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Abstract. Due to the substantial feature extraction and end-to-end learning capa-
bility, deep learning has been widely used in intelligent medical image detection.
However, amount of parameters in these models relies on the number of labeled
training data, which influences the performance. Due to this reason, we propose
a novel unsupervised medical image detection model named Multi-Scale Normal-
izing Flow (MS-NF). First, a fusion backbone network is applied to extract the
multi-scale feature maps, which capture the different scale features of the anoma-
lies. Second, normalizing flow transfers the abnormal distribution into the normal
distribution hidden in the latent space, which is used for anomaly detection. To fur-
ther improve the detection performance, channel and spatial convolutional attention
mechanisms are integrated to make the model focus on the anomalous region by a
shared network. Experimental results obtained on brain tumor MRI and ISIC2018
datasets show that MS-NF improves the pixel-level AUC index by 9% compared to
existing medical image detection models, also performing well on small-scale data
with efficient training and inference.

Keywords: Anomaly Detection, Unsupervised learning, Attention Mechanisms, Nor-
malizing Flow, Medical Images.

1. Introduction

Medical image anomaly detection through image processing and deep learning can auto-
matically detect anomalies and localize abnormal regions. It has been widely applied in
assisted diagnosis, treatment, condition assessment, and medical decision support. In the
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past decade, diverse machine learning models has been introduced to establish anomaly
detection models, such as SVM [24], Decision Trees, and KNN. These models take the
handcrafted features as the input, which heavily relies on expert knowledge. Moreover,
the shallow structure of machine learning limits their capability to learn the deep repre-
sentations hidden in the medical images.

Unlike traditional machine learning, Deep Learning (DL), which consists of a large
number of hidden layers and nodes, can distill the complex features hidden in the data.
Since it has successfully been applied in the Internet of Things [20, 3, 14], Blockchain[19,
39, 41], Quality of Service [17, 18], data recovery [16, 10], DL is also introduced to fuse
low- and high-dimensional image features by jump-joining in the field of the medical
image detection. Taking advantage of learning ability, it can effectively extract low- and
high-resolution features of medical images when containing noise, blurred boundaries,
and so on??. Indeed, automatic feature extraction can improve the effectiveness and per-
formance of the training model.

Undoubtly, medical image detection is a supervised task, while DL is a data-driven
model. Their performance heavily depends on the number of the training dataset. How-
ever, it is time-consuming to obtain the amount of high-quality labeled medical images
that rely on professional knowledge. In other words, the procedure of the annotation is
subjective and inconsistent. Worse, abnormal medical images are usually scarce compared
to the normal samples. Therefore, training the medical images often faces the challenge
of data imbalance in real-world application scenarios. It means that deep learning mainly
learns the hidden representations of the normal samples, making it difficult to recognize
the abnormal samples. Meanwhile, the location of the lesion is uncertain that has a variety
of shapes and sizes.

To avoid the dependence on the labeled data, a diversity of unsupervised models
are introduced to process the medical image detection, such as variational Autoencoder
(VAE) [12], generative adversarial network (GAN) [4] and their variational models [11,
13]. The core idea of these models is to transform the abnormal region into a normal med-
ical image which can generate a new abnormal medical image. The generated image is
optimized by the differences between it and the original image. Therefore, the augmented
medical images are helpful for lesion detection and localization. However, the perfor-
mance is still affected by the inherent shortage of the generative models. For VAE, the
high-dimensional data is mapped into the low-dimensional hidden feature space that may
cause information loss. When performing reconstruction processing, the generated image
is usually blurred, which harms medical image detection. Different from VAE, GAN di-
rectly models the distribution of the data. Nevertheless, it faces the challenges of training
instability, gradient disappearance, and mode collapse. Denoising Diffusion Probabilistic
Models (DDPM) is another popular generative model that generates high-quality samples
without adversarial training. The self-encoder component in the DDPM denoises and re-
stores the anomalous medical images corrupted by Gaussian noise. Since the denoising
processing is carried out at each step, the model converges slowly.

