
Computer Science and Information Systems 15(2):295–320 https://doi.org/10.2298/CSIS170525002M

Exploring Instances for Matching Heterogeneous
Database Schemas Utilizing Google Similarity and Regular

Expression

Osama A. Mehdi1, Hamidah Ibrahim2,
Lilly Suriani Affendey2, Eric Pardede1 and Jinli Cao1

1 La Trobe University, Computer Science and Information Technology, Bundoora,
Victoria 3086, Melbourne, Australia

{O.mahdi, E.Pardede, J.Cao}@latrobe.edu.au
2 University Putra Malaysia, Computer Science and Information Technology, Jalan Upm,

43400 Serdang, Selangor, Malaysia
{hamidah.ibrahim, lilly}@ upm.edu.my

Abstract. Instance based schema matching aims to identify correspondences
between different schema attributes. Several approaches have been proposed to
discover these correspondences in which instances including those with numeric
values are treated as strings. This prevents discovering common patterns or
performing statistical computation between numeric instances. Consequently, this
causes unidentified matches for numeric instances which further effect the results.
In this paper, we propose an approach for addressing the problem of finding
matches between schemas of semantically and syntactically related attributes.
Since we only fully exploit the instances of the schemas, we rely on strategies that
combine the strength of Google as a web semantic and regular expression as
pattern recognition. To demonstrate the accuracy of our approach, we have
conducted an experimental evaluation using real world datasets. The results show
that our approach is able to find 1-1 matches with high accuracy in the range of
93% - 99%. Furthermore, our proposed approach outperformed the previous
approaches using a sample of instances.

Keywords: schema matching, instance based schema matching, Google
similarity, regular expression.

1. Introduction

One of the vital tasks in database integration is schema matching. Schema matching is
the task of identifying correspondences between schema attributes. Matching two
schemas S and T requires deciding if two attributes s of S and t of T represent the same
real-world concept. While humans may be able to easily discover if two attributes match
or non-match, however it is difficult for machines to discover it, especially when these
two attributes have semantic heterogeneity. For example, s and t can represent different
concepts but have the same name. The opposite is also possible; s and t can represent the
same concept but have different names. To solve the problem of finding the
correspondences between schemas, available information could help to identify the

296 Osama A. Mehdi et al.

semantics of schema elements and to detect their similarity. Three types of available
information commonly used to determine the correspondences of schema matching are
schema information, instances, and auxiliary information [1][2].

 Schema information: Various kinds of information, such as element name,
description, data type, constraint, and schema structure, can be examined to
characterize and compare the semantics of schema elements [3].

 Instances: In many applications, such as data integration and transformation,
instances are available for the schemas to be matched and can also be exploited to
characterize the contents and semantics of schema elements [4][5][6][7].

 Auxiliary information: This category comprises resources used to obtain information
that can be utilized to detect similarities between schema elements. For example,
utilizing dictionaries and thesauri such as WordNet, enables a search for semantic
relationships like synonymy and hypernymy between element names [8].

During the process of schema matching, schema information which includes element

name, description, data type, constraint, and schema structure are normally used by
previous works in an attempt to achieve correct matching between schemas or even
when the source and the target schema are nested relational, as in [9]. However, in some
real world cases it may not be possible to use the information of schema structure. There
are cases where information about the schema structure is not available such as in, fraud
detection, crime investigation, counter-terrorism and homeland security [10][11]. In
such scenarios, instances are the only option available that can be used for schema
matching. Even though, schema information might be available however there are cases
where it is worthless to be used for matching purpose. An example is when the schema
attributes are abbreviations. For instance, the attribute name CN could be an
abbreviation of Customer Name or Company Name while SSN is an abbreviation of
Social Security Number. Hence, data instances can give an accurate characterization of
the actual contents of schema attributes. Several approaches that utilized instances
during the process of schema matching have been proposed [4-7][12-23]. These
approaches focused on one main objective which is improving the accuracy of instance
based schema matching in terms of precision (P), recall (R), and F-measure (F).

By analysing the instance based schema matching approaches, we observed that
neural network, machine learning, theoretic information discrepancy and rule based have
been utilized by these approaches [4][16][18][20][21][23]. The goal of these approaches
is to discover correspondences between schema attributes whereby instances including
instances with numeric values are treated as strings [10]. This prevents discovering
common patterns or performing statistical computation between numeric instances. As a
consequence, this causes unidentified matches for numeric instances and further reduces
the quality of match results. Thus, for instance level approaches, an approach for
identifying existing instance patterns must be deployed.

Exploring Instances for Matching Heterogeneous Database Schemas 297

2. Related Work

Instance based schema matching examines instances to determine corresponding schema
attributes. It represents a substitutional choice for schema matching. Even when
substantial schema information is available, considering instances can complement
schema based approaches with additional insights on the semantics and contents of
schema attributes and can be beneficial in uncovering wrong interpretation of schema
information, i.e. it would be helpful to disambiguate between schema level matches by
matching the attributes whose instances are syntactically and semantically more similar.
Neural network, machine learning, information theoretic discrepancy and rule based are
approaches used for instance based schema matching.

Neural network is able to obtain the similarities among data directly from their
instances and empirically infer solutions from data in the absence of prior knowledge for
regularities. Neural network is employed to cluster similar attributes, whose instances
are uniformly characterized using a feature vector of constraint based criteria. For
instance based schema matching, the Back Propagation Neural Network (BPNN), which
can acquire and store a mass of mappings between input and output, is ideal. However,
neural network can be viewed as specific tool since it is trained based on domain-
specific training data. It can only be used to resolve problems associated with that
domain. Instance based schema matching approaches based on neural network [12]
[13][17][19] achieved precision (P), recall (R), and F-measure (F) in the range of 65% -
96%.

Solutions that are based on machine learning generally employ methods such as
Naïve Bayesian classification to enhance the accuracy of schema based matching.
Learning-based solutions require a training data set of correct matches that may require
a large training data set to determine the correct matches. Several approaches have been
proposed [5][14-15] that employ machine learning techniques to first learn the instance,
characteristics of the matching or non-matching attributes and then use them to
determine if a new attribute has instances with similar characteristics or not. The
precision (P), recall (R), and F-measure (F) achieved by these approaches are in the
range of 66% - 92%.

Many approaches have applied the notion of information theoretic discrepancy such
as mutual information and distribution values [4][16][20][21]. The main advantages of
applying an information theoretic discrepancy approach are that its skillfulness and lack
of constraints. However, approaches of information theoretic discrepancy need some
probabilities of overlapping in the values being compared. Instance based schema
matching based on information theoretic discrepancy achieved precision (P), recall (R),
and F-measure (F) in the range of 45% - 92%.

Rule based approaches enjoy many benefits. The first benefit of using rule based
would be, low cost and also no requirement for training as in learning-based techniques.
The second benefit, its quick and concise method to capture valuable user knowledge
about the domain. Instance based schema matching based on rules [13][18][24]
achieved precision (P), recall (R), and F-measure (F) in the range of 72% - 87%.

