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Abstract. In the conventional sequence-to-sequence (seq2seq) model for abstrac-
tive summarization, the internal transformation structure of recurrent neural net-
works (RNNs) is completely determined. Therefore, the learned semantic informa-
tion is far from enough to represent all semantic details and context dependencies,
resulting in a redundant summary and poor consistency. In this paper, we propose a
variational neural decoder text summarization model (VND). The model introduces
a series of implicit variables by combining variational RNN and variational auto-
encoder, which is used to capture complex semantic representation at each step of
decoding. It includes a standard RNN layer and a variational RNN layer [5]. These
two network layers respectively generate a deterministic hidden state and a random
hidden state. We use these two RNN layers to establish the dependence between
implicit variables between adjacent time steps. In this way, the model structure can
better capture the complex semantics and the strong dependence between the adja-
cent time steps when outputting the summary, thereby improving the performance
of generating the summary. The experimental results show that, on the text summary
LCSTS and English Gigaword dataset, our model has a significant improvement
over the baseline model.

Keywords: abstractive summarization, sequence-to-sequence, variational auto-encoder,
variation neural inferer.

1. Introduction

Text summarization produces a brief summary of the core ideas of the source articles and
is different from extractive text summarization ([4], [23],[30], [19]), which selects key
sentences or key phrases in the original text to form a summary. Abstractive text sum-
marization builds an internal semantic representation and then uses deep learning tech-
niques to create a summary that is closer to what a human may generate. Most recent
models for abstractive text summarization are based on the seq2seq framework with at-
tention ([2],[21],[12],[29]). These seq2seq models consist of an encoder and a decoder;
the encoder encodes input text into a semantic representation, and the decoder generates
summaries from this representation.

With the development of deep learning, the neural networks-based encoder-decoder
models are used in the sequence-to-sequence tasks, such as neural machine translation[28],
speech recognition ([32],[33]) and text summarization ([3],[9],[25]). The Seq2seq frame-
work for abstractive text summarization has recently achieved remarkable success and
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has become the dominant architecture. In the seq2seq framework, the semantic represen-
tation from the encoding end to the decoding end is learned in an implicit way, in which
the internal transformation structure of recurrent neural networks (RNNs) is completely
determined. [5]. Therefore, the learned semantic representations are poor at capturing
all semantic details and dependencies [29],[14]. To address the insufficiency of semantic
representations of abstractive text summarization, [20] proposed a generative model to
capture the latent summary information, but they considered only a single latent variable
for capturing the global semantics of each source text in their generative model, which
led to limited representation ability. Furthermore, [14] introduced a seq2seq framework
with a deep recurrent generative decoder that considered the recurrent dependencies in
their generative model for capturing historical latent variable dependencies. Although this
approach can obtain more latent structure information, in practice, long-term sequential
recurrent dependencies can result in the loss of previous information and unnecessary
noise; hence, this implementation may not be sufficient for capturing strong and complex
semantic dependencies between adjacent target words at each time step of the decoding.

To tackle the problem, we present a variational neural decoder (VND) for abstractive
text summarization that is more effective at forcing the decoder to make use of latent
structure information. We introduce the variational autoencoder (VAE) [11],[24] process
to the decoding process and use latent variables to model the complex potential distri-
bution of text semantics at each time step. Drawing inspiration from the current success
of the variational RNN (VRNN) [5], we incorporate latent variables into the RNN hid-
den state. By using latent variables, the VRNN can model the underlying semantics of
source or target texts. Our decoding structure consists of variational neural inferers and
two RNN layers: a standard RNN layer and a VRNN layer. A variational neural inferer
is employed to address the intractable posterior inferer for the latent variables. The stan-
dard RNN layer generates a deterministic hidden state, which is employed to model long-
and short-term dependencies. The stochastic latent hidden state based on the VRNN layer
is used to capture complex and strong potential semantic distributions and is integrated
into the summary generation softmax layer to improve the summary generation quality.
Specifically, at each time step, we use the stochastic latent hidden state of the VRNN layer
in the previous step as the input of the current RNN layer. This implementation integrates
the dependencies between the latent variables in adjacent timesteps.

The main contributions of this paper are as follows: (1) we propose a VND model that
efficiently captures the complex semantics and strong dependencies between neighboring
target words for abstractive text summarization. (2) Experiments on the LCSTS dataset
and English Gigaword for the text summarization task show that our proposed model
significantly outperforms the baseline models.

