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Abstract. Cyber-physical systems consist of many hardware and software compo-
nents. Over the lifetime of these systems their components are often replaced or
updated. To avoid integration problems, formal specifications of component inter-
face behavior are crucial. Such a formal specification captures not only the set of
provided operations but also the order of using them and the constraints on their
timing behavior. Usually the order of operations are expressed in terms of a state
machine. For new components such a formal specification can be derived from re-
quirements. However, for legacy components such interface descriptions are usually
not available. So they have to be reverse engineered from existing event logs and
source code. This costs a lot of time and does not scale very well. To improve the
efficiency of this process, we present a passive learning technique for interface mod-
els inspired by process mining techniques. The approach is based on representing
causal relations between events present in an event log and their timing information
as a timed-causal graph. The graph is further processed and eventually transformed
into a state machine and a set of timing constraints. Compared to other approaches
in literature which focus on the general problem of inferring state-based behavior,
we exploit patterns of client-server interactions in event logs.

Keywords: passive learning, process mining, interfaces, model-driven engineering.

1. Introduction

The high-tech industry creates complex cyber-physical systems. These systems consist
of many hardware and software components. These components are either developed in-
house or made by third party suppliers. Components interact with each other over software
interfaces. Good interface descriptions are crucial for component-based development of
cyber-physical systems. Usually software interfaces are only described in terms of their
signature, i.e., the set of operations. Sometimes also the allowed sequence of operations is
specified, for instance in terms of a state machine or a few example scenarios. The timing
behavior of an interface are rarely described. For instance, the expected frequency of
notifications and the allowed time between the call of an operation and the corresponding

* This is a revised and extended version of the conference paper [39].
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response. Violations of assumptions about timing behavior, however, are an important
source of errors over the complete life cycle of these systems.

To overcome the drawbacks of current interface modeling tools, we have developed
an Eclipse-based DSL (Domain Specific Language) called ComMA (Component Model-
ing and Analysis). ComMA [26] is currently used at business unit Image Guided Therapy
(IGT) of Philips for specifying interfaces of software components. A ComMA interface
specification describes the signature and behavior of a server component. The signature
of a server captures the operations it offers to clients and the notifications that it can send
to clients. The behavior of a server is specified as a state machine describing the allowed
sequence of interactions available to a client. Next to such a state machine, timing con-
straints on interactions, and data constraints on parameters exchanged during interactions
can also be specified. Based on a ComMA specification, a large number of artifacts are
generated automatically, for example visualization of the modeled state machine, interface
design documentation, simulator, stubs and run-time monitors. The monitor is very useful
to check interface compliance after software updates or hardware upgrades. For instance,
this is useful when an updated hardware component is obtained from a supplier, or during
integration of software developed by different teams. Often during software development,
teams are working on different sub-systems with shared interfaces. To facilitate teams to
work independently and reduce the chances of costly integration issues later, stubs are
particularly useful.

Given the benefits of the ComMA approach, all new system interfaces of Philips IGT
are modeled and checked using ComMA. However, there are many existing interfaces
and they could benefit from a ComMA specification. A manual transformation based
on inspecting event logs and software artifacts (source code, documentation etc.) would
require a large reverse engineering effort, is hard to scale up and extremely error prone.
On the other hand, the idea of automatically inferring state-based behavior from event
logs (also known as passive learning) is not new. This topic has been extensively studied
by the two communities of finite state machine inference [11] and process mining [1, 29].

Within both these communities there are popular tools that provide a large variety of
techniques to infer automata or Petri net models from event logs. However it is difficult
for a non-expert to use these tools directly on event logs to infer interface protocols. For
instance, the relation between inferred models and the choice of techniques (and their
many configuration parameters and heuristics) is not always clear and may require a deep
understanding of these techniques. There is also the additional effort required to translate
the output models into a more meaningful domain specific representation. Furthermore,
most passive learning approaches focus on ordering of events (actions) but neglect data
and time aspects. Moreover, the special case of inferring interfaces of component-based
systems can benefit from exploiting patterns of client-server interactions present in event
logs. To address these challenges, we present a method to infer component interface mod-
els (state machines) and their timing constraints from event logs.

Our approach is based on process mining techniques that exploit the ordering relation
between events of an event log (such as a-algorithm [2] and inductive miner [30]). Such
techniques usually start by computing causal dependencies between events and represent
them as a causal graph (vertices correspond to events). We extend a causal graph to cap-
ture both data and time information present in an event log. From a causal graph, we
derive a state machine graph and timing constraints over events. Finally, we reduce the
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state machine graph by merging equivalent states and transform it into a ComMA state
machine. At various stages, we exploit patterns of client-server interactions in event logs
such as recurring events and compound events to achieve better generalizations in the
resulting model.

In contrast, the approach in our previous paper [39], first transforms an event log into a
type of Moore automata [24] and then into a ComMA state machine and a set of time con-
straints. The idea in that paper is to identify event groups that start with a client-initiated
event (command or signal) followed by zero or more server-initiated events (notifica-
tions). Each event group is mapped to a ComMA triggered transition. Such grouping of
events often leads to a large number of states since variations in the number and type of
notifications will result in different event groups. The approach is also not able to deal
with event logs starting with a notification, nor is it correctly able to discover compound
events.

Concerning other model learning techniques, we have experimented earlier with active
learning which stimulates the system under learning actively and infers an hypothesis
based on the responses of the system [41]. Active learning [6] requires the implementation
of an adapter to connect the System Under Learning (SUL) with the learner. This adapter
has to deal with behavior of the SUL that does not match the assumptions of the learning
techniques, such as a SUL which is not input enabled or a SUL which sends no output or
multiple outputs after a stimulus. This technique also requires frequent resets of the SUL
which may be time consuming. Furthermore, non-determinism of the SUL is a problem
for active learning.

A disadvantage of passive learning is that only the behavior that is represented in the
used traces will be in the resulting state machine. Hence, compared to the active learning
approach, the model might be less complete. An interesting approach presented in [49]
exploits the complementary nature of the results produced by passive learning and active
learning to improve the final outcome. In our case, however, a passive learning approach
is acceptable since the learned model is intended as a starting point for subsequent manual
modeling and analysis.

Structure of this paper

The paper is organized as follows. Section 2 provides a brief overview of interface spec-
ifications using ComMA. In Section 3 we present our automated workflow to reverse en-
gineer interface models from event logs. Section 4 presents our learning method to infer
state and timing behavior. Section 5 describes a few extensions to the learning algorithm.
In Section 6, we apply our learning method to two real-life cases at Philips and evalu-
ate the generated models by comparing them to the original models. In Section 7 related
work is discussed and we compare our approach to a popular state merging approach for
inferring finite state machines. Section 8 concludes the paper.

