Computer Science and Information Systems 14(1):219-237 DOI: 10.2298/CSIS161010001F

Extending a Generic Traffic Model to Specific Agent
Platform Requirements

Alberto Fernandez-Isabel and Rubén Fuentes-Ferniandez

Complutense University of Madrid
Department of Software Engineering and Artificial Intelligence
c/ Profesor José Garcia Santesmases, 9, 28040, Madrid, Spain
afernandezisabel @ucm.es, ruben @fdi.ucm.es

Abstract. Road traffic and its influence over individuals is an important aspect of
our life nowadays. Its study in order to understand its dynamics and the factors
that affect it is a relevant field of research. Traffic simulations have become a fun-
damental tool for these studies. They provide a controlled environment to analyse
traffic settings. However, they present some shortcomings. One of the main ones
is the need of multidisciplinary groups of experts to work with complex models.
Communication problems and misunderstandings frequently appear in them, which
produce mistakes and bring increased costs. Some works have addressed these is-
sues adopting abstract concepts that can act as bridges among different groups to
model and implement simulations. Works that use intelligent agents to represent
individuals, and their related simulation platforms, belong to this category. Never-
theless, these platforms are still programmer-oriented, so other experts find difficult
to ground their abstract models in them. As a further step, Model-Driven Engineer-
ing (MDE) has been proposed to work with models and simulations. It offers the
possibility of working with models at multiple levels of abstraction and focused on
different aspects. These models can be oriented to specific experts’ backgrounds.
The work presented follows this approach and introduces a generic Modelling Lan-
guage (ML) through a model, that can be specialized to meet different needs in
road traffic simulations. The case study illustrates how that model can be succes-
sively modified to model people’ behaviour in traffic both at the traffic expert and
platform-oriented levels. This allows reducing the learning curve of experts with
backgrounds non-related to software simulations.

Keywords: road traffic, model transformation, model-driven engineering, agent
platform, modelling language, agent-based modelling

1. Introduction

Road traffic is a widespread phenomenon in our society. Every person that lives in a town
has to face it and deal with the different situations it produces or influences. This leads
researchers from multiple areas to develop studies where the road traffic and its factors are
analysed in order to improve its understanding and forecast its evolution and problems.

These studies face to various obstacles concerning the difficulty of modelling the com-
plex behaviour of individuals. This behaviour includes the relationships among these peo-
ple, where they play different types of roles (i.e. driver, passenger or pedestrian), and their
mental state.

220 Alberto Fernandez-Isabel and Rubén Fuentes-Fernandez

The interactions among the participants can be homogeneous (i.e. individuals of the
same role) or heterogeneous (i.e. individuals of different roles), and have multiple nu-
ances. The latter are related to the influence produced by others through various ways.

Regarding the mental state, each individual has her/his particular information: facts
(e.g. the route to follow) and goals (e.g. to save fuel). Although not part of a state, we
also consider here as part of it the traits that influence its behaviour (e.g. the age as it in-
fluences the response time). This information is modelled in terms of specific entities and
relationships. They allow to include in models information about decisions and reactions
that also affect the relationships among elements in traffic.

Simulation has become a key element in order to mitigate these kinds of problems.
It allows working with only sets of selected variables, controlling the mutual influences
among individuals and the environment (e.g. modifying weather conditions or the con-
figuration of traffic lights) [15]. Also, it avoids the problems that empirical studies might
produce in the real world (e.g. traffic jams or unnecessary risky situations to people).

However, simulations have their own drawbacks [9]. They require multidisciplinary
groups where the understanding between the researchers can be tedious. Communication
problems and the different backgrounds of individuals might produce undesirable situ-
ations. For instance, bugs or mistakes in code due to a misconception in the design are
usually detected in late phases of the development. These situations imply the increase of
the costs and delays.

Trying to reduce this communication gaps, the use of Agent-Based Modelling (ABM)
[8] for simulation is quite common. Agents represent the individuals and their goals and
actions. They establish relationships among them and with the environment, and are able
to modify their behaviour in consequence. Experts from different domains can easily
grasp these abstractions that, at the same time, can be further specialised form a variety
of domains. In order to support these features, there are agent platforms [31] that pro-
vide among other services life cycle and information management, and communication
channels.

These platforms also present their own problems. They usually have a steep learning
curve for experts without previous experience in agent-based simulations. Moreover, there
is a quite heterogeneous landscape of platforms (e.g. Jade [3] or NetLogo[37]) and agent
methodologies (e.g. INGENIAS [30] or Gaia [6]). They consider similar but not the same
concepts and their support is also different. This situation increases the difficulties to
compare models and results, and to select the proper resources for a given study.

Model-Driven Engineering (MDE) [21, 33] can be helpful to address these problems
[14]. It is a development approach which focuses on Modelling Languages (MLs) [28] to
produce models that define systems. These MLs are specialised for different abstraction
levels and experts.

Models can be used to produce or modify artefacts (e.g. source code) using automatic
transformations. In this way, the development process becomes iterative and incremental,
promoting the reutilisation of elements. The process also makes explicit all the infor-
mation required to develop the system, and facilitates experts their understanding and
manipulation.

A well-established framework for MDE is Model-Driven Architecture (MDA) [22]
of the Object Management Group (OMG) [35]. It is focused on object-oriented develop-
ment using OMG standards, like the Meta-object Facility (MOF) [2] and Unified Mod-

Extending a Generic Traffic Model to Specific Agent Platform Requirements 221

elling Language (UML) [13]. This framework recommends the elaboration of two dif-
ferent types of models to develop the system: Platform Independent Model (PIM) and
Platform Specific Model (PSM). The first presents analysis and design models remaining
an abstract level that discards concrete implementation guidelines. The second addresses
the models extending them in order to include the necessary information to generate a
specific runtime system.

This work introduces a generic ML at the level of PIM [22] for developing road traffic
simulations. It provides a high-level specification where relationships are based on inheri-
tance and decomposition of entities. These primitives provide the means to extend the ML
so it can integrate existing road traffic theories using its guidelines to produce extended
PIMs. These new languages are used to define specific vocabularies and methodologies.
Then, they are specialised for target agent platforms generating PSMs [22].

