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Abstract. Image denoising remains a fundamental challenge in digital image pro-
cessing due to the inevitable presence of noise during image acquisition and trans-
mission. While existing noise filtering methods predominantly focus on local spatial
information, they often overlook crucial structural information from other perspec-
tives, such as local manifold and global structures. To address this limitation, we
propose a novel linear projection-based noise filtering (LPNF) framework grounded
in linear projection learning theory. This framework innovatively learns a linear pro-
jection for noise filtering by incorporating multiple structural information sources
- local spatial, local manifold, and global structures - through well-defined criteria.
We present two specialized implementations of the LPNF framework: PCA-based
LPNF (LPNF-PCA) and LPP-based LPNF (LPNF-LPP). The LPNF-PCA simulta-
neously leverages local spatial and global information, while LPNF-LPP integrates
both local manifold and spatial information for enhanced denoising performance.
Comprehensive experiments conducted on four standard test images with various
noise types demonstrate that both LPNF-PCA and LPNF-LPP consistently outper-
form state-of-the-art denoising methods in terms of both quantitative.

Keywords: Image denoising, linear projection-based noise filtering framework, prin-
ciple component analysis, locality preserving projection.

1. Introduction

In the era of rapid technological advancement, digital imaging has become increasingly
prevalent across various domains. The surge in artificial intelligence research has posi-
tioned digital image processing as a critical focus in computer vision applications. Digi-
tal images play instrumental roles in diverse applications, ranging from face recognition
and satellite television to computed tomography. However, the quality of these images is
invariably compromised by various types of noise, primarily due to sensor material limi-
tations and environmental interference during image acquisition and transmission. Com-
mon noise types affecting digital images include Gaussian noise, Salt-and-Pepper noise,
Scattering noise, Poisson noise, and various combinations thereof [3,15,20,26]. Conse-
quently, image denoising has emerged as both a fundamental challenge and an essential
preprocessing step in image processing applications.
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Image denoising methods can be broadly categorized into two fundamental approaches:
spatial domain and frequency domain techniques [5,13]. Among these, spatial domain
filtering methods have reached a higher level of theoretical maturity and practical appli-
cation. Representative approaches in the spatial domain include Gaussian filtering, mean
filtering, and non-local mean filtering [6,10], which form the foundation of modern de-
noising techniques. Recent advances in this domain have led to significant improvements
in denoising performance. For instance, Gao et al. [2] developed an innovative Gaus-
sian filtering approach utilizing random weighting, which addresses the limitations of
traditional Gaussian filtering in nonlinear system state estimation through adaptive noise
characteristic estimation. Zhang et al. [28] introduced a fast combined median and mean
filtering method that effectively suppresses both impulse and Gaussian noise simultane-
ously, representing a significant advancement in multi-noise suppression. Further innova-
tions include the adaptive switching weight mean filter (ASWMF) proposed by Thanh et
al.[21], specifically designed for salt-and-pepper noise removal, and an enhanced adap-
tive median filtering method developed by Tang et al. [19] that overcomes the limitations
of conventional median filtering techniques in structured light image denoising. Huang
and Ji [8] proposed an image denoising method that combines diffusion probability and
dictionary learning. The approach aims to improve edge clarity during noise removal,
addressing issues where traditional methods may blur edge information. These spatial
domain methods have demonstrated remarkable effectiveness in noise removal and have
gained widespread adoption across various image processing applications.

In the frequency domain, digital filtering methods have evolved significantly since
the introduction of Fourier transform-based techniques, with low-pass and high-pass fil-
ters serving as foundational approaches [18]. Recent years have witnessed substantial
advancements in frequency domain filtering algorithms. For instance, Zhang et al. [27]
enhanced the optimal computation of center weight by incorporating a Wiener filter into
the calculation process, achieving superior denoising results compared to traditional non-
local mean methods. A notable contribution by Liu et al. [12] introduced the parallelizable
Fast Multi-channel Wiener Filter (FMWF) algorithm, representing a significant advance-
ment in computational efficiency. In addressing the specific challenges of hyperspectral
imaging, Aswathy et al. [1] developed an innovative sparsity-based denoising strategy
that effectively processes each band of hyperspectral images (HSI), demonstrating par-
ticular efficacy in this specialized domain. Further expanding the theoretical framework,
Selesnick et al. [17] proposed an integrated approach combining low-pass filtering with
total variation modeling, establishing a more comprehensive basis for frequency domain
denoising.Yang and Li [25] proposed a method that enhances wavelet domain features
to improve noisy image segmentation,the techniques discussed could be relevant to noise
filtering applications.