2. Model-Based Definition of Interfaces in ComMA

In this section, we introduce ComMA [26] as far as needed to understand the remain-
der of this paper. The ComMA framework consists of the following three main languages:
signature, interface and traces. We illustrate the languages using a rather simple example
of a vending machine interface called [VendingMachine.
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Fig. 1. UML Sequence Diagram of possible event types between a client and server

signature IVendingMachine {

types
enum Result { OK, NOK }

commands

void loadProduct
Result switchOn
Result insertCoin
Result orderCola

signals
switchOff

notifications
inventoryInfo (int items)

Listing 1.1. Example of a signature

ComMA Signature. A ComMA signature specification lists a set of events offered by a
server to its clients. The events of a signature are distinguished into three types:

— Commands are synchronous events from client to server. The client is blocked until it
receives a reply from the server.

— Signals are asynchronous events from client to server.

— Notifications are asynchronous events from server to client.

All event types may have data associated with them. Their type definitions are also speci-
fied in a signature. To describe data aspects, ComMA provides a set of primitive data types
(such as integer, string, boolean, real etc.) and allows the definition of more complex types
such as enumerated types, vectors and records.

We refer to data associated with a command or a signal as input parameters and data
associated with a reply or a notification as output arguments.

In the Fig. 1, we give one example of each type of event in the execution context of a
client and server. Observe command c and its corresponding reply c_reply. The command
c has n input parameters associated with it denoted by param_1, . . . , param_n. The reply
of command ¢ denoted by c_reply has one output argument arg associated with it.
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interface IVendingMachine({
variables
int items, coins

init
items := 0
coins := 0

in all states {
transition do: inventoryInfo (items)

}

initial state Off {
transition trigger: loadProduct
do: items := items + 1
reply
next state: Off

transition trigger: switchOn
guard: items > 0

do: reply (OK)

next state: On

transition trigger: switchOn
guard: items <= 0

do: reply (NOK)

next state: Off

state On {
transition trigger: insertCoin
do: coins := coins + 1
reply (OK)
next state: On
OR

do: reply (NOK)
next state: On

transition trigger: orderCola
guard: coins > 0 AND items > 0

do: coins := coins - 1
items := items - 1
reply (OK)

next state: On

transition trigger: orderCola
guard: coins <= 0 OR items <= 0
do: reply (NOK)

next state: On

transition trigger: switchOff
next state: Off

Listing 1.2. Example of a ComMA state machine

Note that signals and notifications do not have a corresponding reply. In listing 1.1 we
present the signature of [VendingMachine.

ComMA Interface. The behavior of an interface in terms of allowed sequence of events
is expressed in terms of state machines. A state machine has one or more states (with ex-
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Fig. 2. Server side state machine corresponding Listing 1.2

actly one initial state) and a set of declared and initialized variables. Each state must have
one or more transitions. We distinguish between triggered and non-triggered transitions.
Both kinds may have an associated guard over the set of defined variables. Triggered
transitions (denoted by transition trigger) represent an invocation by a client, i.e. either a
command or a signal. Non-triggered transitions (denoted by fransition) represent an event
emitted by the server, i.e. notification or reply to a command. The body of a transition
consists of one or more clauses separated by an OR construct. A clause is a sequences of
actions corresponding variables assignments (using standard mathematical expressions)
or events (notifications or replies to commands). Non-determinism between choice of pos-
sible transitions in a state is supported by simply defining multiple transitions. Within a
transition body we express non-determinism using the OR construct.

We present the interface state machine of our IVendingMachine example in List-
ing 1.2. A brief explanation is provided below:

— Two variables items and coins are defined and initialized.

— The initial state is Off.

— Notification inventorylnfo with parameter items is possible in all states.

— In state Off there is a choice between accepting commands loadProduct and switchOn.
Observe that there are two instances of transition switchOn with different guards.

— In state On there is a non-deterministic choice between accepting commands insert-
Coin and orderCola and a signal switchOff. Observe that insertCoin has two possible
replies, expressed by the OR construct and different reply values.

In the Fig. 2, we present the communicating state machine (server side) corresponding
Listing 1.2 by borrowing the syntax of the popular modeling tool UPPAAL [28] for com-
municating automata. We extend the notation on arcs between states to represent sequence
of communicating events with expressions on variables.
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timing constraints

TimingRulel
command orderProduct and reply (OK) -> [ 2.4 ms .. 3.8 ms ] between events
TimingRule2
notification inventoryInfo and notification inventoryInfo
-> [ 400.0 ms .. 550.0 ms ] between events

Listing 1.3. Example of a few timing constraints

Timestamp: 0.000081 Notification: inventoryInfo Parameter: integer : 0
Timestamp: 2.002300 Notification: inventoryInfo Parameter: integer : 0

Timestamp: 3.030400 Command: switchOn
Timestamp: 3.567788 Reply Parameter: Result::NOK

Timestamp: 4.005600 Command: loadProduct
Timestamp: 4.206180 Reply

Timestamp: 5.640320 Notification: inventoryInfo Parameter: integer : 1
Timestamp: 6.940301 Notification: inventoryInfo Parameter: integer : 1

Timestamp: 7.046780 Command: switchOn
Timestamp: 7.666180 Reply Parameter: Result::0K

Timestamp: 13.100550 Command: orderCola
Timestamp: 13.215671 Reply Parameter: Result::NOK

Timestamp: 17.705500 Notification: inventoryInfo Parameter: integer : 1
Timestamp: 18.905500 Notification: inventoryInfo Parameter: integer : 1

Timestamp: 19.055012 Command: insertCoin
Timestamp: 20.000020 Reply Parameter: Result::NOK

Timestamp: 23.100550 Command: orderCola
Timestamp: 23.215671 Reply Parameter: Result::NOK

Timestamp: 23.908800 Notification: inventoryInfo Parameter: integer : 1
Timestamp: 24.608703 Notification: inventoryInfo Parameter: integer 1
Timestamp: 25.888101 Notification: inventoryInfo Parameter: integer : 1

Timestamp: 26.000300 Command: insertCoin
Timestamp: 26.006180 Reply Parameter: Result::0K

Timestamp: 27.100550 Command: orderCola
Timestamp: 27.215671 Reply Parameter: Result::0K

Timestamp: 28.030440 Notification: inventoryInfo Parameter: integer : 0
Timestamp: 29.960241 Notification: inventoryInfo Parameter: integer : 0O

Timestamp: 30.000300 Signal: switchOff

Timestamp: 36.000330 Command: switchOn
Timestamp: 36.006180 Reply Parameter: Result::NOK

Listing 1.4. Fragment of a ComMA trace
Timing Constraints Next to a state machine specification, a ComMA interface also

allows the specification of timing behavior as a set of timing constraints. In ComMA
there are four types of timing constraints [25], but we will only consider three of them.
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Interval rules specify the time interval between events. Conditional interval rules are a
further restriction on them. Rules for periodic events specify repetitive occurrence of an
event within a specified time period and jitter.

Listing 1.3 shows two examples of timing constraints: TimingRulel describes the al-
lowed time between an occurrence of command orderProduct and its reply. The lower
bound (LB) is 2.4 ms and the upper bound (UB) is 3.8 ms. TimingRule2 gives another
example of how time intervals between periodic notifications are similarly specified.

