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Abstract. Instance based schema matching aims to identify correspondences 
between different schema attributes. Several approaches have been proposed to 
discover these correspondences in which instances including those with numeric 
values are treated as strings. This prevents discovering common patterns or 
performing statistical computation between numeric instances. Consequently, this 
causes unidentified matches for numeric instances which further effect the results. 
In this paper, we propose an approach for addressing the problem of finding 
matches between schemas of semantically and syntactically related attributes. 
Since we only fully exploit the instances of the schemas, we rely on strategies that 
combine the strength of Google as a web semantic and regular expression as 
pattern recognition. To demonstrate the accuracy of our approach, we have 
conducted an experimental evaluation using real world datasets. The results show 
that our approach is able to find 1-1 matches with high accuracy in the range of 
93% - 99%. Furthermore, our proposed approach outperformed the previous 
approaches using a sample of instances. 

Keywords: schema matching, instance based schema matching, Google 
similarity, regular expression. 

1. Introduction 

One of the vital tasks in database integration is schema matching. Schema matching is 
the task of identifying correspondences between schema attributes. Matching two 
schemas S and T requires deciding if two attributes s of S and t of T represent the same 
real-world concept. While humans may be able to easily discover if two attributes match 
or non-match, however it is difficult for machines to discover it, especially when these 
two attributes have semantic heterogeneity. For example, s and t can represent different 
concepts but have the same name. The opposite is also possible; s and t can represent the 
same concept but have different names. To solve the problem of finding the 
correspondences between schemas, available information could help to identify the 
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semantics of schema elements and to detect their similarity. Three types of available 
information commonly used to determine the correspondences of schema matching are 
schema information, instances, and auxiliary information [1][2]. 

 

 Schema information: Various kinds of information, such as element name, 
description, data type, constraint, and schema structure, can be examined to 
characterize and compare the semantics of schema elements [3]. 

 Instances: In many applications, such as data integration and transformation, 
instances are available for the schemas to be matched and can also be exploited to 
characterize the contents and semantics of schema elements [4][5][6][7]. 

 Auxiliary information: This category comprises resources used to obtain information 
that can be utilized to detect similarities between schema elements. For example, 
utilizing dictionaries and thesauri such as WordNet, enables a search for semantic 
relationships like synonymy and hypernymy between element names [8]. 
 
During the process of schema matching, schema information which includes element 

name, description, data type, constraint, and schema structure are normally used by 
previous works in an attempt to achieve correct matching between schemas or even 
when the source and the target schema are nested relational, as in [9]. However, in some 
real world cases it may not be possible to use the information of schema structure. There 
are cases where information about the schema structure is not available such as in, fraud 
detection, crime investigation, counter-terrorism and homeland security [10][11]. In 
such scenarios, instances are the only option available that can be used for schema 
matching. Even though, schema information might be available however there are cases 
where it is worthless to be used for matching purpose. An example is when the schema 
attributes are abbreviations. For instance, the attribute name CN could be an 
abbreviation of Customer Name or Company Name while SSN is an abbreviation of 
Social Security Number. Hence, data instances can give an accurate characterization of 
the actual contents of schema attributes. Several approaches that utilized instances 
during the process of schema matching have been proposed [4-7][12-23]. These 
approaches focused on one main objective which is improving the accuracy of instance 
based schema matching in terms of precision (P), recall (R), and F-measure (F).  

By analysing the instance based schema matching approaches, we observed that 
neural network, machine learning, theoretic information discrepancy and rule based have 
been utilized by these approaches [4][16][18][20][21][23]. The goal of these approaches 
is to discover correspondences between schema attributes whereby instances including 
instances with numeric values are treated as strings [10]. This prevents discovering 
common patterns or performing statistical computation between numeric instances. As a 
consequence, this causes unidentified matches for numeric instances and further reduces 
the quality of match results. Thus, for instance level approaches, an approach for 
identifying existing instance patterns must be deployed. 
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2. Related Work 

Instance based schema matching examines instances to determine corresponding schema 
attributes. It represents a substitutional choice for schema matching. Even when 
substantial schema information is available, considering instances can complement 
schema based approaches with additional insights on the semantics and contents of 
schema attributes and can be beneficial in uncovering wrong interpretation of schema 
information, i.e. it would be helpful to disambiguate between schema level matches by 
matching the attributes whose instances are syntactically and semantically more similar. 
Neural network, machine learning, information theoretic discrepancy and rule based are 
approaches used for instance based schema matching. 

Neural network is able to obtain the similarities among data directly from their 
instances and empirically infer solutions from data in the absence of prior knowledge for 
regularities. Neural network is employed to cluster similar attributes, whose instances 
are uniformly characterized using a feature vector of constraint based criteria. For 
instance based schema matching, the Back Propagation Neural Network (BPNN), which 
can acquire and store a mass of mappings between input and output, is ideal. However, 
neural network can be viewed as specific tool since it is trained based on domain-
specific training data. It can only be used to resolve problems associated with that 
domain. Instance based schema matching approaches based on neural network [12] 
[13][17][19] achieved precision (P), recall (R), and F-measure (F) in the range of 65% - 
96%. 

Solutions that are based on machine learning generally employ methods such as 
Naïve Bayesian classification to enhance the accuracy of schema based matching. 
Learning-based solutions require a training data set of correct matches that may require 
a large training data set to determine the correct matches. Several approaches have been 
proposed [5][14-15] that employ machine learning techniques to first learn the instance, 
characteristics of the matching or non-matching attributes and then use them to 
determine if a new attribute has instances with similar characteristics or not. The 
precision (P), recall (R), and F-measure (F) achieved by these approaches are in the 
range of 66% - 92%. 

Many approaches have applied the notion of information theoretic discrepancy such 
as mutual information and distribution values [4][16][20][21]. The main advantages of 
applying an information theoretic discrepancy approach are that its skillfulness and lack 
of constraints. However, approaches of information theoretic discrepancy need some 
probabilities of overlapping in the values being compared. Instance based schema 
matching based on information theoretic discrepancy achieved precision (P), recall (R), 
and F-measure (F) in the range of 45% - 92%. 