2. Related Work

Automatic text summarization is one of the most active research in natural language pro-
cessing. It produces a concise and smooth summary while preserving key information
content and overall meaning [1]. Recently, an increasing number of researchers have em-
ployed a neural network framework to natural language processing. Sequence-to-sequence
neural networks[29] have been applied to machine translation ([28],[17]), following their
success in abstractive summarization ([2],[13]).
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Specifically, [25] first proposed a convolution encoder and a recurrent decoder model
for the abstractive sentence summarization task, which has achieved significant perfor-
mance improvement over conventional methods, and provides the benchmark for the Gi-
gaword dataset. [22] replaced the model with a full RNN seq2seq model and achieved
outstanding performance. [17] proposed an attention mechanism, which greatly improved
the performance of the seq2seq model on abstractive summarization. To address the un-
known word problem, [21] proposed a generator-pointer model so that the decoder can
generate words in source texts. [6] also solved this problem by integrating a copying
mechanism into a seq2seq model. [27] propose an LSTM-CNN based seq2seq model that
can construct new semtences by exploring more fine-grained fragments than sentences,
namely, semantic phrases. [18] proposed a neural model to improve the semantic rele-
vance between the source contents and the predicted summaries.

Some other work attempts to incorporate Variational auto-encoder for abstractive
summarization. The variational auto-encoder is a popular probabilistic generative model
([5],[11]). These models utilize an neural inference model to approximate the intractable
posterior, and optimize model parameters jointly with a reparameterized variational lower
bound using the standard stochastic gradient technique. Due to its success in various
tasks, this method has attracted increasing attention. Although seq2seq-oriented encoder-
decoder framework has been developed and has widely used in abstractive text sum-
marization, there are few research works incorporated variational anto-encoder into the
text summary system. For example,[20] first proposed a generative model to capture the
latent summary information based on the seq2seq framework. [26] presented an unsu-
pervised approach to summarize sentences abstractively using a VAE. Furthermore, [5]
extended the VAE into a recurrent framework for modeling complex semantic representa-
tions, which is called VRNN. [14] proposed a deep recurrent generative decoder to capture
latent structure information.

Inspired by the successful application of variational auto-encoder in related works, we
propose variational neural decoder for abstractive summarization. This paper proposes a
variational neural decoder model, which introduces a series of continuous latent variables
to capture the latent semantics of the content to improve the quality of the summary.

3. Background: Variational Autoencoder

The VAE [11],[24] is a recently introduced latent variable generative model, which com-
bines Variational Inference with Deep Learning. In VAE, a generative network models an
observed variable x as a continuous latent variable z, based on which the generate net-
work reconstructs x. Then, the join distribution density function of the generated model
is as follows:

pθ(x, z) = pθ(x|z)pθ(z), (1)

where pθ(z) is the probability density function of z prior distribution of latent variable,
pθ(x|z) is the conditional probability density function of x when z is known, and θ is the
parameter of two density functions. In general, we assume that pθ(z) and pθ(x|z) are the
standard standard Gaussian distribution that models the generation procedure, which is
typically estimated via a deep nonlinear neural network.

Importantly, the VAE models the conditional distribution pθ(x|z) as a highly flexible
function approximator, which makes the inference of the posterior pθ(z|x) intractable.
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Fig. 1. The overview of the architecture of VAD model.

Thus VAE uses a variational approximation qφ(z|x) of the posterior, which introduces
the evidence lower bound:

LV AE(θ, φ, x) = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)] 6 log pθ(x), (2)

where θ and φ denote the parameters of the model and DKL(Q||P ) is the Kullback-
Leibler divergence between two distributions Q and P .

In [11], the approximate posterior qφ(z|x) is a diagonal Gaussian N (µ, diag(σ2)),
whose mean µ and variance σ2 are the output of a highly nonlinear function of x. The VAE
training process maximizes the ELBO, which obtains the optimal parameter selection for
the generative model pθ(x|z) and inference model qφ(z|x). Based on reparametrizing, we
compute z = µ+ σ � ε and rewrite the equation as

Eqφ(z|x)[log pθ(x|z))] = Epθ(ε)[log pθ(z = µ+ σ � ε)], (3)

where ε is a vector of standard Gaussian variables. Then, the VAE model can be trained
through a standard backpropagation technique for stochastic gradient descent.

