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1 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
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Abstract. Decision trees are one of the most widely used predictive modelling
methods primarily because they are readily interpretable and fast to learn. These
nice properties come at the price of predictive performance. Moreover, the standard
induction of decision trees suffers from myopia: a single split is chosen in each
internal node which is selected in a greedy manner; hence, the resulting tree may
be sub-optimal. To address these issues, option trees have been proposed which can
include several alternative splits in a new type of internal nodes called option nodes.
Considering all of this, an option tree can be also regarded as a condensed represen-
tation of an ensemble. In this work, we propose to learn option trees for multi-target
regression (MTR) based on the predictive clustering framework. The resulting mod-
els are thus called option predictive clustering trees (OPCTs). Multi-target regres-
sion is concerned with learning predictive models for tasks with multiple numeric
target variables. We evaluate the proposed OPCTs on 11 benchmark MTR data sets.
The results reveal that OPCTs achieve statistically significantly better predictive
performance than a single predictive clustering tree (PCT) and are competitive with
bagging and random forests of PCTs. By limiting the number of option nodes, we
can achieve a good trade-off between predictive power and efficiency (model size
and learning time). We also perform parameter sensitivity analysis and bias-variance
decomposition of the mean squared error. Our analysis shows that OPCTs can re-
duce the variance of PCTs nearly as much as ensemble methods do. In terms of
bias, OPCTs occasionally outperform other methods. Finally, we demonstrate the
potential of OPCTs for multifaceted interpretability and illustrate the potential for
inclusion of domain knowledge in the tree learning process.

Keywords: multi-target regression, option trees, interpretable models, predictive
clustering trees, bias-variance decomposition of error.

1. Introduction

Supervised learning is one of the most widely researched and investigated areas of ma-
chine learning. The goal in supervised learning is to learn, from a set of examples with
known class, a function that outputs a prediction for the (scalar-valued) class of a previ-
ously unseen example. However, in many real life problems of predictive modelling the
output (target) is structured, e.g. it is a vector of classs values or a tuple of target variables.
There can be dependencies between the class values/targets (e.g., they can be organized
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into a tree-shaped hierarchy or a directed acyclic graph) or some internal relations be-
tween the class values may exist (e.g., as in sequences).

In this work, we concentrate on the task of predicting multiple numeric variables.
Examples thus take the form (xi,yi), where xi = (xi1, . . . , xik) is a vector of k input
variables and yi = (yi1, . . . , yit) is a vector of t target variables. This task is known
under the name of multi-target regression (MTR) [4, 23, 24] (also known as multi-output
or multivariate regression). MTR is a type of structured output prediction task which has
applications in many real life problems, where we are interested in simultaneously pre-
dicting multiple numeric variables. Prominent examples come from ecology and include
predicting the abundance of different species living in the same habitat [12] and predict-
ing properties of forests [21, 29]. Due to its applicability to a wide range of domains, this
task is recently gaining increasing interest in the research community.

Several methods for addressing the task of MTR have been proposed [24, 31]. These
methods can be categorized into two groups of methods [2]: (1) local methods, that predict
each of the target variable separately and then combine the individual model predictions
to get the overall model prediction and (2) global methods, that predict all of the variables
simultaneously (also known as ‘big-bang’ approaches). In the case of local models, for a
domain with t target variables one needs to construct t predictive models – each predicting
a single target. The prediction vector (that consists of t components) of an unseen example
is then obtained by concatenating the predictions of the multiple single-target predictive
models. Conversely, in the case of global models, for the same problem one needs to
construct only one model. In this case, the prediction vector of an unseen example is
obtained by passing the example through the model and getting its (complete) prediction.

In the past, several researchers proposed methods for solving the task of MTR directly
and demonstrated their effectiveness [1, 8, 10, 21, 24, 20, 30]. The global methods have
several advantages over the local methods. First, they exploit and use the dependencies
that exist between the components of the structured output in the model learning phase,
which can result in better predictive performance. Next, they are typically more efficient:
it can happen that the number of components in the output is very large (e.g., predicting
the bioactivity profiles of compounds described with their quantitative structure-activity
relationships on a large set of proteins), in which case executing a basic method for each
component is not feasible. Furthermore, they produce models that are typically smaller
than the sum of the sizes of the models built for each of the components.

The state-of-the-art methods for MTR are based on tree and ensemble learning [8, 24,
27, 31]. Trees for MTR (from the predictive clustering framework) inherit the properties
of regression trees: they are interpretable models, but their construction is greedy. The
performance of trees is significantly improved when they are used in an ensemble setting
[24, 20]. However, the myopia, i.e., greediness, of the tree construction process can lead to
learning sub-optimal models. One way to alleviate this is to use a beam-search algorithm
for tree induction [22], while another approach is to introduce option splits in the nodes
[9, 25].

Beside the many appealing properties of trees, their predictive performance is often
limited. In a variety of machine learning tasks including MTR, learning ensembles of trees
typically significantly improve the predictive power of the single models [24]. However,
learning ensembles has a significant drawback – lack of a possibility to interpret the ob-
tained predictive model. It is not feasible to analyze each tree in an ensemble due to both
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the number of trees and the randomized procedure that is used to learn them. Typically,
this means that there is a trade-off between interpretability and predictive performance.