Despite the advances in existing noise filtering methods, a significant limitation per-
sists: these approaches typically consider image data from a single perspective, overlook-
ing valuable information from other structural aspects. To address this limitation, we
propose a novel linear projection-based noise filtering (LPNF) framework, grounded in
projection learning theory. This framework innovatively integrates multiple structural as-
pects - local spatial information, local manifold structure, and global structure - through
well-defined criteria to learn an optimal linear projection for noise filtering.
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The proposed LPNF framework demonstrates remarkable flexibility, as it can accom-
modate various projection learning criteria commonly used in feature extraction for de-
noising purposes. We present two specific implementations of this framework: Princi-
pal Component Analysis-based LPNF (LPNF-PCA) and Locality Preserving Projection-
based LPNF (LPNF-LPP). These implementations leverage the established criteria of
PCA and LPP, respectively, to learn effective linear projections for noise filtering. No-
tably, LPNF-PCA achieves simultaneous consideration of both local spatial and global
information, while LPNF-LPP effectively preserves the local manifold structure while
maintaining spatial information integrity.

To rigorously evaluate the effectiveness of our proposed framework, we conduct com-
prehensive experiments on four standard test images corrupted with various types of noise.
These experiments are designed to assess both the quantitative performance and visual
quality of the denoising results.

2. Related Works

2.1. Principal Component Analysis

Principal Component Analysis (PCA) is a widely used dimensionality reduction technique
in data science and machine learning, introduced by Pearson [14] and later formalized by
Hotelling [7]. It transforms a dataset into a new coordinate system, where the axes (prin-
cipal components) represent directions of maximum variance. PCA is particularly effec-
tive for simplifying data, reducing redundancy, and visualizing high-dimensional datasets.
PCA works by computing the eigenvalues and eigenvectors of the covariance matrix of
the data, where the eigenvectors define the principal components, and the eigenvalues
represent the variance captured by each component. By retaining components with the
largest eigenvalues, PCA minimizes information loss while reducing dimensionality. This
property makes it valuable in fields like image compression, facial recognition, and gene
expression analysis [11]. A key strength of PCA lies in its unsupervised nature and com-
putational efficiency. However, it assumes linear relationships in the data, limiting its
effectiveness for datasets with nonlinear structures. Variants like Kernel PCA address this
limitation by mapping data into higher-dimensional feature spaces [16].

Despite its simplicity, PCA remains foundational in data analysis. Its applications
extend across disciplines, including computer vision, finance, and biology, offering in-
sights by emphasizing the most significant patterns in complex datasets.Principal Com-
ponent Analysis (PCA) is a fundamental unsupervised dimensionality reduction and fea-
ture extraction technique that has garnered significant attention across various domains
of data analysis and machine learning. The core principle of PCA is to transform high-
dimensional data into a lower-dimensional subspace while maximizing variance and min-
imizing the correlation between features [23].

Mathematically, given an observation data matrix [xi] ∈ R(d×n), where xi ∈ Rd

represents individual data points, d denotes the feature dimension, and n indicates the
number of samples, PCA aims to find an optimal projection matrix P that minimizes the
reconstruction error [24]. This optimization problem can be formally expressed as:
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min
P

n∑
i=1

∥∥xi − PPTxi

∥∥2
2

s.t.PTP = I.