Another common medical image detection method is to learn the distribution of nor-
mal data using deep learning. The anomalies are identified by distinguishing whether the
distribution satisfies the normal data. It comprises two components: the feature extraction
network and the distribution estimation network. The feature distribution of normal data
is learned using deep convolutional networks, such as Resnet or visual architecture Vit
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based on transformer [36]. Then, normalizing flow is implemented to estimate the fea-
ture distribution likelihood of the sample data, which is used for classification. Though
this method has widely been applied in industrial anomaly detection, though seldom used
in the medical field.

Taking advantage of the coupling layers, a novel inverse neural network is established
to estimate the distribution of the abnormality. Specifically, a backbone is used to extract
the feature maps in terms of different scales, which are split into two parts. A trained
normalizing flow takes them as input and splices them into the output matrix. According
to the matrix, the likelihood probability between anomalous and healthy data is calculated
to recognize the anomalies. Several public datasets, such as ISIC 2018 and Brain MRI,
are chosen to evaluate the effectiveness of the proposed model. The contributions of this
work are summarized as follows.

– A novel unsupervised model with normalizing flow is proposed for medical image
detection, which can automatically identify the differences between normal and ab-
normal data. The differences are used to generate new abnormal medical images.
These generated images are implemented to train the model, which can relieve the
dependence on abnormal medical images.

– The proposed model integrates the convolutional attention mechanism and normal-
izing flow, which makes it easy to focus on the critical features. It can improve the
detection performance.

– Experiments conducted on several public datasets show that the proposed model is
superior to other state-of-the-art models.

The remainder of this article is organized as follows. The related work is introduced
in Section 2. The methodology of the proposed model is described in Section 3. The
experiments are discussed in Section 4. Concluding remarks and future directions are
drawn in Section 5.

2. Related Work

Deep learning has been widely used to learn the features hidden in medical images. To
relieve the dependence on the labeled data, unsupervised models are introduced to apply in
medical image detection. They can roughly divided into two categories, including feature-
and reconstruction-based models.

2.1. Feature-based Unsupervised Models

Feature-based models usually aim to perform feature extraction and distribution transfor-
mation. They can learn the critical information hidden in the latent feature space used to
detect anomalies. For example, some pre-training models, such as AlexNet, VGG, which
train deep neural networks on the large-scale dataset Imagenet are widely implemented
to extract features from the medical images. Compared with AlexNet, VGG, which has
a deeper network structure and smaller convolutional kernels, achieves better perfor-
mance[15]. However, it faces the challenges of gradient vanishing, gradient explosion,
and degradation. He et al. proposed a novel model Resnet by introducing the structure
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of residual connection to convolutional neural networks. It can effectively solve these
problems by selecting the operation of skipping part of the layers [9]. Most of the work,
anomaly detection based on unsupervised models, takes Resnet as the backbone network
to extract features[29]. Some researches [21] use transformers-based visual networks Vit,
DeiT, and their variations for unsupervised anomaly detection. Vit [6] and DeiT [34] use
a self-attentive mechanism to extract features with better migration capabilities. Trans-
ferring learning across different visual tasks gives it better generalization to deal with
multi-tasks. In addition, Vit and DeiT are more adaptable to large-scale datasets and ro-
bust to changes in data augmentation than other state-of-the-art models.

For distribution transformation, the mean and variance of normal features are used
to model the normal distribution. When the probability distribution of the input data sig-
nificantly deviates from the true distribution, it is recognized as an anomalous medical
image. Normalizing Flows (NF) is a generative model, consisting of a series of invertible
transformations[28]. It can learn probability distributions by mapping one distribution
to another one. Combining these mappings forms a complete flow that can transform a
complex distribution into a simple probability distribution. To address the problem of the
poor efficiency of INN training and inference, Dinh et al. proposed Real-NVP by using
reversible, local affine transformations to transform regularized streams of data distribu-
tions, which can improve computational efficiency[5]. Rudolph et al. presented Differnet,
which accomplishes image detection through likelihoods provided by Normalizing Flow
on multi-scale image features with multi-transform evaluation [30]. Compared to other
models, Differnet requires fewer training samples. These works show promising results
in the field of anomaly detection. Existing methods are based on reconstruction, and few
works have applied them to medical image detection.