To address this issue, we propose to extend predictive clustering trees (PCTs) for
MTR towards option trees, i.e., we introduce option predictive clustering trees (OPCTs).
An option tree can be seen as a condensed representation of an ensemble of trees which
shares a common substructure. More specifically, the heuristic function for split selection
can return multiple values that are close to each other within a predefined range. These
splits are then used to construct an option node. For illustration, see Figure 1.

The contributions of this work can be summarized as follows:

– We introduce a new method for addressing the task of MTR that provides a balance
between interpretability and predictive performance: An option PCT can be treated
as an ensemble, or the best subtree can be extracted and analyzed as a single tree.

– We analyze the computational complexity of the proposed method and compare it to
the complexity of the competing methods.

– We perform an empirical evaluation of the performance of the proposed method along
three dimensions: predictive power, time efficiency and size of the models.

– We further analyse the predictive performance by examining the bias-variance de-
composition of the models’ errors. We perform the analysis for the proposed method
as well as the competing methods. As far as we are aware, such an analysis has not
been performed before for MTR methods.

This work extends our earlier work presented in [26] along two major directions. First,
we perform a theoretical analysis of the computational complexity of the proposed method
and compared it to the computational complexity of learning a single PCT and ensembles
of PCTs. Second, we calculate the bias-variance decompositions of mean squared errors to
determine which components of the error are addressed by different parameter selections
and competing methods.

The remainder of this paper is organized as follows. Section 2 proposes the algorithm
for learning option PCTs for MTR. Next, Section 3 outlines the design of the experimen-
tal evaluation and the details on the bias-variance decomposition of the error. Section 4
continues with a discussion of the results. Finally, Section 5 concludes and provides di-
rections for further work.

2. Option predictive clustering trees

The predictive clustering trees framework views a decision tree as a hierarchy of
clusters. The top-node corresponds to one cluster containing all data, which is recur-
sively partitioned into smaller clusters while moving down the tree. The PCT frame-
work is implemented in the CLUS system [3], which is available for download at
http://clus.sourceforge.net.

PCTs are induced following the top-down induction of decision trees (TDIDT) algo-
rithm [7]. There are however two major differences: the heuristic score and the prototype
function are instantiated by the PCT algorithm based on the task that is being addressed
(classification, regression or multi-target prediction etc.). The heuristic score used for se-
lecting the tests in the internal nodes of a regular PCT is the maximization of the variance
reduction resulting from the partitioning of the instances into subtrees corresponding to
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the outcome of the tests. By doing so, we also maximize cluster homogeneity, and, con-
sequently, improve the predictive performance. The PCT algorithm also defines the pro-
totype functions used in each tree leaf to give predictions for new examples based on the
task at hand (e.g., uses averaging for MTR).

Option predictive clustering trees (OPCT) extend the usual PCT framework, by in-
troducing option nodes into the tree building procedure outlined in Algorithm 1. Option
decision trees were first introduced as classification trees by [9] and then analyzed in more
detail by [25]. [17] analyzed regression option trees in the context of data streams.

The major motivation for the introduction of option trees is to address the myopia of
the top-down induction of decision trees (TDIDT) algorithm [7]. Viewed through the lens
of the predictive clustering framework, a PCT is a non-overlapping hierarchical clustering
of the whole input space. Each node/subtree corresponds to a clustering of a subspace and
prediction functions are placed in the leaves, i.e., lowest clusters in the hierarchy. An
OPCT, however, allows the construction of an overlapping hierarchical clustering. This
means that, at each node of the tree several alternative hierarchical clusterings of the
subspace can appear instead of a single one.

When using an OPCT for prediction on a new example, we produce the prediction
by aggregating over the predictions of the alternative subtrees (overlapping clusters) the
example may encounter. However, as not all parts of the tree (hierarchical clustering) are
necessarily overlapping, the example may encounter only nonoverlapping (sub)clusters.
In that case, we produce the prediction as we would with a regular PCT.

When using TDIDT to construct a predictive clustering tree, and in particular when
partitioning the data, all possible splits are evaluated by using a heuristic and the best
one is selected. However, other splits may have very similar heuristic values. The best
partition could be obtained with another split as a consequence of noise or of the sampling
that generated the data. In this case, selecting a different split could be optimal. To address
this concern, the use of option nodes was proposed [25].

An option node is introduced into the tree when it would be hard to determine the best
split, that is when the best splits have similar heuristic values. When this occurs, instead
of selecting only the best split, we select several of them. Specifically, we select up to 5
splits s, called options, that satisfy the following

Heur(s)

Heur(sbest)
≥ 1− ε · dlevel,

where sbest is the best split, ε determines how similar the heuristics must be, d ∈ [0, 1] is
a decay factor and level is the level in the tree of the node we are attempting to split. This
equation assumes that heuristic scores are to be maximized (higher value is better). After
we have determined the candidate splits, we introduce an option node whose children are
split nodes obtained by using the selected splits, i.e., an option node contains options as
its children. Selecting more than 5 options is possible, but, uses more resources and is not
advised [25]. A drawback of this method of split selection is that if some attributes are
highly correlated to the attribute that produces the best split, those attributes will likely be
selected for other splits in the option node. In this case the option node will only increase
the learning time.