ComMA Trace. The trace language in ComMA is used to represent observed interactions
between a client and a server in a language independent manner. The idea is to be able
to write custom converters from domain specific traces (e.g. sniffing network traffic or
from a generated log file) to the ComMA trace language. An example ComMA trace
conforming to the IVendingMachine interface is shown in Listing 1.4.

3. Reverse Engineering Interfaces of Legacy Systems

Capture File

s step: 2

Userinterface

Capture to Trace

step: 1

IVendingMachine

VendingMachine

Source Code

( ‘ ! Logs to Trace
to Signature |\ L vendngvachine | \ﬁ

generate

Event Log File

||

StEPZ 3 ComMA Trace File A 4

Timestamp: 0
Notificatio:

oryInfo Parameter: integer : 0
Timestamp:
Command:

Interface Learner A Tinestam

‘ Reply Pa:

Signature ﬂ ﬂ
A 4 s 4

Causal Graph Interface Model

Fig. 3. Typical Usage of our Learning Framework
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Often the behavior of legacy components is poorly documented and understood. This
makes it hard to create an interface model having the right level of abstraction. In the
previous section, we have discussed the two ingredients of a ComMA interface model,
namely signature and interface. In Fig. 3, we present the different steps to derive a ComMA
interface model.

Generating a signature model from available source code is rather easy (step 1). On
the other hand, inferring interface behavior in terms of a state machine requires run-time
information such as event logs. Often event logs are abundantly available but the informa-
tion in them may not be very useful due to unclear semantics and incompleteness. In such
cases sniffing network channels during system execution and extracting information from
them turns out to be a very useful technique to obtain consistent and complete execution
data. In all cases, we must create custom transformations to the ComMA trace format
(step 2). A prerequisite for performing step 2 is the ability to map the custom messages
and their data to the available ComMA event types (as used in signatures) and ComMA
data types. ComMA provides the commonly used primitive types such as integer, real,
string, enumerations, records, vectors and map types. Our experience shows that these
data types are generally sufficient to support non-trivial cases. A limitation of ComMA
is the inability to use references to interface instances or services as data types (a feature
that can be found in some protocols for distributed computing). The actual conversion
from the captured communication or logs to ComMA traces usually requires developing
a custom translator. Depending on the complexity of the protocol and the data format, this
task may lead to significant efforts. In our practice we have created custom translators
that deal with proprietary company specific protocols, and also faced mixed formats that
integrate textual, binary and sometimes encrypted data. Clearly, availability of documen-
tation about the protocol is a key enabling factor. Usage of standard protocols and existing
tools can greatly reduce the effort in step 2.

The Interface Learner is an implementation of the reverse engineering method pre-
sented in Sec. 4. Once we have the set of ComMA traces and the signature model, the
interface learner generates a timed-causal graph and a ComMA state machine containing
time constraints (step 3).

Causal graphs are widely used by many commercial process mining tools [31] ° as a
simple and intuitive means to visualize which activities in a trace can follow one another
directly ®. Most of these tools nicely capture time and frequency based information such
as execution times and activity counts.

4. Inferring State Behavior: Interface Learner

We present a step-wise method to transform an event log into a ComMA state machine.
First we represent the information in an event log as a causal graph (dependency graph)
of events extended with time. A causal graph is then transformed into a state machine
graph where edges are events and states are outputs of events (data), i.e. similar to Moore
automata [24]. Next all equivalent states (i.e. states having same set of possible events)
of a state machine graph are discovered and merged. Finally the resulting state machine
graph is transformed into ComMA state machine syntax using a simple algorithm.

3 https://www.celonis.com/, https://processgold.com/en/, https://www. my-invenio.com/
6 See https://www.gartner.com/doc/3870291/market-guide-process-mining
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First we introduce a few notations in Sec. 4.1. In Sec. 4.2 we describe our learning
method in steps: logs to causal graphs, causal graphs to state machines, merging equiv-
alent states and finally generating a ComMA interface model and a set of timing con-
straints.

4.1. Notations

General definitions A finite sequence o over some set S of length n € N is a function
o:{l,...,n} — S. The set of all finite sequences over S is denoted by S*. We denote
a sequence of length n by o = (s1,...,,), where s1,...,s, € S and 0(i) = s; for
1 <4 < n. A sequence of length 0 is called an empty sequence denoted by e.

A graph is a pair G = (V, E), where V is the set of vertices and relation E C V x V
denotes edges. In a directed graph, edges have directions represented by a head and tail.
In a directed graph, a sequence 0 € V* of length n > 0 is called a directed path, if
(0(i),0(i+1)) € Eforalll <i<n.

We assume a set of interface actions IA, consisting of commands, replies, signals and
notification, with a function type which yields the type of each action, that is, COMMAND,
SIGNAL, REPLY, or NOTIFICATION. For a command ¢ we denote its reply by c_reply.
Henceforth we use a, a1, as, ... to denote interface actions, ¢, ¢y, co, ... to denote com-
mands, s, s1, S2, . . . to denote signals, and n, n1, no, . . . to denote notifications.

An event is a tuple (a, str), where a is an interface action and str is an output string
which is a string representation of the value of one or more output arguments associated
with a reply or notification. For commands and signals the output string is empty (see
Sec. 2). For now we abstract away from input arguments of commands and signals but
revisit it later in this section.

Given an event e, we denote its interface action by action(e) and its output string by
output(e). The occurrence of an event e at time ¢ € R is called a timed event, denoted as
the pair (e, t). We define the projection functions event(e,t) = e and time(e,t) = t. Let
X be the set of all timed events. A frace o is a possibly empty sequence over X, 0 € L™,
We denote the empty trace by e.

As an example,

o ={((c,-),0.0); ((c_reply, OK), 0.215); ((s, —), 3.51); ((n, 5),4.11))

is a trace containing first command c at time 0.0 followed by its reply with value OK at
0.215, third signal s at 3.51 and fourth notification n with output 5 at 4.11.

A log L is a finite non-empty set of traces L C X™. For a given log L, we define
events(L) as the set of all events occurring in traces of L and actions(L) as the set of all
interface actions occurring in events(L).

Restriction [R1] In this section we require for every trace that every occurrence of
a command is immediately followed by a reply of this command, that is, there are no
intermediate notifications. In Section 5, we will discuss how this restriction can be relaxed.

4.2. The Learning Algorithm

The learning algorithm takes a log and a signature as input and produces an interface
model as output. First we convert a log to a causal graph which is later transformed to a
state machine.
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Logs to Causal Graphs Each trace of a given log L captures a possible order of the
occurrences of events in time. A causal graph is a directed graph which describes when
two events follow each other in a trace. For a log L we define its causal graph G(L) as
the graph (V, E) where

- V = events(L)
- (e,€’) € E if and only if there exists a trace (tej,tes,...te,) € L and an ¢ €
{1,...,n — 1} such that e = event(te;) and €’ = event(te;11).

