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Abstract. A new framework for the quantification of course difficulty in academic
curricula is proposed. The originality of the approach lies in its course-centric na-
ture. A course difficulty index value is calculated (CDf ), using difficulty indicators
that characterize the course as a whole. The difficulty indicators can be tailored to
reflect the academic domain considered. A weighting percentage is calculated and it
is assigned to each course difficulty indicator, by systematically conducting Princi-
pal Component Analysis (PCA) on students’ assessment data. Next, the weighted
difficulty indicators are used to calculate CDf in the form of a composite indica-
tor. In general, the value of the latter varies across courses, and across different
offerings of a given course. The CDf framework is applied in the case of a univer-
sity in Greece by utilizing course difficulty indicators which are objective in their
nature, like course mean and median grades, passing grade percentages, etc. The
dataset used spans a period of thirteen (13) academic years. The findings are used
to identify courses that represent “bottlenecks” in student study paths. Subjective
course difficulty indicators may also be used, like students’ questionnaire data. It is
worth noting that the quantification of course difficulty by means of a single index
can be used in the calculation of adjusted student scores and, as such, facilitate data
mining operations on students’ assessment data. All in all, the proposed CDf frame-
work and analysis comprise a useful tool for academic policy-making and quality
assurance.

Keywords: course difficulty, difficulty index, learning analytics, principal compo-
nent analysis, exploratory data analysis, composite indicator.

1. Introduction and Motivation

The present research is motivated by the need to analyze student assessment data in order
to devise effective policies for educational development. At the Information and Elec-
tronic Engineering (IEE) department of the International Hellenic University (IHU) in
Greece, the task comprises the responsibility of the department’s Internal Evaluation
Group (IEG). Exploratory data analysis and mining operations are conducted on stu-
dent assessment records, i.e. grades assigned to students in course modules (courses, for
brevity). A valuable outcome is the identification of courses that present notable chal-
lenges for students, equivalently: courses that students find difficult to pass, or achieve a
high grade in. Such information is useful in many aspects, from designing course curric-
ula (especially in the context of the new online learning paradigms, like smart education
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[1]), and helping students identify their preferred course of study [33], to rating students
with respect to their academic performance.

The way course difficulty perplexes the task of rating students on the basis of their
performance in courses is best illustrated by an example in [9]: nine courses Ci (i=1,...,9)
and four students Si (i=1,...,4) are listed in Table 1 alongside with grades assigned to the
latter in courses they have been assessed in. When a student has not been assessed in a
specific course, the corresponding (Course, Student) cell is left blank.

Table 1. Student Assessment Scores Example ([9])

Course
Student

Average Course Grade
S1 S2 S3 S4

C1 93 90 91.5
C2 85 80 82.5
C3 100 95 97.5
C4 80 75 77.5
C5 97 95 96.0
C6 93 85 89.0
C7 92 89 90.5
C8 92 91 90 88 90.3
C9 91 89 90.0

Average Student Grade 88.6 89.2 89.6 90.6

For the example considered, using Average Course Grade, the nine courses are ranked
in descending order of difficulty as follows: C4 > C2 > C6 > C9 > C8 > C7 > C1 >
C5 > C3. Each one of the four students is seen to have been assessed in five of the nine
courses. In accordance with their Average Student Grade values, the four students are
ordered as follows: S4 > S3 > S2 > S1. However, when compared to each other and
ranked on the basis of their grades in courses they have both enrolled in, the students are
ordered as follows: S1 > S2 > S3 > S4. This is exactly the opposite to their Average Stu-
dent Grade based ordering. Evidently, it does not suffice to evaluate student performance
by just considering grades obtained in courses. It is important to take into account the
difficulty of each one course a student has been assessed in.

In Greece, the academic year consists of the Fall- and the Spring- semesters. Course
offerings are semester based. Each semester, students enroll in courses and they partic-
ipate in two (2) final examinations periods: examinations Period-A, and examinations
Period-B. Upon completion of each final examinations period, students are awarded an
overall grade for each course in which they have been assessed. Examinations Period-A
for the Fall semester courses runs from January to February. Likewise, June is the month
for the Spring semester’s examinations Period-A. In September one common examina-
tions Period-B is held for all courses offered during the academic year (Fall- and Spring-
semesters, alike). Student performance grades lie in the [0,10] range. Five (5.0) comprises
the minimum grade requirement for passing a course. In the CDf framework that is to be
considered next, when a student is assessed twice in a given course during the same aca-
demic year, both grades are accounted for.
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Course difficulty may vary due to, for example, a new instructor stepping in, when
there are significant updates to the course’s educational and training content, or when the
instructor of a given course attempts to address a backlog of students who haven’t passed
the exam in previous attempts. In this respect, course difficulty need be measured per
course offering. Once quantified, it can be used for calculating adjusted student scores
that incorporate the difficulty of the course at the time of assessment.