As usual, we define the level of a node to be the number of its ancestor nodes, however,
we do not count option nodes. This is motivated by the predictive clustering viewpoint,



Option predictive clustering trees for multi-target regression 463

i.e., the option nodes only mark that there are overlapping clusters and not that there is an
additional level of clustering.

The use of a decay factor makes the selection criterion more stringent in the lower
nodes of the tree. The intuition behind this is that higher up, the split selection is more im-
portant and a larger error would be inferred by introducing a non-optimal split. However,
as we get deeper into the tree, the use of a non-optimal split makes decreasing impact.
This intuition also allows us to prohibit the use of option nodes on levels 3 and greater,
which severely mitigates the problem of combinatorial explosion.

Outline of the entire tree building process is presented in algorithm 1. The variable
candidates is a list of at most 5 tests with the highest heuristic values. Every test is repre-
sented as a triplet (t, h, P ), where t is the actual test function, h its heuristic value and P
the partitions produced by the test.

When using a small ε, e.g., ε = 0.1, we are selecting only options whose heuristics
are within 10% of the best split. However, the use of larger ε, in the extreme case even
ε = 1, can also be motivated through the success of methods such as random forests
and ensembles of extremely randomized trees. Allowing the selection of splits whose
heuristic values are considerably worse than the heuristic value of the best split might not
necessarily reduce the performance of the tree, but actually increase it.

Algorithm 1 The top-down induction algorithm for option PCTs.
Procedure OptionPCT
Input: A data set E, parameter ε, decay factor d, current tree level l
Output: An option predictive clustering tree

candidates = FindBestTests(E, 5)
if |candidates| > 0 then

if |candidates| = 1 or l > 2 then
(t∗, h∗,P∗) = candidates[0]
for each Ei ∈ P∗ do

treei = OptionPCT(Ei, ε, d, l + 1)

return node(t∗,
⋃

i{treei})
else

(t∗0, h
∗
0,P∗

0 ) = candidates[0]
nodes = {}
for each (t∗i , h

∗
i ,P∗

i ) ∈ candidates do
if h∗

i
h∗
0
≥ 1− ε · dl then

for each Ej ∈ P∗
i do

treej = OptionPCT(Ej , ε, d, l + 1)

nodes = nodes ∪ {node(t∗,
⋃

j{treej})}
if |nodes| > 1 then

return option node(nodes)
else

return nodes[0]

else
return leaf(Prototype(E))
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Once an OPCT is built, we want to use it for prediction. In a regular PCT, it is simple
to produce a prediction for a new example. It is sorted into a leaf (reached according to
the splits of the tree) where a prediction is made by using a prototype function. When
traversing an example through an OPCT, we behave the same when we encounter a split
or leaf node. If we traverse an example to an option node, however, we clone the example
for each of the options and traverse one of the copies down each of the options. This
means that in an option node an example is (by proxy of its copies) traversed to multiple
leaves, where multiple predictions are produced. To obtain a single prediction in an option
node, we aggregate the obtained predictions. When addressing multi-target regression this
is generally done by averaging all the predictions per target.

An option tree is usually seen as a single tree, however, it can also be interpreted as a
compact representation of an ensemble. To generate the ensemble of the embedded trees,
we start recursively from the root node and move in a top-down fashion. Each time we
encounter an option node we copy the tree above (and in ”parallel”) for each of the options
and replace the option node with only the option, i.e., single split. This produces one tree
for each option while removing the option node in question. We repeat this procedure on
all the generated trees until we are left with no option nodes. This is illustrated in Figure 1.
For this reason, we will sometimes refer to option trees as pseudo-ensembles.

A given OPCT is also an extension of the PCT that would be learned on the same
data. By definition, whenever we introduce an option node, we include the best split (in
terms of the heuristic)3. In regular construction of PCTs, this is the only split we consider.
Consequently, the PCT is embedded in the OPCT. We can extract it if we, in a top-down
fashion, select the best option in each option node.

Let’s consider a full option node, that is one where we have the full 5 options. Let’s
assume that there are no option nodes further down in the tree. Since we have 5 options
and no options lower in the tree, we have a total of 5 embedded trees. Now, let’s consider
the size of the embedded ensemble, when we add two such nodes under a split node, i.e.,
each leaf of a split node was extended into a full option node. To construct an embedded
tree we can now choose one of the 5 options when the test is satisfied and one of 5
options when it is not. This results in 25 different embedded trees. It can be inferred, that
to calculate the number of embedded trees for an option node we need to sum up the
number of embedded trees for each of its options. In a (binary) split node, however, we
multiply the numbers of embedded trees of the subtree that satisfies the split and of the
subtree that does not, to obtain the total number of embedded trees.

Given the construction constraints described above, we know that option nodes with
up to 5 options can appear only on the first three levels, i.e., levels 0, 1 and 2. If we
now consider a full option tree, we calculate a maximum of (52 · 5)2 · 5 = 57 = 78125
embedded trees. However, many of these trees overlap to a large extent.

Note that a given example will not traverse the entire tree. For example, in Figure 1,
if an example reaches S1 and is traversed into the left child L1, the same result would
happen in both the first and second embedded tree. The example is ”agnostic” of any
option nodes in the right child of S1. Therefore, in a general option tree, a given example
will visit only up to 53 = 125 leaves, as it will only traverse down one side of the tree in
each split node.