The case study that illustrates the approach introduces two types of transformations
from the generic ML. The first one produces an extended PIM based on road traffic models
and theories extracted from the literature [1, 34]. It also takes common concepts used in
agent methodologies (e.g. goals and tasks [5, 30]). The resulting model is extended using
a second transformation to generate the ML for the PSM. This transformation is oriented
to the A-globe agent platform [36] and considers specific platform details. Thus, it allows
producing model specifications according to the requirements of traffic theories using the
agent platform.

The rest of paper is structured as follows. First sections are devoted to introduce the
background of the work. Section 2 presents the basics of MDE and its tools, with a par-
ticular focus on the transformation processes, while Section 3 delves into agent platforms
and methodologies, and their concepts. The presentation of our work starts in Section 4.
It introduces the generic ML, its use guidelines and the transformation process. Section 5
applies this framework to the case study. Section 6 compares and discusses our and related
work, placing the proposal in context. Finally, Section 7 presents some conclusions about
the proposal and future work.

2. Model-Driven Engineering

Model-Driven Engineering (MDE) [21, 33] is a development approach that uses models
to specify systems. These models can be described at different abstraction levels accord-
ing to the needs of participants (e.g. models for theoretical experts are more abstract than
those to generate source code), or from different perspectives (e.g. security or architec-
ture). In order to ease the generation of these artefacts that are commonly related, MDE
includes semi-automatic transformations.

The approach is based on the use of well-defined MLs to make possible the devel-
opment process and the corresponding transformations. This requires that MLs present
specific definitions in order to validate the models created through their primitives.

There are multiple possibilities to define MLs. The most common uses metamodels.
This is strongly related to the fact that most of typical MDE MLs are graphical and graph-
based. They depict conceptual graphs with properties [4] (e.g. UML [13]).

A metamodel is a model that indicates certain primitives and constraints to define a
ML. They are defined using meta-MLs in a similar way to models. Examples of these
types of language are MOF [2], which is used to specify UML, or Ecore in Eclipse

222 Alberto Fernandez-Isabel and Rubén Fuentes-Fernandez

Projects [38]. The primitives of these languages are oriented to define different types
of graphs. For instance, Ecore has an EClass node linked to EAttribute and EReference
nodes.

Regarding transformations, they can be classified according to their inputs and the
outputs they produce. There are transformations that generate new models from others
(i.e. Model to Model), source code from a specific model or group of them (i.e. Model
to Text), and models from source code using reverse engineering (Text to Model) [10].
Also, they can generate other types of artefact related to the development process (e.g.
documentation or validation tests). This leads to an incremental development process:
models can be transformed into others more specific until the requirements of the target
platform are satisfied.

Transformations are implemented in different ways: using general purpose program-
ming languages (e.g. Java) and transformation languages. The first approach develops a
module that uses programming interfaces for manipulating its inputs and outputs (e.g. a
code generator tool). This leads to reuse the already tested artefacts and tools of main-
stream development approaches (e.g. object-based programming). In the second case, the
transformation is developed using a specific language for transformations and an engine
executes the instructions. It eases the comprehension and analysis of the input artefacts
and the resulting ones in the outputs.

MDA [22] is a specific development framework defined by the OMG [35]. It provides
guidelines in order to generate MDE projects with a desirable set of properties.

The guidelines start defining a Computation Independent Model (CIM). It considers
the requirements and does not have any information about the system to develop. Then,
an initial Platform Independent Model (PIM) is produced. This is a high-level abstrac-
tion model and is independent of any implementation technology. Once it is generated,
it can be transformed into one or more Platform Specific Models (PSMs). These are fo-
cused on representing the entities related to the implementation technology. A PSM can
be transformed in order to link more than one technology. It is the last modelling step,
from which the process generates the source code which should be directly usable in the
target platform or technology.

MDE, and its implementation with MDA, are expected to produce improvements on
system development regarding productivity, portability, interoperability and maintenance
and documentation. Manipulating information at the level of models and transformations
should facilitate the experts work by promoting and explicit manipulation of all the re-
quired information.

In the presented approach, MDA guidelines are followed in order to generate more
specific models from a generic one related to road traffic. The CIM is not considered
in this case, while the PIM and PSM are defined by UML [13]. Transformations are
implemented through ATL [19]. This is a language based on rules specially designed
to these issues.

3. Agent Methodologies and Platforms

Agents [39] are autonomous and intentional software entities that interact with the envi-
ronment around and among others. They can establish communication through pieces of
informations (e.g. messages) and can be organised in groups. Agents usually have a goal

Extending a Generic Traffic Model to Specific Agent Platform Requirements 223

that can be decomposed into others, and a set of tasks to fulfil them. Evaluators and ac-
tuators are other components related to them. They consider the best goal to accomplish
and execute the tasks associated to a specific selected goal respectively.

Groups formed by agents can be organised into Multi-Agent Systems (MAS) [39].
They consist of an environment, different objects and agents, the relationships among
these entities and a set of operations that might be achieved by them. The latter must be
able to modify the environment and have influence over the rest of individuals. These
systems are used in multiple domains, and in particular for simulations. Here, they pro-
vide the possibility of creating artificial universes for testing theories related to certain
behaviours (e.g. road traffic simulations [29]).

There are multiple methodologies to develop agent-oriented systems. These include a
body of methods and guidelines to developed in a systematic and coordinated way such
systems [16]. Many of them are based on MDE, and include support tools.

These methodologies can be classified into three main types according to their focus:
requirement-driven methodologies, agent-oriented methodologies and multi-agent system
methodologies. The first type is focused on eliciting requisites through the same concepts
of the structured development techniques used in the programming paradigm. An exam-
ple of this type of methodology is Tropos [5]. The second type models the problems of the
systems to solve. In order to do that, it extends the concepts of the object-oriented method-
ology and apply them to MAS. An instance of this methodology is Prometheus [27]. The
third has as foundations MAS and their organisation. The individuals (i.e. agents) are con-
sidered through a collective perspective discussing their roles and importance within the
group. INGENIAS [30] and Gaia [6] are traditional examples of this type of methodolo-
gies.