4. Proposed Model

4.1. Overview

Our model is based on the seq2seq model with attention. The seq2seq model can com-
press source texts x = {x1, x2, ..., xM}N into a continuous vector representation with
an encoder, and then the decoder generates the summary text y = {y1, y2, ..., yT }N . As
shown in Figure 1, VND model mainly contains three neural network based components:
the text encoder for encoding text sentences, a variational neural decoder that generate a
summary, a variational neural inferer for the posterior and the prior distributions.
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4.2. Text Encoder

The text encoder builds meaningful representations of the source sentences. In our model,
we use bidirectional long short-term memory (LSTM ) [8] to encode the source text se-
quence x from both directions and compute the hidden states for each word, which pro-
duces the final hidden state h = {h1, h2, ..., hM}N from the source text x :

−→
hi = LSTM(

−−→
hi−1, xi,

−−→
Ci−1), (4)

←−
hi = LSTM(

←−−
hi+1, xi,

←−−
Ci+1), (5)

hi = [
−→
hi ;
←−
hi ], (6)

where
−→
hi and

←−
hi are the forward and the backward hidden outputs, respectively, xi is the

input at the i-th time step, N is the number of samples, and Ci−1 refers to the cell state in
the LSTM layer.

The transition equations of LSTM are defined as follows:

Ii = σ(WIxi + UIhi−1 + bI) (7)
Fi = σ(Wfxi + Ufhi−1 + bf ) (8)
Oi = σ(Woxi + Uohi−1 + bo) (9)

Ci = Fi � Ci + Ii � tanh(Wcxi + Uchi−1 + bc) (10)
Hi = Oi � tanh(Ci) (11)

where � stands for element-wise multiplication, σ is the sigmoid function, all W ∈ Rd×l
and W ∈ Ud×d are weight matrices, all b ∈ Rd are bias vector.

4.3. Variational Neural Inferer

In order to integrate the stochastic latent variables into our decoder model, we use the
variational neural inference to generate the latent variables at each time step of the de-
coding structure. As described in the background section, the key of variational models is
to model the distributions related to latent variables. The variational neural inferer can be
divided into two parts: the posterior and the prior distributions. Both posterior and prior
distributions are assumed to be multivariate Gaussian distributions with diagonal covari-
ance, but they introduce different parameters. As determined by the ELBO equation, the
parameters of the prior are computed by the prior network, which takes the source sen-
tence x and previously generated words y<t as the input. The posterior parameters are
also determined from both the source sentence x and previously generated words y<t.

Inspired by some ideas in previous works [11],[24]. We use variational neural infer-
ence to generate latent variables z in the model, as shown in part variational neural inferer
of the Fig. 1, we focus on the use of neural network to simulate the posterior qφ(zt|x, y<t)
and the prior pθ(zt|x, y<t). In this subsection, we use a similar network architecture to
that proposed in variational recurrent neural machine translation (VRNMT) [28].

Neural Posterior. Following the standard VAE, we use neural networks for a better
approximation in our model. The equation of qφ(zt|x, y<t) can be expressed as

qφ(zt|x, y<t) = N (zt;µt(x, y<t), σt(x, y<t)
2I), (12)
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where the µt and σt denote the variational mean and standard derivation, respectively,
which are computed via a neural network based on the observed variables x and y<t.

Starting from the VAE, the key to estimating zt is to calculate the µt and σt. First,
we perform a nonlinear transformation that projects the word embedding yt−1, the deter-
ministic hidden states sl1t and the attention content ct onto our concerned latent semantic
space:

hzt = g(Wz[yt−1; s
l1
t ; ct] + bz). (13)

Then, the above-mentioned Gaussian parameters µt and logσ2
t are calculated through

linear regression:

µt =Wµh
z
t + bµ, (14)

log σ2
t =Wσh

z
t + bσ, (15)

where Wz , Wµand Wσ comprise the parameter matrix and bz , bµ and bσ are bias terms.
g(·) refers to a nonlinear function. Then, to obtain a representation for the latent variable
zt using reparameterization [24], the latent variables can be expressed as:

zt = µt + log σ2
t � ε, ε ∼ N (0, I). (16)

Intuitively, this reparameterization reduces the gap between qφ(zt|x, y<t) and pθ(zt). In
other words, it connects these two neural networks. This is important since it enables the
stochastic gradient optimization via standard backpropagation.

Neural Prior. The neural model for the prior pθ(zt|x, y<t) is the same as that for the
posterior qφ(zt|x, y<t). Here, we model the prior pθ(zt|x, y<t) as

pθ(zt|x, y<t) = N (zt;µ
′
t(x, y<t), σ

′
t(x, y<t)

2I). (17)

To obtain a representation for latent variable zt, we first use the same method to employ
the latent semantic space:

hzt
′ = g(W ′z[yt−1; s

l1
t ; ct] + bz) (18)

Then, Gaussian parameters µ′t and log σ′2t in the model are computed by:

µ′t =W ′µh
z
t
′ + b′µ, (19)

log σ′2t =W ′σh
z
t
′ + b′σ, (20)

where W ′z , W ′µ and W ′σ comprise the parameter matrix and b′z , b′µ and b′σ are bias terms.
Different from the posterior, we directly set zt as µ′t, as implemented in [31].