3 Not only is the best split included, other splits are compared to it to determine their inclusion in
the option tree.
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In other words, there are a maximum of 125 different predictions that would be aggre-
gated in order to obtain the final prediction of an option tree constructed this way. This can
be compared to a single tree, where only 1 prediction will be made for each example, or
to a tree ensemble, where 1 prediction would be made for each member of the ensemble
and then aggregated to produce the final prediction.

[24] show that the computational complexity of building a multi-target PCT isO((S+
logN)DN logN), where N is the number of examples in the data set, D is the number
of descriptive variables and S is the number of target variables. Let A be the maximum
number of options in an option node (in our case, we set A to 5) and B the maximum
depth at which an option node can occur (in our case, we set B to 3). When constructing
an OPCT, in the worst case scenario, computationally-wise, we have option nodes at all
allowed levels with the maximum number of options. From that point onward we essen-
tially construct AB regular PCTs. Assuming that B is only a fraction of the final tree
depth (i.e., B << logN ), we conclude that the computational complexity of building an
OPCT is AB times greater than the computational complexity of a regular PCT.
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Fig. 1. An option tree (a) and the ensemble of its embedded trees (b). Oi are option nodes, Sj split
nodes and Lk leaf nodes.
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In comparison, a bagging ensemble constructs M independent PCTs on bootstrapped
training sets, making their computational complexity M times that of a single PCT. Ran-
dom forests, in addition to boostrapping, only consider f(D) descriptive variables at each
node. In the regular case, i.e., when f(D) =

√
D, this yieldsO((S+logN)

√
DMN logN)

complexity. To summarize, OPCTs and bagging ensembles are constant factor-times slower
(AB and M respectively) than single PCTs, while random forests can be faster than a sin-
gle PCT for data sets with large numbers of descriptive variables.

3. Experimental design

To evaluate the performance and efficiency of the OPCT method, we construct OPCTs
with two parameter configurations, as well as standard PCTs and ensembles of PCTs. We
first present the benchmark data sets used for evaluation of the methods and then give the
specific experimental setup: parameter selections and evaluation measures.

3.1. Data description

The 11 data sets with multiple numeric targets used in this study come mainly from the
domain of ecological modelling. Table 1 outlines the properties of the data sets. The selec-
tion contains data sets with various numbers of examples described with different numbers
of attributes. For more details on the data sets, we refer the reader to the referenced lit-
erature, the repositories available at: http://mulan.sourceforge.net/datasets-mlc.html and
http://kt.ijs.si/DragiKocev/PhD/resources/, as well as [24] and the references therein.

3.2. Evaluation of predictive performance and efficiency

We parameterize OPCTs by selecting values for the parameters ε and d. We consider two
parameter configurations: (ε = 1, d = 1) and (ε = 0.2, d = 1). When ε = 1, there
are no constraints on the heuristic value of the selected splits with regards to the best

Table 1. Properties of the data sets with multiple numeric targets (regression data sets): M is the
number of instances, |D| the number of descriptive attributes, and T the number of target attributes.

Name of data set M |D| T

Collembola [18] 393 47 3
EDM [19] 154 16 2
Forestry-Kras [29] 60607 160 11
Forestry-Slivnica-LandSat [28] 6218 150 2
Forestry-Slivnica-IRS [28] 2731 29 2
Forestry-Slivnica-SPOT [28] 2731 49 2
Sigmea real [11] 817 4 2
Soil quality [12] 1944 142 3
Vegetation Clustering [16] 29679 65 11
Vegetation Condition [21] 16967 40 7
Water quality [14] 1060 16 14
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test. However, since only the 5 best splits are selected, the risk that a split which would
decrease the predictive performance would be selected is relatively low. This setting most
resembles the ensemble setting, where greater variation is desired. The other parameter
configuration provides a balance between predictive performance and efficiency. In our
previous work [26], we used ε = 0.5 for the efficient version, but it turned out to be too
close to the ensembles still. So in this paper, we selected ε = 0.2.

Next, we define the parameter values used in the algorithms for constructing single
PCTs and ensembles of PCTs. The multi-target PCTs are obtained using F-test pruning.
This pruning procedure uses the exact Fisher test to check whether a given split/test in an
internal node of the tree results in a reduction in variance that is statistically significant
at a given significance level. If there is no split/test that can satisfy this, then the node is
converted to a leaf. An optimal significance level was selected by using internal 3-fold
cross validation, from the following values: 0.125, 0.1, 0.05, 0.01, 0.005 and 0.001.

We consider two ensemble learning techniques: bagging [5] and random forests [6].
These are the most widely used tree-base ensemble learning methods. The construction of
both ensemble methods takes as an input parameter the size of the ensemble, i.e., number
of base predictive models to be constructed. We constructed ensembles with 100 base
predictive models [24]. Furthermore, the random forests algorithm takes as input the size
of the feature subset that is randomly selected at each node. For this purpose, we use the
square root of the number of descriptive attributes d

√
|D|e.

