
Computer Science and Information Systems 18(3):867–891 https://doi.org/10.2298/CSIS200206049G

Intrusion Prevention with Attack Traceback and
Software-defined Control Plane for Campus Networks

Guangfeng Guo1,2, Junxing Zhang1,?, and Zhanfei Ma2

1 College of Computer Science, Inner Mongolia University
010021 Hohhot, China

guoguangfeng@163.com, junxing@imu.edu.cn (#Corresponding author)
2 Baotou Teachers’ College, Inner Mongolia University of Science & Technology

014030 Baotou, China
mazhanfei@163.com

Abstract. As traditional networks, the software-defined campus network also suf-
fers from intrusion attacks. Current solutions for intrusion prevention cannot meet
the requirements of the campus network. Existing methods of attack traceback are
either limited to specific protocols or incur high overhead. To protect the data cen-
ter (DC) of the campus network from internal and external attacks, we propose an
Intrusion Prevention System (IPS) based on the coordinated control between the de-
tection engine, the attack traceback agent, and the software-defined control plane.
Our solution includes a novel algorithm to infer the best switch port for defending
different attacks of varied scales based on the inverse HSA (Header Space Analy-
sis) and the global view of the software-defined controller. The proposed scheme
can effectively and timely block the malicious traffic not only protecting victim
hosts from attacks but also preventing the whole network from suffering unwanted
transmission burden. The proposed IPS is deployed on the bypass of the DC switch
and collects network traffic by port mirroring. Compared with the traditional serial
deployment, the new design helps defend the DC internal attacks, reduce the proba-
bility of network congestion, and avoid the single point of failure. The experimental
results show that the overhead of our IPS is very low, which enables it to meet the
real-time requirements. The average defense time is between 10 and 14 ms for the
data center internal attacks of different scales. For external attacks, the maximum
defense time is about 76 ms for a large-scale network with 100 switches.

Keywords: IPS, Intrusion Prevention System, SDN, Software-defined Network, At-
tack Traceback, Inverse Forwarding Function, HSA, Header Space Analysis, Cam-
pus Networks, DC, Data Center.

1. Introduction

The overall situation of network security is not optimistic in recent years. Intrusions from
the Internet have brought serious consequences, which pose a great threat to information
security of networked systems. In the first quarter of the year, DDoS attacks rose more
than 278 percent compared to Q1 2019 and more than 542 percent compared to the last
quarter, according to Nexusguards Q1 2020 Threat Report [16]. In addition, attacks from
the internal hosts infected by computer viruses have exhibited great destructiveness in

? Corresponding author

868 Guangfeng Guo et al.

several security incidents. Worms play an important role in internal attacks. The worm
installs itself in the memory of the computer but it has the capability to transfer itself
to other hosts automatically even without human intervention, thus making it much more
serious than a virus. In recent two years, some enterprises have been attacked by the worm
GandCrab, which encrypts victims' files and demands ransom payment in order to regain
access to their data. Since launching in January 2018, GandCrabs authors claimed to have
brought in over $2 billion in illicit ransom payments [15].

Software-defined networking (SDN) [26] has its roots anchored deeply in education
and drives the evolution of the campus network. It demonstrates that the campus network
can do more than serving universities, and they are also capable of helping a diverse set of
users with varying needs. Therefore, the software-defined campus network is becoming
increasingly important. The data center (DC) of the campus network holds the most crit-
ical data assets of a university, college, or institute, so it is the key protection unit of the
network and also the focus of this paper. Unfortunately, the security of software-defined
campus networks is worrying. As traditional networks, software-defined networks also
suffer from attacks such as DoS (Denial of Service), U2R (User to Root), R2L (Remote
to Local), Probe, etc. Given that SDN is famous for its contributions to the network archi-
tecture, we consider taking advantage of its dynamic flow control, network-wide visibility,
and network programmability to improve its security, especially its intrusion prevention
capability.

The Intrusion Prevention System (IPS) has been widely adopted to enhance network
security. Traditionally, it is deployed between the core switch of the campus network
and the DC switch in series. Once external malicious traffic attacks DC hosts through
the IPS, it can effectively protect them from these attacks. However, before entering the
IPS, a large amount of malicious traffic is often forwarded by other switches inside the
campus network, which brings additional burden to the network. Moreover, if an internal
malicious host attacks other DC hosts, the IPS can no longer protect them because the in-
ternal malicious traffic is forwarded by the DC switch without through the IPS. Therefore,
we want to build an innovative intrusion prevention system that protects DC hosts from
both internal and external attacks. The proposed system is deployed on the bypass of the
DC switch and it collects network traffic with port mirroring. The new design prevents
the IPS-incurred single point of failure from happening, avoids the network congestion
caused by the serial deployment, and defends the DC internal attacks. Further, the new
system makes use of the inverse forwarding functions derived by expanding the Header
Space Analysis (HSA) [20] framework to accurately trace attack traffic back and find the
best switch port for blocking it. Finally, the system harnesses the synergy of the intru-
sion detection engine, the attack traceback agent, and the software-defined control plane
to block intrusion attacks from the source in real time using the OpenFlow protocol and
prevents the malicious traffic from soaring at the beginning of attacks.

The contributions of this paper are as follows:

– To protect the data center of the campus network from internal and external attacks,
we propose an intrusion prevention system based on the coordinated control between
the intrusion detection engine, the attack traceback agent, and the software-defined
control plane.

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 869

– According to the inverse HSA, we design a novel real-time protocol-independent
algorithm to infer the best switch port for preventing different intrusion attacks of
varied scales using the forwarding model of the entire network.

– We implement a prototype of the proposed IPS and evaluate its performance in the
software-defined campus networks of various scales under the intrusion attacks such
as NULL scanning and FIN scanning.

The rest of the paper is organized as follows. Section 2 summarises related work to
the IPS in SDN and Attack Traceback. In Section 3 we describe our design principles and
system architecture. Section 4 presents our algorithm of finding the best defense switch
port. Section 5 presents the implementation details of the proposed IPS. Section 6 de-
tails our performance evaluation experiments. In Section 7 we discuss the advantages and
drawbacks of various attack traceback methods. Finally, conclusions are drawn in Section
8.

2. Related Work

2.1. IPS in SDN

There is some existing work that leverages SDN for intrusion prevention. Based on the
deployment modes of security components, the existing work can be classified into two
categories: (1) security applications built on the SDN controller [35,8], (2) security de-
vices that work in cooperation with the SDN control plane [34,9]. Changhoon Yoon et
al. [35] implement four types of security functions with SDN in Floodlight applications
and evaluate their Floodlight [1] application in real testbeds. For the NIPS (Network In-
trusion Prevention System) application, the payload delivery from the data plane to the
control plane would incur substantial overhead. Pin-Jui Chen and Yen-Wen Chen [8] pro-
pose a defense mechanism, which can find attack packets previously identified through
the Sniffer function, and once the abnormal flow is found, the protection mechanism of
the Firewall function will be activated. But its evaluation method is simple, and it is dif-
ficult to meet the security requirements of campus networks; its real-time performance is
not evaluated; the problem of tracing the source of the attacker is not resolved. Xing et
al. [34] presented an implementation of Snort IPS for protecting the cloud platform us-
ing Snort IDS [10] while sending the blocking action to the SDN controller. The authors
get the benefit of snort as open source IDS and adjusted it for integration. But tracing
the source of the attacker isn’t considered. Yaping Chi et al. [9] propose a scheme for
the cloud platform intrusion prevention, and the result shows that the efficiency of the
intrusion detection in the new scheme can be improved by two times compared with the
traditional intrusion prevention scheme. The solution applies to the cloud environment
only; it is difficult to adopt this solution to meet the diverse security needs of the campus
network, however.