We denote the set of initial vertices as initial (V) = {{event(c(0))} | o € L}.
We associate a set of time durations to each pair of causally related events by the
function ¢ : E — P(R™) which is defined as follows:
0(e,e’) = {t | there exists a trace (teq,tes,...te,) € Landani € {1,...,n— 1}
such that e = event(te;), e’ = event(te;11) and
t = time(te; 1) — time(te;)}

We refer to the pair (G(L), §) as a timed causal graph. An example of a log containing

three traces and its corresponding timed causal graph is shown in Fig. 4. The edges are
annotated with the set of time durations, as defined by function §.

Log

L1 : < ((s1,-),8.8); ((m,-),0.2); ({(c,-, ),1.5); ((c_reply,0K),1.8);
((521'):3'6)3 ((C,—)_,?.G)j ((C_rePIY:NOK)J7'9)3 >

L2 : < ((n1,-),0.0); ((c,-),1.8); ((c_reply,0K),1.9); ((n2,-,N1),3.8);
((s2,-),5.5); ((c,-, ),7-8); ((c_reply,0K),8.8); >

L3 : < ((n1,-),8.0); ((c,-),3.5); ((c_reply,0K),3.9); ((n2,-),6.7);
((e,-),7.1); ((c_reply,NOK),8.6); ((n3,-),12.8); >

Fig. 4. Three Traces and their Timed Causal Graph

Causal Graphs to State Machines Next we transform a causal graph into a state ma-
chine graph, where each state (vertex) represents a set of events and each transition (edge)
represents an event. An event of an incoming transition to a state belongs to the set of
events associated with that state.

A state machine is a tuple (S, A, T, sg), where S is the set of states, A is the set of
actions, T C S x A x S is the set of transitions, and sq is the initial state.
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L1 : <((c1,-),0.0); ((c1_reply,0K),0.3); ((n1,5),1.3); ((c2,-),3.5); ((c2_reply,0K),3.9);
((n2,-,01),4.8); ((c2,-,001),6.7); ((c2_reply,0K),7.2);>

L2 : <((c1,-),0.0); ((€1,NOK),0.4); ((nm1,2),2.3); ((c2,-),3.5);
((c2_reply,0K),3.9); ((s1,-),8.1);>

13 : <((e1,-,00),0.0); ((cl_reply,0K),8.2); ((n3,-,NI),4.5); ((s1,-,576),6.4);
((n2,-),8.1); ((n3,-),9.3); ((n2,-),10.1);>

1.9
Causal Graph 2.9

cl reply|OK

c1_reply| OK

c1_reply| NOK

Fig. 5. Causal Graph to State Machine

We do not include time durations in a state machine because a timed causal graph is
sufficient to derive timing constraints. This is discussed later in the section.

Given a log L and its causal graph G(L) = (V,E), we define a state machine
(S, A, T, init) where

- init ¢V

- S = {{e}|e € events(L)} U {init}, i.e. states different from init are singleton sets,
each corresponding a distinct event from log L

- A = events(L);

- T ={(s1,e,52) | e € sz and ((s1, $2) € E or s9 € initial(V) A s1 = {init})}
Note that transitions with source ¢nit are added to all initial vertices of V. The event
of a transition is obtained from the target state of the relation in F.

An example of a causal graph and its corresponding state machine is shown in the Fig. 5.
Note that we denote the state in:t by the node containing the symbol .
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Algorithm 1: Generate ComMA StateMachine

input : state machine SM = (S, A, T, so), name
output: ComMA state machine

print machine name {

for s € S do

if s = so then

print initial state StateName(s) {

else
| print state StateName(s) {
end
for (s,e,s1) € T'do
if e has-type NOTIFICATION then
print transition do: EventName(e)
print next state: StateName(s2)
end
if e has-type SIGNAL then
print transition trigger: EventName(e)
print next state: StateName(s2)
end
if e has-typeCOMMAND then
print transition trigger: EventName(e)
print do:
for path € getAllPathsToReply(SM, s) do
for (s1,e, s2) € path do
if e has-type REPLY then
print EventName(e)
print next state: StateName(s2)
if not last for-iteration over paths then

| print OR
end
else
| print EventName(e)
end
end
end
end
end
print}
end
print }

Merging Equivalent States Once we have a state machine, the goal is to reduce it by
iteratively discovering all pairs of equivalent states and merging them.

Given a state machine (5, A, T, s¢), two states s1, s3 € S are said to be equivalent if
and only if {a | s : (s1,a,8) € T} = {a | 3s : (s2,a,s) € T}, i.e., the same set of
events are possible.

In the Fig. 5, consider the two pairs of states {(n1,5)} and {(n1,2)}, {(n3,—)} and
{(c2_reply, OK)}. It is easy to check that both pairs are equivalent. Each state of the first
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interface ISample{

initial state init {
transition trigger: cl
do: reply (OK)
next state: executed_cl_OK
OR
do: reply (NOK)
next state: executed_cl_NOK

}

state executed_cl_OK {
transition do: nl (5)
next state: executed_nl_5_nl_2

transition do: n3
next state: executed_n3_c2_OK

}

state executed_cl_NOK ({
transition do: nl (2)
next state: executed_nl_5_n_2

}

state executed_nl_5_nl_2 {
transition trigger: c2
do: reply (OK)
next state: executed_n3_c2_OK

}

state executed_n3_c2_OK {
transition do: n2
next state: executed_n2

transition trigger: sl
next state: executed_sl

}

state executed_sl {
transition do: n2
next state: executed_n2

}

state executed_n2 ({
transition trigger: c2
do: reply (OK)
next state: executed_n3_c2_OK

transition do: n3
next state: executed_n3_c2_OK

Listing 1.5. Generated ComMA State Machine

pair allows a single event (¢2, —) (with destination state: {(c2, —)}), while each state of
the second pair allows two events (s1, —) (with destination state: {(s1, —)}) and (n2, —)
(with destination state: {(n2, —)}).

Given a state machine (S, A, T, s¢) and two equivalent states s1, so € S, where sy #
init, we define a merge operation Merge((S, A, T, so), s1,s2) = (S, A, T", s(,) where
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- 8" =5\ {s1, s2} U {s} where s is the union of s; and so
— T" is obtained from T by replacing all occurrences of s; and ss by s
- sy = s, if 81 = init, sj = s¢, otherwise.

It is easy to check that the merge operation does not disturb the set of possible paths in
the state machine (i.e. action sequences). Also note that the order of applying the merge
operation does not have an effect on the resulting state machine.

Generating ComMA Interface Model A state machine SM = (S, A, T, sg) can be
transformed into a ComMA interface model, where we assume the following methods:

— getAllPathsToReply(SM, s) returns the set of all paths of SM starting at state s and
ending with an event of type REPLY and no other event in this path is of type REPLY.
Due to restriction R1, a command event is immediately followed by a reply event.

— StateName(s) which yields a meaningful string representation (label) of state s, for
instance, as a disjunction of event output strings over all incoming edges (see state
labels in Fig. 5).

— EventName(e) which yields a string representation of event e.

