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Abstract.

A generalized ensemble model (QEnM) for document rankimgaposed in this pa-
per. The genM linearly combines the document retrieval rieoded tries to retrieve rel-
evant documents at high positions. In order to obtain thev@btlinear combination of
multiple document retrieval models or rankers, an optitdraprogram is formulated
by directly maximizing the mean average precision. Bothesuiped and unsupervised
learning algorithms are presented to solve this programtteosupervised scheme, two
approaches are considered based on the data setting, naahefyand online setting. In
the batch setting, we propose a revised Newton’s algorigftnM.BAT, by approximating
the derivative and Hessian matrix. In the online settingadeocate a stochastic gradient
descent (SGD) based algorithm—gEnM.ON. As for the unsupedwscheme, an unsuper-
vised ensemble model (UnsEnM) by iteratively co-learnironf each constituent ranker
is presented. Experimental study on benchmark data sefiesehe effectiveness of the
proposed algorithms. Therefore, with appropriate alporg, the gEnM is a viable option
in diverse practical information retrieval applications.

Keywords: information retrieval, optimization, mean average priecisdocument
ranking, ensemble model

1. Introduction

Ranking is a core task for Information Retrieval (IR) in pieal applications such as
search engines and advertising recommendation systemsaifth of the ranking task
is to retrieve the most relevant objects (documents, fomgt@) with regard to a given
query. With the continuous growth of information in moderarid wide webs, this task
has become more challenging than ever before. In the ran&ghg the general problem
is the over-inclusion of relevant documents that a userligwyito receive [1]. During the
last decade, a large quantity of models has been proposetiothis problem. In gen-
eral, those models are evaluated by two IR performance megswamely Mean Average
Precision (MAP) and Normalized Discounted Cumulative GAIBDCG) [2]. Compared
to the framework in which models are proposed and then tdsfellR measures, the
approaches of directly optimizing IR measures have beewethonore effective [3, 4].
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These approaches apply efficient algorithms to solve thienggation problem where the
objective function is one of the IR metrics.

Structured SVM is a widely used framework for optimizing timinds of IR metrics.
Examples include SVIF® [5] and SVM™ [6]. Many other methods, such as Softrank
[7,8], first approximate the ranking measures through shfuwictions and then optimize
the surrogate objective functions. Yet, the drawbacks as¢hmethods have been shown
in two aspectsa) the relationship between the surrogate objective funstand ranking
measures was not sufficiently studied; d)ahe algorithms resolving the optimization
problems are not trivial to be employed in practice [3]. Relyga general framework that
directly optimizes of IR measure has been reported [3]. Tiaimework can effectively
overcome those drawbacks. However, it only optimizes theé&asure of one ranker, and
the information provided by other rankers is not fully wéd.

In the area of classification, an ensemble classifier thaafiy combines multiple
classifiers has been successfully proved to perform bédtter &ny of the constituent
classifiers. A number of sophisticated algorithms have lpreposed for obtaining the
ensemble classifier such as AdaBoost [9]. Thus, a hypotf@siR ranking is that the
retrieval accuracy can be increased by combining multéing models [10-12]. As a
matter of fact, AdaRank [13, 14] and LambdaMART [15] are twellvknown models in
IR area utilizing AdaBoost. The AdaRank repeatedly comstrweak rankers (features)
and finally linearly combines into a strong ranker with pnopeights assigned to the
constituent rankers. However, the drawback of the AdaRartke inexplicit theoretical
justification and determination of the iteration number.id/the LambdaMART enjoys
the theoretical advantage of directly optimizing IR measusy linearly combining any
two rankers, it cannot be extended to multiple rankersgtitéarwardly. In those previ-
ous studies, the direct optimization of NDCG is well-stutimit the direct optimization
of MAP are rarely tackled, to the best of our knowledge. Thénndificulty of directly
optimizing MAP is that the objective function defined by MA® nonsmooth, nondif-
ferentiable and nonconvex. Ensemble Model (EnM) [16] selthés problem by using
boosting algorithm and coordinate descent algorithm. Hewnehe solutions cannot be
theoretically guaranteed to be optimal, or even local oatim

In this paper, we propose a generalized ensemble model (yEmMocument rank-
ing. It is an ensemble ranker that linearly combines mudtiinkers. By appropriate ad-
justments to the weights for those constituent rankers naaneimprove the overall per-
formance of document ranking. To compute the weights, wafdate a constrained non-
linear program which directly optimizes the MAP. The diffisiof solving this nonlinear
program lies in the nondifferentiable and noncontinuoysaiive function. To overcome
this difficulty, we first introduce a differentiable surrdgdo approximate the objective
function, and then formulate an approximated unconstdaiealinear program.

Both supervised and unsupervised algorithms are emplayezbiving the nonlinear
program. In the supervised scheme, batch and online dditagseare considered. These
schemes and settings are designed for different IR envieotsnFor the batch setting, the
algorithm gEnM.BAT is a revised Newton’s method by approaiimg the derivative and
Hessian matrix. As for the online scheme, an online algorjithEnM.ON, is proposed
based on stochastic gradient descent algorithms. The gBNN& the first online algo-
rithm for obtaining an ensemble ranker, to the best of oumitedge. In the unsupervised
scheme, an unsupervised genM (UnsEnM) inspired by iRANK [d @roposed. The Un-
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sEnM utilizes the collaborative information among constiit rankers. The advantage of
UnsEnM over the iRANK is that it is applicable to any numbercohstituent rankers.
Compared to the EnM, the generalized version genM diffethiiee aspects:

1. The assumption for EnM is relaxed for genM,;

2. the batch algorithms proposed for genM performs better;

3. both online algorithm and unsupervised algorithm argpsed for genM whereas
only batch algorithm for EnM.

The remainder of this paper is organized as follows. In thd section, the prob-
lem of direct optimization of MAP is described and formuthtélso, the approximation
to this problem is provided as long as the theoretical probiie algorithms, including
gEnM.BAT, gEnM.ON and UnsEnM, are presented in Section ® ddmputational re-
sults of the proposed algorithms tested on the public désease demonstrated in Section
6. The last section concludes this paper with discussions.