2.2. Reconstruction-based Methods for Generative Modeling

Variational Autoencoder(VAE) contains an encoder and a decoder. The encoder aims to
learn the features hidden in the latent space and the decoder reconstructs the input data
according to the latent features. Van et al. proposed a discretized VAE with a code book
approach to learning the data distribution instead of VAE. However, it cannot generate
high pixel-level samples[35]. Consequently, Razavi et al. introduced a hierarchical struc-
ture to propose VQ-VAE2[27]. It extends the number of discrete codebooks from the
original thousands to millions that can capture the local features of the data in detail.
Esser et al. incorporates a transformer structure, which generates millions of pixels[7]. In
addition, the autoencoder is used to model the distribution of the normal data for medical
image detection. The sample deviates from the distribution of the normal data that can be
classified as abnormal data. Zimmerer et al. proposed a combination of density-based and
reconstruction-based anomaly detection models that do not require labeled data and allow
for anomaly scoring and localization of samples[43]. However, using VAE to reconstruct,
the re-generated image is blurred, and anomalous regions may be retained. Nevertheless,
VAE has been gradually replaced by subsequent competitive models.

The training of GAN is based on a set of neural networks that fight against each
other. The generator generates the new data, which is discriminated the true or false by
the discriminator [4]. The generator then adjusts its parameter weights according to the
classification results of the discriminator to generate more realistic images. Based on [4],
Radford et al. proposed Deep Convolutional GAN (DCGAN), which uses Convolutional
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Neural Networks (CNNs) as generators and discriminators to produce higher-quality im-
ages. The experimental results show better image synthesis results[26]. Arjovsky et al.
proposed Wasserstein GAN (WGAN), which uses Wasserstein distance to measure the
difference between generated samples and real samples. It can overcome the instability
when training GANs, which perform better image generation and speech synthesis [8].
Zhu et al. introduced CycleGAN to image translation tasks, which converts an image
from one domain to an image from another domain [42]. Compared to the previously
mentioned methods, CycleGAN does not require training data pairs and can be trained
without matching data. Karras et al. proposed a Style-Based Generative Adversarial Net-
work (StyleGAN), which uses a new generator architecture, including a style network and
a generative network, to generate higher-resolution and more realistic images. Brock et
al. proposed BigGAN, using more extensive networks and more sophisticated training
strategies to generate higher-quality images, and has achieved leading results in various
image-generation tasks[2].

GAN and its derived models are influential in anomaly detection. The generator can
simulate the distribution of the real data. Therefore, if the input data differs significantly
from the data generated by the generator, it can be considered anomalous data. Schleg et
al. proposed AnoGAN, which is the first GAN-based anomaly detection method [32]. The
normal sample distribution is obtained by trained DCGAN to find the abnormal region of
the sample. To address the slow model speed of the technique in [32], Schleg et al. pro-
posed an unsupervised anomaly detection method using GANS called F-AnoGAN [31],
to replace the iterative optimization used in AnoGAN with a fast approximation algorithm
based on Wasserstein distance. This approximation generates a latent representation of the
normal data and a reconstruction loss for normal and abnormal samples. The reconstruc-
tion loss is used to score each sample and determine whether it is normal or abnormal.
Bhatt et al. uses progressive GANs to improve the resolution of detecting anomalies, al-
lowing for the processing of more detailed images [1]. However, the above adversarial
generative network-based approach still suffers from training instability and difficulty in
capturing the complete data distribution of the image.

Wyatt et al. first applied diffusion modeling to the field of anomaly detection and
achieved good detection results in industrial, medical image detection, and other areas
[38]. A more extensive range of anomalous regions can be recovered by replacing Gaus-
sian noise with simple noise. Teng et al. applied a score-based model to visual defect
detection [33]. Pinaya et al. proposed an encoder model for anomaly segmentation of
medical images [23].