One may argue at this point that percentile-based standard scores like the T− and
z−scores comprise the means to rate/rank the performance of a student without sticking
to a raw x grade [27]. The research herewith presented aims for extending the standard
scores paradigm (a) by considering the relative difficulty of a course with respect to other
courses of a given academic curriculum, and (b) by allowing room for the difficulty of a
given course to vary from one of its offerings to the next.

The present treatise is organised as follows: the research goal is considered in the
context of the relevant bibliography in Section 2 (Related Work). Five (5) objectives that
pertain to the set aims and goals are outlined in Section 3 (Research Objectives). The
academic dataset used is outlined in Section 4 (The Dataset). Section 5 (Methodology)
comprises a detailed presentation of the proposed CDf framework and its application in
the case of the IEE department at IHU. The results obtained are presented and discussed
in Sections 6 (Results) and 7 (Discussion). The treatise concludes by summing up and
identifying new potential research goals in Section 8 (Conclusion and Future Work).

2. Related Work

Higher education establishments exploit course difficulty relating information to shape
and implement educational policies with the aim to (a) increase success rates in exams
[2,24,28,31], (b) minimize the prolongation of the typical student’s study period [10],
and (c) promote fairness in student performance evaluation and ranking [36]. Fair student
ranking has long attracted the interest of researchers because academic performance is
used in most high-stakes decisions as in the determination of eligibility for scholarships,
or job employment [36].

Academic analytics involves a wide range of methodologies and techniques utilized
by higher education institutions, alongside with their quality assurance procedures and
strategic policies for educational development [24]. In academic analytics, course diffi-
culty arises as an issue in methodologies aimed at improving student performance evalu-
ation, curriculum design, and course sequencing. Yet another analytical outcome of great
interest is the prediction of student performance in courses that lie ahead in their study
path [3,21]. The relevant data analysis and data mining tasks are expected to benefit from
the adoption and use of a (single) difficulty index that characterizes each course offering.
However, there appears to be no single approach on the quantification of course difficulty
in the relevant research literature.

One approach to quantifying course difficulty is to use instruments like questionnaires
that utilize Likert-type prompts to collect the students’ perceptions of a course’s level of
difficulty [7][25]. To better assess the perceived course difficulty, questionnaires are also
used to collect demographic information that can be combined with Grade Point Average
(GPA) scores, and course-related details (workload, assignments, etc.).
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The authors in [23] investigate the correlation between course difficulty and student
stress during course selection scheduling. The determination of course difficulty com-
prises a milestone in fulfilling their research objective. They propose four methods for the
classification of courses with respect to their degree of difficulty: pairwise comparison, an
Analytic Hierarchy Process (AHP), GPA, and physiological measurements.

A number of studies propose methods for improving the GPA score in order to pro-
vide a fairer measure of a student’s academic performance [9][36][37]. In this respect,
adjusted GPA scores are calculated for university students, scores that correlate better
with pre-admission measures like high school GPA and SAT scores. The flaws of the (un-
adjusted) GPA scores relate to the fact that grading standards and practices tend to vary
from instructor to instructor, and from department to department within the university.
The proposed methods involve a predictive model of student grades based on parameters
such as the ability of a student, the difficulty, and the discrimination of a course.

More specifically, the authors in [9] have investigated several models for adjusting a
student’s GPA score to account for the difficulty of the courses they have been assessed
in. In the simplest and perhaps most useful approach, the model predicts a student’s grade
in a course as the difference between two parameters: the student’s ability and the grading
standard index that corresponds to the course (i.e. the course’s difficulty), plus an error
term. The two parameters are estimated for each one student and for each one course, in a
way that minimizes the error term. An analogous linear model is proposed by Vanderbei et
al. in [37], with the student’s intrinsic overall aptitude and the course’s inherent difficulty
as parameters. The authors calculate the values of the two parameters in the case where
each student has been assessed in each and every one course, as well as in the case where
students enrol in selected courses. In [36], the authors utilize a two-parameter logistic
model that predicts the grade of a student in a course. Their approach involves one student
parameter (ability) and two course parameters (difficulty and discrimination). For each
student, grades are predicted for all the courses in the academic curriculum, even for those
that the student in question has not enrolled in. A modelled GPA value is computed based
on the predicted grades. The approach is shown to remove the course-choice drawback of
the (unadjusted) GPA scores.

In addition, several methodologies have been devised within the framework of Item
Response Theory (IRT) [22][30], generating measures that have been demonstrated to be
more reliable than conventional GPA scores in capturing student performance [16][38][39].
IRT is used extensively in the field of education to assess and calibrate items within tests,
questionnaires, and other instruments. It is also used to score individuals based on their
abilities, attitudes, or other underlying traits. In this regard, IRT models are used to cal-
culate adjusted GPA scores, aiming to provide a more accurate estimation of students’
performance (ability) in academic courses.