We use 10-fold cross-validation to estimate the predictive performance of the used
methods. We assess the predictive performance of the algorithms using several evalua-
tion measures. In particular, since the task we consider is MTR, we employed three well
known measures: the correlation coefficient (CC), mean squared error (MSE) and relative
root mean squared error (RRMSE). We present here the bias-variance analysis of MSE
and statistical comparison of methods according to RRMSE, where similar conclusions
hold also for the other two measures. Finally, the efficiency of the proposed methods is
measured with the time needed to learn a model and the size of the models (in terms of to-
tal number of leaf nodes). While OPCTs can be learned in parallel on node splitting level,
our implementation does not support it yet. For this reason we used no parallelization in
our experiments, to provide a fairer comparison.

In order to assess the statistical significance of the differences in performance of the
studied algorithms, we adopt the recommendations by [13] for the statistical evaluation of
the results. In particular, we use the Friedman test for statistical significance. Afterwards,
to detect where statistically significant differences occur (i.e., between which algorithms),
we use the Nemenyi post-hoc test.

We present the results of the statistical analysis with average ranks diagrams. The
diagrams plot the average ranks of the algorithms and connect those whose average ranks
differ by less than a given value, called critical distance. The critical distance depends on
the level of the statistical significance (set in our case to 0.05). The difference in perfor-
mance of the algorithms connected with a line is not statistically significant at the given
significance level.

3.3. Parameter sensitivity analysis

This set of experiments is designed to provide more insight into how varepsilon and d
parameters affect the performance and efficiency of OPCTs. For ε we consider the values
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{0.1, 0.2, 0.5, 1.0}, corresponding in order from the most stringent to the least stringent
construction criterion. If we were to select ε = 0, the resulting OPCT would almost
always directly coincide with a regular PCT, as no split would likely reach exactly the
same heuristic value as the best split. Hence, the only way an option node would be
induced is if two splits had the exact same heuristic value, therefore this configuration is
not of interest.

As discussed above, the higher in the tree an option node is induced, the higher the
variation in the learned subtrees. Induction of option nodes in lower levels of the tree not
only contributes to the combinatorial explosion of the number of trees (and consequently
the use of resources), but also generates less variation in the predictions, since the subtrees
affected cover a smaller number of examples. Hence, we wish to curtail the number of
options induced in option nodes lower in the tree. If we select a decay factor of d = 1,
the depth of the option node induction will have no impact, while selecting a decay factor
of 0.5 will effectively double the effective heuristic requirement ε · dl at each level. For
example, for ε = 0.5 and d = 0.5, the requirement would be 0.5 at the root level, 0.25 at
the first level and 0.125 at the third level. We use the following values of the decay factor:
{0.5, 0.9, 1}, these are the most to the least constrictive in terms of the construction of the
OPCT.

Note that, on a given data set, all values of ε and d could produce the same OPCT, if
the splits have very similar heuristic values, e.g., there could always be 5 splits that are
within 10% · dl of the heuristic value of the best split. Therefore, the evaluation of how ε
and d affect both the predictive performance and efficiency must by design be evaluated
on multiple data sets. The parameterized version of the OPCT method for a given ε and d
is denoted OPCTeεdd, e.g., OPCTe0.5d0.9.

In order to facilitate replication of all the experiments, we implemented the method
proposed in this paper in the latest version of CLUS, already available in the public
CLUS repository at http://clus.sourceforge.net.

3.4. Bias-variance decomposition

We analyze the predictive performance of OPCTs as well as the performance of the com-
peting methods by using bias-variance decomposition of the mean squared error [15]. The
analysis allows us to investigate the source of errors of the methods. We perform it for
each target separately. To calculate the decomposition, we need to predict the targets of a
single data sample several times using models trained on different training sets.

Suppose we have a set of m predictive models learned using the same method on
different, but related, training sets. They give m predictions for a target variable for each
of the n data samples. Let yi be the real target value of the i-th data sample and let fij
be the models’ prediction for yi obtained on the j-th training set. Then the mean squared
error (MSE), bias and variance can be calculated as follows:

f̄i =
1

m

m∑
j=1

fij
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Bias =
1

n

n∑
i=1

(yi − f̄i)
2

Variance =
1

mn

n∑
i=1

m∑
j=1

(fij − f̄i)
2

MSE =
1

mn

n∑
i=1

m∑
j=1

(fij − yi)
2.

It is easy to show that MSE = Bias + Variance.
More complex models tend to have lower bias because they can better accommodate

individual variations in the data, but this also increases their sensitivity to changes in the
training set, leading to increased variance. Therefore, to minimize the error of the model
a balance between bias and variance should be attained.

As mentioned earlier, the bias-variance decomposition procedure requires several pre-
dictions for each example obtained from models trained on different training sets using
the same method. Standard 10-fold cross validation will therefore not suffice. To this end,
after we split a data set into 10 folds, we select each of the folds for test set once and use
the remaining non-test folds as a source of training sets. From this source we generate 20
training sets using bootstrapping and we learn predictive models on each bootstrap sam-
ple. The learned models are then applied to the examples from the test folds to obtain the
multiple predictions for each data example.