298 Osama A. Mehdi et al.

3. The Proposed Approach

We have designed an approach for determining correspondences between schema
attributes by exploring the instances of schemas. The proposed approach consists of four
main phases as illustrated in Fig. 1. These phases are analyzing instances, classifying
schema attributes, identifying instance similarity, and identifying the match, which are
further explained in the following subsections:

 Fig. 1. The Phases of the Proposed Approach

3.1. Analyzing Instances

This phase aims at determining the data type of each attribute of both the target and
source schemas. This is achieved by analyzing the characters of an instance selected
randomly from each attribute of the schemas. We classify the data type of an attribute as
alphabetic, numeric and mix. The alphabetic data type is for attributes whose instances
consist of only alphabetic characters ([A...Z, a…z]), while the numeric data type is for
attributes whose instances consist of only digit characters ([0…9]). The last type being
the mix data type, is for attributes whose instances consist of combination of alphabetic,
digit and special characters (e.g [-, /, \, .,]). This phase starts by randomly selecting an
instance of an attribute and counts the number of characters for each data type, then
checks whether the number is equal to the length of the instance or not. If the number of
characters of a data type is equal to the length of the instance (without whitespace), then
the data type of the instance is identified as alphabetic (if all the characters are
alphabetic) or numeric (if all the characters are numeric).

Otherwise, if the number of characters of a data type is less than the length of the
instance, then the data type of the instance is identified as mix. For example, the instance
“New York” has seven alphabetic characters which is equal to the length of the instance

 Analyzing Instances

Classifying Schema Attributes

 Identifying Instance Similarity

 Identifying the Match

Source Target

 Attribute Pairs

Exploring Instances for Matching Heterogeneous Database Schemas 299

(without whitespace), while the instance “255 Courtland” has three numeric characters
and nine alphabetic characters which are not equal to the length of the instance which is
twelve. Thus, “New York” and ”255 Courtland” are classified as alphabetic and mix
data type, respectively.

3.2. Classifying Schema Attributes

After determining the data type of each attribute as discussed in the previous phase, the
next step will be to classify the attributes that share the same data type in the same class.
The main aim of this phase is to reduce the number of possible comparisons that needs
to be performed during the matching process. The maximum number of classes created
for each schema is based on the number of data types that have been determined from
the previous phase. Table 1 shows an example to clarify this phase. The following
instances “New York”, “Doctorate”, “255 Courtland”, “818/762-1221”, and ”49” have
been classified into three data types which are alphabetic, numeric, and mix. Hence,
three classes are created based on the identified data types. The class of alphabetic data
type (C_alpha) includes the attributes of the instances “New York” and “Doctorate”,
whereas the class of mix data type (C_mix) includes the attributes of the instances “255
Courtland” and “818/762-1221”, and the third class of numeric data type (C_num)
includes the attribute of the instance “49”.

 Table 1. Classifying Schema Attributes based on the Data Type.

 Class of Alphabetic Data Type

 Attribute 1 Attribute 2
 New York Doctorate
 Class of Mix Data Type
 Attribute 1 Attribute 2

 255 Courtland 818/762-221
 Class of Numeric Data Type

 Attribute 1 -
 49 -

3.3. Identifying Instance Similarity

The aim of this phase is to compare the attributes in the same class that belong to
different schemas, whether they are representing the same entity or not. Two tasks are
carried out to find correspondences between attributes in each class. The first task
utilizes regular expression for syntactic similarity while the second, utilizes Google for
semantic similarity.

300 Osama A. Mehdi et al.

3.3.1 Regular Expression

Regular expression (known as regexes) is a way to describe text through pattern (format)
matching and provides an easy way to identify text. Regular expression is a language
used for parsing and manipulating text [25][26]. Furthermore, it’s a string containing a
combination of normal characters and special metacharacters or metasequences (*, +,?).
Table 2 shows the most common metacharacters and metasequences in regular
expression that are used in this work. Regular expression provides several advantages,
as [27][29]:

 Being relatively inexpensive and does not require training or learning as in learning-
based or neural network techniques.

 Provides a quick and concise method to capture valuable user knowledge about the
domain.

 Table 2. The Common Metacharacters in Regular Expression

Meta-character Name Matches

. Dot Matches any one character
[…] Character class Matches any one character listed
[^…] Negated character class Matches any one character not listed
? Question One allowed, but it is optional
* Star Any number allowed, but all are

optional
+ Plus At least one required; additional are

optional
| Alternation Matches either expression it separates
^ Caret Matches the position at the start of the

line
$ Dollar Matches the position at the end of the

line
{X,Y} Specified range X required, max allowed

In general, regular expression of a given set can be determined by analyzing the

pattern (format) of the instances. Having this regular expression, the correspondence
attributes are detected by matching the regular expression with the instances of the
attribute. Regular expression in this work is used to create patterns for both numeric and
mix data types. In the next subsections, we will show how regular expression works for
both data types.

3.3.1.1 Regular Expression for Numeric Data Type

This subsection explains the process of creating regular expression for the attributes
with numeric data type. The attributes with numeric data type consist of instances with
digits ranging from 0 – 9. when creating a regular expression for an attribute, the
minimum and maximum values of the attribute will be required. Thus, three variables

Exploring Instances for Matching Heterogeneous Database Schemas 301

have been identified, namely: nomin, nomax and uppervalue. Initially, nomin and nomax
are assigned the minimum and maximum values of the attribute, respectively. However,
in the following iterations, the value of nomin is changed to the last uppervalue + 1. The
uppervalue is a value which is greater than the value of nomin and less than the value of
nomax; and is derived based on the following conditions:

 (i) when the nomin's length of digits is less than the nomax's length of digits, the
uppervalue is the maximum value based on the nomin’s length of digits and not
greater than the value of nomax. For instance, if the nomin’s length of digits is three
(e.g. 345) then the uppervalue is 999. If the uppervalue is greater than the value of
nomax, then the first digit of the uppervalue is changed to the first digit of nomin
(399 for the above example). This is then checked against the value of nomax. If the
new uppervalue is still greater than the value of nomax then the second digit of the
uppervalue is changed to the second digit of nomin (349 for the above example). This
process is repeated in which the next digit of the uppervalue is changed to the next
digit of nomin until the condition stated in the definition of uppervalue is satisfied.
However, if all the digits of uppervalue have been changed, i.e. the value of
uppervalue is now equal to the value of nomin, and then the value of nomax is
assigned to uppervalue. This is to reduce the number of iterations needed in
identifying the uppervalue.