In [38] the author uses an IRT model called the Graded Response Model (GRM) on
undergraduate student assessment data [32]. A number of K (K > 2) ordinal grade cat-
egories are assumed to apply. In GRM, the probability of a student to achieve a specific
grade or higher in one course is expressed as a function of the student’s ability, plus the
course’s difficulty (referred as grade category boundary), and discrimination. An impor-
tant feature of GRM is its explicit parameterization of grade category boundaries for each
course. In theory, this enables the model to account for variations in instructor grading
patterns [16]. The model proposed in [16] can be regarded as a Bayesian extension to
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GRM. The primary motivation behind the adjustment is to utilize the relative rankings
of students within courses (instead of absolute grades) as a means for evaluating student
performance.

3. Research Objectives

All the approaches discussed in Section 2 (Related Work) adopt a student-centric approach
when assessing course difficulty. More specifically, course difficulty is calculated (a) by
considering student responses to questionnaires, or (b) as a model parameter alongside
the student’s ability and course discrimination, or (c) through a hybrid combination of (a)
and (b). This is achieved by assuming that course difficulty remains consistent across the
dataset used. To be exact, some approaches allow for course difficulty to vary, say from
one course offering to the next, at the cost of increased model complexity, and processing
overhead.

The research herewith reported aims to quantify course difficulty from a course-
centric (as opposed to student-centric) perspective. In this context, the intended research
objectives are set as follows:

1. Course difficulty is to be quantified by means of a single measure (index)
2. The measure will be calculated using a set of course difficulty indicators
3. The mix of the indicators used may vary across different academic environments and

systems
4. Course difficulty may vary from one specific course offering to the next
5. Strong emphasis to be given on the visual presentation of the results

Commenting on objective number one, the need for a single measure aims to facilitate
further analytical processing such as the calculation of adjusted student scores, and the
prediction of students’ performance in courses that lie ahead in their study path. In this
respect, the calculation of the course difficulty index is seen to comprise a task of the data
preparation for data mining stage.

Objective number two relates directly to the course-centric nature of the approach: the
measure need be calculated on the basis of parameters that characterize the course as a
whole, not on parameters that characterize each individual student assessed.

Objective number three highlights the need for the relevant framework to seamlessly
adapt to diverse application domains. Course difficulty indicators may vary significantly
in number and/or nature across different academic establishments or systems.

Objective number four is established to account for course difficulty dependence on
instructor teaching and/or grading styles, assessment types (e.g., remote testing necessi-
tated by unforeseen circumstances like the COVID-19 lockdown), etc.

Objective number five stresses the need to visualize the results in order to facilitate
exploratory analysis and strategic policy planning.

4. The Dataset

As stated in Section 1 (Introduction and Motivation) above, in Greece the academic
year comprises two semesters. The academic curriculum delineates the courses that are
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taught during each semester. Students are assessed based on their performance during the
semester and in the final examination. There are two final examination periods to each
academic semester. Consequently, a student may receive up to two grades for a course
during the academic year.

Table 2 outlines the dataset used. It comprised a total of 199,813 grades assigned to
3,737 students in relation to their enrollment in 81 courses at the IHU IEE department. The
dataset spans a period of thirteen (13) academic years: from 2009-10 to 2021-22. Several
elective courses were added to and/or removed from the department’s undergraduate aca-
demic curriculum over this 13-year period. To maintain consistency, analysis proceeded
by focusing on nineteen (19) core STEM courses comprising the STEM courses subset.
Still, data from all the courses offered over the 13-year period was used in order to bet-
ter analyze longitudinal trends and student performance patterns for the STEM courses
considered.

Table 2. Students’ assessment data: 2009-2021
All courses STEM courses subset

Assessment scores 199,813 123,850
Courses 81 19
Students 3,737 3,721

(Course, Academic Year) instances 565 247

5. Methodology

For the undergraduate program of the IEE department at IHU, the six indicators listed in
Table 3 are taken to shape a course’s difficulty profile in the academic year.

Table 3. Six (6) course difficulty indicators
Indicator Description

δ1 Percentage of course grades in the [0,1] range
δ2 Average course grade
δ3 Median course grade
δ4 Average number of attempts a student makes to achieve a passing grade in the course
δ5 Percentage of passing grades in the course
δ6 Percentage of active students in the course: enrolled and assessed vs. enrolled

Table 4 lists two (2) measures used per each one indicator: (a) Course in ac. year,
the value of which is calculated for the (course, academic year) pair considered, and (b)
All courses, all ac. years which is calculated as an average for the given indicator over
all courses and all academic years in the dataset. Alongside with the previous two, the
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table lists two more variables that will be defined next: the indicator’s Bias (b), and its
normalized difficulty value (N Value) as calculated for the (course, academic year) pair
in question.