Rule based approaches enjoy many benefits. The first benefit of using rule based 
would be, low cost and also no requirement for training as in learning-based techniques. 
The second benefit, its quick and concise method to capture valuable user knowledge 
about the domain. Instance based schema matching based on rules [13][18][24] 
achieved precision (P), recall (R), and F-measure (F) in the range of 72% - 87%. 
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3. The Proposed Approach 

We have designed an approach for determining correspondences between schema 
attributes by exploring the instances of schemas. The proposed approach consists of four 
main phases as illustrated in Fig. 1. These phases are analyzing instances, classifying 
schema attributes, identifying instance similarity, and identifying the match, which are 
further explained in the following subsections: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                   

 Fig. 1. The Phases of the Proposed Approach 

3.1. Analyzing Instances  

This phase aims at determining the data type of each attribute of both the target and 
source schemas. This is achieved by analyzing the characters of an instance selected 
randomly from each attribute of the schemas. We classify the data type of an attribute as 
alphabetic, numeric and mix. The alphabetic data type is for attributes whose instances 
consist of only alphabetic characters ([A...Z, a…z]), while the numeric data type is for 
attributes whose instances consist of only digit characters ([0…9]). The last type being 
the mix data type, is for attributes whose instances consist of combination of alphabetic, 
digit and special characters (e.g [-, /, \, ., ]). This phase starts by randomly selecting an 
instance of an attribute and counts the number of characters for each data type, then 
checks whether the number is equal to the length of the instance or not. If the number of 
characters of a data type is equal to the length of the instance (without whitespace), then 
the data type of the instance is identified as alphabetic (if all the characters are 
alphabetic) or numeric (if all the characters are numeric). 

Otherwise, if the number of characters of a data type is less than the length of the 
instance, then the data type of the instance is identified as mix. For example, the instance 
“New York” has seven alphabetic characters which is equal to the length of the instance 
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(without whitespace), while the instance “255 Courtland” has three numeric characters 
and nine alphabetic characters which are not equal to the length of the instance which is 
twelve. Thus, “New York” and ”255 Courtland” are classified as alphabetic and mix 
data type, respectively. 

3.2. Classifying Schema Attributes 

After determining the data type of each attribute as discussed in the previous phase, the 
next step will be to classify the attributes that share the same data type in the same class. 
The main aim of this phase is to reduce the number of possible comparisons that needs 
to be performed during the matching process. The maximum number of classes created 
for each schema is based on the number of data types that have been determined from 
the previous phase. Table 1 shows an example to clarify this phase. The following 
instances “New York”, “Doctorate”, “255 Courtland”, “818/762-1221”, and ”49” have 
been classified into three data types which are alphabetic, numeric, and mix. Hence, 
three classes are created based on the identified data types. The class of alphabetic data 
type (C_alpha) includes the attributes of the instances “New York” and “Doctorate”, 
whereas the class of mix data type (C_mix) includes the attributes of the instances “255 
Courtland” and “818/762-1221”, and the third class of numeric data type (C_num) 
includes the attribute of the instance “49”.  

 Table 1. Classifying Schema Attributes based on the Data Type. 

                                      Class of Alphabetic Data Type 

                                Attribute 1 Attribute 2 
                                New York Doctorate 
                                         Class of Mix Data Type 
                                Attribute 1 Attribute 2 

                           255 Courtland 818/762-221 
                                          Class of Numeric Data Type 

                           Attribute 1 - 
                           49 - 

3.3. Identifying Instance Similarity 

The aim of this phase is to compare the attributes in the same class that belong to 
different schemas, whether they are representing the same entity or not. Two tasks are 
carried out to find correspondences between attributes in each class. The first task 
utilizes regular expression for syntactic similarity while the second, utilizes Google for 
semantic similarity. 



300           Osama A. Mehdi et al. 

 

3.3.1 Regular Expression 

Regular expression (known as regexes) is a way to describe text through pattern (format) 
matching and provides an easy way to identify text. Regular expression is a language 
used for parsing and manipulating text [25][26]. Furthermore, it’s a string containing a 
combination of normal characters and special metacharacters or metasequences (*, +,?). 
Table 2 shows the most common metacharacters and metasequences in regular 
expression that are used in this work. Regular expression provides several advantages, 
as [27][29]: 

 Being relatively inexpensive and does not require training or learning as in learning-
based or neural network techniques. 

 Provides a quick and concise method to capture valuable user knowledge about the 
domain. 

  Table 2. The Common Metacharacters in Regular Expression 

Meta-character Name Matches 

. Dot Matches any one character 
[…] Character class Matches any one character listed 
[^…] Negated character class Matches any one character not listed 
? Question One allowed, but it is optional 
* Star Any number allowed, but all are 

optional 
+ Plus At least one required; additional are 

optional 
| Alternation Matches either expression it separates 
^ Caret Matches the position at the start of the 

line 
$ Dollar Matches the position at the end of the 

line 
{X,Y} Specified range X required, max allowed 

 
In general, regular expression of a given set can be determined by analyzing the 

pattern (format) of the instances. Having this regular expression, the correspondence 
attributes are detected by matching the regular expression with the instances of the 
attribute. Regular expression in this work is used to create patterns for both numeric and 
mix data types. In the next subsections, we will show how regular expression works for 
both data types. 