MRI images usually are low quality and have poor contrast due to image projec-
tion and laminar imaging processes. The boundaries between biological tissues are often
blurred and difficult to detect, which makes it difficult for generative reconstruction meth-
ods to accomplish the task of pixel-level image segmentation. In contrast to the generative
model, the proposed MS-FLOW can estimate the exact likelihood value. Therefore, it can
accurately detect Out-Of-Distribution (OOD) samples. Moreover, it does not require a
large amount of data for training and is more stable in training, with shorter convergence
time and faster inference.
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3. Methodology

To relieve the dependence on the label information and achieve a good performance, we
propose a novel unsupervised model, MS-NF, which can detect and locate anomalous
regions in medical images. The framework of the MS-NF is shown in Fig. 1, which
consists of two components, including a feature extraction network and a distribution
transformation network. Concretely, the first three residual blocks of Resnet18 are con-
sidered the backbone for feature extraction, whose outputs are fed into the distribution
transformation network. Then, a normalizing flow transforms the feature maps into the
latent space, where convolutional operation preserves the 2-dimensional information of
the medical image. Moreover, a convolutional attention mechanism is applied to make the
model more focused on the critical region of the medical image. This section details the
proposed model’s principles and presents the training and inference procedure.

Fig. 1. The detailed view of MS-FLOW

3.1. Feature extraction network

Given a medical image, we denote it as x ∼ p(x), where x belongs to X(x1, x2......). The
backbone network is formed by deep convolutional neural network, such as Resnet or vi-
sual transformer-based network model Vit. Since these pre-training models is optimized
by amount of images, it can be used to extract the critical features hidden in the medical
images. Assuming ex: X → F , it transforms the original information hidden in the image
x to the high-level feature representation. There are some lesions or tumors in the abnor-
mal regions, which have a diversity of characteristics in different organ. Therefore, it is
important to extract the global information of the medical images. In this paper, we use
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the residual block of Resnet18 to extract features, which can learn the local and global
information. And the last last layer of each residual block is implemented to capture the
connection between local and global features. These features are fed into normalizing
flow later.

3.2. Distribution transformation network

This article takes normalizing flow as the distribution transformation network, which
transforms the image feature F into the latent space L. This is done to compute ex-
actly the distributional likelihood for each feature element f ∈ F . Since the training
consists entirely of normal samples, in the inference phase, the likelihood of the abnor-
mal information in the medical images will be mapped to the edges of the distribution.
At this point, a threshold is set to distinguish between abnormal and normal. The process
of normalizing flow consists of a series of stacked invertible differentiable functions. The
process of going from the characteristic distribution F to the Gaussian distribution L un-
dergoes some series of flow changes. There is a one-to-one mapping relationship between
the image features and the corresponding latent space features, and it can be expressed as
T : F → L. In other words, they are reversible. Assuming the processing stack is a series
of transformation functions, it can be expressed as.

L = T1(F ) ◦ T2 ◦ T3...TK . (1)

Therefore, the anomalies that deviate from the distribution of the normal data can be
restored to the original image according to the stacking invertible functions.

F = TK(L) ◦ TK−1 ◦ TK−2...T1, (2)

Setting l = Tθ (f), the following expression for calculating the likelihood of the
characteristic distribution can be obtained by applying variable substitution to Equation.
2:

log pθ(f) = log pθ(l) + log

∣∣∣∣det( ∂l

∂f

)∣∣∣∣ (3)

Due to the properties of the flow-varying bijection, Equation.4 can be converted to
Equation.5 by the chain rule:

logpθ(f) = log pθ(l) +

k∑
i=1

log

∣∣∣∣det( ∂Tk (l)

∂Tk−1 (l)

)∣∣∣∣ (4)

The exact likelihood for the sample features is computed by transforming f into l.
The parameters of the target distribution are optimized by maximizing the log-likelihood,
where transformation network T is implemented by normalizing the flow component.
The construction of the normalizing flow component is shown in Fig. 1. Therefore, the
distribution transformation network stacks several normalizing flow components. More-
over, we introduce coupling layers according to [23, 40]. Concretely, the input data x is
first separated into two parts x1 and x2. Transformations are respectively performed on
x1 and x2 using normalizing flow. When the 2-dimensional flow layer transforms the
2-dimensional image into 1-dimensional space, it may occur the loss of medical image
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information may make the distribution transformation unstable. Consequently, 3× 3 con-
volutional kernel is used to retain the 2-dimension information. The intermediate quantity
y1 is obtained by combining x1 to x2 using an invertible transformation.

y1 = esub1(x1) ⊙ x2 + sub2(x1) (5)

Then, continue to perform transformations on y1 using subnet. Finally, y1 and y2 are
combined to get the final output tensor y:

y2 = esub
′
1(y1) ⊙ x1 + sub

′

2(y1) (6)

y = concat(y1, y2) (7)

where sub represents the normalizing flow component consisting of convolutional and at-
tention layers. For the separation of x and y1, it is performed on the channel. Respectively,
the symbols ⊙ and + denote multiplication and addition along the feature direction.