4. Results and discussion

We discuss the results from the experimental evaluation along four major dimensions.
First, we compare the performance of OPCTs with a single PCT and ensembles of PCTs.
We compare them based on their predictive performance, learning time and size of the
produced models. Next, present the effect of different parameter values on the construc-
tion of OPCTs. Third, we inspect the biases and variances of the algorithms to gain a better
understanding of the comparisons of the predictive performance. Finally, we discuss the
interpretability of OPCTs in juxtaposition to PCTs.

When analyzing the predictive power of algorithms in sections 4.2 and 4.1, ranking
was done separately for every target of every data set, giving us a total of 59 samples. For
efficiency we compared times needed to induce a model on entire data sets and the total
sizes of these models. The Friedman test showed significant differences at p < 1 · 10−8

in all cases and the results of Nemeny post-hoc tests are presented as average ranking
diagrams.

4.1. Predictive performance and efficiency

Figure 2 shows the results of the statistical evaluation of the predictive performance of
the proposed OPCT method in comparison to a single PCT and ensembles of PCTs. First
of all, we note that there is no statistically significant difference in the performance of
bagging of PCTs, random forests of PCTs and OPCTe1d1. Notwithstanding this, random
forests of PCTs have a slightly better average rank compared to the other two methods
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that are very close in rank. Second, while OPCTe0.2d1 is significantly worse than the
three aforementioned methods, it is still significantly better than a single PCT.

Fig. 2. Comparison of OPCTs predictive performance of OPCTs to the competing methods: Average
rank diagram in terms of predictive performance.

In figure 3 we compare the methods in terms of their efficiency. It shows that learning
PCTs is the most efficient method both in terms of time needed for model construction
and model size, according to the average rank. However, learning OPCTe0.2d1 is not
statistically significantly worse in terms of both time and size efficiency than learning a
single PCT. Random forests of PCTs are close to single PCTs in terms of time, but not
in terms of size, as they are significantly larger. Bagging of PCTs and OPCTe1d1 are the
two slowest and largest methods.

Focusing on the efficiency of the OPCT models, we see that OPCTe1d1 is the least
efficient: it produces models with the largest numbers of leaves and takes the most time
for model construction. Recall that this is consistent with the analysis of computational
complexity, as OPCTe1d1 can be seen as a condensed representation of what amounts
to 125 PCTs, since the the algorithm selects the 5 best options at the first three levels.
Furthermore, reducing the value of the ε parameter to 0.2 offers a good trade-off between
predictive performance and efficiency. These models give significantly better predictive
performance than a single PCT and are not significantly larger or slower to learn.

(a) Time efficiency (b) Size efficiency

Fig. 3. Comparison of the efficiency of OPCTs to that of the competing methods as measured by
the time needed to learn a model and the size of the models (number of leaf nodes).
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4.2. Parametrization of OPCTs

Figures 4, 5 and 6 show the average rank diagrams for predictive performance, learning
time and size of different OPCTs, respectively, obtained using the experimental design
outlined above. Notably, low values of both parameters lead to degradation in predictive
performance. This is to be expected, since lower values of parameters force the algorithm
to introduce fewer option nodes, resulting in smaller OPCTs. On the opposite side of the
spectrum are the OPCTs obtained with large values of the parameters. These achieve the
best predictive performance and the corresponding OPCTs are the largest in terms of the
number of leaves.

Fig. 4. Average rank diagram in terms of predictive performance for OPCTs obtained with different
values of the parameters ε (e) and d.

Fig. 5. Average rank diagram in terms of learning time for OPCTs obtained with different values of
the parameters ε (e) and d.

Additionally, we observe that the ε parameter has a stronger influence on the perfor-
mance than d. Namely, the OPCTs constructed using ε values of 0.1 and 0.2 (with the
exception of OPCTe0.2d1) are the ones with the weakest predictive power. Furthermore,
we also note that larger values for d also lead to better predictive performance. The best
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Fig. 6. Average rank diagram in terms of model size for OPCTs obtained with different values of
the parameters ε (e) and d.

predictive performance is obtained when using 1 as the value of both parameters. This
setting produces the largest OPCTs and requires the most learning time. Tables 2-4 in the
Appendix present all values for learning times, model sizes and option node counts for
different parameter values.

4.3. Bias-variance decomposition of the errors

Figures 7, 8 and 9 present the bias-variance decomposition of MSE for every target of the
Vegetation Condition, Sigmea real and Forestry-Slivnica-LandSat data sets, respectively.
The graphs for the remaining data sets are presented in Appendix.

Algorithms are presented in the following order: PCT, bagging of PCTs, random for-
est of PCTs, then OPCTs with e0.1d0.5, e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1,
e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1. For every target of every data set values
were scaled to [0, 1] by the largest MSE of all algorithms for that target, so that they can
be presented on one figure. While the biases (and variances) of the different targets are
presented on the same scale, only the values of different algorithms on the same target
variable can be reasonably compared among each other.

The decompositions of the errors are presented on the same graph for all targets of a
data set to show that they produce very similar results. That is, if a method has smaller
bias (or variance) than another method on one target of a data set, it tends to have smaller
bias (or variance) on the other targets of that data set as well.

The results for the Vegetation Condition data set given in Figure 7 represent the most
common behavior. The bias of the methods is fairly similar, with less restrictive OPCTs
(larger parameter values) being slightly better in this regard. PCTs have the largest vari-
ance (and consequently total error), while random forests of PCTs have the smallest.
Increasing the parameter values of OPCTs also reduces the variance, bringing it on par
with that of bagging and random forests.