Beginning with the (binary) Bias (b), its value is set to “0” (“1”) to indicate the posi-
tive(negative) impact the corresponding δi represents to course difficulty. A positive bias
implies that as the value of δi increases, the course in question becomes more difficult.
For example, δ4 represents a positive bias (b=0), since the higher the average number of
attempts students make to achieve a passing grade, the more difficult the course is per-
ceived to be. On the other hand, δ2 represents a negative bias (b=1), since the higher the
average grade students achieve in a course, the less difficult the latter is perceived to be.

di = (−1)b × 100× x−X

X
i = 1, . . . , 6 (1)

where

– x is the value of the given indicator’s Course in ac. year measure
– X is the value of the given indicator’s All courses, all ac. years measure, and
– b is the indicator’s Bias (b) value

For the STEM courses in Table 2, an indicator percent variation (di) value per (δi,
course, academic year) triplet is calculated as follows:

For example, d5 is calculated as d5 = (−1)1×100× µ−M
M , µ and M being the percent-

age of passing grade values for a given STEM course in the academic year considered,
and that of the average course across the entire dataset, respectively.

Table 4. Course difficulty indicators: measures, plus bias and normalized values
Indicator Measures Bias (b) N Value

Course in ac. year | All courses, all ac. years
δ1 α A 0 ∆1

δ2 β B 1 ∆1

δ3 γ Γ 1 ∆3

δ4 ε E 0 ∆4

δ5 µ M 1 ∆5

δ6 ν N 1 ∆6

Next, the ∆i values listed under N Value in Table 4 are calculated by constructing a
di-standings list for each δi. The list registers all (course, academic year) instances sorted
in descending order, based on their di values. Considering the positioning of each (course,
academic year) pair in the di-standings list, and using the Rainbow Ranking equation from
[34], ∆i is calculated to resume values in the (0,100] range:

∆i = 100− 100

(
Nabove(c)

C
+

Ntie(c)

2C

)
(2)

where

– c refers to a given (course, academic year) pair, herewith said to comprise a c instance
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– C is the total number of c instances in the di-standings list
– Nabove(c) is the number of c instances ranked higher than the given c in the list, and
– Ntie(c) is the number of ties (if any, otherwise: 0) c is involved in, not counting c

Along the lines with the research goals outlined in Section 3 (Research Objectives),
a single course difficulty value for a given course in a specific academic year can be
calculated as a linear combination of the ∆i (i=1,...,6) values calculated via Equation 2,
provided that the latter are weighted appropriately:

CDf =

6∑
i=1

∆i × wi (3)

At this point, it is noted that the introduction of ∆i (i=1,...,6) complies with objec-
tive numbers 3 and 4 outlined in Research Objectives. Moreover, a single CDf value for
a course in a specific academic year is calculated via Equation 3, given the correspond-
ing ∆i (i=1,...,6) values and their wi (i=1,...,6) weights. The latter is inline with objec-
tive numbers 1 and 2 of the Research Objectives section. Remaining to be done is the
calculation of the wi (i=1,...,6) weight values. This is achieved by conducting Principal
Component Analysis (PCA) as described in the following.

Principal Component Analysis (PCA) is a multivariate statistical technique commonly
used for dimensionality reduction and data simplification. Its input comprises an n × p
matrix where p is the number of measured variables Xi, and n is the number of observa-
tions recorded. The initial correlated variables are transformed into a smaller number of
uncorrelated variables (m < p), called principal components (PCs). This is done by pre-
serving as much as possible of the variation (information) present in the original dataset.
For a detailed treatise on PCA the reader is referred to [17].

Initially, the number of PCs of the PCA output is equal to the number of variables p
present in the original dataset:

PCj =

p∑
i=1

αijXi j = 1, . . . , p (4)

The difference made by the PCA transformation is that the PCs are ordered so that
the first few retain most of the variance of the initial variable set Xi. More specifically,
PC1 captures most of the variation in all of the initial variables, PC2 captures most of
the remaining variation, and so on. The aij coefficients are called loadings [5].

In the present study the wi weight values are calculated on the basis of the loadings
derived from applying PCA on the academic dataset outlined in Section 4 (The Dataset).
More specifically, CDf is calculated as a composite indicator which constitutes a compi-
lation of individual indicators in order to form a single index the value of which quantifies
the multidimensional concept as a whole [26]. The use of PCA in the construction of com-
posite indicators enjoys applicability in scientific fields ranging from economics [6][14],
and environmental engineering and management [11][13], to road safety [12].

Section 6 (Results) details the application of the aforementioned methodology in the
current study. The determination of the wi (i=1,...6) weights proceeds in four steps, as
follows:

In step number one the correlation structure of the dataset is examined to assess
its suitability for PCA. First, the Bartlett’s test of sphericity [4] is applied in order to
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test whether the correlations in the dataset (as a whole) are strong enough to justify the
application of PCA. Next, Spearman’s correlation coefficient (rs) is calculated for every
pair of ∆i (i=1,...6) variables. This is done in order to ensure that the PCA output can be
used for calculating reliable weight (wi) values for Equation 3.