3.3. Convolutional Attention

Medical images suffer from problems such as blurred boundaries and unclear imaging.
In this work, to enable the NF module to focus more on the image region of interest
for the detection task and thus improve the detection ability of the model. Therefore, the
attention mechanism based on the convolutional block is embedded between the convolu-
tional layers [37]. The detection performance is improved without significantly increasing
the number and complexity of model parameters. Convolutional attention consists of two
parts: channel attention and spatial attention. The intermediate feature map F , obtained
by the NF module subnet, enters the channel attention layer and the spatial attention
layer successively in order. The entire process can be summarized as follows:

Fi = Ac(F )⊗ F (8)

Fo = As(Fi)⊗ Fi (9)

The channel attention layer focuses on the information that is meaningful in the fea-
tures. Through average pooling and maximum pooling, two feature vectors are generated
and fed into a shared network. This shared network is a Multi-Layer Perceptron (MLP)
with a hidden layer. Once the two feature vectors have passed through the forward net-
work, the features are then merged for each element at the same location:

Ac (F ) = σ (MLP (AvgPool (F )) +MLP (MaxPool (F ))) (10)

Spatial attention focuses on where the features have the most information. Two fea-
ture vectors will be generated by average pooling and maximum pooling operations. The
convolution operation is performed on these two feature vectors to get the spatial attention
map:

[As (F ) = σ
(
conv7×7 ([AvgPool (F ) ;MaxPool (F )])

)
] (11)
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where σ represents a sigmoid function, while conv represents the convolution operation
with a kernel size of 7 × 7. By combining channel attention and spatial attention, we
capture inter-channel dependencies and intra-channel spatial relationships to enhance the
performance of the proposed model. The two attention mechanisms can be used in parallel
or a sequential order. In this work, we adopt the arrangement proposed in [37], which
integrates channel attention and then incorporates spatial attention.

We use the following algorithm 1 to construct our MS-NF module as a sub-network
of the feature transformation module: the details are as follows: first input the backbone
features f , the convolution size kernel size, and the reduction that controls the propor-
tion of dimensionality reduction in the channel’s attention mechanism. Next, the features
f at the different scales are input to each nf module in order. For each module, a sequence
of reversible neural networks is created. The feature f will be successively processed by
the 2D convolution, the RELU, the 2D convolution, and the convolutional attention layer,
and the transformed feature probabilities will continue to be sent to the next nf module
until the end of the loop.

Algorithm 1: Normalizing flow with attention
1 Input:Image features f , kernel size, reduction
2 Output:y
3 Procedure:
4 Initialize()
5 c1← conv2d(in channels, hidden, kernel size = cc)
6 ac← relu()
7 c2← conv2d(hidden, out, kernel size = . . .)
8 att← Attention(reduction = 16)
9 for nfi in NFn :

10 y ← conv2d(F )
11 y ← relu(y)
12 y ← conv2d(y)
13 y ← att(y)
14 end for

3.4. Training and Inference

For normalizing flow, the model is trained entirely on normal medical images. We would
like to get the exact likelihood value of the sample feature distribution, but it isn’t easy
to solve pf directly. So the log-likelihood of the feature f ∈ F is estimated by, i.e., the
potential space, as shown in Equation 12. The method aims to find suitable parameters
to maximize the probability density function of the feature f extracted by the backbone.
Therefore, the loss is defined as follows:

loss = − log pθ (f) = − log pθ (l)− log

∣∣∣∣det ∂l

∂f

∣∣∣∣ (12)
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Algorithm 2: Training and Inference
1 Input:Image image x
2 Output:y
3 Procedure:
4 Feature exactor← create model(resnet18,pretrained=False,features=true,
5 out indices=[1,2,3,],in chans=1)
6 f ← Feature exactor(x)
7 output,log jac dets← nfblock(f)