(1)

2.2. Classical Image Noise Filtering Methods

Classical image noise filtering methods include mean filter, bilateral filter, and median
filter, etc. These are foundational techniques in image denoising, widely used for their
simplicity and effectiveness in reducing noise while preserving image quality to varying
degrees.The mean filter is a linear smoothing technique that replaces each pixel with the
average value of its surrounding pixels. This method effectively reduces random noise but
often blurs edges and fine details, making it less suitable for images where edge preser-
vation is critical [4].The bilateral filter, introduced by Tomasi and Manduchi [22], is a
nonlinear method that combines spatial proximity and pixel intensity differences to pre-
serve edges while removing noise. By weighting nearby pixels based on both their spatial
distance and intensity similarity, the bilateral filter avoids the over-smoothing associated
with linear filters and is especially effective for images with fine textures.The median filter
is another nonlinear approach, replacing each pixel with the median value of its neighbor-
hood. This method excels in removing impulse noise (e.g., salt-and-pepper noise) without
blurring edges, making it ideal for applications requiring robust noise suppression and
edge preservation [9].In general, those methods can be summarized in a common frame-
work as presented in Algorithm 1.

Problem Formulation: Given:
Input noisy image Q = [qij ] ∈ Ra×b

where a and b represent image dimensions k × k denotes the size of sliding window.
Objective:
Generate denoised image Q′ = [qij ] through spatial convolution operations General

Framework:
Window Operation:
For each pixel qij in Q
Apply k × k sliding spatial window
Generate local patch Iij ∈ Rk×k

Filtering Process:
Compute weight matrix Wij specific to each method
Perform convolution: q′ij = Wij ∗ Iij
where * denotes convolution operation.
Specifically, in Algorithm 1, the different definitions of weight matrix Wij represent

different noise filters. For example, the mean filter is related the weight matrix whose ele-
ments are all equal to 1

k2 . The formula for constructing the weight matrix of the bilateral
filter is:

Wij = ωs× ωr (2)

where ωs = e

(
− (i−k)2+(j−l)2

2σ2
s

)
is the spatial distance factor and ωr = e

(
−∥Iij−Ikl∥2

2σ2
r

)
is

the difference factor of grayscale. σs and σr are the filter parameters.
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Algorithm 1: Classical noise filtering methods
Input: Noisy image Q = [qij ] ∈ Ra×b

for i ≤ a do
for j ≤ b do
Step 1: Generate a local patch Iij ∈ Rk×k around each pixel qij
with a k × k sliding spatial window.
Step 2: For each patch Iij , compute a corresponding weight matrix Wij ∈ Rk×k.
Step 3: Convolution operation on pixel qij to get denoised pixel
q′ij = Wij ∗ Iij , where * is a convolution operation.
end

end
Step 4: Restore the denoised image Q′ =

[
q′ij

]
∈ Ra×b.

Output: Denoised image Q′

3. Methodology

3.1. Linear Projection-Based Noise Filtering Framework

Digital image acquisition and transmission processes are inherently susceptible to various
types of noise, stemming from both imaging equipment limitations and environmental
interference. These noise artifacts significantly degrade image quality, making image de-
noising a crucial preprocessing step in numerous computer vision applications. While
traditional image filtering approaches employ sliding window-based convolution opera-
tions for noise reduction, they primarily focus on local spatial information, overlooking
other valuable structural characteristics such as local manifold relationships and global
image patterns.

To address these limitations, we propose a novel Linear Projection Noise Filtering
(LPNF) framework that approaches image denoising from a data transformation perspec-
tive using linear projection theory. This framework uniquely integrates multiple structural
aspects of image data:

– Local spatial information for detail preservation
– Local manifold structure for neighborhood relationships
– Global structure for overall image coherence

The detailed architecture of our proposed LPNF framework, illustrated in Fig 1, demon-
strates how these different information sources are systematically integrated to achieve
superior denoising performance.