3.3.1.1 Regular Expression for Numeric Data Type 

This subsection explains the process of creating regular expression for the attributes 
with numeric data type. The attributes with numeric data type consist of instances with 
digits ranging from 0 – 9. when creating a regular expression for an attribute, the 
minimum and maximum values of the attribute will be required. Thus, three variables 
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have been identified, namely: nomin, nomax and uppervalue. Initially, nomin and nomax 
are assigned the minimum and maximum values of the attribute, respectively. However, 
in the following iterations, the value of nomin is changed to the last uppervalue + 1. The 
uppervalue is a value which is greater than the value of nomin and less than the value of 
nomax; and is derived based on the following conditions: 

 (i) when the nomin's length of digits is less than the nomax's length of digits, the 
uppervalue is the maximum value based on the nomin’s length of digits and not 
greater than the value of nomax. For instance, if the nomin’s length of digits is three 
(e.g. 345) then the uppervalue is 999. If the uppervalue is greater than the value of 
nomax, then the first digit of the uppervalue is changed to the first digit of nomin 
(399 for the above example). This is then checked against the value of nomax. If the 
new uppervalue is still greater than the value of nomax then the second digit of the 
uppervalue is changed to the second digit of nomin (349 for the above example). This 
process is repeated in which the next digit of the uppervalue is changed to the next 
digit of nomin until the condition stated in the definition of uppervalue is satisfied. 
However, if all the digits of uppervalue have been changed, i.e. the value of 
uppervalue is now equal to the value of nomin, and then the value of nomax is 
assigned to uppervalue. This is to reduce the number of iterations needed in 
identifying the uppervalue. 

 (ii) when the nomin's length of digits is equal to the nomax's length of digits and the 
nomin has at least one zero digit on the right, the uppervalue is derived using the 
formula shown in equation (1). The equation (1) derives the closest uppervalue to the 
nomax. where Sumz is the result of GetZeros function (Step 13, Algorithm 1). If the 
equation (1) returns an uppervalue which does not satisfy the condition that we have 
stated earlier, then the steps as mentioned in (i) above are applied. For instance, if the 
nomin’s length of digits is three (e.g. 120) and the nomax's length of digits is three 
(e.g. 123) then the uppervalue is 119 based on the equation (1). In this case, the value 
of uppervalue does not meet the definition of uppervalue which is greater than the 
value of nomin and less than the value of nomax. Then, the steps as mentioned in (i) 
above are applied to derive the value of uppervalue. 
 
 

uppervalue = (nomax - (nomax MOD Sumz * 10) - 1) (1) 
 
To create a regular expression for an attribute with numeric data type, an interval is 

derived based on the values of nomin and uppervalue as well as the nomin’s length of 
digits. Then a regular expression is created for that interval. This process, i.e. deriving 
interval and generating regular expression for that interval, is repeated until the 
uppervalue reached the value of nomax. The regular expressions of these intervals are 
combined as one regular expression using the | operator which represents the regular 
expression of the attribute. The following example clarifies the process of generating 
regular expression for an attribute with numeric data type. Let the values “7” and “123” 
represents the minimum, nomin, and maximum, nomax, values of an attribute, 
respectively. From the Table 3, we can notice that there are four iterations. In the first 
iteration, the nomin has only one digit, thus the uppervalue is equal to 9. From this, we 
generate a regular expression for the values in the range of 7 - 9 as [7 - 9]. The next step 
is to have an interval with two digits that starts with nomin equals to the last uppervalue 
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+ 1 (i.e. equal to 10 as shown in iteration 2). This step has uppervalue, which is equal to 
99 as it is the maximum number of two digits and it is less than the nomax. A regular 
expression is generated for this interval as [1-9][0-9]. In the third iteration, the nomin's 
length of digits is equal to the nomax's length of digits as well as the nomin has two zero 
digits on the right. Using equation (1), the uppervalue is equal to 119. The process 
builds a regular expression for this interval as 1[0-1][0-9]. In the last iteration, the nomin 
is set to 120 as the start of the new interval (i.e. nomin = last uppervalue +1). Here, the 
nomin's length of digits is equal to the nomax’s length of digits and the nomin has one 
zero digit on the right, thus the uppervalue is derived using equation (1) which is also 
equal to 119.  

Table 3: The Mechanism of the RegEx for Numerical Domain 

Iteration Nomin Uppervalue RegEx Accumulated RegEx 

1 7 9 [7-9] [7-9] 
2 10 99 [1-9][0-9] [7-9]|[1-9][0-9] 
3 100 119 1[0-1][0-9] [7-9]|[1-9][0-9]|1[0-1][0-9] 
4 120 123 12[0-3] [7-9]|[1-9][0-9]|1[0-1][0-

9]|12[0-3] 

 
However, we cannot use 119 as the uppervalue since the uppervalue should be 

greater than the value of nomin and less than the value of nomax. Here, the steps as 
described in condition (i) above are applied in which the uppervalue is set to 999 as it is 
the maximum number of three digits. However, this value cannot be considered as the 
uppervalue since it is greater than the maximum value. Thus, the first digit of the 
uppervalue is changed to the first digit of nomin which gives the value 199. For the 
same reason, 199 is not the value that meets the condition stated in the definition of 
uppervalue. Thus, 129 is then generated which is still greater than nomax. Since 
changing the third digit of 129 with the third digit of nomin does not satisfy the 
definition of uppervalue, therefore the uppervalue is set to nomax. In this stage, the 
regular expression is build for the interval of nomin and nomax as 12[0-3]. Fig. 2 depicts 
the details steps of generating regular expression for numeric data type. The steps 13 
and 14 check whether the nomin has at least one zero at the end and then finds the 
uppervalue only if the nomin and nomax have the same length. As shown in Table 3, 
when the nomin = 100 and the nomax = 123, step 16 computes the next uppervalue. 
This step is repeated until the computed value of the uppervalue is greater than the 
nomin (step 17). Steps 20 - 32 perform the otherwise. These steps select the uppervalue 
that is less than the nomax to be within the interval as shown in Fig. 2 step 17. After 
computing an uppervalue, a regular expression is built for the current interval. This is 
performed by the function Generating_RegEx that takes as input the nomin and 
uppervalue of the interval or nomin and nomax for the last iteration. This function is 
depicted in Fig. 5. 
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Algorithm 1 
Input: A set of attributes with numeric data type,NC_num = 