 (ii) when the nomin's length of digits is equal to the nomax's length of digits and the
nomin has at least one zero digit on the right, the uppervalue is derived using the
formula shown in equation (1). The equation (1) derives the closest uppervalue to the
nomax. where Sumz is the result of GetZeros function (Step 13, Algorithm 1). If the
equation (1) returns an uppervalue which does not satisfy the condition that we have
stated earlier, then the steps as mentioned in (i) above are applied. For instance, if the
nomin’s length of digits is three (e.g. 120) and the nomax's length of digits is three
(e.g. 123) then the uppervalue is 119 based on the equation (1). In this case, the value
of uppervalue does not meet the definition of uppervalue which is greater than the
value of nomin and less than the value of nomax. Then, the steps as mentioned in (i)
above are applied to derive the value of uppervalue.

uppervalue = (nomax - (nomax MOD Sumz * 10) - 1) (1)

To create a regular expression for an attribute with numeric data type, an interval is

derived based on the values of nomin and uppervalue as well as the nomin’s length of
digits. Then a regular expression is created for that interval. This process, i.e. deriving
interval and generating regular expression for that interval, is repeated until the
uppervalue reached the value of nomax. The regular expressions of these intervals are
combined as one regular expression using the | operator which represents the regular
expression of the attribute. The following example clarifies the process of generating
regular expression for an attribute with numeric data type. Let the values “7” and “123”
represents the minimum, nomin, and maximum, nomax, values of an attribute,
respectively. From the Table 3, we can notice that there are four iterations. In the first
iteration, the nomin has only one digit, thus the uppervalue is equal to 9. From this, we
generate a regular expression for the values in the range of 7 - 9 as [7 - 9]. The next step
is to have an interval with two digits that starts with nomin equals to the last uppervalue

302 Osama A. Mehdi et al.

+ 1 (i.e. equal to 10 as shown in iteration 2). This step has uppervalue, which is equal to
99 as it is the maximum number of two digits and it is less than the nomax. A regular
expression is generated for this interval as [1-9][0-9]. In the third iteration, the nomin's
length of digits is equal to the nomax's length of digits as well as the nomin has two zero
digits on the right. Using equation (1), the uppervalue is equal to 119. The process
builds a regular expression for this interval as 1[0-1][0-9]. In the last iteration, the nomin
is set to 120 as the start of the new interval (i.e. nomin = last uppervalue +1). Here, the
nomin's length of digits is equal to the nomax’s length of digits and the nomin has one
zero digit on the right, thus the uppervalue is derived using equation (1) which is also
equal to 119.

Table 3: The Mechanism of the RegEx for Numerical Domain

Iteration Nomin Uppervalue RegEx Accumulated RegEx

1 7 9 [7-9] [7-9]
2 10 99 [1-9][0-9] [7-9]|[1-9][0-9]
3 100 119 1[0-1][0-9] [7-9]|[1-9][0-9]|1[0-1][0-9]
4 120 123 12[0-3] [7-9]|[1-9][0-9]|1[0-1][0-

9]|12[0-3]

However, we cannot use 119 as the uppervalue since the uppervalue should be

greater than the value of nomin and less than the value of nomax. Here, the steps as
described in condition (i) above are applied in which the uppervalue is set to 999 as it is
the maximum number of three digits. However, this value cannot be considered as the
uppervalue since it is greater than the maximum value. Thus, the first digit of the
uppervalue is changed to the first digit of nomin which gives the value 199. For the
same reason, 199 is not the value that meets the condition stated in the definition of
uppervalue. Thus, 129 is then generated which is still greater than nomax. Since
changing the third digit of 129 with the third digit of nomin does not satisfy the
definition of uppervalue, therefore the uppervalue is set to nomax. In this stage, the
regular expression is build for the interval of nomin and nomax as 12[0-3]. Fig. 2 depicts
the details steps of generating regular expression for numeric data type. The steps 13
and 14 check whether the nomin has at least one zero at the end and then finds the
uppervalue only if the nomin and nomax have the same length. As shown in Table 3,
when the nomin = 100 and the nomax = 123, step 16 computes the next uppervalue.
This step is repeated until the computed value of the uppervalue is greater than the
nomin (step 17). Steps 20 - 32 perform the otherwise. These steps select the uppervalue
that is less than the nomax to be within the interval as shown in Fig. 2 step 17. After
computing an uppervalue, a regular expression is built for the current interval. This is
performed by the function Generating_RegEx that takes as input the nomin and
uppervalue of the interval or nomin and nomax for the last iteration. This function is
depicted in Fig. 5.

Exploring Instances for Matching Heterogeneous Database Schemas 303

Algorithm 1
Input: A set of attributes with numeric data type,NC_num =

{NA1,NA2,…,NAn}
Output:Set of regular expression,Rex={rexNA1,rexNA2, …,rexNAn}
1.BEGIN
2. FOR each NAi of NC_num DO
3. BEGIN
4. Let nomax = the maximum value of attribute NAi
5. Let nomin = the minimum value of attribute NAi
6. Let Lmax = the length of the nomax
7. Let Lmin = the length of the nomin
8. rexNAi = { },Sumz = 0
9. finish = False
10. WHILE (Not finish) DO
11. BEGIN
12. found = False
13. Sumz = GetZeros (nomin, Lmin)
14. IF (Lmax = Lmin AND Sumz > 0)THEN
15. BEGIN
16. uppervalue = (nomax - (nomax MOD Sumz *10)- 1)
17. IF (uppervalue > nomin)THEN
18. found = True
19. END
20. IF (Not found) THEN
21. BEGIN
22. tlmin = Lmin
23. While tlmin >0 DO/*Where tlmin = Lmin, Lmin - 1,…,1
24. BEGIN
25. upper = GetUpper (nomin,Lmin, tlmin)
26. uppervalue= GetIntegerValue(upper)
27. tlmin = tlmin - 1
28. IF (uppervalue <= nomax) THEN
29. found = True
30. break
31. END
32. END
33. IF (found) THEN
34. BEGIN
35. rexNAi=rexNAi+Generating_ReEx(nomin,uppervalue)+"|"

36. IF (uppervalue = nomax)THEN
37. finish = True
38. END
39. ELSE
40. BEGIN
41. rexNAi = rexNAi +Generating_ReEx(nomin, nomax)
42. finish = True
43. END
44. nomin = uppervalue + 1
45. END
46. END

304 Osama A. Mehdi et al.

47. END
GetZeros(nomin, Lmin: Calls the Find the Number of Zero’s in the nomin
Algorithm and returns an integer which is the number of '0' digits in
the nomin.
GetUpper(nomin, Lmin, tlmin): Calls the GetUpper Algorithm and returns
the upper value of the nomin.
GetIntegerValue is a build-in function in Java programming language
that converts a char to an integer data type.
Generating_ReEx(nomin,uppervalue): Calls the Generating_ReEx Algorithm
and returns the regular expression for the values between the nomin
and uppervalue.
Fig.2. Generating RegEx for Numeric Attributes Algorithm

Algorithm 2
Input: nomin, Lmin
Output:Number of zeros in the right most of nomin, sum
1. BEGIN
2. sum = 0, temp [] = " "
3. temp = GetCharValue (nomin)
4. WHILE (temp[Lmin - 1]) == 0) AND (Lmin - 1>=0)) DO
5. EGIN
6. sum = sum + 1
7. Lmin = Lmin - 1
8. END
9. END
GetCharValue is a build-in function in Java programming language that
convert an integer to a char data type.