In particular, assume
Q = [qij ] ∈ Ra×b is a nosiy image and the size of the sliding window is k × k,the

detailed procedure of the proposed LPNF contains four steps. Namely,
Step1. For each pixel qij , a sliding window with size of k×k is employed to generate

a local patch Iij ∈ Rk×k around the center pixel qij , where 0 < i ≤ a and 0 < j ≤ b.
Step2. Obtain data matrix X by vectorizing each patch Iij into a row vector xn, where

n = i+ (j − 1)× a. The data matrix X contains the local spatial information of image.
Step3. Construct a certain criterion to compute a linear projection P ∈ Rm×k2

,(
m < k2

)
for noise filtering.

Step4. Compute each noise filtered center pixel q′ij by the following equation:
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Fig. 1. The flowchart of LPNF framework

q′ij = xi ∗
m∑
j=1

pjαj (3)

where pj ∈ Rk2

is the column vector of linear projection P . Then, the denoised
image Q′ can be obtained by reorganizing the transformed data into a matrix of a× b.

3.2. The Computation of Projection Matrix P

In our proposed LPNF framework, the selection and formulation of projection learning
criteria play a pivotal role in determining denoising performance. The framework’s flexi-
bility allows for the incorporation of various projection learning approaches, particularly
those developed within the graph embedding paradigm. Drawing from extensive litera-
ture review, we can formulate a generalized objective function for projection learning as
follows:

P̃ = arg min
PTXLpXTP

∑
i̸=j

∥∥PTxi − PTxj

∥∥2 ωij

= arg min
PTXLpXTP

tr
(
PTXLXTP

)
,

(4)

where L is the Laplacian matrix of the intrinsic graph G,L = D − W , W is the
graph weight matrix, D is a diagonal matrix with the ith diagonal element being Dii =∑n

j=1 wij , and Lp may be the Laplacian matrix of the penalty graph Gp or a simple scale
normalization constraint. By taking the structure information from different aspects into
consideration, the weighted matrix W can be defined with different criteria.

The optimal solution of the minimizing problem (4) is equivalent to the generalized
eigenvectors of the following generalized eigen-decomposition problem.

XLXT p = λXLpX
T p (5)

Thus, the optimal P̃ consists of the generalized eigenvectors corresponding to the m
smallest nonzero eigenvalues of (5).
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3.3. LPNF-PCA and LPNF-LPP

The objective function in our projection learning framework can be formulated using
different criteria, primarily distinguished by their approaches to constructing the weight
matrix W. We present two specialized implementations of LPNF, each representing a
distinct methodology for capturing different aspects of image structure.

1) LPNF-PCA Implementation:
This first variant employs Principal Component Analysis (PCA) criteria for computing

the linear projection. The weight matrix W is constructed as: wij = 1/n, for j ̸= i
where:

– wij represents the (i, j)− th element of matrix W
– n is the total number of samples
– The condition j ̸= i ensures proper handling of self-connections

This formulation enables LPNF-PCA to simultaneously capture:

– Local spatial relationships
– Global structural patterns
– Overall data distribution characteristics

2) LPNF-LPP Implementation: The second variant utilizes Locality Preserving Pro-
jection (LPP), an unsupervised approach that integrates both local manifold structure and
spatial information. The weight matrix construction follows:

ωij =

{
exp

(
−∥xi−xj∥2

t

)
, if xi and xj are neighbours of each other

0, otherwise
(6)

where:

– t is the heat kernel parameter
– Neighborhood relationship is defined by geometric proximity
– The exponential term preserves local manifold structure

4. Experiments

4.1. Experimental Setup

To rigorously evaluate the effectiveness of our proposed methods (LPNF-PCA and LPNF-
LPP), we conducted comprehensive experiments using a diverse set of benchmark images
under various noise conditions.