2. Generalized Ensemble Model

2.1. Problem Description

Consider the task of constructing a linear combination okeas that result in better
performance than each constituent. We call this linear éoation theensemble ranker or
ensemble model hereinafter. Given a search query in this task, a sequerc@ooiments is
retrieved by the constituent rankers according to the agleg to the query. The relevance
is measured by the ranking scores calculated by each rdfdeexplicit description, let
score;, denote theranking score or relevant score calculated by the:!" ranker. With
appropriate weightaeight; over those constituent rankers, the ranking scecese of
ensemble ranker is defined by linearly summing the weightedtituent ranking scores,
ie.,

score =weighty - score; + weights - scores+

-« 4 weighty, - scorey,

where the weights satisfyeight; > 0 andweight, + weights + - - - + weight, = 1.
The documents ranked by the ensemble ranker are thus orErexdling to the ensemble
ranker scores. Our goal is to uncover an optimal weight vecto
weight = (weight,, weights, ..., weighty)T

with which more relevant documents can be ranked at higtiiposi

A toy example shown in Table 1 describes this problem. Adogrdo the ranking
scores, the ranking lists returned by Ranker 1 and 2{ar#&,3} and {3,1,2}, respec-
tively, and the corresponding MAPs are 0.72 and 0.72. Inramenake full use of the
ranking information provided by both rankers, a converdldreuristic is to sum up rank-
ing scores (i.e., use uniform weight$,5, 0.5)), which generates Ensemble 1 with MAP
equal to 0.72. Obviously, this procedure is not optimal sine can give arbitrary alter-
native weights that generate a better precision. For exanizisemble 2 uses weights
(0.7,0.3) so as to result in higher MAP, i.e., 0.89, as listed in theeabl
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Table 1.A toy example. The values in the mid-three rows representahking scores
given an identical query. The rankers are measured by MAtad in the fifth row.
The ranking scores of Ensemble 1 and 2 are defined by 0.5*Rarke5*Ranker 2 and
0.7*Ranker 1+0.3*Ranker 2, respectively. The relevantutoent list is assumed to be
{2,3}.

Ranker 1 Ranker 2 Ensemble 1 Ensemble 2

Document1l 0.35 0.2 0.55 0.305

Document2 0.4 0.1 0.5 0.31

Document3 0.25 0.7 0.95 0.385
MAP 0.72 0.72 0.72 0.89

This toy example implies that there exist optimal weightsgsed for the constituent
rankers to construct an ensemble ranker. Different fronp@song new probabilistic or
nonprobabilistic models, this ensemble model motivatealsrnative way for solving
ranking tasks. In order to formulate this task as an optitiingproblem, the metric—
MAP—is used as the objective function since it reflects thégomance of IR system and
tends to discriminate stably among systems compared to iiRhmeetrics [18]. Therefore,
our goal is changed to calculate the weights with which theRM#& maximized. In the
following, we will describe and solve this problem matheiceity.

2.2. Problem Definition

Let D be a set of document§) a set of queries ané a set of rankerd.D;| denotes the
relevant document listi; € D thed!" document associated witt" relevant document

in Dy, ¢; € Q theit" query andg, € @ the k" ranker.L represents the number of
queries|D;| the number of relevant documents associated witind K, the number of
rankers. The ensemble ranker is defineddas= ZkKjl ar¢r, Which linearly combines
K4 constituent rankers with weightgs. We assume the relevant documents have been
sorted in descending order according to the ranking sonesh®©basis of these notations
and the definition of MAP, the aforementioned problem candomtilated as:

1 L 1 | Di| j
w L2 15 2 Ry )

Ko
S.t. Z ap =1
k=1

OSO&k < 1,]{3:1,2,...,K¢

whereR (d;, H) represents the ranking position of documéngiven by the ensemble
modelH . In this constrained nonlinear prograajthe objective function is a general def-
inition of MAP; andb) the constraints indicate that the linear combination isvea and
that the weights can be interpreted as a distribution. Sime@osition functior(d;, H)

is defined by the ranking scores, it can be written as

R(dj, H)=1+ Y T{sa,a(H) <0} (1)
deD,d#d;
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wheres, ,(H) = s,(H) — s,(H) andI{s, ,(H) < 0} is an indicator function which

equals 1ifs, ,(H) < 0is true and 0 otherwise. Here, (H) denotes the ranking score
of documentr given by ensemble modéf ands, ,(H) the difference of the ranking

scores between documentindy. Sinces,(H ) is linear with respect to the weights, it
can be rewritten as

K
so(H) =50 [ D ardr(a)
k=1 ()
Kq
= asa(¢r(a))
k=1

wheres, (¢1(g;)) denotes the relevant score of documerfor queryg; calculated by
modelgy,.

Here, we give an example illustrating the graph of the objedtinction. This exam-
ple employed the MED data set with the settings identicahttsé in [16] except that
only two constituent rankers, LDI and pLSI, were used to casgpthe ensemble ranker
for plotting purpose. The weights were restricted to thest@ints in Problem P1 with
the precision of three digits after the decimal point. Inailethe objective function was
evaluated by setting; for LDI and «a» for pLSI, wherea; + as = 1, anda; increased
from 0 to 1 with a step size 0f.001. Figure 1 shows a partial of the graph of objec-
tive function. From this plot, it is clearly observed tl@the objective function is highly
nonsmooth and nonconvex; abyithere are numerous local optimums in the objective
function. Though the differentiability is not obvious inigkgraph, the position function
implies that the objective function is nondifferentiabig¢érms of weights. Therefore, the
general gradient-based algorithms, such as Lagrangiax&en and Newton’s Method,
cannot be applied to this problem directly to find the optimexen local optimums [3].

From this analysis of the objective function, the positiandtion plays an important
role in the differentiability. Thus, we will discuss how tp@oximate it with a differen-
tiable function and how to solve this optimization Problemifthe next two sections.

3. Approximation

In this section, we propose a differentiable surrogatetfertosition function and further
approximate the Problem P1 with an easier nonlinear program

Since the position function is defined by an indicator fumct{Equation 1), we can
use a sigmoid function to approximate this indicator fumati.e.,

exp(—/fs4,,a(H))
1+ exp(—PBsa;,a(H))’
wheres > 0 is a scaling constant. It is obvious that this approximaisan the range of

[0.5,1) if 54, 4(H) < 0and(0,0.5] if sq; 4(H) > 0. The following theorem shows that
we can get a tight bound by this approximation.