{NA1,NA2,…,NAn} 
Output:Set of regular expression,Rex={rexNA1,rexNA2, …,rexNAn} 
1.BEGIN 
2. FOR each NAi of NC_num  DO  
3.  BEGIN 
4. Let nomax = the maximum value of attribute NAi 
5. Let nomin = the minimum value of attribute NAi 
6. Let Lmax = the length of the nomax 
7. Let Lmin = the length of the nomin 
8. rexNAi = { },Sumz = 0  
9. finish = False 
10.  WHILE (Not finish) DO 
11.  BEGIN 
12. found = False 
13. Sumz = GetZeros (nomin, Lmin)  
14. IF (Lmax = Lmin AND Sumz  > 0)THEN 
15. BEGIN 
16. uppervalue = (nomax - (nomax MOD Sumz *10)- 1) 
17.  IF (uppervalue > nomin)THEN   
18.  found  =  True 
19. END 
20. IF (Not found) THEN 
21. BEGIN 
22. tlmin = Lmin 
23. While tlmin >0 DO/*Where tlmin = Lmin, Lmin - 1,…,1 
24. BEGIN 
25. upper = GetUpper (nomin,Lmin, tlmin) 
26. uppervalue= GetIntegerValue(upper) 
27. tlmin = tlmin  -  1 
28. IF  (uppervalue  <=  nomax) THEN   
29. found  = True 
30. break 
31.    END 
32.    END 
33. IF (found) THEN 
34. BEGIN 
35. rexNAi=rexNAi+Generating_ReEx(nomin,uppervalue)+"|"  

36. IF (uppervalue = nomax)THEN   
37. finish = True 
38. END 
39. ELSE 
40. BEGIN 
41. rexNAi = rexNAi +Generating_ReEx(nomin, nomax)  
42. finish  =  True 
43. END 
44. nomin  =  uppervalue  +  1 
45. END 
46.   END 
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47. END 
GetZeros(nomin, Lmin: Calls the Find the Number of Zero’s in the nomin 
Algorithm and returns an integer which is the number of '0' digits in 
the nomin. 
GetUpper(nomin, Lmin, tlmin): Calls the GetUpper Algorithm and returns 
the upper value of the nomin. 
GetIntegerValue is a build-in function in Java programming language 
that converts a char to an integer data type. 
Generating_ReEx(nomin,uppervalue): Calls the Generating_ReEx Algorithm 
and returns the regular expression for the values between the nomin 
and uppervalue. 
Fig.2. Generating RegEx for Numeric Attributes Algorithm 

 
Algorithm 2 
Input: nomin, Lmin 
Output:Number of zeros in the right most of nomin, sum 
1. BEGIN 
2. sum  =  0,  temp [ ]  =  " " 
3. temp = GetCharValue (nomin) 
4. WHILE (temp[Lmin - 1]) == 0) AND (Lmin - 1>=0)) DO 
5.  EGIN 
6. sum  =  sum  + 1 
7. Lmin = Lmin  - 1 
8. END 
9. END 
GetCharValue is a build-in function in Java programming language that 
convert an integer to a char data type. 

Fig.3. Find the Number of Zero’s in the nomin Algorithm 

 
Algorithm 3 
Input: nomin, Lmin, tlmin 
Output:Upper value of nomin, uppervalue 

1 BEGIN 
2. uppervalue [ ] =  " " 
3. uppervalue = GetCharValue (nomin) 
4. FOR j = 0 until tlmin - 1 DO  /* where j = 0, 1, …, 
5. uppervalue [(Lmin - 1) - j]  =  '9'    
6. END 

Fig.4. GetUpper Algorithm 
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Algorithm 4 
Input: X,Y 
Output:Regular expression, vec 
1.BEGIN  
2. vec  =  “ “ 

3. Let value1 =  GetCharValue (X) 
4 Let value2 =  GetCharValue (Y) 
5. Let len  =  length of value1 
6.  FOR i = 0 until len DO   /* where i = 0, 1, …, len 
7.  BEGIN 
8. IF (value1[i]  ==  value2[i]) THEN 
9.  vec = vec + value1[i]   /* value2[i] 
10. ELSE 
11. BEGIN 
12 vec  =  vec  +   '[' 
13. vec  =  vec  +  value1[i] 
14. vec  =  vec  +  '-' 
15. vec  =  vec  +  value2[i] 
16. vec  =  vec  +  ' ] ' 
17.  END 
18. END 
19.  END 
Fig.5. Generating_ReEx Algorithm 

3.3.1.2 Regular Expression for Mix Data Type 

This section presents the steps for generating regular expression for the attributes with 
mix data type. Mix data type includes alphabetic, numeric and special characters. The 
general idea is to divide an instance into a set of sub-tokens. Each sub-token is a 
sequential set of characters of a particular data type. Then, a regular expression is built 
for each sub-token of the instance. Finally, the regular expressions of each sub-token are 
combined as the regular expression of the instance. For example, the following instance 
"255 Courtland" can be divided into two sub-tokens which are "255" and "Courtland". 
The first sub-token "255" is considered as a sub-token of the numeric data type, since it 
consists of a sequential set of numeric characters. While, the second sub-token 
"Courtland" belongs to the alphabetic data type as it consists of a sequential set of 
alphabetic characters. Finally, we combine the regular expressions of each sub-token 
that are "\\d+" for the sub-token with numeric characters and "([a-zA-Z]+)" for the sub-
token with the alphabetic characters as the final regular expression of the instance “255 
Courtland”.  
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Algorithm 5 
Input:A set of attributes with mix data types,NC_mix = 

{MA1,MA2,…,MAm}  
Output:Set of regular expressions, Att_ReX ={Att_ReXMA1, 

Att_ReXMA2,…,Att_ReXMAm} 
1. BEGIN 
2. Att_ReX = {  },k = 0 
3. FOR each MAi of NC_mix DO 
4.  Read an instance, I, randomly from MAi 
5. WHILE (k < length of I) DO                            
6.  BEGIN 
7. IF (Ik   {A…Z, a…z}) THEN 
8.  BEGIN  
9. While (k < length of I) AND (Ik  {A…Z, a…z})  
10. k = k + 1 
11. rexMAi = rexMAi + "([a-zA-Z]+)" 
12. END 
13. ELSE (Ik  {0..9}) THEN 