Finally, we integrate the latent variable zt into decoding our model to enhance the
summary generation results, which are described in detail in the following subsection.

Variational Lower Bound. As in the conventional VAE, we learn the generative and
inference models jointly by maximizing the variational lower bound with respect to their
parameters. We apply ELBO at each t-th time step, and based on factorizations (12) and
(17), we have the accumulative ELBO as follows:

LV AE = − 1

N

N∑
n=1

T∑
t=1

DKL(qφ(z
(n)
t |x(n), y

(n)
<t )||pθ(z

(n)
t |x(n), y

(n)
<t ))). (21)

In the model training, LV AE is part of the objective function.
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4.4. Variational Neural Decoder

The function of the decoder is to generate a series of summary words. As shown in the
VND section of Figure 1, at each decoding time step t, the decoder consists of two RNN
layers.

The first layer is a standard RNN layer. Given the previously generated word embed-
ding yt−1 and the previous stochastic latent hidden state sl2t−1, the standard RNN layer is
used to calculate the deterministic hidden state sl1t at the t-th time step:

sl1t = LSTM1([yt−1; s
l2
t−1], C

l2
t−1), (22)

where the superscript l denotes the decoder LSTM layer.
Next, we apply the dot attention mechanism [17] to obtain the content vector. Then,

the deterministic hidden state sl1t and the encoder output hi at each time step t of the
process are computed as the attention weight αt,i and the current content vector ct, re-
spectively:

ct =

m∑
i=1

αt,jhi, (23)

αt,i =
exp(et,i)∑n
j=1 exp(et,j)

, (24)

et,i = sl1t
T
Wehi, (25)

where We is the weight parameter and αt,i is the i-th word of the attention mechanism
that assigns weight at time step t.

The second layer is the variational RNN layer. In [5], the author extended the VAE into
a recurrent framework for modeling complex semantic representations, which was called
VRNN. In VRNN, at each t-th time step, the transition function (LSTM cell) computes
the next hidden state based on the previous hidden state and the sampled latent random
variables. Inspired by [5], we first combine the deterministic hidden state sl1t , the current
content vector ct, and the latent variable zt (implemented in subsection 3.3) to construct
a new latent semantics vector ŝt:

ŝt =Wcct +Wss
l1
t +Wzzt + bs, (26)

where Wy , Wc, Ws, and Wz are the weight matrices and bs is the bias term. Then, a
VRNN layer is used with the latent semantics vector ŝt to compute the stochastic latent
hidden state sl2t :

sl2t = LSTM2(ŝt, C
l1
t ). (27)

Finally, to precisely generate summaries, the softmax layer is introduced to generate the
target word yt based on the latent variable zt, the current context vector ct and the stochas-
tic latent hidden state sl2t . We compute the probability distribution over the target word
yt:

p(yt|zt, y<t, x) = softmax(Wvût + bv), (28)

ût = g(Wd[zt; s
l2
t ; ct] + bd), (29)

where Wv and Wd comprise the parameter matrix of the output layer, bv and bd are the
bias terms, and g(·) is the nonlinear activation function.
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4.5. Objective Function

The objective function of our model consists of two terms. The first objective is the vari-
ational lower bound LV AE in Equation 21. This term is the KL divergence between two
Gaussian distributions, which can be computed and differentiated without estimation [11].
The second objective is the maximum likelihood estimation of the generated summaries.
Given the latent variable zt at each time-step and source text x, the models generate a
summary ỹ. The learning process is to minimize the negative log-likelihood between the
generated summary ỹ and the reference y:

LSeq = −
1

N

N∑
n=1

T∑
t=1

{p(y(n)t |ỹ
(n)
<t , x

(n), z
(n)
t )}. (30)

Finally, the objective function, which need to be minimized, is formulated as follows:

L = LV AE + LSeq. (31)

5. Experiments

5.1. Datasets

LCSTS is a large-scale Chinese short text summarization dataset constructed by [9]. The
dataset was collected from a famous Chinese social media website called Sina Weibo and
consists of more than 2.4 M text-summary pairs. It is split into three parts, with 2,400,591
pairs in PART I, 10,666 pairs in PART II and 1,106 pairs in PART III. All text-summary
pairs in PART II and PART II are manually annotated with relevant scores ranging from
1 to 5. We reserve only pairs with scores of no less than 3, leaving 8,685 pairs in PART II
and 725 in PART III. In our experiments, we selected PART I as the training set, PART II
as the validation set, and PART III as the test set.