8 loss← ∥l∥22
2
− log

∣∣∣det ∂l
∂f

∣∣∣
9 If not training

10 anomap mean(output**2,dim=1)
11 return anomap

In the inference stage, because the anomalous features never appear in the training
data, the probability density function of the anomalous features obtained by the model is
lower than that of the normal data. When the normalization flow transforms the abnormal
features into the latent space, the data distribution lies in different intervals. When TNF

transforms the anomalous features into the latent space, a different distribution is obtained.
The likelihood of the features can be used as an anomaly score in detection. We set a
threshold τ , for a normal image. The likelihood on the feature map is more significant
than τ :

Ano =

{
1, pL (Tθ (F (x))) > τ
0, pL (Tθ (F (x))) < τ

(13)

When Ano = 1, it means there is an anomaly in the current medical image.
The following is our training and inference algorithm. It is done as follows. First, the

backbone network of resnet18 is constructed for feature extraction, and the loss function
for training is obtained according to Eq. (10) to optimize the parameters. If the model is
in the inference stage, the likelihood of the probability distribution of each pixel point is
calculated, and then an anomaly map is obtained for anomaly detection.

4. Experimental Results

In this section, we evaluate the performance of the proposed model MS-FLOW, which
is compared with other state-of-the-art methods collected in the literature [31] [38] [40].
In addition, ablation experiments are performed to verify the influence of each model
component.

4.1. Datasets

Normalizing flow learns the distribution of the sample data, while the abnormal data are
outside the distribution. The training process is performed entirely on normal datasets.
The training set is divided into two parts, including brain MRI impact and dermatologic
images. The brain MRI images is NFBS dataset [25]. The test set is a neuroimaging
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dataset of brain tumor patients (NIBT) [22]. NFBS dataset consists of 125 T1-weighted
MRI (magnetic resonance images) with the size of 256 × 256 × 192. In this paper, only
single slices of the transverse axis are considered, and a single-channel image of size
256 × 256 is intercepted. Since most of the critical information of brain MRI images is
concentrated in the middle of the brain, we randomly selected the slices from 40 to 80.
Since the edge portion of the image has a black background, we perform center cropping
on each medical MRI image to make the model focus on the brain region. Small rota-
tions and translations are applied to the images to enhance image diversity. The input is
uniformly resized and normalized to improve training stability. A neuroimaging dataset,
brain tumor patients (NIBT) [22], is chosen as the test set, which consists of T1, T2,
fMRI, and DTI MRI images for 22 brain tumor patients. The size of the images in this
dataset is 256× 256× 192. For evaluation, we also consider transverse slices. Since most
brain tumors occurred in the middle, we discarded the beginning and the end. Therefore,
the slices of the image are randomly selected in the range of 140 to 200 slices. Then,
data enhancement operations, such as center cropping, resizing, and normalization, are
performed on each medical image. For the Brats2020 dataset, we take slices from the
center region. For slices with mask 0, it is treated as normal, while others are treated as
abnormal.

The other part is a dataset (Task 3) from the ISIC2018 challenge, which is related
to the classification and localization of dermatological images. Task 3 contains seven
categories in total. We consider the nevus type as normal data and the other types as
abnormal data. The training set contains 8224 nevus images and the test set contains 1514
images of other types. The data is normalized and resized to 256× 256 size.

4.2. Implementation Details

We use Pytorch to implement the proposed model. The construction of the inn network
is completed through the FrEIA library. Resnet18 is treated as backbone, which obtains
multi-scale feature maps by fusing the outputs of the first three residual blocks. We do
not choose the pre-training model due to the difference between MRI and imagenet im-
ages. The input of the model is unified as a single-channel brain MRI image with a size
256× 256. The three scales’ feature map channels are 64, 128, and 256, respectively. The
distribution transformation model consists of 15 NF blocks. Each sub-network consists
of a 3 × 3 2D convolutional network, a relu layer, and a convolutional attention layer
(CBAM). The construction of CBAM is completed by the fightcv attention library, and
the reduction parameter that specifies the compression ratio of the number of channels is
set to 16. In addition, the dimension of the hidden feature learned is set as 128.