14.  BEGIN 
15.  While (k < length of I) AND (Ik  {0..9}) DO 
16.  k  = k + 1 
17.  rexMAi = rexMAi + "\\d+" 
18.  END 
19. ELSE (Ik   special characters) THEN 
20. k = k + 1 
21. rexMAi = rexMAi + "special character" 

22. ELSE (Ik    white space) THEN 
23. k = k + 1  
24. rexMAi = rexMAi + "\\s" 

25.  END 
26.  Att_ReXMAi = rexMAi 

27. END   

28. END   

Fig.6. Generating RegEx for Mix Data Type Algorithm 

Fig. 6 depicts the details steps of generating the regular expressions for the attributes 
with mix data type. The algorithm analyses each attribute, MAi, of the mix data type 
class, NC_mix, and selects randomly an instance, I, from each attribute, MAi (steps 3 
and 4). The algorithm then checks each character of the selected instance whether it is 
alphabetic, numeric or special character, to determine the data type of each sub-token 
of the instance (steps 7, 13 and 19). If the character is an alphabetic character, the 
algorithm checks if there are a sequence of alphabetic characters (steps 9 and 10) and 
stop when the next character is not an alphabetic character. Then, step 11 considers the 
sequence of characters as a sub-token of alphabetic data type and assigned a regular 
expression of the sub-token to rexMAi. The same process is applied for numeric and 
special characters data types. Finally, once all characters of the instance have been 
checked, the final regular expression, Att_ReXMAi, is obtained (step 26). 
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3.3.2 Google Similarity Distance 

The Google similarity uses the World Wide Web as a database and Google as a search 
engine. Google’s similarity of words and phrases from the World Wide Web uses 
Google page counts, as shown in equation (2). Where f(x) is the number of Google hits 
for the search term x, f(y) is the number of Google hits for the search term y, f(x, y) is the 
number of Google hits for both terms x and y together, and M is the number of web 
pages indexed by Google. The World Wide Web is the largest database on earth and the 
context information entered by millions of independent users averages out to provide 
automatic semantics of useful quality [30][31]. For instance, if we want to search for a 
given term in the Google web pages, e.g. “Msc”, we will get a number of hits that is 
108,000,000. This number refers to the number of pages where this term is found. For 
another term, “Phd”, the number of hits for this term is 272,600,000. Furthermore, if we 
search for those pages where both terms” Msc” and “Phd” are found, that gives us 
53,800,000 hits.  

 
        max (log  f (x), log  f (y)) - log  f (x, y)  
GSD (x, y) = (2) 
        log M - min (log  f (x), log  f (y))   

3.3.3 Google Similarity for Alphabetic Data Type 

This approach calculates the semantic similarity score for the attributes with alphabetic 
data type that comprises instances consisting of only alphabetic characters ([A...Z, 
a…z]). This approach utilizes the Google similarity as explained in Fig. 7 illustrates the 
algorithm to find the semantic similarity in our proposed approach. The algorithm needs 
as input, classes of alphabetic data type from both source and target schemas that are 
constructed from the previous phase. The algorithm analyses each attribute of the source 
schema, SNC_alph, and each attribute of the target schema, TNC_alph (steps 6 and 7). 
Then, the similarity of two instances from the attributes of the different schemas is 
measured by calling the Algorithm 7 (step 14). 

   In Algorithm 7, step 2 presents the number of pages, M, indexed by Google, which 
is currently equal to 3,000,000,000. Steps 3, 4 and 5 are used to get the number of hits 
for the input instances. Then we apply the number of hits of the instances in the equation 
(2) (step 6). Returning to the Algorithm 6, in step 14 the similarity score is calculated by 
referring to Algorithm 7. If the similarity score is greater than the given threshold1 (step 
15), then the similarity score value is added to count (step 16). The threshold1 in this 
work is set to 60, the same value used by previous work [34]. Then, the average 
similarity score for the instance ak2,i is calculated by dividing count with Tlenght1 which 
is then added to the set indexk2 (step 18). For each element of indexk2 (step 20) the total 
average similarity score for the attribute SAi is calculated. In step 22 the final similarity 
score is calculated by dividing the total average similarity score for the attribute SAi with 
the number of instances of SNC_alph, Tlenght2. An average similarity score is 
calculated for each attribute of the source schema with each attribute of the target 
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schema, i.e. there will be p x q average similarity scores based on our algorithm depicted 
in Fig. 7. 

 
Algorithm 6 
Input: A set of attributes of the source schema with alphabetic 

data type, SNC_alph = {SA1, SA2, …, SAp}, a set of 
attributes of the target schema with alphabetic data type, 
TNC_alph = {SB1, SB2, …, SBq} 

Output: Set of similarity score, Sim_score = {scoreA1B1, 
scoreA1B2, …, scoreA1Bq, …, scoreA2B1, scoreA2B2, …, 
scoreA2Bq, …, scoreApB1, scoreApB2,…, scoreApBq} 

1.BEGIN 
2. Let Tlenght1 = number of instances of TNC_alph of the 

               target schema 
3.  Let Tlenght2 = number of instances of SNC_alph of the 

               source schema 
4. Outcome  = 0, indexk2 = {  }, sum = 0 
5. Let threshold1 =  60  
6. FOR each SAi of SNC_alph DO 
7.  FOR each SBj of TNC_alph DO 
8.  BEGIN 
9.  FOR k2 = 0 until Tlenght2 - 1 DO 