Step number two involves the application of PCA on the academic dataset. Consid-
ering Equation 4, the ∆i (i=1,...6) variables are used to derive the principal components
PCj (j=1,...,6):

PCj =

6∑
i=1

αij∆i j = 1, . . . , 6 (5)

In Equation 5, the loading (αij) represents the correlation between PCj and ∆i.
Equivalently, the squared loading (αij

2) expresses the variance in ∆i explained by PCj

[6]. Next, the number (m) of PCs to be retained need be determined. The relevant litera-
ture provides a number of guidelines for determining the number of components to retain
without experiencing any significant information loss: the Kaiser criterion [18], Scree
plot [8], and the variance explained criteria [15], to name a few. More than one criteria
are typically used in practice and in this respect.

In step number three, the retained principal components are rotated to enhance their
interpretability. Rotation comprises a transformation to achieve a simple structure, namely
one where (i) each variable has a high loading on only one of the retained components,
and (ii) each retained component represents high loadings for only some of the variables
[29]. This way, the most important variables emerge in the rotated principal component:
they are the ones with the larger absolute values for their loadings. At the other end, the
least important variables emerge with near zero loadings. In the present study, the varimax
rotation is applied, as it is the one most commonly used [35].

Step number four involves the utilization of the PCA output to calculate the wi

(i=1,...,6) weights. Denoting m the number of retained components from step two, the
total variance of ∆i explained by all m PCs is called communality (hi

2) and it is calcu-
lated as follows [15]:

hi
2 =

m∑
j=1

α2
ij i = 1, . . . , 6 (6)

∆i’s weight (wi) is calculated as the ratio of ∆i’s communality over the sum of com-
munalities of all ∆i (i=1,...,6) variables:

wi =
h2
i∑6

i=1 h
2
i

i = 1, . . . , 6 (7)

Summarizing, the wi component in Equation 3 is taken to represent the proportion of
∆i’s variance explained relative to the variance of all ∆i (i=1,...,6) variables explained
by the retained components. This is along the lines of the approach reported to have been
implemented in the literature, for example [6] and [26].
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6. Results

For the dataset used, the correlations among all pairs of the ∆i (i=1,...,6) variables were
calculated and they are presented in Table 5. It is noted that pairs involving variables
from the {∆2, ∆3, ∆4, ∆5} set exhibited significant correlations, as measured by the
Spearman rank correlation coefficient (rS), the latter varying from 0.34 to 0.87. Notably,
the ∆1 variable is seen exhibit significant correlations with all other variables, with the
exception of ∆4. In addition, the ∆6 variable correlates significantly only with ∆1 (rS
=0.23). Bartlett’s sphericity test results (χ2=757.48, df=15, and p <0.001) implied the
presence of correlation patterns among the ∆i (i=1,..,6) variables. In this respect, the
results obtained led to the rejection of the null hypothesis, namely that of an identity
correlation matrix.

Considering the above, the ∆i (i=1,...,6) variables turned out to be suitable for subse-
quent PCA analysis. In addition, it was decided to consider two more configurations by
omitting ∆6 and ∆1, respectively. Thus, three PCA configurations were implemented:
(a) PCA1−6 with ∆i (i=1,...,6), (b) PCA1−5 with ∆i (i=1,..,5), and (c) PCA2−6 with ∆i

(i=2,..,6). This was done for two reasons: (a) PCA1−5 is a direct analogue to the heuristic
approach reported in [19], and (b) in Table 5, ∆1 is seen to correlate significantly with
∆2, ∆3, ∆5, and ∆6, while ∆6 correlates significantly only with the ∆1 variable.

Table 5. Spearman’s rank correlation coefficient (rs) values for all (∆i, ∆j) (i, j=1,..,6)
∆1 ∆2 ∆3 ∆4 ∆5 ∆6

∆1 -
rs=0.34
(p<0.01)

rs=0.30
(p<0.01)

rs=0.07
(p=0.30)

rs=0.22
(p=0.01)

rs=0.23
(p<0.01)

∆2 - -
rs=0.81
(p<0.01)

rs=0.40
(p<0.01)

rs=0.87
(p<0.01)

rs=0.12
(p=0.06)

∆3 - - -
rs=0.34
(p<0.01)

rs=0.70
(p<0.01)

rs=0.11
(p=0.10)

∆4 - - - -
rs=0.48
(p<0.01)

rs=0.06
(p=0.37)

∆5 - - - - -
rs=0.05
(p=0.42)