2.2. Attack Traceback

Attack traceback is not a goal, but a means to defend against great harmful attacks (such
as Dos). Identifying the origins of attack packets is the first step in making attackers
accountable. Besides, after figuring out the network path which the attack traffic follows,

870 Guangfeng Guo et al.

the victim under the attack can apply defense measures such as packet filtering further
from the victim and closer to the source.

Some scholars have started research on the attack traceback. IP traceback is a tech-
nique for tracing the paths of IP datagrams back toward their origins and also serves as
the main technique for attack traceback. its methods can be divided into 5 categories:

1) Link Testing
Link testing [24] is an approach which determines the upstream of attacking traffic

hop-by-hop while the attack is in progress. It is compatible with the existing protocols
and the network infrastructure, such as routers. However, it is only suitable for tracking
the attacks that last for long times.

2) ICMP Trace
This scheme is for each router to come up with an ICMP traceback message [3] or

reach directed to the identical destination. The trace message itself consists of consequent
and previous hop data and a time stamp. It utilizing the explicitly generated ICMP Trace-
back message were proposed in [17,31]. It incurs higher overhead in computation, storage
and bandwidth.

3) Logging
This solution involves storing packet digests or signatures at intermediate routers and

using data-mining techniques to see the trail that the packets traversed [32]. The draw-
backs of this technique include significant amount of resources have to be reserved at
intermediate routers and hence large overhead on the network, complexity, centralized
management.

4) Overlay Networks
CenterTrack [33] is an overlay network, consisting of IP tunnels or other connections,

that is used to selectively reroute interesting datagrams directly from edge routers to spe-
cial tracking routers. The tracking routers, or associated sniffers, can easily determine the
ingress edge router by observing from which tunnel the datagrams arrive. The datagrams
can be examined, then dropped or forwarded to the appropriate egress point. It need to
add special tracking routers, and is easy to find by attackers due to rerouting interesting
datagrams.

5) Packet Marking
Packet-marking methods [7,30,4] are characterized by inserting traceback data into

the IP packet to be traced, thus marking the packet on its way through the various routers
on the network to the destination host. The method is subdivided into Probabilistic Packet
Marking (PPM) [29] and Deterministic Packet Marking (DPM) [2]. Each router marks
the packet with some probability in the PPM scheme, while every packet passing through
the first ingress edge router is only marked with the IP address of the router in the DPM
scheme. It requires modifications to the protocol, and cannot handle fragmentation and
does not work with IPv6 and is not compatible with IPSec.

To be brief, each type has its advantages and drawbacks. The first type is only suitable
for tracking the attacks that last for long times; the second and third type usually incur
extra network burdens; the other types of methods require particular routers in the data
path.

In this paper, we propose an intrusion prevention system that leverages the coordinated
control between the detection engine, the attack traceback agent, and the software-defined
control plane. In terms of the SDN design, our solution belongs to the second type of

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 871

the system layouts described in Section 2.1. We assume that all the forwarding devices
in the campus network are stateless and SDN-enabled, and they are controlled by the
SDN Controller; the initial network topology is known in advance, and the attacks can be
discovered by the detection engine of the IPS.

Current methods of attack traceback in Section 2.2 are either limited by specific pro-
tocols or incur high overhead. In this paper, we construct the inverse forwarding functions
by expanding HSA framework, and design a novel real-time and protocol-independent
algorithm of finding the best switch port for defense. In the later section, we will demon-
strate the proposed solution can accurately and timely prevent attacks of varied types and
scales.

3. Design Principles and System Architecture

The data center of the campus networks holds the most critical data assets, so it requires an
efficient IPS solution for protecting its servers and other hosts from internal and external
attacks. In the section, we discuss the design principles of a common intrusion prevention
system for software-defined campus networks, propose an innovative IPS architecture to
meet these principles, and introduce the intrusion prevention process of our proposal IPS.

3.1. Threat Model

The software-defined campus network not only suffers from the traditional attack (such as
Dos, U2R, R2L, and Probe) but also sustains attack for the SDN control plane. Defending
the latter attack is our future work, and is out of scope in this paper.

We assume the threats against the data center (DC) server of the campus, except attack
for the SDN control plane. The victim may be a DC internal host, an external host or even
an Internet host.

3.2. Design Principles

The design principles of a common intrusion prevention system for software-defined cam-
pus networks are based on the following key properties:

– Needing an efficient solution for mainly focusing on protection data center servers
of campus networks: The data centers of campus networks hold the most critical data
assets. So the IPS mainly protection data center of campus networks avoiding inte-
rior and external attacks in the campus network, and avoids single-point failure and
reduces the probability of network congestion.

– Detecting different types of attack: the victim host of the data center can suffer
from data center internal hosts, other campus network hosts(such as hosts of the office
network) and Internet hosts.

– Finding the best defense switch port for different types of attack: The IPS can
pinpoint the attack source and find the best defense switch port for different attacks
and directly block the malicious traffic from injecting switches, which can eliminate
dispensable transmission burdens which are raised by malicious attacks.

872 Guangfeng Guo et al.

– Compatibility with any OF-enabled device and protocol-independent: The algo-
rithm of finding the best defense switch port can be valid with any OF-enabled device
(such as a Layer 2 switch or a router, etc.), regardless of which protocol it belongs to.

– Real-time: The IPS can intercept the malicious traffic at the beginning of the attack
avoiding the malicious traffic soaring late.

3.3. Overall Architecture

The campus network provides network access services for students and faculties, divided
into multiple types of subnets (such as the data center LAN and the office LAN). A min-
imum software-defined campus network consists of an SDN controller, three switches,
several servers and dozens of workstations, as shown in Fig. 1. The border switch links
the campus network to the Internet, and the other two switches connect servers and work-
stations. The DC (data center) switch and application servers comprise the data center
LAN of the campus. Similarly, the ON (office network) switch and users’ workstations
form an office LAN for the campus.

Border Switch

Report

 DC Switch

ON Switch

Interaction

SDN Controller

Internet Campus Network

Control
Switches

Victim

Attacker

Detection EngineAttack Traceback Agent

Controll Flow

Data Flow

Physic Link

Mirror
Flows

Fig. 1. Intrusion Prevention Architecture on an SDN-based Campus Network

The intrusion prevention architecture for the software-defined campus network is
composed of an intrusion detection engine, an attack traceback agent, and the software-
defined control plane, which includes all the switches and the controller mentioned above.
It realizes the coordinated control between them to detect intrusions as early as possible
and prevent attacks as soon as possible. The DC switch regularly mirrors the ingress traffic
of the DC servers and sends it to the detection engine. The engine captures and analyses
the traffic, and sends alarm messages to the controller if intrusion attempts are detected. In
our design, the detection engine is deployed on the bypass of the DC switch. The engine
has two NICs, with one interface connected the DC switch and the other joined up to the
same LAN with the SDN controller and the trackback agent. The SDN controller trans-
mits network states, such as flow table entries of all switches and topology changes of the
total network, to the traceback agent also on a regular basis. According to the received

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 873

network states, the traceback agent establishes a forwarding model of the entire network
and uses it as the global view to infer the best switch port for defending intrusion attacks.