I{Sd]._’d(H) < O} ~

®3)

Theorem 1. The difference between the sigmoid function g;; and the indicator function
I{sq;,4(H) < 0} is bounded as.
1

i — I{sq, 0 T e A5
|95 = H{sa,,a < 0}] < 1+ exp(Bdy;)
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Fig. 1. Anillustrated example of the objective function with twonstituent rankers in
Problem P1.

K
exp(—B8 .0 QkSd;.d)

Lexp(—B Y02, o Sd;,d)
for notational simplicity henceforth

whered;; = min |sq; 4], 9i; = and sq; 4 represents sy, a(¢r(q:))

1
Kg
1+ exp(Bdij Y12y an)
Forsa;a <0, we havel{s;, 4 < 0} = 1andd;; < —sg4, 4, thus,

Proof. Forsg; 4 > 0, we havel{sy, 4 < 0} = 0andd;; < sq; 4, thus,

1965 — Hsa,a < 0}] <

|9ij — H{s4;,a < 0}|

1
1+ exp(Bdij Y 12y an)

. K
Since) ", ? o, = 1, we can get

1

i —Hsg a< 0 < —— .
|93 — s, a }’_1+exp(ﬂ5m)

(4)

This completes the proof.

This theorem tells us that the sigmoid function is asymptmtithe indicator function
especially whers is chosen to be large enough. By using this approximati@pdsition
function can be correspondingly approximated as

exp(—PBsq;,a(H))
1+ exp(—fsa;,qa(H))’

R(dj, Hy=1+ )

deD,d+#d,

(®)
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which becomes differentiable and continuous.
Then it is trivial to show the approximation error of positifunction, i.e.,

R(d;, H) - R(djvﬂ)‘ < Y gy —Tsa,a <0}
deD,dd;
6
Dl 1 (6)
1+ eXp(ﬂ(Sij) '

Suppose 1000 documents exit in the document/seindd;; = 0.04. By setting
B = 300, the approximation error of the position function is bouthtg

R(dj, H) — R(dj, H)| < 0.006, 7)

which is tight enough for our problem.
In this way, the original Problem P1 can be approximated byfdHowing problem

1 1 |D;| j

max - —~
L 2 \Dy| <= R(d;, H)
K

i=1 "t =1

S.t. Zak =1

k
0<a;<1,i=1,2,.. K,

Using the settings identical to Figure 1, Figure 2 plots thepgs of the original ob-
jective function (OOF) in Problem P1 and the approximategaiive function (AOF)
in Problem P2. As shown in the plot, the trend of the AOF is eltzsthat of the OOF.
The weights generating the optimal MAP almost remain ungbédrin these two curves.
From this example, it is illustratively shown that the onigi noncontinuous and non-
differentiable objective function can be effectively apgmated by a continuous and
differentiable function. The following lemma and theoreriil wheoretically prove this

conclusion.

Theorem 2. The error between the OOF in Problem P1 and the AOF in Problem P2 is
bounded as
: (1Dl = D)(L + 3, 1Dil)
A— Al < L 8
| | 2L(1 + exp(ﬂdij)) ( )

where A and A denote the objective function in Problem P2 and Problem P1, respectively.

Proof. For the approximation error, we have

|D;| | .
J(R-R)
RR

>

K2
j=1

3

1< 1
A—A==
| | L;|Di|
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Fig. 2. Comparison of the OOF in Problem P1 and AOF in Problem P2= 00)

whereR denotesk(d;, H) for notational simplicity. Since? = 1 + >4, 9ii(a) and
R=1+ Zd;&dj I{s4,.4 < 0} are strictly positive, we have

j(R—R)
RR

j’R—R‘
~ RR

According to Equation 6, we have

(ID] = (L + >, |Di])
2L(1 + exp(ﬂ&ij))

|A— Al < (9)

This completes the proof.

This theorem indicates that the OOF in Problem P1 can be aistyapproximated by
the surrogate defined by the position function (5) in ProbR2nFor example, ifD| =
10000, L = 200, Y |D;| = 500, 5 = 300 andd;; = 0.04, the absolute discrepancy
between the objectives in Problem P1 and P2 is bounded by

|A—A] <0.1.

This discrepancy is within an acceptable level and will dase with the growth of the
query sizel, and the value of.

The constraints of weights in Problem P2 are of practicalifitance because these
weights can be regarded as probabilities drawn from a bligtan over the constituent
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rankers. However, adding constraints increases the diffiofisolving this optimization
problem. Intuitively, the normalization of weights asséglfor ranking scores is nonessen-
tial because the ranking position is determined by theivelatalues of ranking scores.
Take the toy in Table 1 as an example, the weidht§, 1.5) result in the identical En-
semble 2 t0(0.7,0.3). The lemmas and theorems below prove the hypothesis thsat thi
constrained nonlinear program can be approximated by aonstrained nonlinear pro-
gram.

Lemma 1. Problem P2 is equivalent to the following problem:

L | Dl
1 1
— E E = P3
max - ~ |D;] p (P3)

S .

_ Ke ) ) ’
cXP( ﬁEkzl aksdj,d(¢k(ql))) dk _ Ko;k 704;6 >

14exp(—f Zkal arsa;,a(oe(qi))) 1 O,

where R = 143 e p a4, 9ij» 9ij =
0,k=1,2,.., K,

Sincez,@1 ay, = 1, it can be straightforwardly proved that Problem P3 is egjeint
to Problem P2.

exp(—B 02, ohsa a(ér(a:))
Ltexp(—8 34y afsa, a(bk(ai))

Remark 1. If we letg;; = , Theorem 1 applies for botj;

andg;; as well.

The following theorem states that Problem P3 can be sureddstan easier problem.