Experimental Setup:
1) Test Images: Four widely-used benchmark images (Fig 2):

– Cameraman
– Peppers
– Barbara
– Goldhill
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Fig. 2. From left to right, the images are Cameraman, Peppers, Barbara, and Goldhill

2) Noise Scenarios:
- Gaussian noise contamination
- Mixed noise contamination

3) Comparative Methods:
Classical Approaches:
-Mean filter
-Median filter
-Bilateral filter
Advanced Techniques:
-Robust Principal Component Analysis (RPCA)
-Weighted Schatten p-norm Minimization (WSNM)

4)Performance Metrics:
Quantitative Evaluation:
Peak Signal-to-Noise Ratio (PSNR)
-Measures overall reconstruction quality
-Evaluates pixel-level accuracy

Structural Similarity Index (SSIM)
-Assesses structural preservation
-Quantifies perceptual quality

Normalized Mean Square Error (NMSE)
-Provides normalized error measurement
-Enables cross-image comparison

Qualitative Assessment:
-Visual comparison of restored images
-Analysis of detail preservation
-Evaluation of artifact suppression
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4.2. Experimental Results and Analysis

First, we evaluate the performance of our proposed denoising methods using the Camera-
man and Peppers images contaminated with zero-mean Gaussian noise at two different
variance levels (0.2 and 0.3). The comprehensive denoising results for both images across
different methods are presented in Tables 1 through 4.

Analysis of the Cameraman image results (Tables 1 and 2) demonstrates that our pro-
posed methods achieve superior performance compared to competing approaches across
nearly all evaluation metrics and scenarios. Specifically, both LPNF-PCA and LPNF-
LPP show significant improvements over traditional filtering approaches such as mean,
median, and bilateral filters. The quantitative gains are substantial, with minimum im-
provements of 0.04 in NMSE, 1.35 dB in PSNR, and 0.09 in SSIM. These consistent
improvements across multiple metrics indicate the robust performance of our proposed
methods in handling Gaussian noise at different intensity levels.

For the Peppers image (Tables 3 and 4), the LPNF-LPP variant demonstrates particu-
larly impressive performance across both noise variance levels (0.2 and 0.3). The method
maintains its effectiveness even at higher noise intensity, showcasing its robustness and
stability in challenging denoising scenarios. The superior performance is consistent across
all evaluation metrics, indicating that our method successfully preserves image structure
while effectively removing noise. This comprehensive performance improvement over
existing methods validates the effectiveness of our proposed approach in handling various
types of image content and noise levels.

In summary, both LPNF-PCA and LPNF-LPP demonstrate clear advantages over ex-
isting methods across all three evaluation metrics (NMSE, PSNR, and SSIM). These con-
sistent improvements across different images and noise levels validate the effectiveness
and robustness of our proposed framework in image denoising applications.

Table 1. Performance comparison of different methods on the Cameraman polluted by
Gaussian noise with variance of 0.2

Methods NMSE PSNR SSIM
RPCA 0.1563±0.0006 13.64±0.02 0.3971±0.0027
WSNM 0.1733±0.0005 13.20±0.01 0.2930±0.0001
Mean filter 0.1606±0.0004 13.53±0.01 0.4893±0.0011
Median filter 0.1614±0.0006 13.50±0.02 0.3449±0.0013
Bilateral filter 0.1736±0.0004 13.19±0.01 0.2933±0.0012
LPNF-PCA 0.1147±0.0014 14.99±0.06 0.5805±0.0022
LPNF-LPP 0.1142±0.0038 15.02±0.14 0.5812±0.0024

To further validate the effectiveness of our proposed methods, we conducted a com-
prehensive evaluation using Barbara and Goldhill images contaminated with mixed noise
conditions. The noise model combines zero-mean Gaussian noise (variance = 0.3) with
Salt-and-Pepper noise (density = 0.2), representing a more challenging and realistic de-
noising scenario.