3.4. Intrusion Prevention Process

We have divided the process of detecting intrusion attempts and preventing attacks into
four steps, as shown in Fig. 2.

 Switch D

Host B

Server CDC Switch

SDN Controller

Victim

Attacker

Host A

Detection EngineAttack Traceback Agent

Mirror Flows

(1)

Controll Flow

Data Flow

Physic Link

(2)

(3)

(4)

Fig. 2. Attack Detection and Defense Process

1) The detection engine discovers intrusion attempts and sends alarm messages
to the controller. The detection engine constantly monitors the mirrored traffic. When it
detects an intrusion attempt, it immediately sends an alarm message, which contains the
header field of malicious packets, to the controller via the TCP connection.

2) The controller sends a request to the traceback agent asking for the best switch
port for defense. When the controller receives the alarm message, it needs to find the best
switch port to prevent the intrusion and take the appropriate measures. However, it is hard
for the controller to pinpoint the attack source and then determine the best defense port
based on the source and the overall situation of the network. The attack source might be
a host in the data center network, office network, or Internet. Therefore, the controller
queries the traceback agent for the best switch port for defense via the TCP connection.

3) The traceback agent determines the best switch port for defense and responds
to the controller. The traceback agent runs the inverse HSA algorithm (details given later
in Section 4) to trace attack packets back to their origins and infer the best switch port for
defense according to the previously established forwarding model of the whole network,
and finally returns the identified switch port to the controller.

4) The controller generates and sends the OpenFlow message to the switch where
the port is located to block the malicious traffic. Subsequently, the controller generates
a Flow-Mod or Port-Mod message [28] according to the returned switch port and the
corresponding defense strategies, and then sends the OpenFlow message to the switch
where the port is located. Once the switch receives the message, it updates its flow tables
or changes the link state of the port to down preventing the malicious traffic from injecting
the network again. As shown in Fig. 2, both Host A and Host B locate outside the data
center, their traffic follows Switch D, the DC switch to Server C; the malicious traffic

874 Guangfeng Guo et al.

from Host A to Server C is blocked on Switch D preventing it from being forwarded to
Server C through the DC switch while the normal traffic from Host B reaches Server C
unobstructed.

4. Algorithm Design

In the IPS architecture described in the previous section, it is essential to pinpoint the
attack source and infer the best switch port for defense. In this section, we first expand the
HSA [20] framework to construct inverse forwarding functions of all switch ports in the
network. Then, we design a protocol-independent algorithm to find the best switch port
for defense using the inverse forwarding functions and the backtrack technique [5].

4.1. Header Space Analysis

The theory was first proposed by Kazemian Peyman [20], and used for network verifica-
tion and debugging. The definition of this theory is as follows:

Header Space, H : A packet header is represented as a flat sequence of ones and
zeros. Formally, a header is a point, and a flow is a region in the {0, 1}L space, where L
is an upper bound on the header length.

Network Space, N : The network is modeled as a set of boxes called switches with
external interfaces called ports, each of which is modeled as having a unique identifier. If
we take the cross-product of the switch-port space (the space of all ports in the network,
S) withH , we can represent a packet traversing on a link as a point in {0, 1}L ∗{1, ..., P}
space, where {1, ..., P} is the list of ports in the network.

Switch Transfer Function, T () : As a packet traverses the network, it is transformed
from one point in Network Space to another point(s) in Network Space. A node can be
modeled using its transfer function T that maps header h arriving on port p:

T (h, p) : (h, p)→ {(h1, p1), (h2, p2), · · · } (1)

Network Transfer Function, Ψ() : Given that switch ports are numbered uniquely,
all the switch transfer functions are combined into a composite transfer function describ-
ing the overall behavior of the network. Formally, if a network consists of n boxes with
transfer functions T1(.), . . . , Tn(.), then

Ψ(h, p) =

T1(h, p) if p ∈ switch1
.

Tn(h, p) if p ∈ switchn
(2)

Topology Transfer Function, Γ () : A unidirectional link connects a source port Psrc

to a destination port Pdst and delivers packets from Psrc to Pdst. The topology of a net-
work is defined by the set of links in the network, each represented by its source and
destination ports. We can model the network topology using a topology transfer function,
Γ (), defined as:

Γ (h, p) =

{
{(h, p∗} if p connected to p∗

{} if p is not connected (3)

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 875

Inverse of Switch Transfer Function, T−1() : For a given switch, the finding application
requires working backward from an output header to determine what input (header, port)
pairs could have produced it. We define the inverse of switch transfer function as:

T−1(h, p) = {(h′, p′)|(h, p) ∈ T (h′, p′)} (4)

4.2. Inverse Forwarding Functions

To inverse a forwarding function, we need to work backward from a pair of output packet
header and output port to infer which pair of input header and input port might have
produced it. We expand the HSA theory to add the following two inverse functions.

Inverse of Network Transfer Function,Ψ−1() :For a given header at an output port
(h, p), Ψ−1(h, p) is the set of all input headers at input port, (hi, pi),such that (h,p) ∈
Ψ(hi, pi):

Ψ−1(h, p) = {(h′, p′)|(h, p) ∈ Ψ(h′, p′)} (5)

A transfer function maps each (h,p) pair to a set of other pairs. By following the
mapping backward, we can invert a transfer function.

Ψ−1(h, p) =

T1
−1(h, p) if p ∈ switch1
.

Tn
−1(h, p) if p ∈ switchn

(6)

Inverse of Topology Transfer Function, Γ−1() : For an arbitral head space h and a
given port p, a port p′ is connected to p, and the packet reaches from port p′ to p.

Γ−1(h, p) = {(h, p′)|(h, p) ∈ Γ (h, p′)} (7)

4.3. Algorithm

In a campus network, there are m OF-enabled switches: S={s1,...,sm−1,sm}, and the
switch si has ni physics ports. In the total campus network, there are n switch ports:

P={p1,...,pn−1,pn}, n =
m∑
i=1

ni. The IPS captures an attack packet from the mirror traffic

of the DC switch j and gets its header space htar; according to Switch j’s Mac-Port table,
the port p attached to the victim host is found. According to the principle of network
reachability, there is an attack path from the attack source switch port q to p. The path is
denoted by:

q → p1 → ...→ pk−1 → pk → p (8)

the malicious traffic is injected through Port q, so it is identified as the best switch port
for defense. Port q is calculated by:

(h, q) = Ψ−1(Γ−1(...(Ψ−1(htar, p)))) (9)

According to the flow tables of the total switches, Switch Transfer Function T () is calcu-
lated, and Inverse of Switch Transfer Function T−1() is calculated by Equation (4), then

876 Guangfeng Guo et al.

Inverse of Network Transfer Function Ψ−1() is calculated by Equation (6). According to
the network topology, Inverse of Topology Transfer Function Γ−1() is calculated. Finally,
we trace the pair (header, port) backward (using the inverse of transfer functions at each
step) to find the attack source port q as the best switch port for defense.

To pinpoint the attack source and infer the best switch port for defense, we have de-
signed the algorithm (see Fig. 3). The algorithm makes use of the following three func-
tions: 1) mac src(htar) refers to the source MAC address of the attack packet;
2) mac dst(htar) refers to the destination MAC address of the attack packet;
3)find(T,mac src(htar)) queries the source MAC address of the attack packet from
T , which is the set of (port,mac) pairs maintained by the DC switch, and returns the
corresponding switch port.