Fig.3. Find the Number of Zero’s in the nomin Algorithm

Algorithm 3
Input: nomin, Lmin, tlmin
Output:Upper value of nomin, uppervalue

1 BEGIN
2. uppervalue [] = " "
3. uppervalue = GetCharValue (nomin)
4. FOR j = 0 until tlmin - 1 DO /* where j = 0, 1, …,
5. uppervalue [(Lmin - 1) - j] = '9'
6. END

Fig.4. GetUpper Algorithm

Exploring Instances for Matching Heterogeneous Database Schemas 305

Algorithm 4
Input: X,Y
Output:Regular expression, vec
1.BEGIN
2. vec = “ “

3. Let value1 = GetCharValue (X)
4 Let value2 = GetCharValue (Y)
5. Let len = length of value1
6. FOR i = 0 until len DO /* where i = 0, 1, …, len
7. BEGIN
8. IF (value1[i] == value2[i]) THEN
9. vec = vec + value1[i] /* value2[i]
10. ELSE
11. BEGIN
12 vec = vec + '['
13. vec = vec + value1[i]
14. vec = vec + '-'
15. vec = vec + value2[i]
16. vec = vec + '] '
17. END
18. END
19. END
Fig.5. Generating_ReEx Algorithm

3.3.1.2 Regular Expression for Mix Data Type

This section presents the steps for generating regular expression for the attributes with
mix data type. Mix data type includes alphabetic, numeric and special characters. The
general idea is to divide an instance into a set of sub-tokens. Each sub-token is a
sequential set of characters of a particular data type. Then, a regular expression is built
for each sub-token of the instance. Finally, the regular expressions of each sub-token are
combined as the regular expression of the instance. For example, the following instance
"255 Courtland" can be divided into two sub-tokens which are "255" and "Courtland".
The first sub-token "255" is considered as a sub-token of the numeric data type, since it
consists of a sequential set of numeric characters. While, the second sub-token
"Courtland" belongs to the alphabetic data type as it consists of a sequential set of
alphabetic characters. Finally, we combine the regular expressions of each sub-token
that are "\\d+" for the sub-token with numeric characters and "([a-zA-Z]+)" for the sub-
token with the alphabetic characters as the final regular expression of the instance “255
Courtland”.

306 Osama A. Mehdi et al.

Algorithm 5
Input:A set of attributes with mix data types,NC_mix =

{MA1,MA2,…,MAm}
Output:Set of regular expressions, Att_ReX ={Att_ReXMA1,

Att_ReXMA2,…,Att_ReXMAm}
1. BEGIN
2. Att_ReX = { },k = 0
3. FOR each MAi of NC_mix DO
4. Read an instance, I, randomly from MAi
5. WHILE (k < length of I) DO
6. BEGIN
7. IF (Ik {A…Z, a…z}) THEN
8. BEGIN
9. While (k < length of I) AND (Ik {A…Z, a…z})
10. k = k + 1
11. rexMAi = rexMAi + "([a-zA-Z]+)"
12. END
13. ELSE (Ik {0..9}) THEN

14. BEGIN
15. While (k < length of I) AND (Ik {0..9}) DO
16. k = k + 1
17. rexMAi = rexMAi + "\\d+"
18. END
19. ELSE (Ik special characters) THEN
20. k = k + 1
21. rexMAi = rexMAi + "special character"

22. ELSE (Ik white space) THEN
23. k = k + 1
24. rexMAi = rexMAi + "\\s"

25. END
26. Att_ReXMAi = rexMAi

27. END

28. END

Fig.6. Generating RegEx for Mix Data Type Algorithm

Fig. 6 depicts the details steps of generating the regular expressions for the attributes
with mix data type. The algorithm analyses each attribute, MAi, of the mix data type
class, NC_mix, and selects randomly an instance, I, from each attribute, MAi (steps 3
and 4). The algorithm then checks each character of the selected instance whether it is
alphabetic, numeric or special character, to determine the data type of each sub-token
of the instance (steps 7, 13 and 19). If the character is an alphabetic character, the
algorithm checks if there are a sequence of alphabetic characters (steps 9 and 10) and
stop when the next character is not an alphabetic character. Then, step 11 considers the
sequence of characters as a sub-token of alphabetic data type and assigned a regular
expression of the sub-token to rexMAi. The same process is applied for numeric and
special characters data types. Finally, once all characters of the instance have been
checked, the final regular expression, Att_ReXMAi, is obtained (step 26).

Exploring Instances for Matching Heterogeneous Database Schemas 307

3.3.2 Google Similarity Distance

The Google similarity uses the World Wide Web as a database and Google as a search
engine. Google’s similarity of words and phrases from the World Wide Web uses
Google page counts, as shown in equation (2). Where f(x) is the number of Google hits
for the search term x, f(y) is the number of Google hits for the search term y, f(x, y) is the
number of Google hits for both terms x and y together, and M is the number of web
pages indexed by Google. The World Wide Web is the largest database on earth and the
context information entered by millions of independent users averages out to provide
automatic semantics of useful quality [30][31]. For instance, if we want to search for a
given term in the Google web pages, e.g. “Msc”, we will get a number of hits that is
108,000,000. This number refers to the number of pages where this term is found. For
another term, “Phd”, the number of hits for this term is 272,600,000. Furthermore, if we
search for those pages where both terms” Msc” and “Phd” are found, that gives us
53,800,000 hits.

 max (log f (x), log f (y)) - log f (x, y)
GSD (x, y) = (2)
 log M - min (log f (x), log f (y))

3.3.3 Google Similarity for Alphabetic Data Type

This approach calculates the semantic similarity score for the attributes with alphabetic
data type that comprises instances consisting of only alphabetic characters ([A...Z,
a…z]). This approach utilizes the Google similarity as explained in Fig. 7 illustrates the
algorithm to find the semantic similarity in our proposed approach. The algorithm needs
as input, classes of alphabetic data type from both source and target schemas that are
constructed from the previous phase. The algorithm analyses each attribute of the source
schema, SNC_alph, and each attribute of the target schema, TNC_alph (steps 6 and 7).
Then, the similarity of two instances from the attributes of the different schemas is
measured by calling the Algorithm 7 (step 14).

 In Algorithm 7, step 2 presents the number of pages, M, indexed by Google, which
is currently equal to 3,000,000,000. Steps 3, 4 and 5 are used to get the number of hits
for the input instances. Then we apply the number of hits of the instances in the equation
(2) (step 6). Returning to the Algorithm 6, in step 14 the similarity score is calculated by
referring to Algorithm 7. If the similarity score is greater than the given threshold1 (step
15), then the similarity score value is added to count (step 16). The threshold1 in this
work is set to 60, the same value used by previous work [34]. Then, the average
similarity score for the instance ak2,i is calculated by dividing count with Tlenght1 which
is then added to the set indexk2 (step 18). For each element of indexk2 (step 20) the total
average similarity score for the attribute SAi is calculated. In step 22 the final similarity
score is calculated by dividing the total average similarity score for the attribute SAi with
the number of instances of SNC_alph, Tlenght2. An average similarity score is
calculated for each attribute of the source schema with each attribute of the target

308 Osama A. Mehdi et al.

schema, i.e. there will be p x q average similarity scores based on our algorithm depicted
in Fig. 7.