Given a state machine, we present an algorithm (see Alg. 1) to generate its correspond-
ing ComMA interface model. For the last state machine (i.e. after merging) in Fig. 5, the
algorithm produces the output shown in Listing.1.5.

Remarks. Often data sets associated with a notification or reply belong to large domains
such as integers, real etc. They may also have a complex type such as records and vectors.
In such cases the number of resulting states may become very large since the output strings
are not equal (for e.g. see notification n1 with output 5 and 2 in the Fig. 5). To remedy
this we may abstract away from such data sets. This should ideally be indicated by the
user as part of configuration parameters of the learner. If we abstract away from all data
in notifications and reply (i.e. all output strings are empty), then the size of the resulting
state machine is bounded by the number of unique events in an event log. This is easy to
check since the number of vertices in a causal graph and its corresponding state machine
(excluding init) are bounded by that number.

Recall that we did not consider input arguments of commands and signals. It is straight-
forward to capture them in a similar manner as we did for output data of replies and
notifications. To achieve this we only need to extend the tuple representing an event to
be the tuple (a, ostr, istr), where a is an interface action (as before), ostr is an output
string (as before) and istr is an input string which is a string representation of one or
more argument values associated with a command or signal. Similar to the previous case,
abstraction techniques are needed to avoid an explosion of states.

It is easy to check that the resulting state machine conforms to the input event log
since (a) the causal graphs represent all possible ordering of events present in an event
log, and (b) the corresponding merged state machine is not disturbing the order of events
present in the causal graph. To validate the implementation of our learning algorithm, the
monitoring feature in ComMA is used to check for conformance between the generated
interface model and the set of input event logs [26].
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Generating timing constraints. Consider a log L and its timed causal graph ((V, E), 0).
From a timed causal graph we could generate all possible timing constraints between
pairs of events but not all of them will be useful from a functional requirements point of
view, for e.g. between two status reporting notifications or between an error and a status
notification etc. Rather timing constraints over response time of an operation to execute
a movement on a mechanical device (observable as a specific command and its eventual
reply) or between notifications reporting positions of the device are more interesting to
check for compliance with safety regulations.

Recall from Sec. 3 that one of the inputs to the interface learner is the signature file
containing the syntactic definitions of each unique event occurring in event logs. So as
part of the configuration parameters of the interface learner, the user has the possibility
to indicate which set of events in the signature are relevant and what fypes of timing
constraints over them would be useful to generate.

As pre-requisite for generating timing constraints from a timed causal graph, we as-
sume a few generic methods are present to compute minimum and maximum time dura-
tions between events (user indicates which events are useful) present in a log. The nota-
tions for these methods are described below.

— Given a command event ¢ € V, we denote the minimum time duration to observe any
of its reply events as ¢, = min({min(d(c,r)) | (¢,7) € E}) and maximum time
duration to observe any of its reply events as Cq, = max({max(d(c,r)) | (¢,7) €

— Given two events el,e2 € V such that e2 is reachable from every path starting at
el and there are no cycles in between, let I" be the set of all paths starting at el and
ending at e2. We denote the cumulative minimum and maximum time durations along
all paths of I" by the interval [e1€2,,,;,,, e1€2,,,4.]. For the special case of cyclic paths
where e = el = €2, we denote its period by eperiod = (€maz — €min)/2 and jitter

by Ejitter — max(emam — €periods €period — emin)~

In Listing. 1.6, we provide templates to generate three types of timing constraints. A
brief description of these is given below (for detailed semantics, see [25]):

— TimeForReply states that if command c is observed then its reply is observed within
the specified interval.

— TimeBetweenEvents states that if two events el and e2 are observed without observing
el in between then the interval between them is [ele2,,;, ms ... ele2,,,, ms].

— TimeBetweenPeriodicEvents states that if el is observed then e2 will occur periodi-
cally with period €2¢,ioq and jitter €2 ;4. until e3 observed.

As mentioned earlier, the user indicates the events c, el, e2, e3 as part of configuration
parameters of the learner. The Listing 1.7 shows four examples of timing constraints gen-
erated from the timed causal graph presented in Fig. 4.

5. Extensions

The learning algorithm presented in the previous section is very general in that it does not
exploit patterns of interaction between a client and its server. We present two extensions
to the learning algorithm to deal with some commonly occurring patterns.



Reverse Engineering Models of Software Interfaces 673

timing constraints

TimeForReply
command action(c)
[ Cmin MS ... Cmaz Ms ] —> reply

TimeBetweenEvents
type(action(el)) action(el) and type(action(e2)) action(e2)
-> [ ele2min ms ... ele2,,qr ms ] between events

TimeBetweenPeriodicEvents
action(el) then action(e2) with period eperiod MS jitter ejjrter ms until action(e3)

Listing 1.6. Templates to generate timing constraints

timing constraints

TimingConstraintl
command ¢ -[ 0.1 ms ... 1.5 ms ] -> reply

TimingConstraint2
signal sl and command ¢ -> [ 1.5 ms ... 3.7 ms ] between events

$TimingConstraint3
$notification nl and signal s2 -> [ 3.2 ms ... 5.7 ms ] between events

Listing 1.7. Few timing constraints of the timed causal graph in Fig. 4

The first extension detects recurring events in event logs. In practice these events are
usually periodic notifications containing status reporting information but they could also
be signals or commands. The second extension detects a generalization of a command-
reply pattern by allowing notifications in between. Such patterns are atomic from the point
of view of a client because it is blocked until the reply is received. We end the section with
a discussion about exploiting domain knowledge to detect hidden dependencies between
events present in a log. For e.g. an event in the initialization phase may have an impact on
the possible events available in the operational phase.

Using Client-Server Context to Distinguish Recurring Events. Control systems often
generate periodic events, for e.g. notifications about status information generated by a
server. If we simply transform a log containing recurring events into a causal graph, we
may end up with a model where almost every event is possible after a recurring event.
For instance, consider the example in Fig. 6. Here we have a trace containing a pe-
riodic notification nl. If we ignore nl, then we observe that there is a causal relation
between client-initiated events, i.e. command c is followed by signal s1 and then signal
s2. When we transform such a trace into a causal graph, the causal relations are lost since
nl can be followed by either c, s1, s2. As a result, we end up allowing too much behavior.
One way to address this problem is by exploiting the fact that client-initiated events
(commands and signals) and server-initiated events (notifications) occur in context of each
other, i.e. a sequence of client-initiated events occur in the context of the last server-
initiated event and vice versa. The additional context information is easily captured by
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Fig. 6. Handling Periodic Events

extending the vertices of a causal graph with a context attribute. If a client or server
initiated event is the first event of a trace then its context attribute is empty.

In the Fig. 6, we show how vertices representing periodic notification n1 are extended
with context of client-initiated events. The occurrences of n1 are now distinguished based
on the last occurring event from a client. As a result, causal relations between events
¢, s1, s2 are preserved.

Applying contexts to non-periodic events can have a negative effect on the final result.
In practice, the user should be able to decide which events can benefit from a context
attribute. This choice can be provided to the learner as part of its configuration parameters.