The algorithm exploits inverse forwarding functions defined above to infer possible
input ports that can forward packets to the target port, then uses the backtrack method
to traverse all inferred ports according to the depth-first search strategy, and eventually
finds the attack source. The attack source may be either an internal host of the campus
network or an external Internet host. In the former case, the algorithm returns the switch
port attached to the internal malicious host as the best port for defense. In the latter, the
algorithm returns a WAN port of border switches or routers as the best port for defense.

The complexity of our proposed algorithm is O(P · N), where P is the total num-
ber of activating ports which connect to other hosts or switches and N is the maximum
number of flow entries in an arbitral switch. For a given header at an output port (h0, p0),
Ψ−1(h, p) is the set of all input headers at the input port, so the returning (header,port)
pairs count of Ψ−1(h, p) is greater than or equal to 1. If the returning (header,port) pairs
count of each Ψ−1(h, p) equal to 1, the search path length will less than the diameter
of networks. If the returning (header,port) pairs count of each Ψ−1(h, p) is greater than
1, the algorithm needs to traverse the each returning (header,port) pairs in proper order,
the search process didn’t be terminated until finding a first feasible solution adopting the
depth-first search strategy.

5. Implementation

We implement a prototype of the proposed IPS at the central SDN controller using the
open-source Ryu SDN Framework [11] and the analysis engine using the open-source
IDS Snort [10]. The analysis engine inspects the mirror traffic, and send an alarm to the
controller detecting an intrusion attempt. We develop two components: the attack trace-
back agent, the data forwarding and attack mitigation APP built on the SDN controller.

The attack traceback agent is developed by Python Language, communicate with
the SDN controller over a TCP socket, and is a socket-based server that 1) receives flow
entries varieties of all switches and topology changes of the entire network, 2) and returns
the best defense switch for an attack event. The first function is capturing flow entries
varieties and topology changes to establish the forwarding model of the entire network;
The second function is tracing the attack packet back to its origin based on the above
forwarding model, and calculating the best defense switch port by the algorithm(see Fig.
3). Based on a base class library of the open-source project Header Space Library [19],
we add critical codes to support inverse forwarding functions and implement the agent’s
total functions.

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 877

Require:
The header space of a captured attack packet: htar;
The set of (port,mac) pairs maintained by the DCN switch: T ;
The set of switch ports that attached to Internet: Pwan;
The set of switch ports that attached to hosts or Internet: Pend.

Ensure: The switch port that the attack packet is injected into: q.
1: if mac src(htar) ∈ T.mac then
2: q ← find(T,mac src(htar))
3: return q
4: else
5: ptar ← find(T,mac dst(htar))
6: history ← ptar
7: Stack ← [header : htar, port : ptar]
8: while Stack.size() > 0 do
9: r ← Stack.pop()

10: history.append(r.port)
11: temp← Ψ−1(r.h, r.p)
12: for (h, p) in temp do
13: if p /∈ history then
14: if p ∈ Pwan then
15: Deque.addLast(p)
16: else
17: Deque.addF irst(p)
18: end if
19: end if
20: end for
21: while Deque.size() > 0 do
22: q ← Deque.removeF irst()
23: if q ∈ Pend then
24: return q
25: else
26: (h, p′)← Γ−1(h, q)
27: if p′ /∈ history then
28: Stack.push(h, p′)
29: break
30: end if
31: end if
32: end while
33: end while
34: end if

Fig. 3. Find the Best Defense Switch Port Algorithm

878 Guangfeng Guo et al.

The data forwarding and attack mitigation APP built on the SDN controller is
developed by Python Language, and has the following modules:

1) Forward Data. Because RYU’s demo applications (such as simple switch 13.py
and rest router.py etc.) don’t support to construct mixed networks which comprise
Layer 2 and Layer 3 forwarding devices, in order to emulate the topology of the software-
defined campus network, we complete the forwarding APP to support the mixed network
architecture.

2) Send Network State Messages. The module sends a series of network state mes-
sages to the attack traceback agent via a TCP socket regularly. The network state messages
mainly include three types: flow entries varieties messages by each Flow-Mod message,
topology changes messages by each related Ryu event, and the MAC address changes
messages of servers for updating the set of (port,mac) pairs T . We embed the corre-
sponding code into the above forwarding APP. For example, in term of the MAC address
changes messages, we capture ARP messages of the DCN switch to get the MAC address
change states and send the state change messages to the attack traceback agent.

3) Receive Alert Messages. The module uses an existing library, namely snort.lib,
which enables the SDN controller as the server to receive Snort alert messages from the
analysis engine by a TCP Socket. On the Snort machine, the application Pigrelay [21]
running is configured, to enable that the alarm messages generated are sent to the Ryu
controller using a TCP socket. Once the controller receives an alarm message from the
analysis engine, it then generates an intrusion event.

4) Response to Intrusion Events. Once it monitors an intrusion event, it sends a
quest of looking up the best defense switch port to the attack traceback agent via a TCP
socket. When the attack traceback agent returns the best defense switch port, according
to its position and the appropriate defensive strategy, the App automatically generates a
Flow-Mod or Port-Mod message and sends it to the defensive switch. After the switch
receives the OpenFlow message, it updates its flow tables or changes the returning port
link state to down, blocking the malicious traffic injecting it again.

6. Evaluation

To assess the IPS prototype system depicted above, we choose port scan attacks, i.e.
NULL scanning and FIN scanning. We utilize Nmap [23] to conduct malicious scans,
Hping3 [14] to generate the background traffic with the constant flow rate, and sflowtool
[25] to capture and analyze data traffic.

We used two Lenovo ThinkServer RD440s, each of which has one Inter Xeon CPU
E5-2407 and thirty-two GB memory, to install VMWare Exsi 5.1 for instantiating virtual
machines and building two testbeds (see Table 1, 2). We conducted four types of assess-
ments. The first type evaluates the effectiveness of our IPS to prevent intrusion attacks,
the second type assesses the effectiveness of the attack traceback algorithm, the third type
assesses the timeliness of the proposed system in intrusion prevention, and the last type of
evaluation compares the system performance of the campus network when equipped with
our IPS, existing IPS, or without any IPS. The first three types of assessment are carried
out on Testbed I, while the last type is conducted on Testbed II.

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 879

Table 1. Testbed I Configuration
No. Hardware Software

1 2 CPUs/6GB RAM Snort
2 4 CPUs/2GB RAM Ryu/Beacon/Tracing Attack Agent
3 2 CPUs/2GB RAM sFlow
4 2 CPUs/6GB RAM Mininet

Table 2. Testbed II Configuration
No. Hardware Software

1 2 CPUs/6GB RAM Snort
2 4 CPUs/2GB RAM Ryu/Tracing Attack Agent
3 2 CPUs/2GB RAM sFlow
4 4 CPUs/4GB RAM LXC/OpenvSwitch
5 4 CPUs/4GB RAM LXC/OpenvSwitch
6 2 CPUs/2GB RAM LXC/Linux Bridge
7 4 CPUs/4GB RAM Linux Bridge

6.1. Effectiveness of Intrusion Prevention

We use Mininet to emulate a small-scale software-defined campus network with a typical
topology illustrated in Fig. 4. In the topology, we use two hosts H5, H6, and a router
R1 to emulate the Internet, and the OpenFlow switch S2 acts as a border router between
the campus network and Internet, and the switches S1, S2, S3 are OpenFlow switches
controlled by a Ryu controller.