The error decomposition for the Sigmea real data set given in Figure 8 stands out,
since OPCTs have larger bias and variance than other algorithms for all parameter values.
Increasing parameter values again reduces the variance although to a lesser extent, but
bias for the second target is increased at the largest values.
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Fig. 7. Bias-variance decomposition of MSE for every target of the Vegetation Condition data set.
Algorithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5,
e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.

Fig. 8. Bias-variance decomposition of MSE for every target of the Sigmea real data set. Algo-
rithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9,
e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.
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Fig. 9. Bias-variance decomposition of MSE for every target of the Forestry-Slivnica-LandSat data
set. Algorithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5,
e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.

The variance results for the Forestry-Slivnica-LandSat data set in Figure 9 are similar
to the results for the Vegetation condition data set, with the notable difference that the bias
of random forest of PCTs is substantially larger than the bias of the other algorithms. This
occurred also in a few data sets which are shown in Appendix 5 and is not surprising,
since individual trees in a random forest only use a fraction of all attributes to learn.

The results show that the difference in the predictive performance mainly arises from
the difference in their variances. With a few exceptions, PCTs have the largest variance,
followed by OPCTs with small parameter values. Increasing the parameter values greatly
reduces the variance of OPCTs, while bagging and especially random forests have the
smallest variances. The biases of different methods are generally very similar. Single
PCTs and random forests have larger values on some data sets, while biases of OPCTs
produced with large parameter values are occasionally smaller.

4.4. Interpretability of OPCTs

OPCTs, like option trees in general, offer a much higher degree of interpretability than
ensemble methods. This is expressed through both the fact that the ”ensemble” of an
option tree is represented in a compact form, i.e., a single tree, as well as the fact that
many of the embedded trees overlap. Additionally, the regular PCT that would be learned
from the same data is always present in the OPCT, as described in Section 2. A PCT and
an OPCT learned on the EDM data set, and their relationship are illustrated in Figure 10.

Providing a domain expert with an option tree gives them a lot of choices with regards
to the model. They can observe the selected options and attempt to determine which of the
selected options were selected due to their actual importance as opposed to the sampling
of the data set or other artifacts of the data. If they are able to discard all but one of
the options in each of the option nodes, we can collapse the OPCT into a single tree,
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specifically a PCT, which corresponds not only to the data, but also to the knowledge of
the domain expert. In terms of the predictive clustering framework, this means selecting
only one of the overlapping hierarchical clusters when multiple clusters are presented.
This approach also has the advantage that the domain expert need not be available for
interaction when the model is learned, but can assess the OPCT and chose the preferred
options later on.

This process can also be looked at through a different lens. As we have introduced
option trees (in part) to address myopia, by considering more options and later deciding
on only one of them in each option node, we are essentially ”looking ahead” of just the
one split and utilizing, in the case of the domain expert, additional domain knowledge.

However, instead of using domain knowledge by proxy of interaction with a domain
expert, we could also collapse the learned OPCT to a single PCT by using additional un-
seen data, i.e., by calculating an unbiased estimate of the predictive performance of the
different options present in the OPCT. Since the collection and preparation of additional
data examples could be expensive to the point of infeasibility, we could introduce a mod-
ified experimental setup. Part of the training data could be separated into a validation set
which would not be used for the initial learning of the OPCT, but would be utilized to
determine which of the selected options, and consequently embedded trees, has the best
predictive performance. We would then collapse the OPCT into a PCT according to this
validation set, after which we would test the obtained PCT on the test set. In this sce-
nario, we could not only study the effect of myopia by comparing the collapsed OPCT
to a PCT learned on the entire training data set, but also observe the effect of averaging
multiple predictions on the predictive performance by comparing the collapsed PCT and
the original (pseudo-ensemble) OPCT.

5. Conclusions

In this work, we propose an algorithm for learning option predictive clustering trees
(OPCTs) for the task of multi-target regression (MTR). In contrast to standard regres-
sion, where the output is a single scalar value, in MTR the output is a data structure – a
tuple/vector of numeric variables. We consider learning of a global model, that is a single
model that predicts all target variables simultaneously.

More specifically, we propose OPCTs to address the myopia of the standard greedy
PCT learning algorithm. OPCTs have the possibility to construct option nodes, i.e., nodes
with a set of alternative sub-nodes, each containing a different split. These option nodes
are constructed in the cases when the heuristic scores of the candidate splits are close
to each other. Furthermore, OPCTs, and option trees in general, can be regarded as a
condensed representation of an ensemble of trees.
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(a
)

B
S
M

B
M

e
a
n
T

>
0
.7

7

I
S
M

I
M

e
a
n
T

>
2
.0

C
S
M

C
M

e
a
n
T

>
5
.1

8

A
S
M

A
M

e
a
n
T

>
−

4
.6

3

..
.

0
,
1

I
L
D

I
S
D

e
v
T

>
0
.3

8

0
,
−

0
.1

..
.