During training, the images are subjected to random rotations ranging from −3 de-
grees to +3 degrees and random translations of width 0.02 and height 0.09. The batch
size is set to 15. The Adam optimizer is used as the parameter optimizer with a learning
rate of 10−3. The weight decay value is set to 10−5. During inference, the performance of
the proposed method is evaluated against other comparative methods using the Area Un-
der the Receiver Operating Characteristic Curve (AUROC). To evaluate the performance
of the model on the test data set, we used metrics such as the area under the receiver oper-
ating characteristic curve (AUROC), accuracy (Acc), recall, average precision (AP), and
F1.
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4.3. Quantitative Results

We quantitatively compare the proposed model with the remaining three deep learning-
based anomaly detection methods. They contain a representation-based method, Fast-flow
[40], and two image reconstruction-based methods, f-AnoGan [31] and AnoDDPM [38].
For testing, we evaluate the proposed model and the compared models on two public
datasets, including Brain MRI and ISIC2018. Table 1 collects the results of the quantita-
tive analysis of the proposed model and the remaining three methods on the brain MRI
dataset. Table 2 demonstrates the results of the quantitative analysis of our method and
the remaining three methods on the ISIC2018 dataset.

Table 1. Quantitative analysis for different methods on Brain MRI

Auc Acc Recall Ap F1

Ours 0.91 0.84 0.78 0.45 0.42
f-AnoGan[31] 0.84 0.75 0.81 0.10 0.14
AnoDDPM[38] 0.74 0.98 0.61 0.67 0.64
Fast-flow[40] 0.72 0.73 0.72 0.24 0.32

Table 2. Quantitative analysis for different methods on ISIC2018

Auc Acc Recall Ap F1

Ours 0.81 0.72 0.72 0.70 0.67
f-AnoGan[38] 0.78 0.67 0.69 0.68 0.66
Fast-flow[40] 0.72 0.68 0.67 0.62 0.64
Autoencoder 0.70 0.62 0.60 0.65 0.65

Table 3. The performance of MS-NF with different backbones selected on the Brain MRI

Conv Backbone
Metric Values

Auc Acc Recall Ap F1

3×3

Resnet18 0.91 0.84 0.78 0.41 0.39
WideResnet50 0.73 0.68 0.70 0.09 0.18

Cait 0.66 0.51 0.81 0.07 0.14
Deit 0.65 0.35 0.90 0.08 0.12

3×3 and 1×1

Resnet18 0.77 0.73 0.81 0.10 0.23
WideResnet50 0.54 0.46 0.68 0.05 0.11

Cait 0.66 0.51 0.81 0.07 0.14
Deit 0.65 0.35 0.90 0.08 0.12
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We select the threshold with the slightest difference between True Positive Rate (TPR)
and False Positive Rate (FPR) on the ROC curve as the accurate value for calculating
other evaluation criteria. Figure 2 shows the ROC curve of this method and the other
three methods on the NIBT dataset. Our method is superior to other compared models.

Fig. 2. Demonstration of ROC curves for different methods

MS-FLOW achieves the best results in the AUROC metric. It also performs well in
ACC, recall, and so on. By transforming the feature distribution to a standard normal
distribution through the NF module, abnormal data deviates from the normal distribution,
completing the localization. Figure 3 shows the localization effect of MS-FLOW on brain
MRI data. Columns 1 to 5 are abnormal data. The latter column is a normal brain MRI
scan. For the tumor portion, MS-FLOW localizes its abnormal portion.

Fig. 3. Detection effect diagram. Output represents the model-predicted images, and Mask repre-
sents the ground truth



232 Yufeng Xiao et al.

f-Anogan performs excellent in image-level anomaly detection tasks, but does not
perform as well as the other methods in pixel-level medical image detection tasks. An-
oDDPM performs excellent pixel-level detection tasks, though sensitive to the selected
thresholds. It is much slower than other methods in training and inference time. MS-
FLOW further improves pixel-level image detection through spatial and channel attention
mechanisms. Normalized flow-based characterization methods are not only fast to train
but also yield satisfactory results even with small datasets.