English Gigaword is a sentence summarization dataset based on Annotated Giga-
words [22], a dataset consisting of sentence pairs representing the first sentence of col-
lected news articles and their corresponding headlines. We use the dataset preprocessed by
[25], which contains 3.8M training pairs, and 189K validation pairs and 2K test pairs were
randomly selected. In the data processed directly with [25], we find that there are abnor-
mal data pairs in the corpus, e.g., some unreadable or incomprehensible pairs. Therefore,
we reprocessed the data set, therein retaining 3.2M training pairs, a 16K-pair validation
set, and a 1,520-pair test set.

5.2. Evaluation Metrics

We employ the recall-oriented understudy for gisting evaluation (ROUGE) score[15] as
our evaluation metric with standard options. ROUGE measures the quality of a summary
by computing overlapping lexical units, such as unigram, bigram, trigram, and longest
common subsequence (LCS). Following previous work [9], our evaluation metrics in the
experimental results are the F1 scores of ROUGE: ROUGR-1 (unigram), ROUGE-2 (bi-
gram) and ROUGE-L (LCS).
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5.3. Experimental Settings

For the LCSTS dataset, to avoid the effect of Chinese word segmentation error, both our
encoder and decoder input texts are Chinese characters. The vocabularies are extracted
from training sets, and the source texts and the summaries do not share the same vocabu-
laries. We prune resource and target vocabularies of 8K and 5K words, respectively.

For the English Gigaword dataset , we prune the resource and target vocabularies of
40K and 30K words, respectively. The input word embedding is initialized randomly and
learned during the optimization process.

In both experiments, we set the word embedding size and the hidden size to 512, and
the number of LSTM layers is 3. The batch size is set to 64, and we do not use dropout
on this dataset. We implement the beam search and set the beam size to 10. We use the
Adam optimizer [10] to learn the model parameters with the default setting α = 0.001,
β1 = 0.9, β2 = 0.999 and ε = 1 × 10−8. The learning rate is halved every epoch. Our
experiments are implemented using PyTorch.

5.4. Baselines

To evaluate the performance of our variational neural decoder (VND) model, we compare
our results with the results of the baselines and state-of-the-art methods on the LCSTS
dataset and Gigaword dataset.

– ABS and ABS+ [25] are the Seq2seq model with attention mechanism and hand-
crafted features, which are trained on Gigaword to produce summaries.

– RNN and RNN-context: [9] are the neural network framework, where RNN+context
has the attention mechanism.

– RNN+distract [3] employ a new attention mechanism by distracting the historical
attention in the decoding steps.

– DRGD [14] is a deep recurrent generative decoder model, combining the decoder
with a variational auto-encoder.

– ASC+FSC1 [20] uses a generative method to model the latent summary variables.
The generative model first draws a latent summary sentence from a background lan-
guage model and subsequently draws the observed sentence conditioned on this latent
summary.

– ARL [7] is based on the seq2seq framework, which applies the adversarial reinforce-
ment learning strategy to bridge the gap between the generated summary and the
human summary.

– CGU [16] is a seq2seq model with a convolutional gated unit for global encoding.
– Seq2seq is our implementation of the attention mechanism-based seq2seq model,

which has a similar setting as our model for comparison.

5.5. Results Analysis

Results on LCSTS Corpus. The summary ROUGE-F1 score comparison of different
models on the LCSTS dataset is shown in Table 1. The experimental results show that
our VND model has a significantly improved score in each ROUGE compared to the
base model.First, we compare the model with the seq2seq baseline. The results show that
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Table 1. Comparison with other models on the LCSTS test set. R-1, R-2 and R-L denote
ROUGE-1, ROUGE-2 and ROUGE-L,respectively.

Models R-1 R-2 R-L
RNN [9] 21.5 8.9 18.6
RNN-context [9] 29.9 17.4 27.2
RNN+distract [3] 35.2 22.6 32.5
DRGD [14] 37.0 24.2 34.2
ARL [7] 39.4 21.7 29.1
CGU [16] 39.4 26.9 36.5
Seq2seq (our impl.) 33.2 22.4 31.8
VND (our model) 42.5 28.5 37.6

the VND model is significantly improved over the Seq2seq model, with ROUGE-1 9.3%
higher, ROUGE-2 6.1% higher, and ROUGE-L 5.8% higher. It proves that our model is
effective. Then, we also compare the VND model with the remaining base models.