∆6 - - - - - -
2
2

Beginning with PCA1−6, Table 6 lists the eigenvalues and the corresponding ex-
plained variances for all six principal components (PCs) in the PCA outcome. In ac-
cordance with Kaiser’s criterion, the first two components (PC1 and PC2 in Table 6)
need be retained since their eigenvalues are greater than 1. The Scree plot in Figure 1 is
indicative of the notably sharp drop from the first eigenvalue to the second, the rate of
decrease remaining small thereafter. For PCA1−6, the findings suggest that analysis may
safely proceed by considering only PC1 and PC2 which together account for 69.52% of
the variance present in the original dataset (the Cumulative Variance Explained column
in Table 6).
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Table 6. Eigenvalues and variance explained for the six PCs in PCA1−6

Component Eigenvalue Variance Cumulative Variance
Explained (%) Explained (%)

PC1 3.05 50.89 50.89
PC2 1.12 18.63 69.52
PC3 0.82 13.60 83.12
PC4 0.65 10.75 93.87
PC5 0.28 4.66 98.53
PC6 0.09 1.47 100.00

Total 6.00 100.00

Fig. 1. Eigenvalues of the six principal components (PCs) in PCA1−6 (Scree plot)

Table 7 presents the PCA1−6 findings in the form of loadings associated to the
given ∆i (i=1,...,6) variables when the first two principal components are used, along-
side with the corresponding communalities and wi (i=1,...6) weights. The varimax rota-
tion method was applied on the original PCA1−6 outcome. The communality (h2) for
each ∆i (i=1,...,6) is the sum of the squared loadings of the two retained components (cf.
Equation 6) For each ∆i, the corresponding wi value is calculated by Equation 7. The per-
centage of cumulative variance explained (information) of the two principal components
(PC1 and PC2) is also listed under the PCA1−6 label.

Table 8 is analogous to Table 7 and summarizes the findings for PCA1−5 and PCA2−6.
Again, the first two principal components are used. One notes the increase in the cumu-
lative variance explained values: 79.16% and 77.75% for PCA1−5 and PCA2−6, re-
spectively, next to 69.52% in the case of PCA1−6. An observation that applies to all
PCA outcomes in Tables 7 and 8, is that ∆2, ∆3, ∆4 and ∆5 are seen to maximize their
(information) contribution values in PC1, whereas ∆1 and ∆6 maximize theirs in PC2

(column: Loadings).
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Table 7. PC1 and PC2 loadings, communalities, and weights for PCA1−6

PCA1−6

(cumulative variance explained: 69.52%)

Variables Loadings Communalities Weights
PC1 PC2 (h2) (wi)

∆1 0.27 0.70 0.56 0.13
∆2 0.92 0.22 0.90 0.22
∆3 0.85 0.23 0.77 0.18
∆4 0.63 -0.08 0.41 0.10
∆5 0.92 0.08 0.84 0.20
∆6 -0.08 0.83 0.69 0.17

Total 4.17 1.00

Table 8. PC1 and PC2 loadings, communalities, and weights for PCA1−5 and PCA2−6

PCA1−5

(cumulative variance explained: 79.16%)
PCA2−6

(cumulative variance explained: 77.75%)
Variables Loadings Communalities Weights Loadings Communalities Weights

PC1 PC2 (h2) (wi) PC1 PC2 (h2) (wi)
∆1 0.12 0.90 0.83 0.21
∆2 0.87 0.39 0.90 0.23 0.94 0.07 0.90 0.23
∆3 0.79 0.39 0.77 0.20 0.87 0.08 0.77 0.20
∆4 0.74 -0.26 0.61 0.16 0.61 0.00 0.37 0.10
∆5 0.89 0.21 0.84 0.21 0.92 0.00 0.85 0.22
∆6 0.04 1.00 1.00 0.26

Total 3.96 1.00 3.89 1.00

Table 9 summarizes on Equation 3’s wi (i=1,...,6) weights as calculated using Equa-
tion 7 for PCA1−6, PCA2−6, and PCA1−5, and set heuristically in [19]. PCA1−6 and
PCA2−6 are seen to exhibit similar weighting patterns for ∆i (i =1,...,5). Comparing
PCA1−5 to PCA1−6, the weight w1 for ∆1 increases from 0.13 to 0.21, incorporating
the majority of the contribution from the ∆6 variable (0.17), which is present in PCA1−6

but not in PCA1−5. Analogously for PCA2−6 and PCA1−6, the weight w6 for ∆6 in-
creases from 0.17 to 0.26, incorporating the majority of the contribution from the ∆1

variable (0.13), which is present in PCA1−6 but not in PCA2−6. In all three PCA con-
figurations, the w4 value for ∆4 is notably smaller from the rest of the weight values.
Consequently, the δ4 indicator (Average number of attempts a student makes to achieve a
passing grade) emerges to possess the smallest relative impact on course difficulty. Re-
garding the weights heuristically assigned to the ∆i (i =1,...,5) variables in [19], there are
notable deviations in w1, w4, and w5 compared to those calculated for the three PCA
configurations.
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Table 9. PCA1−6, PCA2−6, PCA1−5 and Heuristic weight values
Variables Weights wi (i=1,...,6)