Algorithm 6
Input: A set of attributes of the source schema with alphabetic

data type, SNC_alph = {SA1, SA2, …, SAp}, a set of
attributes of the target schema with alphabetic data type,
TNC_alph = {SB1, SB2, …, SBq}

Output: Set of similarity score, Sim_score = {scoreA1B1,
scoreA1B2, …, scoreA1Bq, …, scoreA2B1, scoreA2B2, …,
scoreA2Bq, …, scoreApB1, scoreApB2,…, scoreApBq}

1.BEGIN
2. Let Tlenght1 = number of instances of TNC_alph of the

 target schema
3. Let Tlenght2 = number of instances of SNC_alph of the

 source schema
4. Outcome = 0, indexk2 = { }, sum = 0
5. Let threshold1 = 60
6. FOR each SAi of SNC_alph DO
7. FOR each SBj of TNC_alph DO
8. BEGIN
9. FOR k2 = 0 until Tlenght2 - 1 DO

10. BEGIN
11. count = 0
12. FOR k1 = 0 until Tlenght1 - 1 DO
13. BEGIN
14. Outcome = Get the Similarity (ak2, i Ai,bk1,j Bj)
15. IF (Outcome >= threshold1) THEN
16. count = count + Outcome
17. END
18. indexk2 = indexk2 ∪ (count/Tlenght1)
19. END
20. FOR each element of indexk2 DO
21. sum = sum + indexk2
22. scoreAiBj = (sum/Tlenght2) * 100
23. END
24. END
Get the Similarity(ak2, i, bk1, j):Calls Instance Similarity Score
Algorithm and returns the similarity score between the instance ak2, i

of attribute Ai and instance bk1, j of attribute Bj.
Fig.7. Find the Similarity for Alphabetic Data Type Algorithm

3.4. Identifying the Match

After we have analyzed the instances, classified the attributes, and performed the tasks
of syntactic and semantic matching, the last phase of our proposed approach attempts to
find the correct matching between the attributes that shared the same data type using the
algorithm that is shown in Fig. 9. As shown in Fig. 9, the algorithm needs as input the
classes of numeric and mix data types of the target schema for syntactic matching. As
well as, the list of regular expressions that has been generated for each attribute of the

Exploring Instances for Matching Heterogeneous Database Schemas 309

source schema. While, for semantic matching the inputs are similarity scores. The
algorithm starts by checking the type of class whether it is numeric, mix or alphabetic
data type (steps 6 and 20). For numeric and mix data types the same process is
performed, as they use the concept of regular expression. The algorithm analyses each
element of the set of regular expressions (step 7) and the instances of each attribute, Bi,
of the class of the target schema (steps 8-10). Then, step 11 counts the number of
instances of Bi that matches with the regular expression. Step 12 measures the
percentage of similarity for each attribute Bi with the regular expression. Then, if the
maximum score among these percentages of similarity score is greater than the threshold
value then we can conclude that there is a match between the regular expression which
represents the attribute Aj of source schema with the attribute Bi of target schema (steps
15 and 16).

On the other hand, for the alphabetic data type, the algorithm uses the list of
similarity scores derived from the previous phase. The list of similarity scores contains
the average similarity score for each attribute of the source schema with each attribute of
the target schema. Hence, the algorithm gets the highest_score of similarity achieved
between the attribute of the target schema and the attribute of the source schema (step
23) and if it is equals to or greater than the threshold2 (50), then these attributes are said
to correspond to each other (steps 24 and 25).

Algorithm 7
Input:Instance1, instance2
Output: Google similarity score between Instance1 and

Instance2,Google_Sim_Score
1. BEGIN
2. Let M = Number of pages indexed by Google
3. x = number of hits in Google for Instance1
4. y = number of hits in Google for Instance2
5. Z = number of hits in Google for both Instance1

 and Instance2 together
6.

 max (log f (x), log f (y)) - log f (x, y)
Google_Sim_Score= * 100
 log M - min (log f (x), log f (y))
 7. END

Fig.8. Instance Similarity Score Algorithm

310 Osama A. Mehdi et al.

Algorithm 8
Input: A set of classes from target schema, NC = {NC_alpha,

NC_num, NC_mix}, a set of regular expressions for NC_num,
Rex, a set of regular expressions for NC_mix, Att_ReX;
Att_Sim_Score = {scoreA1B1, scoreA1B2, …, scoreA1Bq, …,
scoreA2B1, scoreA2B2, …, scoreA2Bq,…, scoreApB1,
scoreApB2,…, scoreApBq}

Output: Matching or Not
1. BEGIN
2. Let LRex_mix_num = Length of the list of Rex for

NC_num /*or length of the list of Att_ReX for NC_mix
3. Let j = 0, i = 0, l = 0
4. Let threshold2 = 50
5. FOR each NCl of NC DO
6. IF (type of NCl == “numeric” OR NCl == ”mix”) THEN
7.

FOR each elementj of Rex DO /*or elementj of Att_ReX or
NC_mix where elementj is the regular expression of attribute Aj

8. FOR each Bi of NCl DO
9. FOR k = 0 until number of instances of NCl DO

10. IF (ak, i MATCH rexj of Rex) THEN
11. counter = counter + 1
12. Percentagej=counter/number of instances of NCl*100
13. END
14. END
15. IF (max(percentagej) > threshold2) THEN
16. Bi MATCH with Aj
17. END
18. ELSE

19. BEGIN
20. FOR each Ak DO /*where k = 1, 2, ... , p

21. FOR each Bl DO /*where l = 1, 2, ... , q

22. BEGIN

23.

 Let highest_score_Ak= max(scoreAkB1,scoreAkB2,…,
 scoreAkBq)

24. IF (highest_score_Ak >= threshold2) THEN

25. Ak MATCH with Bl

26. END

27 END

28. END
MATCH: is a build-in method in Java programming language that tells
whether or not this value of at, j matches the given regular

expression.
Fig. 9. Matching Generation Algorithm

Exploring Instances for Matching Heterogeneous Database Schemas 311

4. Evaluation

4.1. Data Set

We used real-world data sets from two different domains: Restaurant and Census, both
of which are available online [36][37]. Table 4 shows the Characteristics of data sets.
For comparison purpose, we compared our proposed approach to [16][20][21] in terms
of precision (P), recall (R), and F-measure (F). However, our proposed approach was
not compared to some of the approaches that are reported in the related work section for
several reasons, most importantly being that these approaches used data sets that are not
accessible through the internet [4][15][17-18][22][23], and some of these approaches
required specific rules [18][23][29] and user intervention [11-13] to perform the
matching process.

 Table 4. The Characteristics of Data Sets

Data Set Restaurant Census

Number of Attributes 5 11

Alphabetic Attributes Name, Type of Food and City workclass,
education,
relationship, race,
sex, marital status,
and native-country

Numeric Attributes X age, fnlwgt,
Education-num and
capital-gain and

Mix Attributes Address, PhoneNumber X

Number of Records 864 4320

Number of Instances 32561 358171

4.2. Measurements

The evaluation metrics considered in this work are precision (P), recall (R) and F-
measure (F) that are shown in equations (3), (4) and (5), respectively. It is based on the
notion of true positive, false positive, true negative, and false negative.

 True positive (TP): The number of matches (really matching) detected.
 False positive (FP): The number of matches (not really matching) detected.