Theorem 3. Consider the following problem

1 L 1 |D;| j
— — P4

where R =1+ 3 ,cp 424, 95 L€ Aand A" denote the objective function in Problem
P3 and Problem P4, respectively. Then, we have the following bound for the absolute
difference between A and A’

€L+, [Dil)

A—A
| | < 5L

(10)

whereé = ¢ +¢,¢ = |R' — R|andé = ‘R—R‘.

Proof. From Lemma 1 and Lemma 1, we can derive the following bound.

[A— A

L [Dil| ., 0 ~
1 1 J(R' — R)
L ; | D;] ; R'R
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SinceR' =1+3_,.4. 9i; andR =1+ > aza; i; are strictly positive, we have
J (Zd;édj g;j - Zd;édj fh‘j)
(1+ Zd;&dj gz/‘j)(l + Zd¢dj Gij)

B jZ#dj |(g§j —I{s4;,,a <0}) + (I{5q;,a <0} — gij)‘
(1+ Zd;&dj gi;) (1 + Zd;,gdj Gij)

According to the general triangle inequality, we can drawpper bound for the term in

numerator
Z (g3 — Hsdy,a < 0}) + (I{sa;,a < 0} — Gij)|
dAd;
< Z |gl/»j — I{de_’d < O}| + Z ‘I{de_’d < O} —gij‘
d#d; d#d;
< €.

Then, it is trivial to get
| D

L
~ 1 1
A=A —E E - €
| | < L& |Di|j:1j €

) L
(L4, 1Dil)
2L '

(11)

This completes the proof.

Since the differences ande¢ are small enough, Problem P4 can accurately approxi-
mate Problem P3. This theorem tells us that the AOF is alserahted by the ranking
positions, i.e., the relative values of ranking scoressttine normalization constraints
in Problem P2 can be removed. Taking Lemma 1 and Theorem Zagtount, we can
trivially draw the following corollary.

Corollary 1. Problem P1 can be approximated by Problem P4.

In the next section, we focus on proposing algorithms thisesdProblem P4.

4. Algorithm

In order to solve Problem P4, we propose algorithms accgitdithe data settings—batch
setting and online setting. In the batch setting, all theriggeand ranking scores given by
constituent rankers are processed as a batch. Based ontthedata, the weights over
constituent rankers are computed by maximizing the MAP. &lgorithms, gEnM.BAT
and gEnM.IP, are reported in this setting. The potentialtfier batch algorithms merit
consideration for those systems containing complete d&h Take a literature search
engine as an example. The titles can be seen as queries Wigdbstracts and contents
of publications can be regarded as relevant documents. &tch ban be established to
train the proposed model.
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In many IR environments such as recommendation systemsonitnerce, however,
the queries and ranking scores are generated in real tireete@anstruct data sequences
at different times. Thus, we will secondly propose an onhtgorithm, genM.ON, for
dealing with these data sequences. The online algorithmoi® rscalable to large data
sets with limited storage than the batch algorithm. In thineralgorithm, the queries as
well as corresponding ranking scores are input in a datarst@nd processed in a serial
fashion.

A common assumption for the aforementioned frameworksasttie relevant docu-
ments are known. However, the knowledge of relevant doctsreee unknown in many
modern IR systems such as search engines. For this IR emémnwe further propose
an unsupervised ensemble model, UnsEnM, which makes usmetiraining framework.

4.1. Batch Algorithm: gEnM.BAT

Although many sophisticated methods can be applied forrfopdi local optimum, we
first propose a revised Newton’s method. Major modificatimiudes the approximation
of gradients and Hessian matrix.

For notational simplicity, we utilize:

Gij = Z gz/'j; (12)
deD,d#d;
dgl.
k . 9 .
deD,d#d;
dg).
[ 1 .
Gl= Y Jal’ (14)
deD,d#d;
92q!.
GH .= g 15
* Z 0,0 (19)
deD,d#d;

Under those notations, the first and second derivative affective function in Prob-
lem P4 can be written as

oA 1 1 «— 5
dal =L 21D 2= 17 G a6

and

Dy . (17)
N —jGH (4 Gyy)? + 25GEGLH (1 + Gyy)

(1+Giy)? 7
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respectively. According to the second derivative, the K@ssatrix is defined by

>N oo N
dadal Dol dal 80/180c1,<q5
%A [0, U ? A
dal, 0 dal,0al, daloa,
H(Oé) _ 2. 1 2. 2 2 . K¢ ) (18)
82./1’ 82./1’ L 32./1’
Ba’K(ﬁﬁa’l So/Kd)ﬁo/z aa}(¢aa}(¢

As stated by Theorem 6 in Appendix B, the addends in the firsvateve can be
estimated by zeros under certain conditions. This appration also applies for the sec-
ond derivative as well as the Hessian matrix since both aotie first derivative item.
The advantages of using this approximation are two-fajdhe computation of Hessian
is simplified since many addends are set to zeros under artaiditions; and) the
computations OGZJ, Gij, Gi; andGY; can be carried out offline before evaluating the
derivative and Hessian, which makes the learning algoritterpensive.

Since the objective function in Problem P4 is nonconvextiplel local optimums
may exist in the variable space. Therefore, differentistguioints are chosen to preclude
the algorithm from getting stuck in one local optimum. Thegésst local optimum and the
corresponding weights are returned as the final solutiamactelerate the algorithm, we
can distribute different starting points onto differenteofor parallel computing.

The batch algorithm is summarized as follows. We note thatand sy, a(#(q;))
represent the vectors with elements and sq; 4(¢r(q:)), respectively, and thagt =
1,2, ..., P indexesP initial values.

Algorithm 1 genM.BAT (Generalized Ensemble Model by Revised Newtor¢gofithm
in Batch Setting.)

Require: Query set), document seb, relevant document seb; | with respect ta;; € Q, ranking
scoressq(¢r(g:)) with respect tathe querykth methodg,, and document € D, a number
of initial pointsa,, and a threshold = 0 for stopping the algorithm.

1: for eacha, do

Set iteration counter= 1;

Evaluated’*;

repeat

Sett =t + 1;
Compute gradienﬁazfl/l’ and Hessian matrifl (o, ") (Algorithm 2);
Updateoy, = o' + H(a, ') 'V 0 A
Evaluated’?;
9:  until A — A <€

10:  Storea),

11: end for

12: return a’s.