We carried out three experiments to evaluate the effectiveness of our IPS. The em-
ulated host H3 in the data center network acts as the victim in each experiment. The
different experiments assess the IPS effectiveness under various attacks (see Table 3).
The first experiment demonstrates the attack from a DC internal host, i.e. H4 acts as the
malicious host, which is named Attack I. The second experiment reveals the attack from
an ON host, i.e. H1 acts as the attack source, which is called Attack II. The third one fo-
cuses on the attack from an Internet host, i.e. H5 acts as the intrusion traffic origin, which
is termed Attack III. In each of the three experiments, we assess the effectiveness of the
proposed IPS under two scenarios. In the first scenario, our IPS is not configured with
attack traceback, while in the second one our IPS has the fully functional attack traceback
mechanism.

Table 3. Different Attack Types
Attack Type Victim Attacker

I a DC server a DC internal host
II a DC server an ON host
III a DC server an Internet host

880 Guangfeng Guo et al.

S2

S3

S1

H1

H3 H4

H2

H5 H6

S2-eth2

S2-eth1 S2-eth3

S1-eth1

S1-eth2 S1-eth3

S3-eth1

S3-eth2 S3-eth3

 Emulated Internet

 Office LAN Data Center LAN

 Campus Network

R1

Controller

Control Link

Data Link

Fig. 4. Emulated Topology of the Software-defined Campus Network

Fig.5a and Fig.5b illustrate the packet rate changes during the process the victim host
H3 is attacked by an internal malicious host H4, which is also located in the data center. As
depicted by the red solid line, the ingress traffic of the victim H3 increases with the egress
traffic of the malicious H4 at the beginning of the attack. However, the ingress traffic of
H3 quickly falls to 0 pps at the 13th second and the 33rd second respectively in the two
figures, which indicates that the proposed IPS is capable of detecting and stemming the
internal attack traffic under both scenarios.

As depicted by the solid red line in both Fig.5c and Fig.5d, the victim host H3 starts
to receive the ingress background traffic (from the host H2) at the constant rate of 5 pps
since the 5th second. After about 20 seconds, an ON host H1 starts to attack H3. In the
“Without Attack Traceback” scenario shown in Fig.5c above, the ingress traffic of the
victim H3 begins to decrease at the 23rd second because the IPS has detected and blocked
the attack traffic. However, the ON switch S1 continues to forward the attack traffic to
its egress port eth1, as indicated by the dotted blue line, which changes with the dash-
dotted green line, i.e. the malicious traffic. It reveals that the defense port chosen by the
IPS without attack trackback is not on the switch nearest to the attack origin, i.e. S1,
so the malicious traffic continues to consume network resources after being detected. In
the “With Attack Traceback” scenario in Fig.5d below, after the IPS stems the malicious
traffic at the 26th second, both the ingress traffic of the victim and the egress traffic of the
ON switch S1 drop to the normal level containing only the background traffic. It indicates
that the switch attached to the malicious host, i.e. S1, is employed to directly block the
attack.

The experimental results in Fig.5e and Fig.5f exhibit the traffic changes when the
victim H3 is attacked by an Internet host H5. Similar to Fig. 5c, the red solid line in Fig.5e
shows the ingress traffic of H3 rises at the beginning of the attack and goes down after the
IPS detects and blocks the attack traffic, but the dotted blue line exposes the egress traffic
of the ON switch S2 still involves the attack traffic. In contrast, Fig.5f demonstrates both
the ingress traffic of H3 and the egress traffic of S2 descend after the IPS takes action.

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 881

0 10 20 30 40 50 60
0

20

40

60

80

100

Time (s)

P
ac

ke
t R

at
e

(p
ps

)

Malicious Host H4 Egress Traffic
Victim Host H3 Ingress Traffic

(a)

0 10 20 30 40 50 60
0

20

40

60

80

100

Time (s)

P
ac

ke
t R

at
e

(p
ps

)

Malicious Host H4 Egress Traffic
Victim Host H3 Ingress Traffic

(b)

0 10 20 30 40 50 60
0

20

40

60

80

100

Time (s)

P
ac

ke
t R

at
e

(p
ps

)

S1−eth1 Egress Traffic
Malicious Host H1 Egress Traffic
Victim Host H3 Ingress Traffic

(c)

0 10 20 30 40 50 60
0

20

40

60

80

100

Time (s)

P
ac

ke
t R

at
e

(p
ps

)

S1−eth1 Egress Traffic
Malicious Host H1 Egress Traffic
Victim Host H3 Ingress Traffic

(d)

0 10 20 30 40 50 60
0

20

40

60

80

100

Time (s)

P
ac

ke
t R

at
e

(p
ps

)

S2−eth3 Egress Traffic
Malicious Host H5 Egress Traffic
Victim Host H3 Ingress Traffic

(e)

0 10 20 30 40 50 60
0

20

40

60

80

100

Time (s)

P
ac

ke
t R

at
e

(p
ps

)

S2−eth3 Egress Traffic
Malicious Host H5 Egress Traffic
Victim Host H3 Ingress Traffic

(f)

Fig. 5. Traffic Changes during Three Types of Attacks Using the IPS with or without
Attack Traceback: (a) Without Traceback For Attack I; (b) With Traceback For Attack I;
(c) Without Traceback For Attack II; (d) With Traceback For Attack II; (e) Without
Traceback For Attack III; (f) With Traceback For Attack III

882 Guangfeng Guo et al.

These experiments bring us the following enlightenment. For Attack I, the proposed
IPS can avoid malicious traffic from soaring with or without attack traceback. For the
other attacks, there are fundamental differences between the two IPS configurations. If
the proposed IPS cannot trace attack packets back, malicious traffic can still bring trans-
mission burden to the network even if it is blocked from injecting the victim host. On the
contrary, our complete IPS solution can accurately find the best switch port for blocking
malicious traffic, so it is able to prevent intrusion attacks more effectively.

6.2. Effectiveness of Attack Traceback

To evaluate the effectiveness of the attack traceback algorithm for large scale campus net-
works, we use Mininet [27] to replicate the Stanford backbone network, which is a popu-
lation of more than 15,000 students, 2,000 faculty, and five /16 IPv4 subnets. According
to the literatures [36,18], we use Open vSwitch (OVS) [13] to emulate the routers, and
install the reserved equivalent OpenFlow rules in the OVS switches with the SDN Con-
troller Beacon [12]. we implement a bundle of the Beacon which can send a series of
network state messages to the attack traceback agent regularly. We use emulated hosts to
attack the victim host, and perform the attack traceback algorithm to pinpoint the attack
source and infer the best switch port for defense. Figure 6 shows the part of the network
that is used for experiments in this section. In the entire topology, there are 26 OF-enabled
switches and 240 hosts (Due to the limited space, hosts is omitted in Figure 6). we use
the two core switches S1, S2 to connect Internet, the two access switches S15, S16 act as
the data center LAN switches, and the other access switch S3, S4,..., S14 act as the office
LAN switches.