Inferring Compound Commands Many client-server based control systems support
the possibility for a server to raise notifications during the execution of a command, i.e.
a sequence of notifications before sending the corresponding reply. We refer to such a
pattern as a compound command. Note that the client is blocked until it receives a reply
from the server. In ComMA, we model such a pattern by adding one or more notifications
to the body of a transition trigger referencing a command.

In the Listing 1.8, we give an example where a server can receive a command switchOn
and as a response, it produces two notification inventorylnfo and powerLevel before re-
turning a reply with value OK.

The trace induced by a compound command is a sequence of events starting with a
command, ending with a reply and containing zero or more notifications in between, i.e.
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transition trigger: switchOn
do: inventoryInfo(l)
powerLevel (85)
reply (OK)
next state: On

Listing 1.8. Compound Command

a sequence of the form (c;ny;no;. .. Nuy; creply), where m € N. In the Listing 1.9, we
give an example.

Timestamp: 3.030400 Command: switchOn

Timestamp: 13.908800 Notification: inventoryInfo Parameter: integer : 1
Timestamp: 13.908800 Notification: powerLevel Parameter: integer : 85
Timestamp: 3.567788 Reply Parameter: Result::0K

Listing 1.9. Trace induced by Compound Command in Listing 1.8

Recall that due to restriction R1 in the previous section, we did not consider traces
induced by a compound command. To relax this restriction, we make the following mod-
ifications to the concepts presented in the previous section.

— Drop interface action type REPLY and relax the restriction on empty output strings
for command events. So instead of using an explicit reply event, we use output string
str of a command event (c, str) to capture its corresponding reply value.

— Lift the definition of an event to be the tuple (e, o), where e is an event (as defined be-
fore) and o is a sequence of notification events. We require that signal and notification
events satisfy o = e.

These modifications imply that event logs must be pre-processed to detect and aggre-
gate subsequences induced by compound commands before constructing the causal graph
with the newly extended notion of events. For instance the trace in Listing 1.9 is trans-
formed into event e = ((switchOn, OK), (inventoryInfo(5); powerLevel(85))). We give
an example of pre-processing a log in step 1 of Fig. 7.

The transformation to a causal graph and then to a state machine stays the same (see
step 2 and step 3 in Fig. 7). However, the algorithm to generate a ComMA state machine
syntax must be modified to handle compound commands. This transformation is rather
straightforward. For instance, event e must be transformed into the ComMA syntax pre-
sented in Listing 1.8.

Note that we still require each input trace to satisfy that for every command event
there is a matching reply event.

Discussion It is often the case that we have some knowledge about the behavior of a
component which would otherwise have required a large number of traces. There are two
ways to capture such information.



676 Debjyoti Bera, Mathijs Schuts, Jozef Hooman, and Ivan Kurtev

Logl

L1 : < ((s1,-),0.0); ((n1,-),0.2); ((c,-,C01),1.5); ((n1,-),1.6); ((n2,-),1.7); ((c_reply,0K),1.8);

((s2,-),3.6); ((c,-),7.6); ((c_reply,NOK),7.9); >

L2 : < ((n1,-),0.0); ((c,-),1.8); ((n1,-),1.9); ((n2,-),2.7); ((c_reply,0K),2.9); ((n2,-,NI),3.8);

((s2,-),5.5); ((c,-,C0M),7.8); ((c_reply,0K),8.0); >

L3 : < ((n1,-),0.0); ((c,-),3.5); ((c_reply,0K),4.9); ((n2,-),6.7); ((c,-),7.1);((c_reply,NOK),8.6);

((n3,-),12.0); >

Step: 1
Log2 @

L1 : < (((s1,-),0-0),¢5); (((n1,-),8.2),¢5); (((c,0K,COM),1.5), <((n1,),1.8); ((n2,-),1.7);>);
(((52,-),3.6),<>); (((€,NOK),7.6),<5); >

L2 5 < (((n1,-),0.0),<3); (((c,0K),1.8), <((nL,-),1.9); ((n2,-),2.7);>); (((n2,-,N1),3.8),<>);
(((s2,-),5.5),<>)5 (((€,0K,C01),7.8),¢); >

L3 : < (((n1,-),0.0),<>); (((c,0K),3.5) , <((n1,-),3.9); ((n2,-),4.7)5>); (((n2,-),6.7),<>);
(((e,N0K),7.1), )5 (((n3,-),12.0),<>); >

@ Step: 2

<> <>
c|nok )

<(n1,-); (n2,-);>

clok

Causal Graph

<(n1,-); (n2,-);>

—

~ clok
<

State Machine Graph

Fig. 7. Inferring Compound Command in Traces

One way is to define a set of negative traces (i.e. forbidden order of events) and adapt
the learning algorithm to take these orderings into account while constructing the causal
graph. In practice such traces are not readily available and are time-consuming to create.

Another way is to specify domain knowledge in terms of temporal constraints [38] and
use them in conjunction with a model checker to check for violations [45, 12]. The model
checking process can be further augmented by formulating and asking questions to a user
in terms of scenarios [16, 19] on the quality of the generalization. The user may accept
or reject the generalization, or can provide a new temporal property that handles a larger
class of scenarios. Constraints are usually specified as safety (must never be violated) and

liveness (must eventually happen) properties [40].
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As our algorithm takes into account only causal relations between pairs of directly fol-
lows events, a pattern such as event X is eventually followed by event Y is not exploited
(long-term dependencies). For instance consider the interface model of IVendingMachine
in List. 1.2. The interface state machine does not allow a vending machine with zero items
to switchOn successfully (i.e. with a reply OK). It is hard to infer this behavior from traces
only because other events can occur in between, e.g. loadProduct and switchOn (e.g. see
List.1.4). Such a dependency can be expressed as a Linear Temporal Logic (LTL) formula.

6. Case Studies

In order to evaluate the learning algorithm we used two example cases for which we
already constructed an interface manually earlier. For both interfaces there is a software
implementation and a number of traces collected during testing the implementation. The
first case is an interface of the power control unit; the second case is an interface of a
third-party operating table.

The goal of the presented case studies is to evaluate the interface state machines gen-
erated by the learning algorithm in terms of size and understandability. We also compare
the generated output to the original manually constructed state machines that were already
present. Furthermore, we do not evaluate the generation of timing constraints because it
is a work in progress.

Clearly the model inferred by the interface learner depends on the quality of the event
log. Most of the times, event logs only contain only a subset of the possible events, usually
determined by the execution context. Furthermore, only a part of the interface behavior
may be represented by an event log. In order to characterize the input event log we mea-
sure the percentage of the used events and the coverage of the logs measured against the
original interface models.

For both cases we first automatically checked for conformance of traces against the in-
terface model and then applied the ComMA interface learner. The results from the power
control unit case are shown in Table 1. The unit has 5 sub-interfaces: for inspecting the
event log (logging); for inspecting the unit self-test results and software version (ser-
vice); for updating the unit application software and configuration (utility); for monitor-
ing startup and shutdown state (startup/shutdown); and for performing tests by injecting
events (test interface).

