices and

take decisions considering the benefits to the organization. Second, ProPAM is an iterative

SPI methodology. People involved in iterative process improvement must be aware about

how to performed SPI programs and keep this complex process under control. It is important

to explicitly plan and show that a SPI program should have final goals and identifies

milestones. Third, mixing process manager roles with project roles makes objective analysis

difficult. Because a process manager should validate the changes proposed by project team

members, an individual with these two roles probably faces difficulties to make an objective

924 Paula Ventura Martins and Alberto Rodrigues da Silva

analysis. In addition, it is unlikely that anyone in the organization will be able to repeat the

study to validate process manager observations.

As final conclusion, the prescriptive nature of traditional SPI models (such as

CMMI) and costs necessary to implement SPI programs are the main reasons for further

research on SPI based on project’s experience. Namely, SPI models must address the

importance of using the experience of software teams as an important source to defining

a SPI. Another gap observed was the deficient alignment between the process and

projects. Nevertheless, the contribution of this work was not just an approach to align

process and project specifications; we also discussed a mechanism to analyse such

evolution based on the changing needs of the organization in consideration.

References

1. Salo, O.: Improving Software Development Practices in an Agile Fashion. Agile Newsletter

2, pp. 8 (2005)

2. Staples, M., Niazia, M., Jefferya, R., Abrahamsd, A., Byatte, P., Murphyf, R.: An

exploratory study of why organizations do not adopt CMMI. Journal of Systems and

Software 80,883-895 (2007)

3. Basri, S., O'Connor, R.: Organizational Commitment Towards Software

Process Improvement An Irish Software VSEs Case Study. 4th International Symposium on

Information Technology 2010 (ITSim 2010), Malaysia (2010)

4. Sánchez-Gordón, M.-L., O’Connor, R.V., Colomo-Palacios, R., Sanchez-Gordon, S.: A

Learning Tool for the ISO/IEC 29110 Standard: Understanding the Project Management of

Basic Profile. In: Clarke, M. P., O'Connor, V.R., Rout, T., Dorling, A. (eds.) Software

Process Improvement and Capability Determination: 16th International Conference, SPICE

2016, Dublin, Ireland, June 9-10, 2016, Proceedings, pp. 270-283. Springer International

Publishing, Cham (2016)

5. CMMI Product Team: CMMI ® for Development, Version 1.3, Improving processes for

developing better products and services. (2010)

6. ISO/IEC 15504-4:2004: Information technology -- Process assessment -- Part 4: Guidance on

use for process improvement and process capability determination. pp. 33 (2004)

7. Santos, G., Kalinowski, M., Rocha, A. R., Travassos, G. H., Weber, R. C., Antonioni, J. A.:

MPS.BR Program and MPS Model: Main Results, Benefits and Beneficiaries of Software

Process Improvement in Brazil. Eighth International Conference on the Quality of

Information and Communications Technology (QUATIC), 2012, vol. -, pp. 137-142, Lisboa

(2012)

8. Mirna, M., Jezreel, M., Calvo-Manzano, J. A., Cuevas, G., San Feliu, T.: The results analysis

of using MIGME-RRC methodology for software process improvement. 6th Iberian

Conference on Information Systems and Technologies (CISTI), Chaves (2011)

9. OMG: UML 2.1.1: superstructure and infrastructure. OMG (2007)

10. OMG: Business Process Model and Notation (BPMN). Object Management Group (2013)

11. The Open Group: Archimate® 2.1 Specification. (2013)

12. Martins, P. V., Silva, A. R.: A case study applying Process and Project Alignment

Methodology. JBCS- Issue on Experimentation in Software Engineering 12,65-82 (2006)

13. ISO/IEC TR 29110-5-2-1:2016: Systems and software engineering -- Lifecycle profiles for

Very Small Entities (VSEs) -- Part 5-2-1: Organizational management guidelines. (2016)

14. Weber, K., Araujo, E., Scalet, D., Andrade, E., Rocha, A., Montoni, M.: MPS Model-Based

Software Acquisition Process Improvement in Brazil. In: 6th Quality of Information and

Communications Technology (QUATIC 2007), pp. 110-122. IEE Computer Society, (2007)

Process and Project Alignment Methodology: A Case-Study based Analysis 925

15. Baddoo, N., Hall, T.: De-motivators for software process improvement: an analysis of

practitioners’ views. Journal of Systems and Software 66,23-33 (2003)

16. Khaled, E., Emma, D., Goldenson, J., Mccurley, J. H., Fraunhofer, I.: Success or Failure?

Modeling the Likelihood of Software Process Improvement. International Software

Engineering Research Network (1998)

17. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley (2004)

18. Rising, L., Janoff, N.: The Scrum software development process for small teams. IEEE

Software 17,26-32 (2000)

19. Martins, P. V., Silva, A. R.: ProPAM: SPI based on Process and Project Alignment. In: 2007

IRMA Internacional Conference. IGI Publishing, (2007)

20. Verlage, M.: Multi–view modeling of software processes. In: Proceedings of the Third

European Workshop on Software Process Technology, pp. 123–126. Springer–Verlag,

(1994)

21. Martins, P. V., Silva, A. R.: ProjectIT-Enterprise: a Software Process Improvement

Framework. 17th European System & Software Process Improvement and Innovation

Conference (EuroSPI2 2010), pp. 2.57-52.66, Grenoble, France (2010)

22. S. Dissmann, V. Gruhn, Ohrndorf, D.: Integration of Software Process Management and

Development History Recording. Second Asia-Pacific Software Engineering Conference

(APSEC'95), pp. 468-477 (1995)

23. Rico, D.: Using Cost Benefit Analyses to Develop Software Process Improvement (SPI)

Strategies. Defense Technical Information Center (DTIC)/ AI (2000)

24. Martins, P. V., Silva, A. R.: PIT-ProcessM: A Software Process Improvement Meta-model.

Seventh International Conference on the Quality of Information and Communications

Technology (QUATIC), 2010, pp. 453 - 458. IEEE, Porto (2010)

Paula Ventura Martins is an assistant professor of the Electronics and Computers

Engineering Department of Faculty of Sciences and Technology at Universidade do

Algarve, and a member of Research Centre for Spatial and Organizational Dynamics

(CIEO). She has a PhD degree in Computer Science and Engineering from the Instituto

Superior Técnico (Universidade de Lisboa). In 2000, she got the Master's degree in

Computer Science and Engineering from the Faculdade de Ciências e Tecnologia

(Universidade Nova de Lisboa). She concluded her undergraduate course in Computer

Science and Engineering on 1992, in the same institution. Her personal interests are

Software Process Improvement, Software Development Processes, Domain Specific

Languages, Modelling Languages and Business Process Modelling.

Alberto Rodrigues da Silva is Associate Professor with Habilitation at Instituto

Superior Técnico (Universidade de Lisboa), he is also a senior researcher at INESC-ID

Lisboa, and a partner at the SIQuant company. His main academic and research interests

are in the areas of information systems, software engineering, model-driven

engineering, requirement engineering, social computing and project management, with

multidisciplinary application domains. He is the author or co-author of 5 technical

books and more than 200 peer-reviewed scientific communications. He has served on

program committees of several international conferences and workshops. He is member

of the ACM, PMI and the Portuguese Engineers Association (Ordem dos Engenheiros).

Received: August 2, 2016; Accepted: November 14, 2016.