The experimental results for the Barbara image (Table 5) demonstrate the superior
performance of our proposed methods compared to other state-of-the-art approaches.
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Table 2. Performance comparison of different methods on the Cameraman polluted by
Gaussian noise with variance of 0.3

Methods NMSE PSNR SSIM
RPCA 0.2749±0.0004 11.19±0.01 0.3994±0.0041
WSNM 0.3245±0.0008 10.47±0.01 0.3019±0.0013
Mean filter 0.3053±0.0009 10.74±0.01 0.4852±0.0017
Median filter 0.3242±0.0010 10.47±0.01 0.3584±0.0014
Bilateral filter 0.3244±0.0010 10.47±0.01 0.3018±0.0010
LPNF-PCA 0.2113±0.0014 12.33±0.03 0.5653±0.0016
LPNF-LPP 0.2111±0.0021 12.34±0.04 0.5655±0.0020

Table 3. Performance comparison of different methods on the Peppers polluted by Gaus-
sian noise with variance of 0.2

Methods NMSE PSNR SSIM
RPCA 0.2001±0.0002 13.61±0.00 0.3148±0.0010
WSNM 0.2267±0.0002 13.07±0.00 0.2163±0.0004
Mean filter 0.1830±0.0002 14.00±0.00 0.6201±0.0010
Median filter 0.2013±0.0002 13.58±0.00 0.3305±0.0009
Bilateral filter 0.2213±0.0004 13.17±0.01 0.2430±0.0007
LPNF-PCA 0.1213±0.0019 15.78±0.07 0.6703±0.0018
LPNF-LPP 0.1200±0.0017 15.83±0.06 0.6710±0.0014

Both LPNF-PCA and LPNF-LPP achieve significant quantitative improvements, with no-
table gains of approximately 0.18 in NMSE and 4.32 dB in PSNR compared to competing
methods. These substantial improvements indicate the robust capability of our methods
in handling complex mixed noise scenarios while preserving important image details.

Similarly, the results for the Goldhill image (Table 6) corroborate these findings,
showing consistent performance improvements across all evaluation metrics. The abil-
ity of our methods to maintain superior performance across different image content and
mixed noise conditions demonstrates their robustness and general applicability.

In summary, both LPNF-PCA and LPNF-LPP consistently outperform existing com-
parative methods when applied to Barbara and Goldhill images contaminated with mixed
noise. This superior performance in challenging mixed noise scenarios further validates
the effectiveness of our proposed framework in real-world denoising applications.

Table 4. Performance comparison of different methods on the Peppers polluted by Gaus-
sian noise with variance of 0.3

Methods NMSE PSNR SSIM
RPCA 0.3945±0.0003 10.66±0.00 0.4396±0.0014
WSNM 0.4225±0.0002 10.36±0.00 0.2105±0.0006
Mean filter 0.3877±0.0004 10.74±0.00 0.5712±0.0007
Median filter 0.4126±0.0003 10.47±0.00 0.3213±0.0008
Bilateral filter 0.4244±0.0003 10.34±0.00 0.2447±0.0006
LPNF-PCA 0.2286±0.0019 13.03±0.04 0.6317±0.0012
LPNF-LPP 0.2255±0.0027 13.09±0.05 0.6334±0.0014
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Table 5. Performance comparison of different methods on the Barbara with mixed noise

Methods NMSE PSNR SSIM
RPCA 0.4095±0.0004 10.29±0.01 0.2634±0.0008
WSNM 0.5767±0.0006 8.80±0.01 0.0953±0.0007
Mean filter 0.2908±0.0008 11.77±0.01 0.3763±0.0020
Median filter 0.4522±0.0006 9.85±0.01 0.2304±0.0017
Bilateral filter 0.5770±0.0004 8.80±0.00 0.0952±0.0009
LPNF-PCA 0.1035±0.0040 16.26±0.16 0.3796±0.0015
LPNF-LPP 0.1077±0.0023 16.09±0.09 0.3815±0.0012

Table 6. Performance comparison of different methods on the Goldhill with mixed noise

Methods NMSE PSNR SSIM
RPCA 0.3867±0.0007 10.49±0.01 0.2775±0.0015
WSNM 0.5659±0.0007 8.84±0.01 0.0654±0.0005
Mean filter 0.2806±0.0009 11.89±0.01 0.3936±0.0020
Median filter 0.4371±0.0005 9.96±0.01 0.1881±0.0020
Bilateral filter 0.5661±0.0007 8.84±0.01 0.0651±0.0007
LPNF-PCA 0.0880±0.0074 16.93±0.36 0.4035±0.0015
LPNF-LPP 0.0887±0.0060 16.90±0.31 0.4042±0.0024

Examining the qualitative results presented in Figure 3, our proposed methods demon-
strate superior visual performance compared to existing denoising approaches when ap-
plied to images contaminated with zero-mean Gaussian noise (variance = 0.2). While
established methods such as WSNM, median filter, and bilateral filter show significant
residual noise in their recovered images, both LPNF-PCA and LPNF-LPP achieve more
effective noise suppression while maintaining image fidelity.