Table 1. Results of learning experiment with power control unit

Interface Nr.traces Coverage % used events|Size original interface|Size learned interface
Logging 1 83% transitions, 100% states 100% 1 machine, 2 states 4 states
Service 2 100% transitions and states 100% 1 machine, 1 state 5 states
Utility 2 7% transitions, 17% states 25% 1 machine, 6 states 4 states
Startup/shutdown 14 29% transitions, 71% states 54% 2 machines, 7 states 8 states
Test 1 16% transitions, 36% states 50% 1 machine, 11 states 3 states

For every interface the table columns indicate the number of traces used for mon-
itoring and learning, the coverage of the trace set as a percentage of visited states and
transitions in the original interface, the percentage of the used interface signature events,
the total number of state machines and states in the original interface, and finally the
number of states in the learned state machine.
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The original Service interface is stateless (hence its specification has a single state).
In the traces, the events were observed always in the same order (4 events in total), which
explains why the learned state machine contains 5 states. It is anticipated that if the traces
contain more permutations of the 4 events then some of the states can be merged by the
learning algorithm.

For traces that cover only a small part of the behavior (demonstrated by low coverage
and low percentage of used events) the number of states in the learned machine is lower
than the original. This observation confirms the intuition that the learned behavior is a
subset of the complete one.

All learned state machines are easy to understand partly due to the rules for forming
the state names. Their size in terms of number of states is small reflecting the fact that the
behavior of the interfaces in this case study is generally not complex.

The interface in the second case study (that of the operating table) is considerably
more complex than the one for the power unit. The table can move along 5 axes indicated
here as Axis 1 to 5. Moves on several axes can be executed in parallel. All moves have
similar behavior captured in a simple state machine with 3 states. Thus the original inter-
face specification consists of 5 orthogonal machines (one for each axis) plus one machine
for the startup sequence and the generic parameter notifications. In addition, the table and
its clients exchange keep-alive messages with high frequency which results in long traces.
The keep-alive messages and parameter value notifications can happen in any state. The
experimental set contains 6 traces: one with a move for each axis in isolation and one that
combines moves along all axes. For simplicity, the traces do not include startup sequence.

Table 2. Results of learning experiment with the operating table

Trace Coverage Size learned behavior
Axis 1 | 15% transitions, 41% states 13 states
Axis 2 | 17% transitions, 47% states 13 states
Axis 3 | 18% transitions, 47% states 13 states
Axis 4 | 17% transitions, 41% states 13 states
Axis 5 | 30% transitions, 59% states 18 states
All axes | 67% transitions, 94% states 31 states
All traces|71% transitions, 100% states 31 states

The results from this case study are summarized in Table 2. As in the previous case,
for each trace set we indicate the coverage over the original interface. First, we applied
the learner to one trace per axis to learn the behavior of each move in isolation (rows
Axis 1-5). As can be seen, the trace coverage and the size of the results are comparable
except for the trace for Axis 5 which appeared to contain moves along 2 axes. The row
”All axes” shows results for a trace containing moves along all axes. As a final step in the
experiment we fed the learner will all the 6 traces together (last row). The total coverage
of the input increases but the result is not very different in size and topology from the one
obtained from the trace with all axes.

A machine with 31 states (obtained when all traces were used) is not easy to compre-
hend but we have to say that the original behavior specification is not simple either. It was
difficult to identify the state behavior for a single move because the move-related events
were interleaved with the keep-alive messages. We see a potential to reduce the size of
this model by using domain knowledge to filter out keep-alive messages and some status
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update notifications that can happen at any time. The assumption is that these events do
not have an effect on the other events and can therefore be isolated.

As a final observation we would like to note that the generated output with this new al-
gorithm is generally smaller and more manageable than the one reported in the conference
version of the paper.

The learned interfaces were inspected by the engineers who created the original spec-
ifications thus they had domain knowledge and were experienced in modeling the in-
spected behavior. As future work we plan to investigate interfaces without pre-existing
specifications.

7. Related Work

Inferring state-based behavior from event logs is a well studied topic within Process Min-
ing and Finite State Machine (FSM) Inference communities.

FSM Inference Approaches for FSM-based inference (grammar induction) are based on
the learning framework described in [21] which shows that the class of regular languages
cannot be identified in the limit from positive strings only, since this almost always leads
to over generalization. For instance a self-loop model is always the simplest explanation
for any given positive string but such a model is not very useful for analysis. So in practice,
heuristics are used to control the amount of generalization present in the final model.

Most popular techniques for FSM inference are based on the state merging approach.
They start by representing the set of available traces as a prefix tree acceptor and then
in steps make generalizations by merging pairs of nodes based on an equivalence notion
derived from the well-known Myhill-Nerode relation [36]. So the problem of inferring a
state machine from a set of traces is reduced to identifying and scoring equivalent points
in the traces that may be suitable merge candidates. Each merge produces a state machine
with more allowed behavior (i.e. the set of all possible event orderings). Most popular
strategies for generalizing prefix trees can be characterized by Bierman’s K-tails algo-
rithm [11] which works on the idea that two points in an execution trace (nodes represent-
ing states) are equivalent and can be merged if their future behaviors (up to k-steps) are
identical. The work in [15] relaxes the equivalence notion to include subsets of possible
behaviors, carried out in the context of discovering software engineering processes. The
GK-tails method [33, 46] extends K-tails by considering the influence of data. The method
relies on Daikon invariant detection to produce an extended FSM (EFSM), i.e. FSM with
data guards on transitions.

When applying simple state merging algorithms to limited traces it is difficult to de-
termine if a compatible merge is truly valid. A bad merge earlier on can have negative
consequences on the end result. To some extent this issue is addressed by Evidence Driven
State Merging (EDSM) approaches based on the Red-Blue Fringe framework [27]. In an
EDSM based approach, each possible merge is given a score based on the amount of evi-
dence of a good merge. The merge with the highest evidence is merged. An extension to
the red-blue fringe state merging algorithm that takes into account timing information in
traces and infers a timed automata from it, is presented in [43].

Some approaches rely on the user to determine if a merge is good or bad. The work
in [16] presents strategies to formulate questions to the user. The user is also able to



680 Debjyoti Bera, Mathijs Schuts, Jozef Hooman, and Ivan Kurtev

provide negative traces and temporal constraints to further improve the merge criteria. A
similar approach based on model checking is presented in [45] which is extended in [12]
using SAT solving techniques. The resulting Mealy machine is transformed into a non-
deterministic Moore machine. The trivial solution for the case of positive traces only is
the basis for the work in [39]. Note that this is different from the state merging approach.