10.   BEGIN 
11.    count = 0 
12.    FOR k1 = 0 until Tlenght1 - 1 DO 
13.     BEGIN 
14.    Outcome = Get the Similarity (ak2, i Ai,bk1,j  Bj)                
15.    IF (Outcome >= threshold1) THEN     
16.    count = count + Outcome    
17.    END 
18.  indexk2 =  indexk2 ∪ (count/Tlenght1) 
19.   END 
20.  FOR each element of indexk2 DO  
21.  sum = sum + indexk2 
22.  scoreAiBj  = (sum/Tlenght2) * 100 
23.  END 
24. END 
Get the Similarity(ak2, i, bk1, j):Calls Instance Similarity Score 
Algorithm and returns the similarity score between the instance ak2, i 

of attribute Ai and instance bk1, j of attribute Bj. 
Fig.7. Find the Similarity for Alphabetic Data Type Algorithm 

3.4. Identifying the Match 

After we have analyzed the instances, classified the attributes, and performed the tasks 
of syntactic and semantic matching, the last phase of our proposed approach attempts to 
find the correct matching between the attributes that shared the same data type using the 
algorithm that is shown in Fig. 9. As shown in Fig. 9, the algorithm needs as input the 
classes of numeric and mix data types of the target schema for syntactic matching. As 
well as, the list of regular expressions that has been generated for each attribute of the 
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source schema. While, for semantic matching the inputs are similarity scores. The 
algorithm starts by checking the type of class whether it is numeric, mix or alphabetic 
data type (steps 6 and 20). For numeric and mix data types the same process is 
performed, as they use the concept of regular expression. The algorithm analyses each 
element of the set of regular expressions (step 7) and the instances of each attribute, Bi, 
of the class of the target schema (steps 8-10). Then, step 11 counts the number of 
instances of Bi that matches with the regular expression. Step 12 measures the 
percentage of similarity for each attribute Bi with the regular expression. Then, if the 
maximum score among these percentages of similarity score is greater than the threshold 
value then we can conclude that there is a match between the regular expression which 
represents the attribute Aj of source schema with the attribute Bi of target schema (steps 
15 and 16). 

 

On the other hand, for the alphabetic data type, the algorithm uses the list of 
similarity scores derived from the previous phase. The list of similarity scores contains 
the average similarity score for each attribute of the source schema with each attribute of 
the target schema. Hence, the algorithm gets the highest_score of similarity achieved 
between the attribute of the target schema and the attribute of the source schema (step 
23) and if it is equals to or greater than the threshold2 (50), then these attributes are said 
to correspond to each other (steps 24 and 25).  

 
 
 
 
 
 
 
 
 
 

Algorithm 7 
Input:Instance1, instance2  
Output: Google similarity score between Instance1 and 

Instance2,Google_Sim_Score 
1. BEGIN 
2.  Let M = Number of pages indexed by Google 
3.  x = number of hits in Google for Instance1 
4.  y = number of hits in Google for Instance2 
5.  Z = number of hits in Google for both Instance1   

     and Instance2 together 
6. 
 

 max (log f (x), log  f (y)) - log  f (x, y)  
Google_Sim_Score=  * 100 
 log M - min (log  f (x), log  f (y))   
 7. END 

Fig.8. Instance Similarity Score Algorithm 
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Algorithm 8 
Input: A set of classes from target schema, NC = {NC_alpha,  

NC_num, NC_mix}, a set of regular expressions for NC_num, 
Rex, a set of regular expressions for NC_mix, Att_ReX; 
Att_Sim_Score = {scoreA1B1, scoreA1B2, …, scoreA1Bq, …, 
scoreA2B1, scoreA2B2, …, scoreA2Bq,…, scoreApB1, 
scoreApB2,…, scoreApBq} 

Output: Matching or Not 
1. BEGIN   
2. Let LRex_mix_num = Length of the list of Rex for 

NC_num /*or length of the list of Att_ReX  for NC_mix  
3. Let  j = 0, i = 0, l  = 0 
4. Let threshold2 = 50 
5.  FOR each NCl  of NC DO 
6. IF (type of NCl  == “numeric” OR NCl  == ”mix”) THEN 
7. 
 

FOR each elementj of Rex DO /*or elementj of Att_ReX or 
NC_mix where  elementj is the regular expression of attribute Aj 

8. FOR each Bi of NCl  DO 
9.  FOR k = 0 until number of instances of NCl DO 

10. IF (ak, i  MATCH  rexj of  Rex) THEN   
11. counter = counter + 1 
12. Percentagej=counter/number of instances of NCl*100   
13.  END  
14. END 
15. IF (max(percentagej)  > threshold2) THEN   
16. Bi  MATCH  with  Aj 
17. END 
18. ELSE 

19.  BEGIN 
20.  FOR each Ak  DO      /*where k = 1, 2, ... , p  

21.  FOR each Bl  DO    /*where l =  1, 2, ... , q  

22.   BEGIN 

23. 
 

    Let highest_score_Ak= max(scoreAkB1,scoreAkB2,…,    
        scoreAkBq) 

24. IF (highest_score_Ak >= threshold2) THEN  

25.  Ak MATCH with Bl 

26. END 

27 END 

28. END 
MATCH: is a build-in method in Java programming language that tells 
whether or not this value of at, j matches the given regular 

expression.  
Fig. 9. Matching Generation Algorithm 
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4. Evaluation   

4.1. Data Set 

We used real-world data sets from two different domains: Restaurant and Census, both 
of which are available online [36][37]. Table 4 shows the Characteristics of data sets. 
For comparison purpose, we compared our proposed approach to [16][20][21] in terms 
of precision (P), recall (R), and F-measure (F). However, our proposed approach was 
not compared to some of the approaches that are reported in the related work section for 
several reasons, most importantly being that these approaches used data sets that are not 
accessible through the internet [4][15][17-18][22][23], and some of these approaches 
required specific rules [18][23][29] and user intervention [11-13] to perform the 
matching process.  