Regarding agent platforms, there is not a standard (e.g. OMG MASIF [26] or FIPA
[31]). These platforms provide the infrastructure to implement MAS in different scenar-
ios. They are usually composed by a set of components that conforms an organisation,
security protocols, and communication channels to allow the interaction among agents.
They can be classified into two broad groups: simulation-oriented platforms and agent-
oriented platforms. The first ones have as a main issue the development of simulations
and present components related to them (e.g. libraries for controlling and analysing ex-
periments). Examples of these type of platforms are Swarm [24] and NetLogo [37]. The
second ones are used to develop general-purpose systems that can also produce simula-
tions. Instances of these platforms are Jade [3] and A-globe [36].

This work is mainly focused on developing PSMs for agent-oriented platforms. Nev-
ertheless, introducing some modifications in the PIM could be affordable, as the purpose
of the ML produced is the same for both types. This purpose is based on the premise that
a PSM must represent the different elements and requisites the target platform proposes
to implement a specific MAS related to road traffic simulations.

4. Road Traffic Modelling

This work proposes a MDA infrastructure [22] for road traffic agent-based simulations. It
proposes a PIM able to generate other models more specific applying different automatic
transformations.

224 Alberto Fernandez-Isabel and Rubén Fuentes-Fernandez

[0..*] inherits

EQ GeneralElement Q Information

[0..1] generates

= name : EString

Z info : EJavaObject

T |

| | |

i i [0..*] uses Method
E GeneralRelationship| [0..*] relates ﬁg ModelEement E
= type: EString 0.*] hasmethod ; lnstrL|ct|9ns i EJE-\THObJECt
[0.*] isrelated I T execute instructions(

-
S —
@ BehavioralElement @ Component | 'E AgentCompomnent |
= yalue;: kint | = decomposition : Elnt |

[0..*] composed [0..*] composed

Fig. 1. Excerpt of the generic Platform Independent Model (PIM) illustrating its primitives.

The generic PIM presents different inheritance and composition relationships to ease
the generation of more specific models. Transformations use these relationships in order to
achieve the appropriate modifications during the development of these extended models.

Then, a more specific PIM is produced from the original. It must encompass existing
road traffic theories for individuals involved in it. They are extracted from the literature of
the domain focused on the behaviour, traits and decision-making process of participants.
Moreover, it has to adopt concepts and related components according to agent method-
ologies (e.g. goals and tasks).

Regarding the PSMs, they are created in order to adapt the ML produced by the more
specific PIM. Its purpose is to model the structure of target agent platform and adopt
its specific requirements. Thus, a complete agent platform must be able to be developed
using these primitives. Also, it allows integrating the components that are provided by
these general purpose platforms in a specific language for road traffic.

Finally, source code is generated through the appropriate transformation process. Then,
the body of the methods produced are fulfilled with the required information. Once this
step is completed (i.e. developed and tested), the road traffic simulation might be run prop-
erly using the agent platform and agents would apply the selected traffic theories during
their decision-making processes.

Section 4.1 introduces the generic PIM and its primitives and entities. It also illustrates
the meaning of its different classes and how they establish relations with others.

4.1. Generic Platform Specific Model

The generic PIM is focused on providing a set of flexible primitives. It includes references
and entities that ease the transformation operations. These are defined with the purpose of
facilitating the specification of multiple road traffic theories and agent-oriented platforms.

Extending a Generic Traffic Model to Specific Agent Platform Requirements 225

The references provided by the model store the information and link the different
entities in order to generate coherency. They can be classified into four main types: inher-
itance, composition, relation and method-related references.

The inheritance references can be decomposed into two: original and generated in-
heritance. The first one is used in the model to link types, and represented by a triangular
arrow. The second is an explicit inheritance that can be used in models (see Fig. 1). It
eases the extension of the entity that uses it (e.g. inherits reference).

The composition links generates the possibility of decomposing an entity into others
in extended model versions. This promotes the organisation of individual traits extracted
from road traffic literature or goal-based trees, which are common in agent methodologies
[30]. Instances of this type of relations are the composed references.

About the relation references, they link two or more entities to provide a commu-
nication channel that allows sharing information among them. Examples of this type of
references in the PIM are relates and isrelated. In this case, both introduce guidelines to
insert specific relationships with bi-directional communication.

The method-related relationships link methods with the entities that use them. This
use can be classified into two orthogonal perspectives: an entity generates certain infor-
mation through a method or an entity needs some information produced by others. Ex-
ample of the first usage is hasmethod relationship while uses reference concerns to the
second.

Regarding the PIM entities, the key element is GeneralElement. It is an abstract class
that acts as the root of the rest of classes of the model. It has an attribute name which
identifies unequivocally each element (a constraint is inserted in order to consider this
limitation). There are four types of elements that inherit from it (i.e. child classes): Gen-
eralRelationship, ModelElement, Information and Method (see Fig. 1). The inherits ref-
erence allows generating extended versions of the GeneralElement and for extension of
these child classes (e.g. Method or ModelElement entities can be extended to more spe-
cific classes).

GeneralRelationship entity stores information about the relationships produced among
entities. It is related to ModelElement through the relation reference relates. An attribute
type represents the possibility of generating different types of relationships.

ModelElement is an abstract class that is linked to Method and GeneralRelationship
entities. The first indicates which methods has each ModelElement class through has-
method reference. The second is linked to GeneralRelationships using isrelated reference
to complete the communication channel among other ModelElement entities. This class
is also related to Information entity through uses reference. This latter allows obtaining
the desirable data previously stored.

Regarding to the extended classes from ModelElement entity, it has three which are
abstract: BehavioralElement, Component and AgentComponent. The first is in charge of
representing the different elements extracted from road traffic theories (e.g. the mental
state of individuals or the environment where a simulation is performed). The second
describes the components associated to these theories (e.g. the traits of a group of in-
dividuals or road traffic conditions like weather or the state of traffic lights). It has an
attribute value. This allows introducing the appropriate values related to the influence of
the component over the rest of them. This may also represent how the component modifies
the behaviour of an individual. The last class considers the components related to agent

226 Alberto Fernandez-Isabel and Rubén Fuentes-Fernandez

methodologies and platforms. It presents an attribute decomposition. This identifies the
composition rule this kind of components has (e.g. goals can be decomposed into others
in some agent methodologies [5, 30]). Both types of component entities (i.e. Component
and AgentComponent) have their composed references to achieve these type of operations.