The visual superiority of our methods is particularly evident in their ability to pre-
serve crucial image details while effectively removing noise artifacts. Both LPNF-PCA
and LPNF-LPP excel at retaining facial features and fine structural details of the original
image, achieving a better balance between noise reduction and detail preservation. The
recovered images show enhanced edge sharpness and more natural texture reproduction
compared to the results from competing methods.

These qualitative improvements are characterized by clearer facial feature definition,
better preservation of subtle texture details, and more balanced noise reduction with-
out over-smoothing artifacts. The results maintain the natural contrast and overall visual
characteristics of the original image while successfully eliminating noise contamination.
These visual outcomes strongly complement our quantitative findings, demonstrating that
our proposed methods not only achieve superior numerical metrics but also produce more
visually appealing and faithful image reconstructions.

Figure 4 presents a comprehensive visual comparison of various denoising methods
applied to the Barbara image contaminated with mixed noise (Gaussian noise with vari-
ance 0.3 and salt-and-pepper noise with density 0.2). The traditional filtering approaches
demonstrate significant limitations in handling this complex noise scenario. Specifically,
the mean filter tends to blur important image details while only partially removing noise.
The median filter, while effective against salt-and-pepper noise, struggles to address the



322 Congyin Cao et al.

Fig. 3. Visual comparison of different denoising methods on the Cameraman with Gaus-
sian noise (variance is 0.2). From left to right and top to bottom, the images are the Orig-
inal image, Noisy image, and the denoised images obtained by RPCA, WSNM, Mean
filter, Median filter, Bilateral filter, LPNF-PCA, and LPNF-LPP, respectively

Fig. 4. Visual comparison of different denoising methods on the Barbara with mixed
noise. From left to right and top to bottom, the images are the Original image, Noisy
image, and the denoised images obtained by RPCA, WSNM, Mean filter, Median filter,
Bilateral filter, LPNF-PCA, and LPNF-LPP, respectively

Gaussian noise component, resulting in loss of fine texture details. The bilateral filter pre-
serves edges but fails to adequately remove the mixed noise, particularly in regions with
complex textures.

In contrast, our proposed methods (LPNF-PCA and LPNF-LPP) demonstrate superior
denoising performance in several aspects:

– Better preservation of fine texture details, particularly visible in the fabric patterns
– More effective removal of both Gaussian and salt-and-pepper noise components
– Improved edge preservation and structural integrity
– Enhanced visual clarity without introducing significant artifacts
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– Better maintenance of the original image contrast and brightness

This visual comparison clearly demonstrates the advantages of our proposed methods in
handling complex mixed noise scenarios while preserving important image details and
structures.

5. Conclusions

In this study, we present a novel linear projection-based noise filtering (LPNF) frame-
work for image denoising. The framework is innovatively constructed from the perspec-
tive of linear projection learning and demonstrates the ability to comprehensively utilize
multiple structural information, including local spatial information, local manifold struc-
ture, and global structure, through the construction of diverse criteria for linear projection
learning. Within this framework, two specialized implementations (i.e., LPNF-PCA and
LPNF-LPP) were developed by incorporating the projection learning objective functions
of Principal Component Analysis (PCA) and Locality Preserving Projection (LPP), re-
spectively. Extensive experimental evaluations conducted on four standard test images
with various noise types demonstrate that the proposed methods consistently outperform
several state-of-the-art denoising approaches in terms of both quantitative metrics and vi-
sual quality. The superior performance validates the effectiveness and robustness of our
proposed framework in image denoising applications.
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