S1 S2

S1000 S1001 S1002 S1003 S1004 S1005 S1006 S1007 S1008 S1009

S3 S16S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14S15

Fig. 6. Topology of the Backbone Network of Stanford University

We carried out three experiments to evaluate the effectiveness of our attack traceback
algorithm. The emulated host H227 connected with Switch S15 in the data center network

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 883

acts as the victim in each experiment. The different experiments assess the algorithm
effectiveness under various attacks (see Table 3). The first experiment demonstrates the
attack from two DC internal hosts, i.e. H208 and H210 connected with Switch S15 acts
as the malicious host, which is named Attack I. The second experiment reveals the attack
from ON two hosts, i.e. H77 connected with Switch S4 and H197 connected with Switch
S13 act as the attack source, which is called Attack II. The third one focuses on the attack
from two Internet hosts, i.e. H17 and H18 connected with Switch H1 act as the intrusion
traffic origin, which is termed Attack III. In each of the three experiments, we perform
our attack traceback algorithm 10 times for each attack, record the traceback path, the
returned switch port and its execution time.

The above experimental results show our algorithm can pinpoint the attack source
for three kinds of attacks and infer the best switch port for defense. As depicted by the
red dash-dotted line in Fig.7, we use our trackback algorithm to find the attack source
host H18 and infer the switch port S1-eth4 connected Internet, as the best switch port
for defense, following the trackback path S15 → S1. Also, as depicted by the yellow
dash-dotted line, we use the algorithm to find the attacker H197 and infer Port S13-eth9
connected H197, as the blocking port, along the path S15→ S1→ S1006→ S13.

S1 S2

S1001 S1003 S1005 S1006 S1008

S16 S13 S14S15

H197

H18

H227

Internet

Campus Network

Data Center

Attacker Host

Switch

Traceback Path

Physic Link

Blocking Port

Victim Server

Fig. 7. Traceback Paths and Blocking Ports under Various Attacks

Fig.8 shows the execution time of our trackback algorithm under three types of attacks
defined previously in the Stanford campus network. As depicted by the green boxes, it
takes about 1 ms to infer the best switch port for defending Attack I. Because the attack is

884 Guangfeng Guo et al.

defended within the DC LAN, it only needs to find the Port-Mac table of the DC switch
(as line 2 in Fig. 3). As depicted by the blue boxes, their execution time varies greatly for
the attackers H77 and H197 although they are belong to the same Attack II. The reason
for this difference is that it spent different time to traverse the list of flow entries for
the trackbacking switches due to the different number of flow entries for the different
switches. As shown in the red boxes, it takes about 2 ms to infer the best switch port
for defending Attack III. For Attack I, Attack II, and Attack III, its execution time is
1.1ms, 3.5ms, and 2.2ms, respectively. And the average execution time is about 2.27 ms.
In general, the more switches that traceback, the total number of traversal flow entries
also increases, and the corresponding execution time will also be longer. Overall, the
execution time in the experiments demonstrates that our attack traceback algorithm can
work in real-time.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

h208()Ⅰ h210()Ⅰ h77()Ⅱ h197()Ⅱ h17()Ⅲ h18()Ⅲ
Host# (Attack Type)

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Fig. 8. Execution Time of the Traceback Algorithm under Various Attacks

6.3. Timeliness of Intrusion Prevention

To assess how timely the proposed system can prevent intrusion attacks, we use Mininet
to emulate three different scales as manifested in Table 4. In each scale campus network,
we attempt to launch three different types of attacks (see Table 3) and measure the defense
time spent from receiving the alarm until sending out the OpenFlow message, which is
comprised of the computing time of the algorithm (see Fig. 3) and the other time.

Fig.6 shows the defense time under three types of attacks defined previously in net-
works of different scales. It takes 10-14 ms for the proposed IPS to defend Attack I.
Because the attack is defended within the DC LAN, the time varies little with the scale of
the campus network. For Attack II and Attack III, with the growth of the network scale,
the defense time increases linearly, mainly because the computing time of the attack trace-
back algorithm, depicted by the lower portion of the bar with horizontal strips, increases
when it has to recursively search more switch ports. Thus, the longest defense time, about

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 885

Table 4. Three Scale Campus Networks Topologies

Scale Type Switch Count LAN Count Host Count

Small 5 4 40
Medium 50 49 490

Large 100 99 990

76 ms, happens in the large-scale network with 100 switches when it experiences attacks
from the Internet. Moreover, the other time, depicted by the upper portion of the bar with
diagonal strips, varies litter with an average of 12.2 ms, because time spent on generat-
ing OpenFlow messages and exchanging them and other messages is not affected by the
network scale and attack type. The defense time in the experiments demonstrates that our
IPS and the attack traceback algorithm work in real-time.

Fig. 9. Defense Time in Each Experiment

6.4. Overhead of Intrusion Prevention

We use LXC [22] to emulate a small-scale software-defined campus network with a typ-
ical topology portrayed in Fig. 4. As Table 2 shown, we use three LXC hosts (VM4,
VM5, VM6) and VM7 (running Linux Bridge Application as a router in the Internet
zone) to emulate the campus network. VM4 has created two containers (H1 and H2) and
two OpenvSwitch switches (S1 and S2). VM5 has created two containers (H3 and H4)
and one OpenvSwitch switch (S3). VM6 has created two containers (H5, H6). Switch
S1, S2 and S3 are controlled by a Ryu controller (VM2). The network is connected to
the Internet through the border switch S2 and the router R1 that is emulated with Linux
Bridge [6]. To assess the overhead of the proposed IPS, we compare the performance of
the network when it is configured without IPS, with the existing IPS, and with our IPS.

886 Guangfeng Guo et al.

When the existing IPS is used, Snort is configured in the inline mode to work as the IPS,
and it is deployed between the border switch S2 and DC switch S3 in series. When the
proposed IPS is used, as delineated in Fig. 1, the detection engine is deployed on the by-
pass of the DC switch S3 and Snort is configured in the passive mode. In each case, we
evaluate the throughput and RTT of the two paths: one is from an Internet host to a DC
host, and another is from an ON host to the same DC host.

As shown in Fig.10a and Fig.10b, the throughput of the network with our proposed
IPS is very close to the throughput when the network has no IPS, as revealed by the
green dashed line and red solid line. On the contrary, as indicated by the blue dash-dotted
line, the throughput with the existing IPS degrades most 50% when the data transmission
rate is higher than 20Mbps. Compared with the existing IDS deployed in serial mode, its
throughput increases 2-4 times the transmission rate is between 40 Mbps and 100 Mbps.
The same trend continues in Fig.11a and Fig.11b. The RTT of our proposed IPS is very
close to the RTT of without using IPS when the system workload continuously increases
from 20 to 100 Mbps. During the same period, the RTT of the existing IPS is much
higher than the other two cases. The experimental results suggest the proposed IPS incurs
reasonable overhead, which is much lower than the existing solution.

0 20 40 60 80 100
0

20

40

60

80

100

Data Rate (Mbps)

T
hr

ou
gh

pu
t (

%
)

Without IPS
Proposed IPS
Existing IPS

(a)

0 20 40 60 80 100
0

20

40

60

80

100

Data Rate (Mbps)

T
hr

ou
gh

pu
t (

%
)

Without IPS
Proposed IPS
Existing IPS

(b)

Fig. 10. Throughput of Three IPS Schemes: (a) From Internet Host to DC Server; (b)
From ON Host to DC Server

7. Discussion

According to the evaluation results in the literature about attack traceback (details in Sec-
tion 2.2) and the experimental evaluation results of our proposed traceback method, we
compared and analyzed the various methods (see Table 5) in the aspects, such as traceback
accuracy, overhead and compatibility, etc.