 True negative (TN): The number of non-matches (really non-match) detected

 False negative (FN): The number of non-matches (really matches) detected.

Precision= |TP| / |TP| + |FP| (3)

Recall = |TP| / |TP| + |TN| (4)

312 Osama A. Mehdi et al.

 F-measure = 2 * Precision * Recall / Precision + Recall (5)

For each data set, we kept the number of attributes to 11 and 5 for Census and

Restaurant, respectively. Each experiment was repeated 5 times, we then measured the
precision (P), recall (R) and F-measure (F) and the average of all three measurements
was deducted.

4.3. Results

We have conducted three analyses; (i) Analysis 1 which aims at identifying the optimal
sample size of tuples, (ii) Analysis 2 aims to investigate and to prove that combining
both Google similarity and regular expression as in our proposed approach achieves
higher accuracy compared to utilizing Google similarity or regular expression separately
and lastly, (iii) Analysis 3 which aims at comparing the performance of our proposed
approach to that of the previous work with respect to precision (P), recall (R) and F-
measure (F). The details of each analysis are presented in the following subsections.
When evaluating the proposed approach, we created two sub-tables by randomly
selecting the attributes from the original table of both data sets and used these two sub-
tables as a source schema and target schema for the experiments. The number of
attributes of each sub-table is equal to the number of attributes of the original table.
However, these attributes might occur in different sequence and the same attributes
might be selected more than once. These sub-tables were populated with instances
selected randomly from the original table of the data sets. To represent real world cases,
the number of instances of both sub-tables chosen randomly where different. We
pretended that these sub-tables were two different tables that needed to have their
schemas match [4][16] [20].

4.3.1 Analysis 1

In this analysis, we present the experiments of selecting the optimal sample size of
tuples, which represents the size of samples that achieves acceptable results in terms of
precision (P), recall (R), and F-measure (F). The optimal sample size is the number of
tuples that are used during the phase of identifying instance similarity of instance based
schema matching. For this analysis, several experiments have been conducted and
designed in such a way that each experiment uses different size of samples starting from
5% of the actual table size. The size of samples is increased either 5% or 10% in the
subsequent experiments. The experiments are ended when the precision (P), recall (R)
and F-measure (F) are at least 96% which is close to the best results reported in the
previous work [17]. From this analysis, we found that when the size of samples reached
50%, the results taken of precision (P), recall (R) and F-measure (F) are more satisfying
than the results from previous work. Table 5 illustrates the size of samples considered in
each experiment.

Exploring Instances for Matching Heterogeneous Database Schemas 313

 Table 5. Size of Samples for Each Experiment

Experiment Size of Samples

Experiment 1-1 5%
Experiment 1-2 10%
Experiment 1-3 15%
Experiment 1-4 20%
Experiment 1-5 25%
Experiment 1-6 30%
Experiment 1-7 40%
Experiment 1-8 50%

The experiments are labeled as Experiment 1-1, Experiment 1-2, Experiment 1-3,

Experiment 1-4, Experiment 1-5, Experiment 1-6, Experiment 1-7 and Experiment 1-8.
These eight experiments used the same data sets. For each table, we kept the number of
attributes to 11 and 5 for Census and Restaurant data sets, respectively. We repeated
each experiment 5 times, measured the P, R and F and averaged these results.

4.3.1.1 Result of Analysis 1

We reported the precision (P), recall (R) and F-measure (F) for the experiments 1-1, 1-
2, 1-3, 1-4, 1-5, 1-6, 1-7 and 1-8 as shown in Table 6 and Table 7. The percentage
increases as the sample size increases. For example, the percentages are 69% and 70%
for precision (P) and recall (R), respectively when the size of samples is 5%, however,
when these percentages increased to 87% and 100% when the size of samples was 25%.

Although we have mentioned that acceptable results mean the results of precision (P),
recall (R) and F-measure (F) are close to the best results as reported in previous work,
however in this analysis the precision (P) is lower but the recall (R) and F-measure (F)
are higher than those reported in the previous work [19]. Compared to the results shown
in Table 6 for the Restaurant data set there is a slight different in the results of Census
data set as shown in Table 7. For example, when the size of samples is 5% the precision
(P) and recall (R) achieved for the Restaurant data set are 69% and 70% respectively,
while for the Census data set, the precision (P) and recall (R) are 61% and 80%,
respectively. The precision (P) and recall (R) increased to 81% and 96% respectively
when the size of samples is 25%. The reason is due to the characteristics of Restaurant
data set that consists of three attributes with alphabetic data type and two attributes with
mix data types. From the results, we can conclude that 50% of the actual table size is the
optimal sample size that represents the number of tuples that will be used during the
phase of identifying instance similarity of instance based schema matching. Thus, we
have stopped the experiments at this stage as the results achieved with the sample size of
50% outperformed the results reported in the previous works in terms of precision (P),
recall (R), and F-measure (F).

314 Osama A. Mehdi et al.

4.3.2 Analysis 2

This analysis aims to investigate and to prove that combining both Google similarity and
regular expression, as in our proposed approach, achieves higher accuracy compared to
utilizing Google similarity or regular expression separately. From the results that are
shown in Fig.10 and Fig.11 the following can be concluded:

 Google similarity achieved better results in terms of precision (P), recall (R) and F-
measure (F) for the Census data set compared to the Restaurant data set.

 Regular expression achieved better results in terms of precision (P), recall (R) and F-
measure (F) for the Restaurant data set compared to the Census data set.

 For the Restaurant data set, Google similarity achieved better results with regards to
precision (P) (60%) than regular expression (40%). However, regular expression
achieved better results with regards to recall (R) (74%) than Google similarity (36%).

 For the Census data set, Google similarity achieved better results with regards to
precision (P) (67%) than regular expression (38%). However, regular expression
achieved better results with regards to recall (R) (71%) than Google similarity (47%).

These results are due to the characteristics of the data sets used in the experiments.

The Restaurant data set consists of three attributes; alphabetic data type and two
attributes with mix data types, while the Census data set consists of four attributes;

Table 6. Results Related to the Restaurant Data Set for the Eight Experiments

Experiment (EX) Size of Samples Precision (P) Recall
(R)

F-measure
(F)

Ex 1-1 5% 69% 70% 70%
Ex 1-2 10% 78% 80% 79%
Ex 1-3 15% 80% 94% 87%
Ex 1-4 20% 83% 98% 90%
Ex 1-5 25% 87% 100% 93%
Ex 1-6 30% 86% 100% 92%
Ex 1-7 40% 86% 100% 92%
Ex 1-8 50% 89% 100% 95%

Table 7. Results Related to the Census Data Set for the Eight Experiments

Experiment (EX) Size of Samples Precision (P) Recall
(R)

F-measure
(F)

Ex 1-1 5% 61% 80% 69%
Ex 1-2 10% 70% 88% 78%
Ex 1-3 15% 74% 93% 85%
Ex 1-4 20% 76% 90% 82%
Ex 1-5 25% 81% 96% 88%
Ex 1-6 30% 86% 100% 92%
Ex 1-7 40% 91% 96% 93%
Ex 1-8 50% 97% 97% 97%