The Information class illustrates the data managed by road traffic simulations and indi-
viduals (i.e. agents). The info attribute stores this information. It must exist in each piece
of information (i.e Information instances) though it could be empty. This is controlled
through a specific constraint.

The Method entity represents the methods used by each one of the ModelElement
instances to achieve some operation. It has an instructions attribute which is in charge of
storing the steps to follow and the possible parameters needed. The execute_instructions
method performs the operation according to the instructions.

Finally, delving into the PIM cardinality, most of references goes from zero to n. This
pursues to provide flexibility to support more specific models (e.g. a PIM oriented to
road traffic theories or a PSM with agent platform requirements). The exception is the
generates reference from the Method class to the Information class. It indicates that a
single method is able to modify only a given piece of information and no other else.

5. Case Study

The case study shows the MDA infrastructure (i.e. the generic PIM, its primitives and
the transformations) in order to produce an extended PIM and a PSM. The first encom-
passes road traffic guidelines oriented to individuals introduced in [34]. They are related
to the mental state and traits of individuals. The interactions between individuals (i.e.
drivers, pedestrians and passengers) and the environment are considered based on [1].
The decision-making process based on concepts presented in agent methodologies (e.g.
Tropos [5] or INGENIAS [30]) is also modelled. The second is adapted to generate a
ML that allows producing the elements used in the architecture of the A-globe [36] agent
platform and its requirements.

Section 5.1 presents the steps achieved to develop the extended PIM and the primitives
introduced to model the road traffic theories and the elements related to agent methodolo-
gies. Section 5.2 illustrates the last part of the MDA infrastructure (i.e. the generation of
the PSM), introducing the features and requirements of A-globe agent platform and how
they are adopted by the PSM.

5.1. PIM extension to include road traffic theories

Addressing the development of the specific PIM, the first step consists of identifying
the main entity. In this case, the model is focused on individuals that are represented by
agents. Therefore, an Agent class is created (see Fig. 2). It extends the ModelElement class
(see Section 4.1). New attributes and methods are introduced. The attribute visibleinfo is in
charge of storing the information obtained for the agent from the part of environment it can
observe. The attribute type provides a tool to organise the individuals involved in traffic
by roles (e.g. driver, pedestrian or passenger). Thus, each agent represents a determined
type of participant during the simulation. The method observeEnvironment obtains the
information and modifies the value of the attribute visibleinfo, while the method interacts

Extending a Generic Traffic Model to Specific Agent Platform Requirements 227

H pCcomponent EH Ecompanent
[0.*] composed [0.*] composed !.
¢ .
[Environment
B Pprofile))
[0..1] displays [1..1] perceives
[1..1] interacts
E Knowledge E Vehicle ‘
= facts : ElavaObject = visiblelnfo : ElavaObject
= route: ElavaObject = currentPlace : ElavaObject
= general : Boolean = false [
[0..1] possesses [0..1] uses [0..*] composed

[0..*] composed
H kComponent

H Agent | | H vComponent ‘

= visibleinfo : ElavaObject

= type: EString
& pbserveEnvironment(

[0..1] pursues

& interacts(
[2..1] harnesses [2..1] supports
‘ E Evaluator [0..1] uses E Executor |
‘ = currentGoal : EString = currentTask : EString
@ avaluateGoals) & executeChosenTask]
[0..*] pvaluates [0.] executes

| E Goal ‘ [0..1] implies H Task |
= instructions : EJavaObject |

= satisfaction : Boolean = false
& calculateSatisfaction)

Fig. 2. Excerpt of the specific PIM for addressing traffic theories and agent methodologies.

is responsible for achieving the operations the agent needs in order to progress in the
environment around. The Agent class presents new references that relates a set of new
entities to it. These entities extend the BehavioralElement class.

In the case of the displays reference, it targets the Profile class. The cardinality of
this relationship indicates that an agent can only have a determined profile (but the profile
can be shared by more than one agent). The Profile class describes the set of traits of
participants in traffic. It has a composed link to the PComponent class. The latter extends
the Component entity and represents a specific trait (e.g. age or gender).

The possesses relationship links the Agent entity and the Knowledge class. This il-
lustrates the mental state of the individual (i.e. agent). It has three attributes: facts, route
and general. The first is in charge of storing the information a person has (e.g. the how
to drive or how to dodge other individuals). The second indicates the steps to follow to
arrive to the desired destination. The last one provides an special functionality for gen-

228 Alberto Fernandez-Isabel and Rubén Fuentes-Fernandez

! Platform 2

IR R IR B

' Platform 1

ES [l
Agent
GIS Master GIS Client GIS Client GIS Client
Service Service Service Service
Container Container Container Container
Master Slave Slave Slave
GISServer Name 1 Name 2 Name N

W / /

Topic Messaging
ir—/

‘ Container Manager ‘

e

Container Man.

‘ Message Transport ‘ Msg. Transport

Java Virtual Machine JVM

Fig. 3. Excerpt of the A-globe platform architecture extracted from [36].

erating general knowledge to simulations. This latter is not a property of any Agent but
everyone can consult it in order to know information. In this case, the facts attribute stores
this generic data (e.g. a lane closure or and accident in a particular point). The Knowledge
entity has a composed reference to the KComponent class. This describes the multiple
elements related to the mental state of the participant (e.g. trip purpose). Both Profile and
Knowledge with their Component classes provide the primitives to adapt to the PIM the
traffic theories extracted from [34].

The reference uses allows the interaction among the individual and the Vehicle. There-
fore, only agents with driver or passenger role need it. The Vehicle entity presents two
attributes: visibleinfo and currentPlace. The first is similar to the attribute with the same
name included into the Agent class. Thus, it stores the information that can be obtained
being inside the vehicle. The second illustrates the place where the vehicle is situated
being able to modify it according to the travel. The Vehicle entity has a composed rela-
tionship to the VComponent entity. This reference eases the interaction among the vehicle
and its components (e.g. steering wheel or lights). Moreover, the interacts relationship
links the Vehicle to the Environment class. This allows establishing relations among the
vehicle and the environment (e.g. modifications in the vehicle behaviour due to the road
or weather conditions).