A drawback of the conventional Newton’s method lies in that designed for uncon-
strained nonlinear programs while our problem request®nnegative. Thus applying
the above algorithms may result in negative weights. Ttegegyly for avoiding this short-
coming is to set the final negative weights to zeros. As a maftiact, the rankers with
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Algorithm 2 Approximated Derivative and Hessian Computation Alganith

Require: Query set), document seb, relevant document seb; | with respect ta;; € Q, ranking
scoressq(¢r(g:)) with respect toithe query,kth method¢,, and document! € D, current
t—1

a, .
1: for ¢; € Q do
2:  ford; € |D;| do
3 SetGi;, GIY, G¥; andGY; to zeros;
4 for d € D do
5 sa;,d(¢r(qi)) < sa; (¢k(qli)) — sa(¢r(qi));
. 1 exp(—Bal” sa;.a(9(qi))
6 gi( ™) & e B Tsa; a(6(a:))
7 Gij ¢ Gij + gl (e B
8 if —2 < ap sy ,a(¢(q) < 3 then
9 Gy « GM + B%s4, d(¢k(qz))8d a(¢1(ai)giz(ap (A = gijleg )1 —
2gu( y 1)),
10: G” — G” + ﬂsd d(qﬁk(qz))
11 Gl Gl + Bsaya(du(a:);
12: else
13: G + GY;
14: G" — G
15; Gl «— Gﬁ],
16: end |f
17: end for
18:  end for
19: end for
20: Compute gradierwaéfl A (Equation 40)
and Hessian matrig (., '); (Equation 18)

21: retumn Vo1 A’ andH(af ).

negative weights play a negative role in the ensemble matels, the ignorance of those
rankers are reasonable in practice.

4.2. Online Algorithm: genM.ON

In the previous two subsections, we have presented thanggalyorithms for generating
gEnM by batch data sets. In contrast to the batch settingyrifiee setting provides the
gEnM a long sequence of data. The weights are calculate@npéglly based on the data
stream that consists of a series of time steps 1,2, ..., T. For example, the gnM is
constructed based on the new queries and correspondiniggargiven at different times
in a search engine. The final goal is also to maximize the d\drsP on the data sets.

T Dy

As a matter of fact, the presented batch algorithms can Hesdmjirectly in the online
setting by regarding the whole observed sequences as adtatelch step. In doing so,

(19)
1+ ZdeD d+d; 93
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however, the overall complexity is extremely high sincelih&ch algorithm should be run
once at each time step.

In the online setting, the subsequent queries are not &ladd present. An alternative
optimization technique should be considered to prevemh ffecusing too much on the
present training data. To distinguish with the notatiorhia batch setting, we let be the
query and suppose, Xo, ...Xy, ... are the given query at timan the online setting. Here,
we assume that these sequences are given witgrtimel truth distribution p(x). Thus,
the objective function of MAP can be defined as the expectati@verage precision, i.e.,

J(@) = f(x,a)p(x)
t=1
= E,[f(x )],

(20)

where

Dy, .
1 : 7

Do, 1+ Y den.artd, 9u,i (@)

f(X,OL) -

The expectation cannot be maximized directly because title tlistributionp(x) is
unknown. However, we can estimate the expectation byethgrical MAP that simply
uses finite training observations. A plausible approackdbring this empirical MAP op-
timization problem is that using the stochastic gradierscdat (SGD) algorithm which
is a drastic simplification for the expensive gradient desaégorithm. Though the SGD
algorithm is a less accurate optimization algorithm coragdo the batch algorithm, it is
faster in terms of computational time and cheaper in termgtaing memory [20, 21].
Another advantage is that the SGD algorithm is more adapditkee changing environ-
ment in which examples are given sequentially [22].

For our problem, the SGD learning rule is formulated as

a1 = o + eV (Xeg1, o) (21)

wherer, is called learning rate, i.e., a positive value depending.drhis updating rule
is validated to increase the objective value at each stegring of expectation, which can
be verified by the following theorem.

Theorem 4. Using the updating rule (21), the expectation of average precision increases
at each step, i.e,

Eplf(x, au41)] > Ep[f(x, at)]

Proof. SinceE,[f(x, cut1)] — Eplf(x, 00)] = Ep[f(x, auq1) — f(x, ou)], we only need
to showf (x, ayy1) — f(x,a¢) > 0.
Since

1

fx, 1) = f(x,00) = D,

i’: 32 dza; (9w (1) — gjai))
(L + 2 gea; 9o (@) (L + 2 sq, 905(0)) )

j=1
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we need to verify, (a; 1) — g,;(a;) > 0. According to the denotation gf ;, we have

(o) — T(@41)
L+ 7(ai) (1 +7(apy1))

Q;j(a;ﬂ) - g;j(o‘;) = (

g:/nj ()

wherer (o)) =

1*9;]'(0‘2) ’
Since )
T _ (B VE(x, 0 )s(6)
T(at+1) (22)
> exp(0)
=1,

we can conclude that
7(0‘1/5) - T(aw/t-w-l) > 0.

This completes the proof.

The learning rate) plays an important role in the updating (Equation 22), hearte
adequatey, will enhance the online algorithm to converge. Defipe= 1/t in this article,
then we have the following well-known properties:

> ni <o, (23)
t

Z n = 0. (24)
t

Since itis difficult to analyze the whole process of onlirgoaithm [20], we will show
the convergence property around the global or local optirmutine following analysis.