Exploring Instances for Matching Heterogeneous Database Schemas 315

numeric data type and seven attributes with alphabetic data types. Google similarity is
suitable at handling similarity between instances with alphabetic data type compared to
instances with numeric and mix data types. For example, comparing the following
instances "310/472-1211" and "818/585-0855" taken from the same attribute
PhoneNumber of the Restaurant data set, the similarity score returned by Google
similarity is 0.49, which indicates “not match” while these instances are from the same
attribute. Thus, for the Restaurant data set, Google similarity is not able to find correct
matches for the Address and PhoneNumber attributes while for the Census data set
Google similarity is not able to find correct matches for the following attributes; age,
fnlwgt, Education-num and capital-gain. While for regular expression, the opposite was
observed. Regular expression is suitable at handling similarity between instances with
numeric and mix data types compared to instances with alphabetic types. For example,
comparing the following instances "Canada" and "Bachelor" taken from the attributes
native-country and education of the Census data set, the result returned by regular
expression is a match while these instances are from different attributes. Thus, for the
Restaurant data set, regular expression is not able to find matches for the Name, City and
Type of Food attributes while for the Census data set regular expression is not able to
find matches for the following attributes: workclass, education, relationship, race, sex,
marital status, and native-country.

Fig.10.Matching Results using Google Similarity

316 Osama A. Mehdi et al.

Fig.11. Matching Results using Regular Expression

4.3.3 Analysis 3

In this analysis, we focus on the performance of our proposed approach and compare it
to the previous works taking into account, precision (P), recall (R), and F-measure (F).
Fig.12 and Fig.13 show the results of accuracy in terms of precision (P), recall (R) and
F-measure (F) for the proposed approach of instance based schema matching.

From the results seen above, the following can be concluded: (i) we achieved 96% for
precision (P) and 93% for recall (R) for the Restaurant data set, while with Census data
set, scores of 99 % for precision (P) and 97% for recall (R) were achieved. The size of
samples used is 50% of the actual table size, which has been identified through the
experiments conducted in the Analysis 1. For comparison purpose, we compared our
approach to the previous approaches proposed by [16][20][21]. We evaluated [21]
approach based on the two data sets, namely: Restaurant and Census. Fig. 12 and Fig. 13
show the results of our proposed approach compared to the [21] in terms of precision
(P), recall (R) and F-measure (F). From these results the approach proposed by [21]
achieved low accuracy (66%, 68% and 67% for precision (P), recall (R), and F-measure
(F) respectively) for the Restaurant data set. While for the Census data set the approach
by [21] achieved 83%, 74% and 78% for precision (P), recall (R) and F-measure (F),
respectively. This is due to the fact that [21] approach depends on the existence of
common/identical instances between the compared attributes. Furthermore, Fig. 13
shows the matching results using Census data set of our proposed approach compared to
the approaches proposed by [16][20] in terms of precision (P), recall (R) and F-measure
(F).

Exploring Instances for Matching Heterogeneous Database Schemas 317

Fig.12. Matching Results of the Restaurant Data Set

Fig.13. Matching Results of the Census Data Set

From these results, we can conclude that our proposed approach achieved better

results although only a sample of instances were used instead of considering the whole

318 Osama A. Mehdi et al.

instances during the process of instance based schema matching as used in the previous
works [16][20][21].

5. Conclusion

In this paper, we proposed an instance based schema matching approach to identify 1-1
schema matching. Our proposed approach adopts strategies based on Google similarity
as a web semantic and regular expression as pattern recognition. Our experimental
results show that our proposed approach is able to identify 1-1 matches with high
accuracy in terms of precision (P), recall (R) and F-measure (F) although only a sample
of instances is used instead of considering the whole instances during the process of
instance based schema matching. In the near future, we plan to extend our proposed
approach to handle complex schema matching (n-m), since identifying complex matches
is a more challenging problem.

References

1. Hai, D. (2007). Schema matching and mapping-based data integration: Architecture,
approaches and evaluation. VDM Verlag.

2. Aničić, N., Nešković, S., Vučković, M., & Cvetković, R. 2012. Specification of data schema
mappings using weaving models. Computer Science and Information Systems, 9(2), 539-
559.

3. Madhavan, J., Bernstein, P. A., & Rahm, E. 2001. Generic Schema Matching with Cupid. In
Proceedings of the 27th International Conference on Very Large Data Bases (VLDB 01),
San Francisco, CA, USA, pp. 49-58.

4. Liang, Y. 2008. An Instance-Based Approach for Domain-Independent Schema Matching.
In Proceedings of the 46th Annual Southeast Regional Conference on XX (ACM-SE 46).
ACM, New York, USA, pp. 268-271.

5. Feng, J., Hong, X., & Qu, Y. 2009. An Instance-Based Schema Matching Method with
Attributes Ranking and Classification. In Proceedings of the 6th international conference
on Fuzzy systems and knowledge discovery, IEEE Press, NJ, USA, Vol. 5, pp. 522-526.

6. Szymczak, M., Bronselaer, A., Zadrożny, S., & De Tré, G. 2016. Content Data Based
Schema Matching. In Challenging Problems and Solutions in Intelligent Systems (pp. 281-
322). Springer International Publishing.

7. Tian, A., Kejriwal, M., & Miranker, D. P. 2014. Schema matching over relations, attributes,
and data values. In Proceedings of the 26th International Conference on Scientific and
Statistical Database Management (p. 28). ACM.

8. Yatskevich, M., & Giunchiglia, F. 2004. Element Level Semantic Matching Using WordNet.
In Proceedings of Meaning Coordination and Negotiation Workshop, ISWC.

9. Rull, G., Farré, C., Teniente, E., & Urpí, T. 2013. Validation of schema mappings with
nested queries. Computer Science and Information Systems, 10(1), 79-104.

10. De Carvalho, M. G., Laender, A. H., GonçAlves, M. A., & Da Silva, A. S. 2012. An
Evolutionary Approach to Complex Schema Matching. Information Systems, Vol. 38, No. 3,
pp. 302-316.

11. Christen, P. 2012. Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution and Duplicate Detection. Springer Publishing Company, Incorporated.

Exploring Instances for Matching Heterogeneous Database Schemas 319

12. Li, W. S., & Clifton, C. 1994. Semantic Integration in Heterogeneous Databases using
Neural Networks. In Proceedings of the 20th International Conference on Very Large Data
Bases (VLDB 94), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 1-12.

13. Li, W. S., & Clifton, C. 2000. SEMINT: A Tool for Identifying Attribute Correspondences
in Heterogeneous Databases using Neural Networks. Data and Knowledge Engineering,
Vol. 33, No. 1, pp. 49-84.

14. Doan, A., Domingos, P., & Halevy, A. Y. 2001. Reconciling Schemas of Disparate Data
Sources: A Machine-Learning Approach. In Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data (SIGMOD 01), ACM, New York, NY,
USA, Vol. 30, No. 2, pp. 509-520.

15. Berlin, J., & Motro, A. 2001. Autoplex: Automated Discovery of Content for Virtual
Databases. Cooperative Information Systems, Springer Berlin Heidelberg, pp. 108-122.