To consider that vehicle and environment are different entities is strongly related to
Driver-Vehicle-Environment (DVE) model extracted from the literature of the domain
[1]. It specifies for the vehicle its own interactions with people (i.e. driver and possible

Extending a Generic Traffic Model to Specific Agent Platform Requirements 229

passengers), while the rest of the environment (e.g. roads or traffic lights) interacts with
agents using others more generic.

The reference perceives relates the Agent class to the Environment entity. It provides
to individuals the possibility of observing the environment around and obtaining infor-
mation. Therefore, every role played by agents (i.e. driver, pedestrian or passenger) can
achieve this interaction. Nevertheless, drivers and passengers are able to obtain extra in-
formation using the inferacts reference (e.g. a driver looks in the rear-view mirror). The
Environment class presents a composed reference to the EComponent entity in order to
consider the elements of the environment (e.g. the map or the situation of traffic signals).
The EComponent class extends the component entity (see Section 4.1), which allows be-
ing decomposed into other ones of the same type.

Regarding the classes that support agents in a simulation, they extends AgentCompo-
nent entity. It has been identified four class types: Evaluator, Executor, Goal and Task.
But in this case, only the first three have the respective references related to Agent entity.
These are harnesses, support, and pursues respectively.

The relationship harnesses links the Agent to the Evaluator class. This is in charge
of evaluating the available goals of the agents and choose the most appropriate to them
in each moment. It presents an attribute currentGoal that describes the selected goal to
satisfy. The method evaluateGoal is responsible for achieving these operations and modi-
fying the currentGoal attribute according to its results. Evaluator presents two references:
evaluates and uses. The first one relates this class to the Goals of agents, while the second
connects to Executor entity.

The reference supports joins Agent entity to Executor class. This class plays the role
of an actuator and is responsible for executing the operations presented in each 7Task.
These Task entities are associated to Goal entities following the typical guidelines from
Agent-Oriented Software Engineering (AOSE). The Executor class has the currentTask
attribute and the executeChosenTask method. The first illustrates the name of the current
Task that is going to be executed, while the second modifies this attribute selecting the
Task entities associated to the current goal selected by the Evaluator (see Fig. 2). The
executes reference allows establishing these relationships to Task classes. The Evaluator
and Executor classes alongside the Environment, Vehicle, Knowledge and Profile entities
carry out a perceive-reason-act cycle [23].

The link pursues relates the Agent entity to the Goal class. This class presents an
attribute satisfaction that indicates if a goal is satisfied or not according to agent method-
ologies guidelines (e.g. INGENIAS [30]). The method calculateSatisfaction modifies this
attribute and evaluates if the conditions provided by the current goals are properly con-
sidered. The relationship implies communicates each Goal entity with the Task entities it
has associated.

As it was previously indicated, the Task class is not directly connected to Agent entity.
It is highly dependent on the Goal class. It has an attribute instructions that encompasses
the different operations to be achieved by the Executor entity. The proper fulfilment of
the instructions of the current task and the others that could be related to the current goal,
produces the satisfaction of this.

230 Alberto Fernandez-Isabel and Rubén Fuentes-Fernandez

ﬁ‘;l Container [0.*] composed

[0.*]composed

£

El Aglobe

- e I [0.*] composed E MessageTransport] [0.1] uses
[1..*][has

[0..“‘]"composed E Platform
0. comp d [0.."] composeq EH containerManager
H cIsclientservice
[] [

[0.%]|compaosed |
'Q El ContainerMasterGISServer 0.1 uses

i 0..*]composed |
ElContalnerSIave | [0..*] compased J_"I_P_)‘

[0..*] composed [0.*] composed

E TopicMessage

[0.*] composed

H Esagent 0.4 compose(L[_E GISMasterService H sendMessage
;J ;J [0..1] generates

[0..1] uses

[0..1]|hasmethod

[0..1] hasmethod

Fig. 4. Excerpt of the PSM which models the A-globe general architecture.

5.2. PSM adapted to A-globe agent platform

Once the specific PIM is developed, the next step consists of generating the PSM adapted
to the A-globe agent platform [36]. In this case, the fist task is evaluating its infrastructure.

A-globe presents multiple components that provide functionality included inside dif-
ferent platforms (see Fig. 3). These are distributed instances of A-globe running in a
specific host. In order to a simulation runs, A-globe must present at least one main of
these latter. If more than one of these instances are created, then they are slaves of the
main one.

Delving into the components of a platform, there are a message transport and a con-
tainer manager. The first provide the communication channels among agents, while the
second is responsible for the containers that store agents and services. Here, in a simi-
lar way to platforms architecture, there is a main container and a set of slaves which are
dependent on it.

As A-globe is an agent platform specially designed to real-world simulations, each
container presents a Geographical Information System (GIS) service. The main container
has also an Environment Simulator (ES) agent, while the rest of them only present agents
(in this case individuals related to road traffic). The GIS service is in charge of indicating
the situation of the individuals while the ES agent generates the simulation of related
parameters (e.g. physical location or movement in time).

When the evaluation of the architecture of the agent platform is concluded, the PSM
that adopts its structure is developed. Its entities extend AgentComponent (see Fig. 1), ex-
cept those that represent specific agents related to road traffic (i.e. Agent class) or message
communication (i.e. TopicMessage and SendMessage).

Extending a Generic Traffic Model to Specific Agent Platform Requirements 231

Agents Agent Manager €— Container Core — Service Manager = Services

— ¢]

AN

Message Transport

v

Store

Library Manager

Fig. 5. Excerpt of the A-globe architecture illustrating the agent containers extracted from [36].

In this model A-globe is the main entity and is related to the Platform class through the
reference has. The cardinality of this relationships goes from 1 to n in order to represent
the possible platforms the A-globe architecture has (see Fig. 4).