Next, compared with the DRGD model, our VND model exceeds 5.5% on ROUGE-1,
4.3% on ROUGE-2 and 3.4% on ROUGR-L. In the DRGD model, although the author
uses a deep recursive generative model to capture the underlying semantics to improve
the quality of the summary, its expressive power is limited and no significant improve-
ment can be achieved. Finally, the ARL model uses adversarial reinforcement learning to
optimize parameters on the basis of generating an adversarial network. It is currently the
most cutting-edge summary generation model, but the VND model still has obvious ad-
vantages. The results show that random latent variables and two RNN layer components
plus Seq2seq text summarization model can improve the accuracy of text summarization,
which shows the effectiveness of variational neural decoder.

In order to further prove that our proposed model can capture more semantic details
and enhance the dependency between the time parts before and after decoding to improve
the quality of the summary. We give two summary examples of models randomly drawn
from the test set. The original text, the original abstract, the abstract generated by the
Seq2seq model and the abstract generated by the model in this chapter are shown in Table
2.

In the first example, the Seq2seq model generates a summary containing the phrases
”big bank” and ”stock market storm,” which is tedious and inaccurate. For comparison,
the VND model refines such phrases into more concise and natural phrases. In addition,
we can see that the abstract generated by the model is closer to the semantics of the
reference abstract than the abstract of the Seq2seq model.

In the second example, the main idea of the original text is that China bans tobacco
advertising and imposes fines of up to 30,000 yuan on movies and TV series. However,
the summary generated by the seq2seq model only contains information about ”TV pro-
grams”. In addition, it also missed the most important information ”forbidden”, which
makes the semantics very different from the original text, and is not coherent and suf-
ficient. In contrast, the summary of our model is more coherent and streamlined. In ad-
dition, in the summary generated by the VND model, the number (30000) is the same
as the number in the reference text, which means that the integration of random hidden
variables into the decoder model can obtain richer semantics and can make the decoding
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Table 2. Examples of the generated summaries on the test set of the LCSTS corpus,
compared with that of the Seq2seq model and the reference.

Source(1): .LÊå�ìÆ'''���FFF���öööLLL���¡¡¡ýýý666öööLLL���å
�ùSM�:�Î´��oºëh:�.L�¹bè(ô3öL

ô:8�:�æ�¹b�ïý¢¨å�{7»�:Í¹�9i�

¹�d!:�Î´-�ý¶¡¡rn��ósÍ��Òr�

The central bank will convene large commercial banks and joint-
stock banks today to deal with the current debt market turmoil. Sources
said that on the one hand, the central bank aims to stabilize the inter-
bank bond market, on the other hand, it is likely to explore the reform
content focusing on the governance of class C households. The National
Audit Office played a vital role in the debt market turmoil.
Reference: �Sð.LÊåìÆöööLLL�������ùSM:�Î´
The media said that the Central Bank called a meeting of banks today
to deal with the current debt market turmoil.
Seq2seq: .LìÆ'''���öööLLL���¡¡¡ýýý666öööLLL�ù:�Î´
The Central Bank calls large banks and joint-stock banks to deal with
the storm of the bond market
VND: .LÊåìÆöööLLL�������ùSM:�Î´
The Central Bank convened a meeting of banks today to deal with the
current turmoil in the bond market
Source(2): ý¡bÕ6�l�
lq:@§68ßa�(�¡
?)���b@	ßI�J�Ã��^©�¡	¾n¤�8ß
¹�Æ:hb�b8ß�ÝÍ
a��Ä��555qqq555ÆÆÆggg>8

ß\4�ØZ3���b�Çê¨.':IûU¹��*�tº
.ß�

The legislative affairs office of the state council announced the ”regu-
lations on control of smoking in public places (submitted for review):
ban all tobacco advertising, promotion and sponsorship; if there is no
outdoor smoking point, it will be considered as a total ban on smoking.
Those who violate the regulations can be fined up to 30,000 yuan for
smoking in movies and TV series. Selling cigarettes to minors through
vending machines or any other means is prohibited.
Reference: �ýßhb���bbbßßßIII���JJJqqqÆÆÆggg8ß�ØZ3�
China intends to totally ban tobacco in advertisements, movies and TV
series, The maximum penalty for smoking is 30,000 yuan.
Seq2seq: �ýßÄ�555ÆÆÆggg>8ß\4�ØZ#�
China intends to stipulate a maximum penalty of # for smoking scenes
in TV series.
VND: �ýßÄ����bbb555qqq555ÆÆÆggg>8ß\4�ØZ3�
China intends to stipulate a maximum penalty of 30,000 yuan for smok-
ing scenes in movies and TV series.

process adjacent The semantic dependence of the time step is stronger, which makes the
generated summary coherent and of high quality.