PCA1−6 PCA2−6 PCA1−5 Heuristic
∆1 0.13 0.21 0.05
∆2 0.22 0.23 0.23 0.20
∆3 0.18 0.20 0.20 0.20
∆4 0.10 0.10 0.16 0.05
∆5 0.20 0.22 0.21 0.50
∆6 0.17 0.26

Total 1 1 1 1

7. Discussion

As stated previously, PCA1−5 and Heuristic in Table 9 both involve the same set of
course difficulty indicators. Their difference lies in the way the wi (i =1,...,5) weights are
determined. In the Heuristic configuration, weight values are set heuristically, whereas in
PCA1−5 weight values are calculated by conducting PCA and using Equation 7. The
heuristic approach is seen to deviate significantly from PCA1−5 in three of the five
weights assigned to the ∆i (i=1,...,5) variables. More specifically: (a) ∆1 (percentage
of grades in the [0,1] range for the given course in the academic year considered) is rated
to be nearly four times as important in PCA1−5 (w1=0.21) as in the heuristic approach
(w1=0.05), (b) ∆4 (the average number of attempts a student makes to achieve a pass-
ing grade in the course) turns out to be nearly three times more important in PCA1−5

(w4=0.16) compared to what it is set heuristically (w4=0.05), and ∆5 (percentage of pass-
ing grades for the course in the academic year considered) is nearly half as important in
PCA1−5 (w5=0.21) as in the heuristic approach (w5=0.5).

Fig. 2. CDf density plots (19 core STEM courses, all years)
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Figure 2 presents the CDf distribution (density) curves for the nineteen (19) core
STEM courses over the 13-year period: PCA1−5 and Heuristic in Fig.2a, PCA1−5,
PCA1−6, and PCA2−6 in Fig.2b. All are left-skewed, with PCA1−6 and PCA2−6

seen to involve a smaller degree of left-skewness as compared to PCA1−5 and Heuristic.
PCA1−5 is seen to lie notably closer to Heuristic relative to both PCA1−6 and PCA2−6.
It is also narrower than the Heuristic, i.e. it involves a smaller variance. PCA1−6 and
PCA2−6 appear to be slightly shifted towards smaller CDf scores, relatively to the other
two. This could be taken to indicate that the δ6 indicator (percentage of enrolled students
who have been assessed) represents a lesser impact on course difficulty compared to the
δ1 indicator (percentage of course grades in the [0,1] range). This is further supported by
the fact that PCA1−5 (where δ6 is not used) represents the highest cumulative variance
explained (79.16%) compared to PCA2−6 (77.75%) and PCA1−6 (69.5%), as shown in
Tables 7 and 8. Given these findings, the remainder of this section will exclusively focus
on the PCA1−5 configuration.

Using PCA1−5, Figure 3 presents two CDf distribution curves: one for all courses
(the 19 core STEM courses included) and one for the 19 core STEM courses, both over the
13 academic years period considered. The former is significantly more uniform compared
to the latter. The STEM courses curve exhibits a notable degree of left-skewness, plus it
is clearly shifted towards higher CDf scores. This is taken to mean that students tend to
face more challenges with the 19 core STEM courses, compared to the other (81-19=62,
mostly: elective) courses in the undergraduate curriculum.

Fig. 3. CDf density plots (all years): 19 core STEM courses vs. all courses

The proposed CDf framework can effectively identify specific courses that present
increased challenges for students. Such courses act as “bottlenecks” that hinder student
progress, and prolong the study period. For example, focusing on course C1, its CDf value
is marked as a dot on the STEM courses’ CDf distribution curve in Figure 4, during the
2021-22 academic year. The C1 dot is seen to be positioned well past the curve’s dominant
inflexion point. Thus, for the academic year considered (2021-22), with a CDf score close
to 85, C1 is undoubtedly ranked among the most challenging core STEM courses.
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Fig. 4. Course C1 on the 19-STEM courses’ CDf curve during the 2021-22 academic
year

To obtain a feeling of how C1’s CDf has varied during the 2017-2022 period, Figure
5 combines in one graph all five CDf distribution curves of the 19 core STEM courses
for the academic years considered. It is noted that C1 has shown a steady increase in
difficulty, rising from 52.74 in 2017-18 to 85.36 in 2021-22.

Fig. 5. Course C1 on the 19-STEM courses’ CDf curves during the 2017-22 period

Better yet, Figure 6 encapsulates in one graph all the information on the variation of
CDf scores for two courses (C1: red, and C2: green dots on the graph) over the entire 13-
year period. With one box plot per academic year the C1 and C2 CDf scores positioned
relative to the former, the reader has a complete picture of how the two courses’ difficulty
has varied over the 13-year period. Moreover, the graph reveals information on how the
difficulty of the 19 core STEM courses (as a group) has varied from one academic year
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Fig. 6. 13-academic years period: Courses C1 and C2 positioned on all 19 core STEM
courses’ CDf box plots

to the next. For instance, by examining their median CDf scores, the core STEM courses
are seen to have posed the greatest challenge to undergraduate students during the 2014-
15 academic year. Also, 2018-19 has been the academic year with the largest number of
outliers among the 19 core STEM courses: two (2) in the low (less difficult), and one (1)
in the high (most difficult) ends of the corresponding box plot.