    Table 4. The Characteristics of Data Sets 

Data Set Restaurant Census 

Number of Attributes 5 11 

Alphabetic Attributes Name, Type of Food and City workclass, 
education, 
relationship, race, 
sex, marital status, 
and native-country 

Numeric Attributes X age, fnlwgt, 
Education-num and 
capital-gain and 

Mix Attributes Address, PhoneNumber X 

Number of Records 864 4320 

Number of Instances 32561 358171 

4.2. Measurements 

The evaluation metrics considered in this work are precision (P), recall (R) and F-
measure (F) that are shown in equations (3), (4) and (5), respectively. It is based on the 
notion of true positive, false positive, true negative, and false negative. 

 

 True positive (TP): The number of matches (really matching) detected. 
 False positive (FP): The number of matches (not really matching) detected. 

 True negative (TN): The number of non-matches (really non-match) detected  

 False negative (FN): The number of non-matches (really matches) detected. 
 

Precision= |TP| / |TP| + |FP| (3) 
 

Recall =   |TP| / |TP| + |TN| (4) 
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     F-measure = 2 * Precision * Recall / Precision + Recall                (5) 
 
For each data set, we kept the number of attributes to 11 and 5 for Census and 

Restaurant, respectively. Each experiment was repeated 5 times, we then measured the 
precision (P), recall (R) and F-measure (F) and the average of all three measurements 
was deducted. 

4.3. Results  

We have conducted three analyses; (i) Analysis 1 which aims at identifying the optimal 
sample size of tuples, (ii) Analysis 2 aims to investigate and to prove that combining 
both Google similarity and regular expression as in our proposed approach achieves 
higher accuracy compared to utilizing Google similarity or regular expression separately 
and lastly, (iii) Analysis 3 which aims at comparing the performance of our proposed 
approach to that of the previous work with respect to precision (P), recall (R) and F-
measure (F). The details of each analysis are presented in the following subsections. 
When evaluating the proposed approach, we created two sub-tables by randomly 
selecting the attributes from the original table of both data sets and used these two sub-
tables as a source schema and target schema for the experiments. The number of 
attributes of each sub-table is equal to the number of attributes of the original table. 
However, these attributes might occur in different sequence and the same attributes 
might be selected more than once. These sub-tables were populated with instances 
selected randomly from the original table of the data sets. To represent real world cases, 
the number of instances of both sub-tables chosen randomly where different. We 
pretended that these sub-tables were two different tables that needed to have their 
schemas match [4][16] [20]. 

4.3.1 Analysis 1 

In this analysis, we present the experiments of selecting the optimal sample size of 
tuples, which represents the size of samples that achieves acceptable results in terms of 
precision (P), recall (R), and F-measure (F). The optimal sample size is the number of 
tuples that are used during the phase of identifying instance similarity of instance based 
schema matching. For this analysis, several experiments have been conducted and 
designed in such a way that each experiment uses different size of samples starting from 
5% of the actual table size. The size of samples is increased either 5% or 10% in the 
subsequent experiments. The experiments are ended when the precision (P), recall (R) 
and F-measure (F) are at least 96% which is close to the best results reported in the 
previous work [17]. From this analysis, we found that when the size of samples reached 
50%, the results taken of precision (P), recall (R) and F-measure (F) are more satisfying 
than the results from previous work. Table 5 illustrates the size of samples considered in 
each experiment.  
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 Table 5. Size of Samples for Each Experiment 

Experiment Size of Samples  

Experiment 1-1 5% 
Experiment 1-2 10% 
Experiment 1-3 15% 
Experiment 1-4 20% 
Experiment 1-5 25% 
Experiment 1-6 30% 
Experiment 1-7 40% 
Experiment 1-8 50% 

 
The experiments are labeled as Experiment 1-1, Experiment 1-2, Experiment 1-3, 

Experiment 1-4, Experiment 1-5, Experiment 1-6, Experiment 1-7 and Experiment 1-8. 
These eight experiments used the same data sets. For each table, we kept the number of 
attributes to 11 and 5 for Census and Restaurant data sets, respectively. We repeated 
each experiment 5 times, measured the P, R and F and averaged these results. 

4.3.1.1 Result of Analysis 1 

We reported the precision (P), recall (R) and F-measure (F) for the experiments 1-1, 1-
2, 1-3, 1-4, 1-5, 1-6, 1-7 and 1-8 as shown in Table 6 and Table 7. The percentage 
increases as the sample size increases. For example, the percentages are 69% and 70% 
for precision (P) and recall (R), respectively when the size of samples is 5%, however, 
when these percentages increased to 87% and 100% when the size of samples was 25%. 

Although we have mentioned that acceptable results mean the results of precision (P), 
recall (R) and F-measure (F) are close to the best results as reported in previous work, 
however in this analysis the precision (P) is lower but the recall (R) and F-measure (F) 
are higher than those reported in the previous work [19]. Compared to the results shown 
in Table 6 for the Restaurant data set there is a slight different in the results of Census 
data set as shown in Table 7. For example, when the size of samples is 5% the precision 
(P) and recall (R) achieved for the Restaurant data set are 69% and 70% respectively, 
while for the Census data set, the precision (P) and recall (R) are 61% and 80%, 
respectively. The precision (P) and recall (R) increased to 81% and 96% respectively 
when the size of samples is 25%. The reason is due to the characteristics of Restaurant 
data set that consists of three attributes with alphabetic data type and two attributes with 
mix data types. From the results, we can conclude that 50% of the actual table size is the 
optimal sample size that represents the number of tuples that will be used during the 
phase of identifying instance similarity of instance based schema matching. Thus, we 
have stopped the experiments at this stage as the results achieved with the sample size of 
50% outperformed the results reported in the previous works in terms of precision (P), 
recall (R), and F-measure (F). 



314           Osama A. Mehdi et al. 

 

  
4.3.2 Analysis 2   

This analysis aims to investigate and to prove that combining both Google similarity and 
regular expression, as in our proposed approach, achieves higher accuracy compared to 
utilizing Google similarity or regular expression separately. From the results that are 
shown in Fig.10 and Fig.11 the following can be concluded: 

 Google similarity achieved better results in terms of precision (P), recall (R) and F-
measure (F) for the Census data set compared to the Restaurant data set. 