In addition to the Chinese data set, we also provide several examples of randomly
generated summary on the English English Gigaword data set. Coherent and more de-
scriptive. We believe that this is mainly because the variational neural decoder can pay
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Table 3. ROUGE scores of different models on the English Gigawords dataset.

Models R-1 R-2 R-L
ABS [25] 29.6 11.3 26.4
ABS+ [25] 29.8 11.9 27.0
ASC+FSC1 [20] 34.2 15.9 31.9
DRGD [14] 36.3 17.6 33.6
CGU [16] 36.3 18.0 33.8
Seq2seq (our impl.) 33.5 16.8 31.4
VND (our model) 39.0 19.4 35.3

attention to the potential semantic relationship between the source text and the target sen-
tence. The Seq2seq model cannot obtain more semantics, so it is easy to produce too
general phrases and does not necessarily involve the original text.

Table 4. Examples of the generated summaries on the test set of the English Gigawords
corpus, compared with that of the Seq2seq model and the reference.

Source(1): jordan’s crown prince hassan ibn talal arrived tuesday for
his first visit to jerusalem and was to pay his condolences to the widow
of assassinated prime minister yitzhak rabin.
Reference: jordan’s crown prince makes first visit to jerusalem
Seq2seq: jordan’s crown prince arrives in jerusalem
VND: jordan’s crown prince arrives for first visit to jerusalem
Source(2): a consortium led by us investment bank goldman sachs
thursday increased its takeover offer of associated british ports holdings
the biggest port operator in britain after being threatened with possible
rival bid.
Reference: goldman sachs increases bid for ab ports
Seq2seq: goldman sachs ups takeover offer of ab british ports
VND: goldman sachs ups increases offer of ab ports
Source(3): the german government and red cross have decided to give
###,### dollars in humanitarian aid to victims of the earthquake which
devastated unk in northwest iran the embassy here announced wednes-
day.
Reference: germany gives ###,### dollars in aid for iran quake victims
Seq2seq: germany to give ###,### dollars in humanitarian aid to iran
VND: germany to give ###,### dollars in aid to iran quake victims
Source(4): global banking giant hsbc said on monday that its pre tax
profits had risen in the third quarter despite loan write offs in the united
states rising to #.# billion dollars lrb #.# billion euros rrb.
Reference: hsbc says profits rise despite rising us bad debts
Seq2seq: hsbc says profits up despite us loan write offs
VND: hsbc says profits rise despite us loan write offs

Results on Gigaword Corpus. Table 3 presents the test ROUGE F1 score on the
Gigaword corpus. Our VND model still outperforms all baseline models and achieves F1
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scores of 39.0, 19.4 and 35.3 for ROUGE 1, 2, and L. Comparing with the ABS model,
our model performs significantly better by an 9.4 ROUGE-1 F1 score. The ASC+FSC1

and DRGD models has the highest scores, because both of which incorporates the latent
variables into the abstractive summarization model, but in different ways. Compared with
these two models, our model can still be better, perhaps the design of our model structure
allows for a better enhancement of the summarization performance. In CGU model, the
author uses a a convolutional gated unit for global encoding to get a high score. In future
work, we will try to incorporates this component to our model to improve the quality of
the summary.

In addition to ROUGE scores, we also provide several randomly selected examples
of generated summaries in Table 4. It can observe that the summaries generated by our
model are more coherent and descriptive than those generated by the seq2seq model. We
suspect that the main reason for this phenomenon lies in variational neural decoder , the
seq2seq model only concerns about the hidden semantics relation behind the source text
and target sentence, so it tends to generate phrases which are too general to necessarily
refer to the source text.

In the experiment, we train and test our model performance on Chinese and English
datasets, and the results on both datasets are better than the baseline model. This proves
that our model has good generality in different languages, and also proves that our model
can indeed capture complex semantics and strong dependencies through a latent variable
that explicitly models the underlying semantics of the source texts to improve the quality
of the generated summary.