The Platform class presents different relationships to the rest of the entities. It has
eight composed references where the cardinality goes from zero to n. These allow estab-
lishing the relationships among the MessageTransport and ContainerManager, which are
presented in each one of the types of platforms (i.e. main platform or slave platform).

In the case of a main platform, it must have instances of the ContainerMasterGIS-
Server, GISMasteService and ESAgent classes, which describe the elements of the same
name in the A-globe architecture (see Fig. 3). They are connected through composed re-
lationships that ease the communication among them. If the Platform class is a slave, then
it is related to Agent (i.e. drivers, pedestrians or passengers), GISClientService and Con-
tainerSlave classes. These are linked through composed references in a similar way to the
others previously introduced.

The communication among agents and services is achieved in the PSM with the
TopicMessage and SendMessage entities. The first extends the Information class of the
generic PIM (see Fig. 1) and contains the data which is sent among the A-globe agents
and services. The second inherits from Method class and presents the generates relation-
ship that links it to TopicMessage. Both types of containers (i.e. ContainerSlave and Con-
tainerMasterGISServer) has hasmethod reference in order to provide the communication
functionality. This is because in A-globe the containers are in charge of sending messages
between agents and services. TopicMessage has uses relationships to the MessageTrans-
port, ContainerSlave and ContainerMasterGISServer entities in order to complete the
operations of sending and receiving messages.

The PSM has two inheritance references among the both types of containers and a
general Container class. It is related to the architecture of the agent containers, as they
share similar elements that have to be also modelled. These elements are: the library
manager, the store, the message transport and its agents and services, the container core
that presents a bi-directional communication with the message transport and the managers
of both agents and services (see Fig. 5).

232 Alberto Fernandez-Isabel and Rubén Fuentes-Fernandez

[0..*] composed Q AgentManager Q ServiceManager

L] E ContainerCore [F

0. ol
H Agent [0.*] composed 0.} compased [0."] compose
[0.*] isrelated Q Service
.M relates compose
[2..*] relat l“[CJ 1] ol
Q Communication | EQ Container .
[0.*] isrelated | [0.*] isrelated
[0.*] relates [0..*] composed" [0.*] composed | H serviceCommunication ‘
= 0. *|composed | ‘
| Q Agentﬂ.‘ommunication| [0."] isrelated
| | [E MessageTransporM E Store H E LibraryManager]
[0..*] relates T T [0..*] relates

Fig. 6. Excerpt of the PSM for the A-globe agent container architecture.

Thus, the PSM is completed with the container components. These elements also ex-
tend AgentComponent class with the exception of Communication, AgentCommunication
and ServiceCommunication entities which extend GeneralRelationship class (see Fig. 1).

The Container entity presents composed references to MessageTransport, Store, Li-
braryManager and ContainerCore (in this case with cardinality from O to 1) clases. This
latter has its own composed relationships to AgentManager and ServiceManager entities.
In turn, these managers are connected to Agent and Service entities through composed
links (see Fig. 6).

The ContainerCore class represents the bi-directional communication to Message-
Transport, In order to do it, it uses the Communication class that establish these re-
lationships through relates and isrelated references. Similar references are used among
the Agent class and MessageTransport entity using the AgentCommunication class, and
analogously between the Service entity and the MessageTransport class through the Ser-
viceCommunication entity. After that, it can be considered that the A-globe agent platform
is integrated in the model and the PSM satisfies the requirements related to its architecture.

Once the PSM is completely developed, a model specification can be generated. This
must consider a specific road traffic theory and a decision-making based on a determined
goal and task hierarchy [11]. Then, the associated source can be generated through a semi-
automatic transformation. The body methods of the element must be fulfilled while the
parameters of the simulation have to be initialised. Then, needed classes (e.g. the class
with the main method) are also generated in order to run the road traffic simulation.

Finally, it must be indicated that the transformations among the different models could
be implemented using ATL [19] rules. It allows automatising the development process and
promotes the reutilisation of the artefacts generated.

Extending a Generic Traffic Model to Specific Agent Platform Requirements 233

6. Related Work

MDE embraces multiple areas of research related to our work. This approach is focused
on three specific issues. The first consists of the definition of a generic PIM that can be
extended and specialised until producing a ML related to road traffic simulations. The
second introduces the MDA framework that guides users to incorporate traffic theories,
decision-making processes and agent platform requirements to the PIM. The third con-
cerns to the adoption of the traffic theories during the specialisation of the PIM. This is a
key step in this MDA proposal. It is related to the fact that the PIM has to encompass a
wide amount of types of road traffic theories. Thus, the adaptation of the primitives to the
theoretical elements and their relationships becomes a very demanding task.

Road traffic simulations that adopt MDE use models to develop the interactions of in-
dividuals with the environment. It can generate difficulties in the references among entities
due to the inherent complexity of human relationships. One proposal to mitigate this effect
is based on the definition of generic metamodels. These present a high level perspective
where the elements are connected through simple relations. These provide development
guidelines that ease the generation of more complex primitives in MLs. [7] and [11] are
examples of this perspective. The first one illustrates a metamodel with generic primi-
tives. It is able to generate a ML adapted to web-based traffic simulations, but presents
drawbacks in the decision-making process. The elements considered in road traffic the-
ories do not affect this process. It occurs due to the individuals in the simulation have a
simple behaviour based on path-following. The second is focused only on certain studies
related to road traffic. Therefore, the primitives provided are not enough flexible in order
to consider the multiple perspectives related to the domain.

The MDE applied to agent-based simulations is another point of view related to the de-
velopment of generic metamodels. In this case, these models provide guidelines to achieve
cooperation and interaction instructions among agents. This eases the evaluation and test-
ing of these operations. A MDA process to reduce the gap between the designs and the im-
plementation is an important issue to consider. Examples of this perspective are [20] and
[32]. The first produces a high-level conceptual model that uses the community metaphor
to support the creation of goal-oriented organisations. The second presents an agent-based
metamodel oriented to social interactions using INGENIAS methodology [30]. Both have
as shortcoming the lack of flexibility in the primitives of languages.