Compare with other methods, our traceback method based on the inverse HSA per-
forms higher accuracy of locating attack source and lower overhead. Our proposed method
only needs to locate the attack proxy host for internal attacks or the border router for exter-
nal attacks, and block the malicious traffic injecting from their uplink switch port. And it
can find the attack path and the attack source when only one packet is detected as an intru-
sion attempt by its detection engine component, so our proposed IPS can avoid malicious

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 887

20 40 60 80 100

10
0

10
2

10
4

Work Load (Mbps)

R
ou

nd
−

T
rip

 T
im

e
(m

s)

Existing IPS
Proposed IPS
Without IPS

(a)

20 40 60 80 100

10
0

10
2

10
4

Work Load (Mbps)

R
ou

nd
−

T
rip

 T
im

e
(m

s)

Existing IPS
Proposed IPS
Without IPS

(b)

Fig. 11. Round-Trip Time of Three IPS Schemes: (a) From Internet Host to DC Server;
(b) From ON Host to DC Server

traffic from soaring and prevent intrusion attacks more effectively. Also, the traceback
method and the IPS architecture can be compatible with the existing network infrastruc-
ture (such as routers, switches, etc), don’t need special devices or modify their protocols,
and can support the hybrid SDN networks because the OF-disenabled Middle Boxes can
be modeled as the inverse HSA as same as the SDN switches. However, our method has
some shortcomings, such as needing the prior knowledge of network topologies and no
supporting about the post attack analysis, this will be the next step for us to study in the
future.

8. Conclusion

As traditional networks, the software-defined campus network also suffers from intru-
sion attacks. Current solutions for intrusion prevention cannot meet the requirements of
the campus network. Existing methods of attack traceback are either limited to specific
protocols or incur high overhead. To protect the data center of the campus network from
internal and external attacks, we propose an Intrusion Prevention System (IPS) based on
the coordinated control between the detection engine, the attack traceback agent, and the
software-defined control plane. The proposed IPS has the following advantages:

First, it can accurately and timely find the best switch port for defense and prevent the
malicious traffic from injecting the network at the first time due to our traceback algorithm
based on the inverse HSA. We expand the Header Space Analysis (HSA) framework to
construct the inverse forwarding functions and design a novel protocol-independent al-
gorithm to trace attack packets back to their origins and infer the best switch port for
defending different attacks using the inverse forwarding functions. It can locate the attack
host for internal attacks or the border router for external attacks, and block the mali-
cious traffic injecting from their uplink switch port. In this manner, the malicious traffic
would not travel through additional switches and increase the transmission burden of the
network. Compare with other traceback methods, our method based on the inverse HSA
performs higher accuracy of locating attack source and lower overhead. We replicate the
Stanford backbone network to verify the effectiveness of our algorithm, it can pinpoint
the attack source for three kinds of attacks and infer the best switch port for defense, and
its average execution time is about 2.27 ms, which can work in real-time.

888 Guangfeng Guo et al.

Table 5. Comparison of Various Traceback Methods

Link
Test

ICMP
Trace Logging Overlay

Network PPM DPM Our
Method

Traceback
Accuracy

Medium
Good

for less
packets

Medium Good Medium Good Good

Device
Overhead

High High High Low Medium Medium Low

Bandwidth
Overhead

High High High Nil Low Low Nil

Traceback
with

number of
packets

Huge Huge One Small Large Small One

Device
Compatibility

Good Good
Need

special
routers

Add special
routers

Modify
protocols

Modify
protocols

Good

Prior Knowledge
of Topologies

Need
Not

Need
Not

Need
Need

Not
Need

Not
Need

Need

Post Attack
Analysis

Not
Possible

Possible Possible
Not

Possible
Possible Possible

Not
Possible

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 889

Second, it incurs reasonable overhead due to coordinated control design and collect-
ing network traffic with port mirroring. It leverages the coordinated control between the
detection engine, the attack traceback agent, and the software-defined control plane. The
three components work together to detect intrusion attacks, as well as to plan and enforce
the corresponding defense mechanisms swiftly. Our proposed IPS is deployed to bypass
the data center switch and collect network traffic with port mirroring. Compared with the
existing IDS deployed in serial mode, this design can avoid a single point of failure, re-
duce the probability of network congestion, and defend the data center’s internal attacks.
The experimental results show that its throughput increases 2-4 times than the existing
IDS deployed in serial mode when the transmission rate is between 40 Mbps and 100
Mbps.

Finally, it can meet the real-time requirements for defense internal attacks and external
attacks in different scales, and avoid malicious traffic from soaring and prevent intrusion
attacks more effectively. We have implemented a prototype of the proposed IPS and con-
ducted several experiments to evaluate its performance. The experimental results show
that the overhead of our IPS is very low, which enables it to meet the real-time require-
ments. The average defense time is between 10 and 14 ms for the data center internal
attacks of different scales. For external attacks, the maximum defense time is about 76 ms
for a large-scale network with 100 switches.

The algorithm for finding the best defense switch port is based on stateless forward-
ing devices and known initial network topologies. In the future, we will improve the algo-
rithm to make it support more stateful forwarding devices regardless of the initial network
topology.

Acknowledgments. This work was partially supported by the National Natural Science Foundation
of China (Grant N0. 61261019 and 61762071), the Inner Mongolia Science & Technology Plan
(Grant No. 201802027), the Inner Mongolia Science and Technology Innovation Guidance and
Incentive Fund (Grant No. 111-0406041701), and the Inner Mongolia Autonomous Region Natural
Science Foundation (Grant No. 2016MS0614 and 2018MS06023).

References

1. Floodlight OpenFlow Controler (2019), https://github.com/floodlight/
floodlight

2. Belenky, A., Ansari, N.: Ip traceback with deterministic packet marking. IEEE communications
letters 7(4), 162–164 (2003)

3. Bellovin, S.M., Leech, M., Taylor, T.: Icmp traceback messages (2003)
4. Bhavani, Y., Janaki, V., Sridevi, R.: Ip traceback through modified probabilistic packet mark-

ing algorithm using record route. In: Proceedings of the Third International Conference on
Computational Intelligence and Informatics. pp. 481–489. Springer (2020)

5. Bitner, J.R., Reingold, E.M.: Backtrack programming techniques. Communications of the Acm
18(11), 651–656 (1975)

6. Bridge, L.: Linux Bridge (2020), https://wiki.linuxfoundation.org/
networking/bridge

7. Chao, G., Sarac, K.: Toward a practical packet marking approach for ip traceback. International
Journal of Network Security 8(3), 271–281 (2009)

8. Chen, P.J., Chen, Y.W.: Implementation of sdn based network intrusion detection and pre-
vention system. In: International Carnahan Conference on Security Technology. pp. 141–146
(2016)

https://github.com/floodlight/floodlight
https://github.com/floodlight/floodlight
https://wiki.linuxfoundation.org/networking/bridge
https://wiki.linuxfoundation.org/networking/bridge

890 Guangfeng Guo et al.

9. Chi, Y., Jiang, T., Li, X., Gao, C.: Design and implementation of cloud platform intrusion
prevention system based on sdn. In: Big Data Analysis (ICBDA), 2017 IEEE 2nd International
Conference on. pp. 847–852. IEEE (2017)