Lemma 2. If o, isin the neighborhood of the optimum o*, we have
(ar — ")V f(x, ) <0. (25)

The proof of is straightforward referring to Equation 35isTkemma states that the gra-
dient drives the current point towards the maximwh In the stochastic process, the
following inequality holds

(o — a")E, [V f(x,a4)] <O. (26)
Lemma 3. If «; isin the neighborhood of the optimum o*, we have

lim Vf(x,a:)? < oo. (27)

t—o0

The proof is given in the Appendix. For the stochastic nattiie expectation of
V f(x,a;)? also converges almost surely, i.e.,

tliglo Eo[Vf(x,a:)?] < oo. (28)
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Theorem 5 ( [23]).In the neighborhood of the maximum «*, the recursive variables «
converge to the maximum, i.e.,
lim o = ™. (29)
t—o00
Proof. Define a sequence of positive numbers whose values measudistance from
the optimum, i.e.,
I’Lt+1 — ht = (O[t — Oé*)Q. (30)

The sequence can be written as an expectation under theastmohature, i.e.,
Ep[hipr = he] = 2ni(ar — @) B[V (%, a0)] + 7B, [V f (x, @)’ (31)

Since the first term on the right hand side is negative acogridi (26), we can obtain the
following bound:

Eplhir1 — he] < niE,[VF(x, a)?]. (32)

Conditions (24) and (28) imply that the right hand side coges. According to the quasi-
martingale convergence theorem [24], we can also verify/thaonverges almost surely.
This result implies the convergence of the first term in (31).

Since)";” n; does not converge according to (23), we can get

lim (a, — a")E,[Vf(x,04)] = 0. (33)

t—o0

This result leads to the convergence of the online algoritten

lim o = o*.
t—o00

This completes the proof.

Based on the learning rule (21), the online algorithm foii@ahg the ensemble model
is summarized below.

4.3. Unsupervised Algorithm: UnsEnM

The proceeding proposed algorithms for both batch settimbcaline setting are based
on the knowledge of labeled data, which has been regardathasvised learning. As a
matter of fact, in the community of conventional informatietrieval systems, labeled
data are difficult to obtain in general. Under this conditionsupervised learning plays
a crucial role. The inspiration of unsupervised algoritimgolving Problem P4 comes
from the idea of co-training that is based on the belief ttaatheconstituent ranker in
the ensemble model can provide valuable information to theroconstituent rankers
such that they can co-learn from each other [17]. In ordertil@ze this collaborative
learning scheme, the gEnM requires all constituent rardeergenerated by unsupervised
learning. In each round, the ranking scores of one of thetitoast rankers are provided
asfake labeled data for other rankers to refine the weights. ltetiearning from the
constituent rankers, the ensemble model may result in abireprovementin terms of
MAP.
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Algorithm 3 gEnM.ON (Generalized Ensemble Model by Online Algorithm.)

Require: Query set), document seb, relevant document seb; | with respect ta;; € Q, ranking
scoressq(¢r(g:)) with respect tathe querykth methodg, and document € D, a number
of initial pointsa,, and a threshold > 0 for stopping the algorithm.

1: for eacha,, do

Set iteration counter= 1;

Evaluated’’;

repeat

for eachg; € @Q do
Sett =t +1;
Compute gradierwazfl A’ with respect tay; (Algorithm 2);
Updateoy, = o' + 3V i1 4';
9: end for

10: Evaluated’t;

11:  until |4 — A" <€

12:  Storeal

13: end for

14: return a’s.

We modify the objective function in Problem P4 by adding agignitem so that
the refined ranking does not depend on the fake label too mihmodified objective
function is defined as

max A — %o Z Z Z | Ha(g:) — sa(ér(a))| (P8)

¢ €EQ dED ¢preP
whereHa(g;) = 32,5 ansa(dx(a:))-
Let I" denote the objective function in Problem P8. The seconda@res of/" can
be written as follows:
OF _ T S~ S™ (suldnlar)) - salén(a))) (34)

daray O
R R ¢ €EQdeD

The approximation of Hessian matrix reported in Algorithnegh be employed here,
however, it is time-consuming doing so since the unsupedvadgorithm requires a large
number of iterations to converge and the Hessian should lbalated at each iteration.
Therefore, the learning rule of the online algorithm gEnM.iS applied for the unsuper-
vised algorithm. It is noteworthy that the ggEnM.ON can berféssly modified to fit this
unsupervised co-training scheme. The algorithm is desditelow.

5. Empirical Experiment

5.1. Experiment Setup

The proposed methods were evaluated on four standard mesitheh ad-hoc document
collections, i.e., MED, CRAN, CISI and CACM, which can be aessed freely from the
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Algorithm 4 UnsenM (Unsipervised Eremble Mdel.)

Require: Query set, document seD, ranking scoresq(¢x(¢:)) with respect tathe querykth
method¢;. and document € D, a number of initial pointgx,, a threshold; for sq(¢x(g:))
to choose fake relevant documents and a threshold) for stopping the algorithm.

1: for eacha, do

2 Set iteration counter= 1;

3.  Evaluated’;

4:  repeat

5: for eachg, € @ do

6: Sett =t+1;

7 Refresh fake relevant document set| = 0;

8: Constructs, that excludes(¢x);

9: Construci, that excludesyy, ;

10: for ¢; € Q do

11: if sd(gzﬁk(qi)) > €5 then

12: Construct fake relevant document get| <— ¢ U | D;|;
13: end if

14: end for

15: Compute gradierWa;;] A (Algorithm 2)
16: Updateoy), = af, ' + 2V _ -1 A;

17: end for !

18: Reconstruciy,, that includesy,, ;

19: Evaluated’t;

20:  until A" — A" < e
21:  Storea)

22: end for

23: return «’s.

SMART IR System. In order to test the proposed methods on heterogeneousvaata
utilized the merged collection (MC) advocated by [16], whimombines the four col-
lections. The basic statistics of the test data are sumsthiiz Table 2. The following
minimum pre-processing measures were taken for the colfecbefore evaluating the
proposed methods) stop words were removed from the corpus by referring totafis
571 stop words provided by SMARTD) special symbols, including hyphenation marks,
were removed; and) those words with unique appearances in the corpus werevesino
We note that the incomplete documents and queries in CISC#@M were retained in
the experiments.