MDA can be used in other issues non-related to simulations. For instance, it is widely
used in fields associated to testing. This is related to the fact that it presents a process
based on transformations (usually automatised), which can be applied to models in order
to generate others more specific. Here, it provides the necessary certitude and reutilisa-
tion capability to generate unitary test where bugs are easy identified and controlled. An
example of this usage is illustrated in [18].

Regarding the road traffic theories, there are multiple of them that are organised
through hierarchical structures. These usually have levels and abstraction layers to classify
the elements considered. [25] is an example of this organisations. It presents a hierarchi-
cal control model only for drivers where their decisions and considerations are assorted in
different levels. The generic PIM presented in this paper has primitives to generate com-
position relationships among entities in order to achieve these hierarchical structures. The
use of layers to classify the elements has not been considered relevant in this case.

234 Alberto Fernandez-Isabel and Rubén Fuentes-Fernandez

Nevertheless, there is not a standard theory related to participants in road traffic that
embraces the behavioural elements and decision-making processes. The selections of
which are the most important traits of individuals or which elements present in the en-
vironment around affect people is an open issue. Examples of approaches that review
these components and try to generate theories of road traffic are [1, 34]. The generic PIM
is intentionally open in order to address this issue. Thus, the cardinality of the references
is not very restricted, and the inheritance links promote a specialisation of the model in
next steps of the development allowing embracing multiple theories. Also, a specific en-
tity (i.e. GeneralRelationship) has been included to ease the bi-directional relationships
between components extracted. This entity presents its own inheritance primitives to pro-
vide specialisation if it is necessary in these interactions. All these characteristics facilitate
the generation of specific PIMs that consider multiple traffic theories.

7. Conclusions

This paper has introduced a MDA infrastructure [22] for the development of road traffic
simulations. Its core element is a general PIM that can be specialised to provide tailored
PIMs, and from these the related PSMs.

These PIMs include the existing road traffic theories, the traits of participants in traffic
identified and the decision-making process based on the concepts of AOSE. Therefore,
PIMs formalise the information that traffic experts manage.

The PSM adapts the PIMs considering the requirements of agent platforms (e.g. Jade
[3D). These requirements are focused on the architecture of the platform and how it works,
establishing the appropriate relationships among the elements it presents. It also must in-
tegrate the agent platform, being able to produce a model specification of a traffic simu-
lation.

The last step of the process is in charge of transforming the PSM to source code.
The body of the methods must be fulfilled inserting the different instructions in order to
generate the simulation. Part of them are completely generated by transformations (e.g.
standard accessor methods), but for specific algorithms code snippets must be provided.
Additional classes need also to be created (e.g. a class with the main method). In this
step, developers also run standard code tests with the simulation before proceeding to
validation tests with traffic experts. Some of these tests are generated with transformations
from models.

The transformations among models (i.e. from the generic PIM to specific PIM, and
from this latter to PSM) can be achieved using model-to-model transformation languages
like ATL [19]. It eases the process introducing automatic steps and promotes the reutili-
sation of the artefacts developed.

Regarding the case study, the generic PIM is extended to a specific PIM using three
different traffic theories. In order to do that, new references among the new elements have
been created adapting the original model to another one that contains them.

The A-globe [36] agent platform has been selected to be modelled with the PSM.
A Platform concept is included with a cardinality from 1 to n. It is related to the fact
that A-globe must have at least one main platform in order to run properly. This element
presents multiple composed references to the other elements identified in the analysis of
the A-globe architecture.

Extending a Generic Traffic Model to Specific Agent Platform Requirements 235

Finally, a model specification was developed following the primitives introduced by
the PSM. It considers specific road traffic theories and integrates a hierarchical structure
to generate a given decision-making process [11].

This approach has several open issues. The simulations generated do not present a
graphical interface where the individuals (i.e. agents) can show the different processes
and interactions they perform. The PSM should also be tested to include the requisites of
other road traffic simulation platforms based on agents (e.g. MATSim [17]). Smart Roads
(SR) is a related field where this kind of developments could be useful. Applying them in
that domain requires new primitives [12]. Also, time events (e.g. an accident during the
simulation in a specific moment) have to be considered by creating proper primitives.

Acknowledgments. This work has been done in the context of the project “Collaborative Am-
bient Assisted Living Design (ColoSAAL)” (grant TIN2014-57028-R) supported by the Span-
ish Ministry for Economy and Competitiveness, the research programme MOSI-AGIL-CM (grant
S2013/ICE-3019) supported by the Autonomous Region of Madrid and co-funded by EU Structural
Funds FSE and FEDER, and the “Programa de Creacioén y Consolidacién de Grupos de Investi-
gaciéon” (UCM-BSCH GR35/10-A).

References

1. Amditis, A., Pagle, K., Joshi, S., Bekiaris, E.: Driver—Vehicle-Environment monitoring for
on-board driver support systems: Lessons learned from design and implementation. Applied
Ergonomics 41(2), 225-235 (2010)

2. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation. IEEE Soft-
ware 20(5), 36-41 (2003)

3. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: a FIPA2000 compliant agent development en-
vironment. In: Proceedings of the 5th International Conference on Autonomous Agents. pp.
216-217. ACM (2001)

4. Bézivin, J.: Model driven engineering: An emerging technical space. In: Generative and Trans-
formational Techniques in Software Engineering, pp. 36—64. Springer (2006)

5. Bresciani, P, Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-oriented
software development methodology. Autonomous Agents and Multi-Agent Systems 8(3), 203—
236 (2004)

6. Cernuzzi, L., Juan, T., Sterling, L., Zambonelli, F.: The Gaia methodology. In: Methodologies
and Software Engineering for Agent Systems, pp. 69-88. Springer (2004)

7. Cetinkaya, D.: A model driven approach to web-based traffic simulation. In: Proceedings of
the Symposium on Theory of Modeling & Simulation. p. 14. Society for Computer Simulation
International (2016)

8. Chen, X., Zhan, F.B.: Agent-based modelling and simulation of urban evacuation: relative ef-
fectiveness of simultaneous and staged evacuation strategies. Journal of the Operational Re-
search Society 59(1), 25-33 (2008)

9. Crooks, A., Castle, C., Batty, M.: Key challenges in agent-based modelling for geo-spatial
simulation. Computers, Environment and Urban Systems 32(6), 417-430 (2008)

10. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), 621-645 (2006)

11. Ferndndez-Isabel, A., Fuentes-Ferndndez, R.: Simulation of road traffic applying model-driven
engineering. Advances in Distributed Computing and Artificial Intelligence Journal 4(2), 1-24
(2015)

236

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.
34.