10. Cisco: Snort (2018), https://www.snort.org
11. Community, R.S.F.: Ryu SDN Framework (2018), https://osrg.github.io/ryu/
12. Erickson, D.: Beacon (2013), https://openflow.stanford.edu/display/

Beacon.html
13. Foundation, T.L.: Open vSwitch (2016), http://www.openvswitch.org/
14. hping3: hping3 (2005), http://www.hping.org/hping3.html
15. Inc., M.: GandCrab ransomware (2020), https://www.malwarebytes.com/

gandcrab/
16. Inc., N.: DDoS Threat Report 2020 Q1 (2020), https://blog.nexusguard.com/

threat-report/ddos-threat-report-2020-q1
17. Izaddoost, A., Othman, M., Rasid, M.F.A.: Accurate icmp traceback model under dos/ddos

attack. In: 15th International Conference on Advanced Computing and Communications (AD-
COM 2007). pp. 441–446. IEEE (2007)

18. James Hongyi Zeng, P.K.: Automatic Test Packet Generation(ATPG) (2015), https://
github.com/eastzone/atpg

19. Kazemian, P.: Header Space Library (Hassel) (2014), https://bitbucket.org/
peymank/hassel-public/

20. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: Static checking for net-
works. Presented as part of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12) pp. 113–126 (2012)

21. Lin, C.W.: Pigrelay (2015), https://github.com/John-Lin/pigrelay
22. LXC: LXC (2018), https://linuxcontainers.org/lxc/introduction/
23. Lyon, G.: Nmap: the Network Mapper (2018), https://nmap.org/
24. Ma, M.: Tabu marking scheme to speedup ip traceback. Computer Networks 50(18), 3536–

3549 (2006)
25. McKee, N.: sflowtool (2018), https://github.com/sflow/sflowtool
26. McKeown N.: Software-defined networking (2009), http://infocom2009.

ieee-infocom.org/technicalProgram.htm
27. Mininet: Mininet (2018), http://mininet.org/
28. ONF: OpenFlow Spec v1.3.5 [online] Technical report ONF TS-023. Tech. rep., Open Net-

working Foundation (2015), https://www.opennetworking.org/wp-content/
uploads/2014/10/openflow-switch-v1.3.5.pdf

29. Park, K., Lee, H.: On the effectiveness of probabilistic packet marking for ip traceback un-
der denial of service attack. In: Proceedings IEEE INFOCOM 2001. Conference on Computer
Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communica-
tions Society (Cat. No. 01CH37213). vol. 1, pp. 338–347. IEEE (2001)

30. Satheesh, N., Sudha, D., Suganthi, D., Sudhakar, S., Dhanaraj, S., Sriram, V., Priya, V.: Cer-
tain improvements to location aided packet marking and ddos attacks in internet. Journal of
Engineering Science and Technology 15(1), 94–107 (2020)

31. Saurabh, S., Sairam, A.: Icmp based ip traceback with negligible overhead for highly distributed
reflector attack using bloom filters. Computer Communications (01 2014)

32. Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Kent, S.T., Strayer,
W.T.: Hash-based ip traceback. Acm Sigcomm Computer Communication Review 31(4), 3–14
(2001)

33. Stone, R.: Centertrack: an ip overlay network for tracking dos floods. In: Usenixsecurity Sym-
posium, August (2000)

34. Xing, T., Huang, D., Xu, L., Chung, C.J., Khatkar, P.: Snortflow: A openflow-based intrusion
prevention system in cloud environment. In: Second Geni Research and Educational Experi-
ment Workshop. pp. 89–92 (2013)

https://www.snort.org
https://osrg.github.io/ryu/
https://openflow.stanford.edu/display/Beacon.html
https://openflow.stanford.edu/display/Beacon.html
http://www.openvswitch.org/
http://www.hping.org/hping3.html
https://www.malwarebytes.com/gandcrab/
https://www.malwarebytes.com/gandcrab/
https://blog.nexusguard.com/threat-report/ddos-threat-report-2020-q1
https://blog.nexusguard.com/threat-report/ddos-threat-report-2020-q1
https://github.com/eastzone/atpg
https://github.com/eastzone/atpg
https://bitbucket.org/peymank/hassel-public/
https://bitbucket.org/peymank/hassel-public/
https://github.com/John-Lin/pigrelay
https://linuxcontainers.org/lxc/introduction/
https://nmap.org/
https://github.com/sflow/sflowtool
http://infocom2009.ieee-infocom.org/technicalProgram.htm
http://infocom2009.ieee-infocom.org/technicalProgram.htm
http://mininet.org/
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf

Intrusion Prevention with Attack Traceback and Software-defined Control Plane 891

35. Yoon, C., Park, T., Lee, S., Kang, H., Shin, S., Zhang, Z.: Enabling security functions with sdn:
A feasibility study. Computer Networks 85(C), 19–35 (2015)

36. Zeng, H., Kazemian, P., Varghese, G., McKeown, N.: Automatic test packet generation.
IEEE/ACM Transactions on Networking 22(2), 554–566 (2014)

Guangfeng Guo received two B.S. degrees in Computer Science & Technology and Ed-
ucational Technology from Inner Mongolia Normal University in 2003 and received an
M.S. degree in Computer Application Technology from Tianjin University in 2009. He is
a Ph.D. student in Computer Application Technology at Inner Mongolia University. He is
also an associate professor in Baotou Teachers’ College at Inner Mongolia University of
Science & Technology. His research activity is in network security and mobile computing.

Junxing Zhang is a Professor in the College of Computer Science at the Inner Mongo-
lia University. He is also the Director of the Inner Mongolia Key Laboratory of Wireless
Networking and Mobile Computing. He received a B.S. degree in Computer Engineering
from the Beijing University of Posts and Telecommunications, an M.S. degree in Com-
puter Science from the Colorado State University, and a Ph.D. degree from the University
of Utah. His research interests include network measurement and modeling, mobile and
wireless networking, network security and verification, etc. Prof. Zhang was awarded the
title of Grassland Talent by the government of the Inner Mongolia Autonomous Region
in 2010. He has published over 40 papers in various internationally recognized journals
and conferences, and led several national and provincial research projects. He also served
as a peer reviewer for several international journals and conferences, such as IEEE Trans-
actions on Mobile Computing, Wireless Networks, and ICNP.

Zhanfei Ma is a Professor in Baotou Teachers’ College at Inner Mongolia University of
Science & Technology. He received a B.S. degree in Computer Science and Education
from Inner Mongolia Normal University in 1997, received an M.S. degree in Computer
Software and Theory in 2002, and received a Ph.D. degree in Computer Application Tech-
nology from University of Science & Technology Beijing in 2008. His research interests
include network information security and artificial intelligence.

Received: February 6, 2020; Accepted: November 30, 2020.

	Introduction
	Related Work
	IPS in SDN
	Attack Traceback

	Design Principles and System Architecture
	Threat Model
	Design Principles
	Overall Architecture
	Intrusion Prevention Process

	Algorithm Design
	Header Space Analysis
	Inverse Forwarding Functions
	Algorithm

	Implementation
	Evaluation
	Effectiveness of Intrusion Prevention
	Effectiveness of Attack Traceback
	Timeliness of Intrusion Prevention
	Overhead of Intrusion Prevention

	Discussion
	Conclusion