 Regular expression achieved better results in terms of precision (P), recall (R) and F-
measure (F) for the Restaurant data set compared to the Census data set. 

 For the Restaurant data set, Google similarity achieved better results with regards to 
precision (P) (60%) than regular expression (40%). However, regular expression 
achieved better results with regards to recall (R) (74%) than Google similarity (36%). 

 For the Census data set, Google similarity achieved better results with regards to 
precision (P) (67%) than regular expression (38%). However, regular expression 
achieved better results with regards to recall (R) (71%) than Google similarity (47%). 
 
These results are due to the characteristics of the data sets used in the experiments. 

The Restaurant data set consists of three attributes; alphabetic data type and two 
attributes with mix data types, while the Census data set consists of four attributes; 

Table 6. Results Related to the Restaurant Data Set for the Eight Experiments 

Experiment (EX) Size of Samples Precision (P) Recall 
(R) 

F-measure  
(F) 

Ex  1-1 5% 69% 70% 70% 
Ex  1-2 10% 78% 80% 79% 
Ex  1-3 15% 80% 94% 87% 
Ex  1-4 20% 83% 98% 90% 
Ex  1-5 25% 87% 100% 93% 
Ex  1-6 30% 86% 100% 92% 
Ex  1-7 40% 86% 100% 92% 
Ex  1-8 50% 89% 100% 95% 

 
Table 7. Results Related to the Census Data Set for the Eight Experiments 

Experiment (EX) Size of Samples Precision (P) Recall 
(R) 

F-measure  
(F) 

Ex  1-1 5% 61% 80% 69% 
Ex  1-2 10% 70% 88% 78% 
Ex  1-3 15% 74% 93% 85% 
Ex  1-4 20% 76% 90% 82% 
Ex  1-5 25% 81% 96% 88% 
Ex  1-6 30% 86% 100% 92% 
Ex  1-7 40% 91% 96% 93% 
Ex  1-8 50% 97% 97% 97% 
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numeric data type and seven attributes with alphabetic data types. Google similarity is 
suitable at handling similarity between instances with alphabetic data type compared to 
instances with numeric and mix data types. For example, comparing the following 
instances "310/472-1211" and "818/585-0855" taken from the same attribute 
PhoneNumber of the Restaurant data set, the similarity score returned by Google 
similarity is 0.49, which indicates “not match” while these instances are from the same 
attribute. Thus, for the Restaurant data set, Google similarity is not able to find correct 
matches for the Address and PhoneNumber attributes while for the Census data set 
Google similarity is not able to find correct matches for the following attributes; age, 
fnlwgt, Education-num and capital-gain. While for regular expression, the opposite was 
observed. Regular expression is suitable at handling similarity between instances with 
numeric and mix data types compared to instances with alphabetic types. For example, 
comparing the following instances "Canada" and "Bachelor" taken from the attributes 
native-country and education of the Census data set, the result returned by regular 
expression is a match while these instances are from different attributes. Thus, for the 
Restaurant data set, regular expression is not able to find matches for the Name, City and 
Type of Food attributes while for the Census data set regular expression is not able to 
find matches for the following attributes: workclass, education, relationship, race, sex, 
marital status, and native-country. 

 
 

 
  
Fig.10.Matching Results using Google Similarity 
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Fig.11. Matching Results using Regular Expression 

4.3.3 Analysis 3  

In this analysis, we focus on the performance of our proposed approach and compare it 
to the previous works taking into account, precision (P), recall (R), and F-measure (F). 
Fig.12 and Fig.13 show the results of accuracy in terms of precision (P), recall (R) and 
F-measure (F) for the proposed approach of instance based schema matching.  

From the results seen above, the following can be concluded: (i) we achieved 96% for 
precision (P) and 93% for recall (R) for the Restaurant data set, while with Census data 
set, scores of 99 % for precision (P) and 97% for recall (R) were achieved. The size of 
samples used is 50% of the actual table size, which has been identified through the 
experiments conducted in the Analysis 1. For comparison purpose, we compared our 
approach to the previous approaches proposed by [16][20][21]. We evaluated [21] 
approach based on the two data sets, namely: Restaurant and Census. Fig. 12 and Fig. 13 
show the results of our proposed approach compared to the [21] in terms of precision 
(P), recall (R) and F-measure (F). From these results the approach proposed by [21] 
achieved low accuracy (66%, 68% and 67% for precision (P), recall (R), and F-measure 
(F) respectively) for the Restaurant data set. While for the Census data set the approach 
by [21] achieved 83%, 74% and 78% for precision (P), recall (R) and F-measure (F), 
respectively. This is due to the fact that [21] approach depends on the existence of 
common/identical instances between the compared attributes. Furthermore, Fig. 13 
shows the matching results using Census data set of our proposed approach compared to 
the approaches proposed by [16][20] in terms of precision (P), recall (R) and F-measure 
(F).  
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Fig.12. Matching Results of the Restaurant Data Set 

 

 
 

Fig.13. Matching Results of the Census Data Set 

 
From these results, we can conclude that our proposed approach achieved better 

results although only a sample of instances were used instead of considering the whole 
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instances during the process of instance based schema matching as used in the previous 
works [16][20][21]. 

5. Conclusion  

In this paper, we proposed an instance based schema matching approach to identify 1-1 
schema matching. Our proposed approach adopts strategies based on Google similarity 
as a web semantic and regular expression as pattern recognition. Our experimental 
results show that our proposed approach is able to identify 1-1 matches with high 
accuracy in terms of precision (P), recall (R) and F-measure (F) although only a sample 
of instances is used instead of considering the whole instances during the process of 
instance based schema matching. In the near future, we plan to extend our proposed 
approach to handle complex schema matching (n-m), since identifying complex matches 
is a more challenging problem. 
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