−
0
.8

3
3
,
−

0
.1

6
7

A
S
M

A
M

e
a
n
T

>
−

4
.6

9

A
S
D

A
S
D

e
v
T

>
0
.0

6

A
L
D

A
S
D

e
v
T

>
0
.0

6

0
.9

4
7
,
0
.0

5
3

0
,
0

0
,
1

C
L
M

C
M

e
a
n
T

>
5
.6

4

C
L
D

C
S
D

e
v
T

>
0
.1

5

0
.0

3
8
,
0
.9

2
3

0
,
0

0
.1

1
1
,
0
.2

2
2

(b
)

O
N

B
S
M

B
M

e
a
n
T

>
0
.7

7

I
S
M

I
M

e
a
n
T

>
2
.0

C
S
M

C
M

e
a
n
T

>
5
.1

8

..
.

..
.

−
0
.8

3
3
,
−

0
.1

6
7

A
S
M

A
M

e
a
n
T

>
−

4
.6

9

..
.

..
.

C
S
M

C
M

e
a
n
T

>
5
.1

8

A
S
M

A
M

e
a
n
T

>
−

4
.6

9

..
.

..
.

A
S
M

A
M

e
a
n
T

>
−

4
.5

1

..
.

..
.

L
M

B
M

e
a
n
T

>
0
.7

9

..
.

..
.

Fi
g.

10
.A

re
gu

la
rP

C
T

(a
)a

nd
an

O
PC

T
(b

)l
ea

rn
ed

on
th

e
E

D
M

da
ta

se
t.

T
he

le
ft

ch
ild

of
a

sp
lit

no
de

co
rr

es
po

nd
s

to
th

e
su

bt
re

e
w

he
re

th
e

te
st

is
sa

tis
fie

d.
N

ot
e

th
at

th
e

re
gu

la
rP

C
T

is
in

cl
ud

ed
in

th
e

O
PC

T
as

th
e

su
bt

re
e

en
cl

os
ed

in
th

e
da

sh
ed

re
ct

an
gl

e.



Option predictive clustering trees for multi-target regression 477

The proposed method was experimentally evaluated on 11 benchmark MTR data sets.
We selected two parameter configurations, OPCTe1d1 (ε = 1, d = 1), the largest OPCT
which offers the best predictive performance, and OPCTe0.2d1 (ε = 0.2, d = 1), which
provides a balance between predictive performance and efficiency. We compared this pair
of OPCTs to regular PCTs and two ensemble learning methods – bagging and random
forests of PCTs. The evaluation revealed that both OPCTe1d1 and OPCTe0.2d1 yield sta-
tistically significantly better predictive performance than single PCT. Next, the predictive
performance of OPCTe1d1 is not statistically significantly different than that of the other
two ensemble methods, however, it is slower to train and produces more leaves than the
other compared methods. While the predictive performance of OPCTe0.2d1 was not on
par with ensemble methods, it was not statistically significantly less efficient than PCTs,
while offering significantly better performance.

We also performed parameter sensitivity analysis. The results show that both parame-
ters that control the number of option nodes need large values to achieve good predictive
performance. However, limiting the number of option nodes can lead to a more favorable
trade-off between performance and efficiency.

We performed bias-variance decomposition of the mean squared error to determine
the source of errors of the different methods. The results show the bias of the compared
methods exhibits very similar behavior. OPCTs with larger parameter values were occa-
sionally better in this regard, while random forests of PCTs sometimes had larger bias
than other methods. On the other hand, the variance component often differed greatly be-
tween the algorithms. It was almost always the largest for single PCTs and smallest for
random forests of PCTs. Increasing the parameter values for OPCTs reduced the variance
and in some cases OPCTe1d1 achieved variance similar to that of the ensemble methods.

Finally, through an example, we illustrated the interpretability of the constructed
OPCTs: they offer a multifaceted view on the data at hand.

We plan to extend this work along several directions. We will evaluate the OPCTs
in the single tree context, i.e., we will use the induction of OPCTs as a beam-search
algorithm for tree induction. Next, we will evaluate the influence of the two parameters
at a more fine grained resolution. Finally, we will extend the algorithm towards other
output types, i.e., machine learning tasks, such as multi-label classification, hierarchical
multi-label classification and time series prediction.
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Appendix

Bias-Variance Graphs

Fig. 11. Bias-variance decomposition of MSE for every target of the Collembola data set. Algo-
rithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9,
e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.
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Fig. 12. Bias-variance decomposition of MSE for every target of the EDM data set. Algorithms in
order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9, e0.1d1,
e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.

Fig. 13. Bias-variance decomposition of MSE for every target of the Forestry-Kras data set. Algo-
rithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9,
e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.

Additional tables
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Fig. 14. Bias-variance decomposition of MSE for every target of the Forestry-Slivnica-IRS data set.
Algorithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5,
e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.

Fig. 15. Bias-variance decomposition of MSE for every target of the Forestry-Slivnica-SPOT data
set. Algorithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5,
e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.
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Fig. 16. Bias-variance decomposition of MSE for every target of the Soil quality data set. Algo-
rithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9,
e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.

Fig. 17. Bias-variance decomposition of MSE for every target of the Vegetation Clustering data set.
Algorithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5,
e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.
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Fig. 18. Bias-variance decomposition of MSE for every target of the Water quality data set. Algo-
rithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9,
e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.
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