6. Conclusion

This paper focuses on the problem of redundant and incoherent abstract information in the
current field of text summary generation. We propose a new text summarization model
based on variational neural decoder. This model combines the advantages of the varia-
tional recurrent neural network and the variational decoder to learn complex semantics,
and uses a double-layer recurrent network to enhance the strong dependency information
between the time before and after the summary output to improve the quality of the sum-
mary generation. We evaluate our proposed model on the LCSTS and English Gigaword
datasets. The experimental results show that our model outperforms state-of-the-art mod-
els and prove that our model captures more strong and complex dependencies to ensure
that the generated summary has higher quality.
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rization using sequence-to-sequence rnns and beyond. In: Proceedings of the 20th SIGNLL



Variational Neural Decoder for Abstractive Text Summarization 551

Conference on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016. pp. 280–290 (2016)

22. Napoles, C., Gormley, M.R., Durme, B.V.: Annotated gigaword. In: Proceedings of the Joint
Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction,
AKBC-WEKEX@NAACL-HLT 2012, Montrèal, Canada, June 7-8, 2012. pp. 95–100 (2012)

23. Neto, J.L., Freitas, A.A., Kaestner, C.A.A.: Automatic text summarization using a machine
learning approach. In: Advances in Artificial Intelligence, 16th Brazilian Symposium on Arti-
ficial Intelligence, SBIA 2002, Porto de Galinhas/Recife, Brazil, November 11-14, 2002, Pro-
ceedings. pp. 205–215 (2002)

24. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate in-
ference in deep generative models. In: Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014. pp. 1278–1286 (2014)

25. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive sentence summa-
rization. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015. pp. 379–389 (2015)

26. Schumann, R.: Unsupervised abstractive sentence summarization using length controlled vari-
ational autoencoder. CoRR abs/1809.05233 (2018)

27. Song, S., Huang, H., Ruan, T.: Abstractive text summarization using LSTM-CNN based deep
learning. Multimedia Tools Appl. 78(1), 857–875 (2019)

28. Su, J., Wu, S., Xiong, D., Lu, Y., Han, X., Zhang, B.: Variational recurrent neural machine
translation. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, Louisiana, USA, February 2-7, 2018. pp. 5488–5495 (2018)

29. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Advances in Neural Information Processing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. pp.
3104–3112 (2014)

30. Verma, R., Lee, D.: Extractive summarization: Limits, compression, generalized model and
heuristics. Computacion Y Sistemas 21(4) (2017)

31. Zhang, B., Xiong, D., Su, J., Duan, H., Zhang, M.: Variational neural machine translation. In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4, 2016. pp. 521–530 (2016)

32. Zhao, H.: A retrieval algorithm of encrypted speech based on syllable-level perceptual hashing.
Computer Science and Information Systems 14, 24–24 (2017)

33. Zhao, H., Wang, G., Xu, C., Yu, F.: Voice activity detection method based on multivalued
coarse-graining lempel-ziv complexity. Computer Science and Information Systems. 8(3), 869–
888 (2011)

Huan Zhao is a Professor at the College of Computer Science and Electronic Engineer-
ing, Hunan University. She obtained her B. Sc degree and M.S. degree in Computer Appli-
cation Technology from Hunan University in 1989 and 2004, respectively, and completed
her Ph.D. in Computer Science and Technology at the same school in 2010.

Her current research interests include speech information processing, embedded speech
recognition and machine learning.

Jie Cao received his bachelor’s degree in information and computing Science from Shenyang
Ligong University, Shenyang, China, and his master’s degree in computer technology
from Hunan University, Changsha, China, in 2017.



552 Huan Zhao et al.

His current research interests include natural language processing, abstractive sum-
marization, dialog systems, machine learning, and deep learning.

Mingquan Xu received his bachelor’s degree in network engineering from Wuhan Textile
University, Shenyang, China, and his master’s degree in computer technology from Hunan
University, Changsha, China, in 2017.

His current research interests include natural language processing, named entity recog-
nition, machine learning, and deep learning.

Jian Lu received his bachelor’s degree in information and computing Science from Dalian
University, Shenyang, China, and his master’s degree in computer technology from Hunan
University, Changsha, China, in 2017.

His current research interests include natural language processing, named entity recog-
nition, dialog systems, machine learning, and deep learning.

Received: January 31, 2020; Accepted: June 1, 2020.


	Introduction
	Related Work
	Background: Variational Autoencoder
	Proposed Model
	Overview
	Text Encoder
	Variational Neural Inferer
	Variational Neural Decoder
	Objective Function

	Experiments
	Datasets
	Evaluation Metrics
	Experimental Settings
	Baselines
	Results Analysis

	Conclusion