A popular passive automata learning tool is Flexfringe [44] 7. The tool provides an
efficient implementation of the well-known evidence-driven blue-fringe state-merging al-
gorithm and its probabilistic variants. There are many options to modify search strategies
and the user can choose to extend functionality with custom algorithms or rely on standard
algorithms such as RPNI [37], ALERGIA [14], EDSM [27], Overlap [23] etc. Another
interesting tool is LearnLib 8. The tool has a focus on active learning but there are also a
few RPNI based passive learning algorithms. However most of these tools are difficult to
use by a non-expert and solve only the general problem of inferring state machines. It is
also not trivial to map the resulting models from these tools to domain specific concepts.

Comparison to the State Merging Approach To compare our approach to state merging
approaches based on K-tails, we borrow a nice example of a text editor application from
the work in [45]. The idea is simple: once a file is loaded, it can be edited. Only if a file
has been edited then it may be saved. Finally a new document can only be loaded when
the current document has been closed.

Recall that K-tails like other state merging approaches start by representing the set
of available traces as a prefix tree acceptor. In each step, pairs of nodes of this tree are
merged if their future behaviors (up to k-steps) are identical, and the resulting model is
made deterministic. In addition to the k-value, the choice of pairs and evaluation of a
merge rely on heuristics provided by the user.

In the Fig. 8, we present three traces from a log file of such an application and their
corresponding FSM generated using the k-tails algorithm with values of k = 1 and k = 2
(note that the example log and generated state machines are borrowed from [45]).

In general for a user it is difficult to determine the right value of k& for which the
resulting model is useful, since the user also has not much knowledge about the model
being inferred.

Observe that for higher values of &k, we get a FSM with less behavior (i.e. set of all
possible event orders). So for £ = 2 the FSM is almost the prefix tree, whereas for k = 1
we get a FSM with more behavior but

— it is possible to save without having edited the file
— itis possible to edit and save the first loaded file but not to the second loaded file.
— itis not possible to load a third file

In the same figure, we also show the state machine generated by our learning method.
Since the model preserves the causal relations between events of a given trace, we do not
suffer from the problems mentioned above. Furthermore, it is easy for the user to reason
about the output state machine, since ordering relations can be checked very easily by
either inspecting the set of input traces or its corresponding causal graph.

7 https://automatonlearning.net/flexfringe/
8 https://learnlib.de/
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Fig. 8. Comparing with the K-tails Approach

Process Mining The field of Process Mining aims to discover, monitor and improve pro-
cesses by extracting knowledge from event logs [1]. Most commercially successful ap-
plications of process mining can be seen in the area of organizational business processes
(Fluxicon, Celonis, UiPath, Process Gold, ProM, PM4PY)’ 10 Petri nets are a widely
used formalism to model and analyse business processes [42]. So it is not surprising that
most process mining techniques produce their output in terms of a Petri net [1]. In con-
trast to FSM based inference techniques, process mining techniques take into account the
presence of concurrent behavior in event logs.

Early work on process mining can be traced back to three independent papers [5, 17,
15]. The work in [15] developed process discovery techniques in the context of software
engineering processes. Among the three methods presented in this paper, the purely algo-

9 https://www.celonis.com/, https://processgold.com/en/, https://www.fluxicon.com/
10 https://www. my-invenio.com/, http://www.promtools.org/, https://pm4py.fit fraunhofer.de/
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rithmic approach (based on K-tails [11]) and Markovian approach to deal with noise were
considered promising. Around the same time, the work in [5, 17] presented the first appli-
cations of process discovery in the context of business processes. The work in [17] adapts
the K-tails algorithm with probabilistic elements. However none of the three approaches
are able to discover concurrency.

The a-algorithm [2] was one of the first algorithms to mine concurrent behavior along
side choices and causal dependencies. It is a simple technique that scans the event log
for patterns and distinguishes them in log-based ordering relations, i.e. causal, choice
and concurrency. These ordering relations are used by the algorithm to create places to
connect transitions of the resulting Petri net.

The learning method presented in this paper uses ordering relations (like in the -
algorithm) between events of a log as its starting point. However for our case of inferring
interface models, the presence of concurrent behavior in event logs is not yet a relevant
aspect but gives us the nice possibility to extend our method to detect them in the future.

Another interesting approach concerns the theory of regions where the focus is on
synthesizing a Petri net from a behavioral specification (for e.g. a transition system), such
that the behavior is preserved. There are two main approaches, state-based region [20,
4, 18] and language-based region [10,48]. Other approaches in process mining include
frequency-based techniques such as the heuristics miner [47, 34], abstraction-based tech-
niques such as the fuzzy miner [22] and genetic algorithms [3, 35] which take into account
noise and incompleteness of event logs.

The quality of the discovered model with respect to the given log is measured using
the four quality dimensions: fitness, simplicity, precision, and generalization [1]. Most
approaches guarantee varying levels of fitness and re-discoverability. Among them region-
based approaches achieve a good fitness. The problem of guaranteeing sound models with
a good fitness is addresed in [30].

Most process mining approaches are not able to handle duplicate tasks since their
occurrences are indistinguishable in an event log. As a result, models may become overly
connected, negatively affecting the precision and simplicity of the model. Many solutions
to detect duplicate tasks have been proposed [35, 32, 13] but the rules to identify them are
not sufficiently general for all event logs. Note that we try to address this problem in our
learning method by using context information(see Sec. 5).

Freely available tools !! such as ProM and more recently a Python library (PM4PY)
provide access to many mining algorithms. Similar to tools for FSM inference, these
tools are also difficult to use by a non-expert and apply them to domain specific concepts.
However, the many available professional process mining tools address these problems
by providing tailored solutions for the domain of business process management.

8. Conclusions

We have presented a method to infer an interface state machine and a set of timing con-
straints from an event log. The inferred model is intended to serve as a starting point for
subsequent modeling steps. In comparison to other approaches for passive learning, we

T http://www.promtools.org/, https://pmdpy.fit fraunhofer.de/
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exploit client-server interaction patterns and also take into consideration data and tim-
ing information in event logs. Our method can also be configured to deal with recurring
events, the choice of generated timing constraints and large data domains of parameters.

Like many process mining techniques [31], we also generate an intermediate causal
graph using the directly-follows relation. For a user, such a graph serves as an intuitive
way to visualize the information present in an event log and to reason about the resulting
interface model. In contrast, the state machines produced by state merging approaches
(see Sec. 7 and 4) are difficult for a user to reason about solely based on merge heuristics.
Moreover having meaningful state names in interface models greatly improves readability
which is also an important aspect for adoption.

Most parts of the method presented in this paper are available in ComMA 2, except
support for compound commands and the generation of timing constraints. In future re-
leases, we intend to add these missing features. As future work we see two interesting
extensions of our method (1) Extensions to the concept of compound commands to cap-
ture more frequently occurring domain specific patterns such as cancelations, etc. [7, 9, 8],
and (2) Extensions to infer behavior of components. In typical component-based systems,
a component has a set of provided interfaces (to provide services) and a set of required
interfaces (to consume services). So the goal is to infer a set of constraints between events
of these interfaces based on evidence in event logs. Such an inference must be able to
detect concurrent behavior in event logs. In this case exploiting the ordering relation for
parallel tasks as presented in the «v algorithm [2] could be a nice extension to our method.
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