Alberto Fernandez-Isabel and Rubén Fuentes-Fernandez

Fernandez-Isabel, A., Fuentes-Ferndndez, R.: Model-driven engineering of simulations for
smart roads. In: Proceedings of the 9th International Workshop on Agents in Traffic and Trans-
portation (ATT 2016). vol. 1678. CEUR-WS.org (2016)

Fowler, M.: UML distilled: a brief guide to the standard object modeling language. Addison-
Wesley Professional (2004)

Fuentes-Fernandez, R., Hassan, S., Pavon, J., Galdn, J.M., Lépez-Paredes, A.: Metamodels
for role-driven agent-based modelling. Computational and Mathematical Organization Theory
18(1),91-112 (2012)

Goodwin, L.C.: Weather impacts on arterial traffic flow. Federal Highway Administration,
Washington, prepared for Road Weather Management Program (2002)

Henderson-Sellers, B.: Agent-oriented methodologies. IGI Global (2005)

Horni, A., Nagel, K., Axhausen, K.W.: The multi-agent transport simulation MATSim. Ubiq-
uity, London 9 (2016)

Javed, A.Z., Strooper, P.A., Watson, G.: Automated generation of test cases using model-driven
architecture. In: Proceedings of the 2nd International Workshop on Automation of Software
Test (AST 2007). pp. 3-3. IEEE (2007)

Jouault, E., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science of
Computer Programming 72(1), 31-39 (2008)

Jung, Y., Lee, J., Kim, M.: Multi-agent based community computing system development with
the model driven architecture. In: Proceedings of the 5th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2006). pp. 1329-1331. ACM (2006)
Kent, S.: Model driven engineering. In: Integrated Formal Methods. pp. 286-298. Springer
(2002)

Kleppe, A.G., Warmer, J.B., Bast, W.: MDA explained: the model driven architecture: practice
and promise. Addison-Wesley Professional (2003)

Lind, J.: Issues in agent-oriented software engineering. In: Agent-Oriented Software Engineer-
ing. pp. 45-58. Springer (2001)

Luna, F., Stefansson, B.: Economic simulations in Swarm: Agent-based modelling and object
oriented programming, vol. 14. Springer Science & Business Media (2012)

Michon, J.A.: A critical view of driver behavior models: what do we know, what should we do?
In: Human Behavior and Traffic Safety, pp. 485-524. Springer (1985)

Milojicic, D., Breugst, M., Busse, 1., Campbell, J., Covaci, S., Friedman, B., Kosaka, K., Lange,
D., Ono, K., Oshima, M., et al.: MASIF: The OMG mobile agent system interoperability facil-
ity. Personal Technologies 2(2), 117-129 (1998)

Padgham, L., Winikoff, M.: Prometheus: A practical agent-oriented methodology. Agent-
Oriented Methodologies pp. 107-135 (2005)

Paige, R.F., Ostroff, J.S., Brooke, P.J.: Principles for modeling language design. Information
and Software Technology 42(10), 665-675 (2000)

Paruchuri, P., Pullalarevu, A.R., Karlapalem, K.: Multi agent simulation of unorganized traffic.
In: Proceedings of the 1st International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2002): part 1. pp. 176-183. ACM (2002)

Pavén, J., Gomez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools. Agent-
Oriented Methodologies 9, 236-276 (2005)

Poslad, S., Buckle, P., Hadingham, R.: The FIPA-OS agent platform: Open source for open
standards. In: Proceedings of the 5th International Conference and Exhibition on the Practical
Application of Intelligent Agents and Multi-Agents (PAAMS 2000). vol. 355, p. 368 (2000)
Sansores, C., Pavon, J.: Agent-based simulation replication: A model driven architecture ap-
proach. In: Mexican International Conference on Artificial Intelligence. pp. 244-253. Springer
(2005)

Schmidt, D.C.: Model-driven engineering. IEEE Computer Society 39(2), 25-31 (2006)
Shinar, D.: Psychology on the road. The human factor in traffic safety. New York: Wiley (1978)

Extending a Generic Traffic Model to Specific Agent Platform Requirements 237

35. Siegel, J.: OMG Overview: CORBA and the OMA in Enterprise Computing. Communications
of the ACM 41(10), 37-43 (1998)

36. giﬁlék, D., Rehdk, M., Péchoucek, M., Rollo, M., Pavlicek, D.: A-globe: Agent development
platform with inaccessibility and mobility support. In: Software Agent-Based Applications,
Platforms and Development Kits, pp. 21-46. Springer (2005)

37. Sklar, E.: Netlogo, a multi-agent simulation environment. Artificial Life 13(3), 303-311 (2007)

38. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling framework.
Pearson Education (2008)

39. Wooldridge, M.: An introduction to multiagent systems. John Wiley & Sons (2009)

Alberto Fernandez-Isabel holds a PhD in Computer Science from the Complutense Uni-
versity of Madrid, Spain, where he collaborates with the GRASIA research group. He
currently works at Rey Juan Carlos I University of Madrid, Spain, as postdoctoral fellow
and professor. His main research interests are on social simulation, in particular applied
to social behaviour and road traffic problems, model-driven engineering, agent-oriented
methodologies, and natural language processing, specially focused on sentiment analysis.

Rubén Fuentes-Fernandez He holds a PhD in Computer Science from the Complutense
University of Madrid, Spain. He is Associate Professor at this university since 2010, and
member of the GRASIA research group. Previously, he worked as consultant in database
systems. Rubén is (co-)author of more than 80 papers published in international journals,
book chapters, and conference proceedings. His main research interests are related to the
application of Social Sciences to the development of information systems, model-driven
engineering, agent-oriented methodologies, social simulation, and ambient intelligence.

Received: October 10, 2016; Accepted: January 11, 2017.