Fig. 4. a schematic diagram of the ROC curve on the NIBT data set

4.4. Ablution Study

Since the model consists of feature extraction and the NF module, we investigated the
performance of the model after choosing different backbone networks and the structure
of the NF module. For the backbone networks, we chose four backbone networks, includ-
ing two deep convolutional networks, resnet18 and wideresnet50, and two visual trans-
former methods, cait and diet. For the evaluation criteria, we still use the five metrics, such
as AUC, depicted in section 4.3. Table 3 shows the performance of the attentional flow
when the sub-networks use different convolutions, and the backbone network is resnet18,
wideresnet50, cait, and diet. Choosing a more complex convolutional neural network or
employing a visual transformer does not improve performance.

The number of NF modules is also an essential hyperparameter for our method, which
impacts the model’s performance and efficiency. So we selected 4 different numbers of
NF modules for the MS-FLOW, as a way to observe the effect it has on the model per-
formance. Figure 4 shows the roc curves under different NF modules. We finally find that
the model has the best overall performance when the number of NF modules equals 15.
Figure 5 shows the Precision-Recall curves for different numbers of NF modules, and the
best performance is also obtained when the number of NF modules is equal to 15.
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Fig. 5. a schematic diagram of the RP curve on the NIBT data set

Fig. 6. Schematic representation of the attention mechanism for model performance images
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To study the effectiveness of the proposed MS-NF module and observe the model
performance changes after eliminating attention and adding attention mechanism in the
sub-network. Figure 6 demonstrates the performance change of the model with and with-
out the attention mechanism under the evaluation metrics such as AUC, and Acc. It can
be seen that AUC, recall, AP, and F1 are improved, indicating that the attention module
has a positive effect on the model.

4.5. Complexity evaluations

To analyze and evaluate the complexity of the model, we used the model parameter count
and inference speed metrics to compare MS-NF with the other methods in Table 4. The
comparison results are shown in Table N. MS-NF has a parameter count of 15.1M with
the number of NF modules equal to 15, and a feature extraction network of resnet18,
and an fps of 2.92 on the dataset. Compared to Anoddpm, MS-NF cuts the number of
parameters to one-tenth of Anoddpm and improves the inference speed dramatically. Still,
it is comparable to it in terms of detection effectiveness. In contrast, compared to fno-gan
as well as fast-flow, the detection effect is better than the above two methods when the
number of parameters is appropriately boosted.

It can be seen that the proposed MS-NF can achieve excellent performance and real-
time detection with a small number of parameters, showing that the proposed work is
competitive. The equipment configuration used for testing is composed of one Intel(R)
Xeon(R) Silver 4314 CPU @ 2.40GHz, 128 GB memory, 4 TB storage, and one NVIDIA
GeForce RTX 3090 card attached. All experiments are carried out in the operation system
Linux. Pycharm is selected as the development environment. In addition, the program
code of the models in this paper is implemented by Pytorch, an open-source tool that
supports the agile development of deep learning models.

Table 4. Model Complexity Analysis

parameters time fps

Ours 15.1M 9.26 2.92
f-AnoGan 3.93M 4.33 6.23
AnoDDPM 131M 0.04 632
fast-flow 15.0M 9.97 2.72

5. Concluding Remarks and Future Work

In this work, we propose a novel unsupervised learning model for medical image detec-
tion, which performs recognition without label information. It can avoid the subjective
factors of the annotators to impact the performance of the model. Concretely, this model
fuses the different scale feature maps to learn the contextual information and to detail
multi-granularity information hidden in the data. Then, the normalizing flow in the model
learns the distribution of the data, which is used for detection. Moreover, the convolu-
tional attention mechanism makes the model focus on the useful regions. It can further
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improve the performance without significantly increasing the number of parameters. The
experimental results illustrate that the proposed model outperforms the compared models.
Particularly, the training speed of the proposed model is faster than others. The proposed
model aims to learn the distribution of the normal medical images, which are used to gen-
erate new abnormal medical images combined with the abnormal information through the
transfer module. It can relieve the requirement of the abnormal medical images. In future
directions, we aim further to introduce the GAN mechanism to the proposed model to
improve the quality of the generated abnormal medical images.
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