The constituent rankers, in essence, are important fatitatsnfluence the results.
Four rankers recommended by [16], naméidf -based ranker (TFIDF) [1], Latent Se-
mantic Analysis (LSA) [25], probabilistic Latent Semaritidexing (pLSI) [26], Indexing
by Latent Dirichlet Allocation (LDI) [16], were utilized ithis paper for assembling the
gEnM. In brief, TFIDF represents documents by a tf-idf wégghmatrix; LSA projects
each document into a lower dimensional conceptual spaceplyiag Singular Value
Decomposition (SVD); pLSl is a probabilistic version of LS&nd LDI represents each
document by a probabilistic distribution over shared tefiased on Latent Dirichlet Al-

3 Available at: ftp://ftp.cs.cornell.edu/pub/smart.
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Table 2. Data characteristics.
Data  Subject Document # Query # Term #
MED Medicine 1,033 30 5,775
CRAN Aeronautics 1,400 225 8,213
ClIsl Library 1,460 112 10,170
CACM Computer 3,204 64 9,961
MC Multiplicity 7,097 431 27,784

location (LDA) [27]. These rankers are all unsupervisedkeas and thus are trivial to be
trained in the unsupervised setting. In addition to thigtrey requirement, the rankers
contain different information describing each corpus,hsas information of keyword
matching, concepts, or topics.

Since the four rankers represent documents and queriesvéutiors, the ranking
scores are the cosine distances (or cosine similaritigg)des the vectors of documents
and queries. Subsequently, the ranking scores of gEnM cgeerated with appropri-
ate adjustments to the weights being made for the rankingesaaf the four rankers.
For formulating Problem P4, we sgt = 200. Finally, the proposed algorithms can be
implemented to calculate the optimal weights for gEnM.

In order to address the over-fitting problem of batch al¢ong, we adopted the
two-fold cross validation for testing the gEnM.BAT and gEMN. A difference for the
gEnM.ON is that the training queries and correspondingregiedocuments were given
sequentially at each step. The performance metric was the raue of the MAPs in the
two-fold cross validation. As for the UnsEnM, the rankingses of different constituent
rankers are provided as labeled data for other rankersfiardift rounds. The UnsEnM
was then evaluated by means of MAP on the real labeled data.

As discussed in Section 4, the proposed algorithms wouldfiidrom different initial
weights. Choosing the proper initial points for nonlineesgram is an open research is-
sue. In our tests, we utilized the operational criterionadésting the best. In other words,
we tested performances for different initial weights an@éced the one that generated
the maximum retrieval performance in terms of MAP. In thipesiment, we first set the
initial weights to binary elements, i.e € B*. The reason of doing so lies in that the
constituent rankers are initially active in some of the erskand inactive in others, which
reflects our heuristics at the first step. Since the EnM has beewn prior to the four
basis rankers by [16], the EnM model was used as baselineoaefbr comparison.

5.2. Experimental Results

The experimental results are shown in Table 3. We have cereidhree measures for
comparing the performances of the proposed algorithmsnraearage precision (MAP),
(average) precision at one document (Pr@1), and (averageisipn at five documents
(Pr@b5). Indeed, the gEnM performance is always better theakEhM. Since the EnM is
also solved by a batch algorithm, we conduct the Wilcoxoneigrank test to evaluate
the difference between EnM and gEnM.BAT. We see that, in soases, the difference
is statistically significant with a 95% confidence. We emjgeathat the Pr@1 of ggenM
is 48% higher than that of EnM for the CISI data set and is ctosE00% for the MED.
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In other words, the retrieved documents by gEnM are morgaateat high ranking posi-
tions, which is desirable from the user’s point of view.

Table 3. Comparison of the algorithms for gEnM and baseline methBd@1 denotes
the precision at one document and Pr@5 the precision at fimendents. An asterisk (*)
indicates a statistically significant difference betwealEand gEnM.BAT with a 95%
confidence according to the Wilcoxon signed rank test.
CollectionMeasure EnM gEnM.BAT geEnM.ON UnsEnM impr(%)
MAP |0.6420 0.6458 0.6467 0.6465 +0.6
MED Pr@1 [0.8667 0.9333 0.9333 0.9333 +7.7*
Pr@5 [0.7867 0.8133 0.8133 0.8133 +3.4*
MAP |0.3766 0.3937 0.3972 0.3972 +4.5
CRAN Pr@1 [0.6133 0.6622 0.6667 0.6356 +8.0*
Pr@5 |0.3742 0.4080 0.3991 0.4018 +9.0*
MAP (0.1637 0.1945 0.1816 0.1825 +18.8*
CISI Pr@1 |0.3289 0.4868 0.3684 0.3947 +48.0*
Pr@5 [0.2974 0.3237 0.2868 0.3079 +8.8
MAP |0.1890 0.2166 0.2256 0.1745 +14.6*
CACM Pr@1 [0.3654 0.3846 0.4423 0.3077 +5.3
Pr@5 [0.2192 0.2500 0.2538 0.2000 +14.1*
MAP |0.2768 0.3162 0.3099 0.3169 +14.2*
MC Pr@1 |0.4204 0.5196 0.5300 0.5274 +23.6*
Pr@5 | 0.307 0.3614 0.3624 0.3629 +17.7*

From Table 3, we also see that the performance of genM.ONtisrtiban the gEnM.BAT.
The slight priority of gEnM.ON is due to the approximatiorHgssian for the genM.BAT.
However, the gEnM.ON is more expensive than gEnM.BAT beeanisterative use of
queries for calculation. Having said that, gEnM.ON can leglus a specific system where
data are given in sequence. Since the knowledge of releeanndents is unknown in un-
supervised learning, the performance of UnsEnM is infeddhe supervised algorithms.
However, the results on the more heterogeneous data set ®M8ugprisingly the best
among the proposed algorithms. The supervised algorithgnwioek well when tested
against similar queries and documents in the homogenedais\dd the unsupervised al-
gorithm does not fit the training data as much as the supelaig@rithm does and thus
the superiority becomes more obvious when tested on moeedygneous data.

Figure 3 shows the precision-recall curves of the examinetthaus.

For illustrating the learning abilities of the gEnM.ON andadEnM, the learning
curves on the MED data are reported in Figure 4. The resultt@other data sets are
very similar. The tolerance is set i@ — 4 and the number of iteration is set to at least
10 in order to clearly view the changes of objective. The onleaning curves validates
the convergence property of genM.ON. Amongst these cuss®&ral scenarios, such as
whena = (1,1,1,1)7 anda = (1,0, 0,0)7, imply that the gEnM.ON may occasionally
fail for some queries that are not similar to the previousieeges and not near the local
optimum. With the increase of iterations, however, the iotjd those queries may mit-
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igate due to the majority effect. Apart from these specifesathe genM.ON is able to
gradually learn from the sequences, which is consisteffit it theoretical analysis.