16. Kang, J., & Naughton, J. F. 2003. On Schema Matching with Opaque Column Names and
Data Values. In Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data (SIGMOD 03), New York, NY, USA, pp. 205-216.

17. Li, Y., Liu, D. B., & Zhang, W. M. 2005. Schema Matching using Neural Network. In
Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence
(WI '05). IEEE Computer Society, Washington, DC, USA, pp. 743-746.

18. Bilke, A., & Naumann, F. 2005. Schema Matching using Duplicates. In Proceedings of the
21st International Conference on Data Engineering (ICDE 05), IEEE Computer Society,
Washington, DC, USA, pp. 69-80.

19. Yang, Y., Chen, M., & Gao, B. 2008. An Effective Content-Based Schema Matching
Algorithm. In Proceedings of the 2008 International Seminar on Future Information
Technology and Management Engineering (FITME 08). IEEE Computer Society,
Washington, DC, USA, pp. 7-11.

20. Kang, J., & Naughton, J. F.. 2008. Schema Matching using Interattribute Dependencies.
Knowledge and Data Engineering, IEEE Transactions, Vol. 20, No. 10, pp. 1393-1407.

21. Dai, B. T., Koudas, N., Srivastava, D., Tung, A. K., & Venkatasubramanian, S. 2008.
Validating Multi-Column Schema Matchings by Type. In Proceedings of the 2008 IEEE
24th International Conference on Data Engineering (ICDE 08). IEEE Computer Society,
Washington, DC, USA, pp. 120-129.

22. Feng, J., Hong, X., & Qu, Y. 2009. An Instance-Based Schema Matching Method with
Attributes Ranking and Classification. In Proceedings of the 6th International Conference
on Fuzzy Systems and Knowledge Discovery, IEEE Press, NJ, USA, Vol. 5, pp. 522-526.

23. Chua, C. E. H., Chiang, R. H., & Lim, E. P. 2003. Instance-Based Attribute Identification in
Database Integration. The VLDB Journal, Vol. 12, No. 3, pp. 228-243.

24. Zapilko, B., Zloch, M., & Schaible, J. (2012, November). Utilizing regular expressions for
instance-based schema matching. In Proceedings of the 7th International Conference on
Ontology Matching-Volume 946 (pp. 240-241). CEUR-WS. org.

25. Chicago
26. Kleene, S. C. 1951. Representation of Events in Nerve Nets and Finite Automata. Automata

Studies, Princeton University Press, Princeton, NJ, pp. 3-42.
27. Friedl, J. E. 2006. Mastering Regular Expressions. O'Reilly Media, Inc.
28. Doan, A., & Halevy, A. Y. 2005. Semantic Integration Research in the Database

Community: A Brief Survey. AI Magazine, Vol. 26, No. 1, pp. 83-94.
29. Stubblebine, T. 2007. Regular Expression Pocket Reference: Regular Expressions for Perl,

Ruby, PHP, Python, C, Java and. NET. O'Reilly.
30. Goyvaerts, J., & Levithan, S. 2009. Regular Expressions Cookbook. O'reilly.
31. Cilibrasi, R. L., & Vitanyi, P. M.. 2007. The Google Similarity Distance. Knowledge and

Data Engineering, IEEE Transactions, Vol. 19, No. 3, pp. 370-383.
32. Cilibrasi, R., & Vitanyi, P. 2004. Automatic Meaning Discovery using Google. Technical

Report, University of Amsterdam, National ICT of Australia, pp. 1-31.

320 Osama A. Mehdi et al.

33. Rahm, E., & Bernstein, P. A. 2001. A Survey of Approaches to Automatic Schema

Matching. The VLDB Journal, Vol. 10, No. 4, pp. 334-350.
34. Blake, R. 2007. A Survey of Schema Matching Research. College of Management Working

Papers, University of Massachusetts Boston, Paper 3.
35. Partyka, J., Parveen, P., Khan, L., Thuraisingham, B., & Shekhar, S. 2011. Enhanced

Geographically Typed Semantic Schema Matching. Web Semantics: Science, Services and
Agents on the World Wide Web, Vol. 9, No. 1, pp. 52-70.

36. http://www.cs.cmu.edu/~mehrbod/RR/
37. http://archive.ics.uci.edu/ml/datasets.html

Osama A. Mahdi is a PhD candidate at the Department of Computer Science and
information technology La Trobe University, Melbourne, Australia. He obtained his
M.Sc. in database from the Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia in 2014. His B.Sc. degree in Computer Science from Babylon
University, Iraq in 2009. His current research interests include Data Stream Mining,
Concept Drift and Data Integration (Schema Matching).

Hamidah Ibrahim is currently a professor at the Faculty of Computer Science and
Information Technology, Universiti Putra Malaysia. She obtained her PhD in computer
science from the University of Wales Cardiff, UK in 1998. Her current research interests
include databases (distributed, parallel, mobile, bio-medical, XML) focusing on issues
related to integrity constraints checking, cache strategies, integration, access control,
transaction processing, data stream, data analytic, and query processing and
optimization; data management in grid and knowledge-based systems.

Lilly Suriani Affendey is an Associate Professor at the Faculty of Computer Science
and Information Technology, Universiti Putra Malaysia (UPM). She received her
Bachelor of Computer Science from University of Agriculture, Malaysia in 1991 and
MSc. in Computing from the University of Bradford, UK in 1994. In 2007 she received
her PhD in Database Systems from University Putra Malaysia. Her research interest
includes multimedia databases, video retrieval, data science and big data analytics.

Eric Pardede received his PhD in Computer Science from La Trobe University,
Melbourne, Australia. He is currently a Senior Lecturer in the Department of Computer
Science and Information Technology at La Trobe University, Australia. He has wide
range of teaching and research experience. His current research interests include data
analytics, higher education pedagogy and IT entrepreneurship.

Jinli Cao received her PhD in Computer Science from Department of Mathematics and
Computing University of Southern Queensland, Australia in 1997. She is currently a
senior lecturer in Department of Computer Science and Computer Engineering of La
Trobe University. She has wide range of teaching and research experience. Her current
research interests include Data Quality, Big Data Analytics, Recommendation Systems
and Query Mining.

Received: May 25, 2017; Accepted: February 20, 2018.

	1. Introduction
	2. Related Work
	3. The Proposed Approach
	3.1. Analyzing Instances
	3.2. Classifying Schema Attributes
	3.3. Identifying Instance Similarity
	3.3.1 Regular Expression
	3.3.1.1 Regular Expression for Numeric Data Type
	3.3.1.2 Regular Expression for Mix Data Type
	3.3.2 Google Similarity Distance
	3.3.3 Google Similarity for Alphabetic Data Type
	3.4. Identifying the Match

	4. Evaluation
	4.1. Data Set
	4.2. Measurements
	4.3. Results
	4.3.1 Analysis 1
	4.3.1.1 Result of Analysis 1
	4.3.2 Analysis 2
	4.3.3 Analysis 3

	5. Conclusion
	References
	Word Bookmarks
	_Hlk481912564