Focusing on C1 in Figure 6, the course’s CDf score is seen to lie in the right whisker
region of the box plot only during the last two academic years (2020-21 and 2021-22).
Prior to 2020-21, C1 consistently remained below or on the Q3 boundary of the STEM
courses’ box plot. More precisely, C1 comprised an outlier (in terms of its difficulty)
STEM course during the 2020-21 and 2021-22 academic years. This may be indicative of
C1’s tendency to gradually evolve into a “bottleneck” course for students. In this context,
Figure 6 signals an alert to course instructors and the department regarding the increasing
challenge associated with C1. In response to this, possible actions may include (a) a re-
view of the student assessment procedures, and (b) the identification of one or more other
courses in the curriculum that could be designated to comprise prerequisites for C1. On
the other hand, and with the exception of the 2017-18 academic year, course C2 is seen to
always comprise an outlier in the left (less difficult) whisker region of the corresponding
box-plots in Figure 6. This too deserves the department’s attention.

As stated already, the results herewith presented and commented upon relate to the
case of a typical university in Greece. In accordance with research objective number three
in Section 3 (Research Objectives), the mix of the course difficulty indicators used may
vary across different academic environments and systems. Indicators like expected study
hours, number of course prerequisites, and independent study requirements also comprise
potential candidates to be used as difficulty indicators. U.K. and U.S. universities closely
monitor student dropout rates and class sizes for course offerings; these too tend to relate
to course difficulty. Last but not least, student feedback and course evaluation survey
outcomes can be used in the form of one or more course difficulty indicators, provided
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that student response rates are consistently high, as in the case of the National Student
Survey (N.S.S.) scores in the U.K.

8. Conclusion and Future Work

A new framework for the quantification of course difficulty in academic curricula is pro-
posed. A course-centric index (CDf ) is calculated using difficulty indicators per course
offering. Each indicator is assigned a weight which is determined systematically by con-
ducting Principal Component Analysis (PCA) on student and/or course assessment data.
The course difficulty indicators may be either objective (e.g. the percentage of assessed
students who achieved a passing grade, the course’s mean and median scores, etc.), or
subjective (e.g. student questionnaires data). The approach differs from its predecessors
in that (a) it is course-centric (instead of student-centric) in nature, (b) the difficulty of a
course is assumed to vary from one of its offerings to the next, and (c) the course difficulty
indicators can be defined flexibly both in number and type, in order to seamlessly adapt
to diverse application domains (universities, schools, and departments).

The proposed CDf framework and methodology have been applied in the case of the
IEE department of the International Hellenic University (IHU), where each course is of-
fered once per academic year, in either the Fall or Spring semester. A maximum of six
course difficulty indicators were used, all objective in nature. Three PCA configurations
were considered, using students’ assessment data from nineteen (19) core STEM courses
over thirteen (13) academic years. For each (course, academic year) pair, a single CDf
score was calculated as a linear combination of the (normalized) course difficulty indica-
tor values, using a matching set of (PCA calculated) weights. As a result, CDf density
distribution curves were constructed. In relation with research objective number five in
Section 3: Research Objectives, which dictates that strong emphasis be given on the vi-
sual presentation of the results obtained, each course’s CDf score was positioned on the
density distribution curve and on the box plot of all courses in each academic year. This
type of graphical output facilitates exploratory analysis and has already proven valuable
for the department’s Internal Evaluation Group (IEG) in identifying potential “bottleneck”
courses that may prolong a typical student’s study period.

In the future stages of the research, the plan is to:

1. evaluate the proposed CDf framework in data mining operations that predict a stu-
dent’s future performance on the basis of their past assessment records [20],

2. consider additional course difficulty indicators (both objective and subjective) and
their impact on the efficacy of the PCA/CDf output, and

3. develop and offer CDf as a prototype open source web service to be used by academic
units in Greece and abroad.

Potential improvements of the proposed framework include, for example: (a) the mon-
itoring of an instructor’s difficulty profile in cases where the same course is measured to
involve a notably different CDf value when it is taught by more than one instructors, or
when the same instructor teaches both core STEM and elective courses (the former tend-
ing to be more challenging to the students, as suggested by Figure 3), and (b) the inclusion
of subjective indicators based on data from student feedback and course evaluation sur-
veys with consistently high response rates. The use of such subjective difficulty indicators
could unveil hidden insights often missed by objective indicators.
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