The UnsEnM also converges with the increase of iteratiorss.ceh see that in the
case ofx = (1,0,0,0)” aranker which is regarded as supervised labels may draatiatic
decrease the objective function. In most cases, the impaoth rankers can be balanced
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out by other rankers. As a matter of fact, this phenomenoimigas to genM.ON since
the data are given sequentially in both cases.

6. Conclusions and Discussions

In this paper, we propose a generalized ensemble model, gihidh tries to find the op-
timal linear combination of multiple constituent rankegsdirectly optimizing the prob-
lem defined based on the mean average precision. In ordefv® s optimization
problem, the algorithms are devised in two aspects, i.pgrsised and unsupervised. In
addition, two settings for the data are considered in thesuged learning, namely batch
and online setting. Table 4 summarises the algorithms vatangial applications in prac-
tice. In brief, the gEnM.BAT can be used in those IR systeras llave the knowledge of
labeled data, such as academic search engines; the gEnid &priopriate for real-time
systems where the data is given in sequence, such as moweiamendation systems; and
the UnsEnM is proposed for those systems without the knayeed labeled data, such
as search engines.

Table 4. Summary of the algorithms: gEnM.BAT, gEnM.ON and UnsEnM.
Algorithm  Category Setting Application
gEnM.BAT supervised batch literature search, etc.
gEnM.ON supervised online movie recommendation, etc.
UnsEnM unsupervised batch search engine, etc.

An experimental study was conducted based on the publics#dsa The encourag-
ing results verify the effectiveness of the proposed athors for both homogeneous and
heterogeneous data. The gEnM performance is always be#erthe EnM, except for
the case of UnseEnM on CACM. Briefly, the difference betweengBAT and EnM is
statistically significant in most cases; the gEnM.ON perfeithe best among the pro-
posed algorithms for the MED, CRAN and CACM; and the unsuised/ UnsEnM is
more applicable for heterogeneous data than the supemfigedthms.

While we have shown the effectiveness of the proposed dlfgos, we have not yet
analyzed the computational complexity of the algorithnteodgh we simplified the com-
putation of the derivative and Hessian matrix, we were unéibreduced the complexity
of the batch algorithm based on Newton’'s method. A possiltieré direction is to ex-
ploit cheaper and faster algorithms for the batch settimgptAer interesting research topic
is the selection of initial weights, which is actually an agesearch issue in nonlinear
programming.

Apart from the potential improvements with regard to altjoris, the selection of
constituent rankers is an extremely important issue. Ttoblpm may be resolved if we
can identify which ranker is redundant for the ensemblehla paper, we use human
heuristics for choosing the four rankers. However, a cdediramework to effectively
evaluate the contribution of each ranker is no doubt a stubjethy of further study.
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A. Derivation of the derivative of A’

(1) Derivation of the first derivative
According to the calculus chain rule, the derivative of ahije in Problem P4 with
respecttavy, k =1,2,.., Ky is

’
L |Di| s 99i;
1 J Zd;édj dal,

6_/1’ _1 Z (35)
daj, L = |Dj = (L4 2 gz, 9i7)*
where
8g;j / /
80‘2 = —ﬁde,d(¢k(Qi))gij(1 - gij)' (36)
(2) Derivation of the second derivative
Also by the chain rule, the second derivative with respeetjté = 1,2, .., K4 is
oA 1 XL: 1
dapda; L = |Di
\Di| _ i 99l 132 - 9935 <~ 9955 / (37)
2‘: —J>. aa;aa;(l +2°0i)7 +25)0 Da, > Do (1+>9;)
j=1 (1+ Zd;édj 9%‘)4 7
where o2y ool
95 . ot Yij
aa%aoé; - Bsdj7d(¢k(ql))(1 291]) 80&[ ’ (38)
and% can be calculated by Equation 36.
B. Approximation of the derivative of sigmoid function
For notational simplicity, we begin by considering the éaling sigmoid function:
1
f(x) (39)

~ T+ exp(Br)’
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Theorem 6. The derivative of function (39) can be approximated as follows:

2 2
= B(f(x) = fPx), If =2 <z <2
~ P P ) (40)

2
0, ifr<—=orz>-—.
B

B

of(z)
ox

if the scaling constant 3 islarge.

Proof. We apply the centered linear approximation method to theaqampation of the
sigmoid function as shown in Figure 5, which is describedWel

f(x), if—%<x<%;
flz) =<0, if z < —%; (41)
1, if x> %

Hencef(z)(1 — f(z)) =0if x < —% orx > %. This completes the proof.

We note that this approximation is more precise with a lafher

(IR S

v

OO\ 2

Fig. 5. The approximation of sigmoid function through the centdireelr approxima-
tion method. ¢ = 300)

Remark 2. The derivative function (36) can be approximated by:

— Bsa;.a(dr(ai)gi; (1 — gij),

. 2

if — 5= Y hsay.a(dnla) <
k

0, otherwise

391/',7' -
oo,

; (42)

| o

if the scaling constant is large.
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C. Proof of Lemma 3

In this section, we only sketch the proof of Lemma 3.

Proof (Sketch of Proof). In this proof, we use simple symbols for clarity. For example
g(aw) denote@z’-j(ag).

Vi(x a1)? = VI(x, o)

(2 ZJﬂng )1 = glas)) )
D (L4 > gza, 9(0es1))?

1ijﬁzSgat )1~ gla)))
1+Zd¢d g(ar))?

D
1 & :
< ( ZjﬂZSg(OétJrl)(l _g(at+1))>

1=1

Forg(ait1) — g(ows1)?, we have

1
2
glats1) = glar1)” < 5 +exp(8 ) _(aw + 1V f)s)
1

S 2t exp(BS Vv Ss)

Thus, we have

2
1
V(x a1)? = VIx o)? <D >_iBY s 2+eXP(BZ77VfS>

It is easy to show that thg— is the summand of a convergent infinite sum. This

+exp(n
result implies thatV f(x, a;)? converges because it is bounded and its oscillations are
damped.
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