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Abstract. Federated learning is a collaborative machine learning approach where
multiple clients train a global model without sharing raw data. Federated learning
has high application value in the fields of IoT, healthcare, and others due to its de-
centralized data processing and privacy protection features. Despite its advantages,
the classic federated learning algorithm, Federated Averaging (FedAvg), faces some
limitations that affect its optimization speed and compromise system security. This
paper introduces FedCCSM, a federated learning framework designed to address
class imbalance and malicious client behavior. Firstly, to accelerate model optimiza-
tion, a client selection mechanism is introduced based on specific criteria, ensuring
a high-quality data or powerful computational clients participate in the aggregation
process. This speeds up optimization and improving overall efficiency. Secondly,
the adoption of a committee mechanism involves selecting a client committee to
screen the model before aggregation, enhancing system security. This committee
serves as a precautionary measure to prevent malicious clients from conducting ad-
versarial attacks by intentionally providing inaccurate updates or compromising the
integrity of the global model integrity. By doing so, the security and reliability of
the global model are ensured throughout the collaborative learning process. Thirdly,
by simulating mechanisms for unbalanced clients, the algorithm’s practical appli-
cation effectiveness is strengthen. Experiments on MNIST and CIFAR-10 datasets
demonstrate that FedCCSM improves accuracy on imbalanced datasets by 3% com-
pared to FedAvg and reduces the influence of malicious clients by 5%. These results
highlight the potential of FedCCSM in enhancing federated learning robustness and
fairness in security-sensitive applications.

Keywords: Federal Learning, Committee, Imbalance DateSet, Transcendence Co-
efficient, Reliability Value Criterion.

1. Introduction

As machine learning and artificial intelligence continue to shape industries worldwide,
the evolution towards intelligence is evident. Traditional centralized machine learning
algorithms[1][27] necessitate users to upload their local data to a central server in ex-
change for high-quality machine models. However, relinquishing control over data raises
concerns regarding security and privacy, potentially violating user personal interests and
information security. The General Data Protection Regulation (GDPR), implemented by
the European Union in 2018, underscore the importance of standardized information tech-
nology practices and the establishment of a secure cyberspace environment to cornerstone
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big data development and implementation. In the machine learning domain, a distributed
learning framework, not requiring users to disclose private data, is targeted; yet, it can still
achieve model training, known as Federated Learning (FL)[28].

FL is a decentralized machine learning approach. In Fig1, a single round of FL mainly
follows the following four steps:

• First, the central server initializes the global model and sends it to the participants;
• Second, the participants train their local models using their local data, producing local

model parameter updates;
• Third, the participants send the parameter updates to the central server;
• Fourth, the central server aggregates the parameter updates from all participants to

generate the new parameters of the global model, and sends them back to participants.

Fig. 1. Federal Learning Workflow Diagram

This process iterates continuously, allowing the global model to be optimized and
enhanced without exposing individual data.

Federated learning, as a decentralized machine learning approach, offers the advan-
tage of enabling model training across devices and organizations without centralizing
data, thus safeguarding data privacy. This decentralization approach also mitigates data
transfer and communication costs. Additionally, federated learning integrates data from
diverse sources, enhancing the model’s generalization capabilities, and facilitates local
model updates, thereby improving training efficiency. Compared to centralized model
training, federated learning better accommodates dispersed data sources and privacy pro-
tection requirements in real-world scenarios, presenting wide-range application.

As of now, there have been significant advancements and innovations in federated
learning. Federated Averaging Algorithm (FedAvg), proposed by McMahan, is a prac-
tical method for joint learning of deep networks through iterative model averaging[28].
Zhou introduced FedGAM, an innovative federated learning algorithm designed to ad-
dress client drift issues. It does so by introducing gradient norm perception minimization
to achieve a locally flat loss function shape and utilizes control variables to correct local
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updates, effectively solving the global flatness problem[37]. FedProx, as proposed by Li
et al., addresses heterogeneity issues in federated networks by serving as a generaliza-
tion and re-parameterization of FedAvg[24]. Moreover, WFB is a watermarking-based
copyright protection framework for federated learning models that leverages blockchain
technology to ensure model ownership and prevent unauthorized usage [33]. In addition,
FedBN, introduced by Li et al, employs local batch normalization to alleviate feature
shift before model averaging, thereby accelerating convergence compared to FedAvg[25].
FedFast, proposed by Muhammad et al, aims to accelerate distributed learning, achiev-
ing good accuracy for all users early in the training process and benefiting from reduced
communication costs and improved model accurate[29]. Zhou et al proposed a new hierar-
chical FL framework RoPPFL, a robust aggregation edge FL framework tailored for com-
puting applications. It supports privacy-preserving hierarchical FL and is resistant to poi-
soning attacks[40]. Moreover, Wei et al introduced a zeroth-order stochastic FL method
based on Nesterov’s zeroth-order (gradient-free) technique, considering both constant and
diminishing step size strategies[36]. In addition, Pedrycz et al advocated for expressing
Machine Learning (ML) construction results’ credibility in terms of information granular-
ity, extending the scope of FL evaluations[31]. Nergiz et al converted several classic DL
methods, including the Big Transfer model, into federated versions[30]. Du et al proposed
a Network Intrusion Detection algorithm (NIDS-FLGDP) based on Gaussian differential
privacy federated learning[10]. Added to that, Zhang et al developed a platform architec-
ture for a blockchain-based Industrial Internet of Things (IIoT) fault detection FL system,
along with a novel Centroid Distance Weighted FedAvg (CDW FedAvg) algorithm[9].
These advancements enhance federated learning ’s efficacy and applicability.

Currently, the primary obstacle hindering the practical deployment of FL systems are
their susceptibility to attacks from malicious clients[15] and impacts by imbalance data.
In such systems, the central server lacks control over clients’ behavior and access to their
private data. Therefore, malicious clients can deceive the server by sending modified and
harmful model updates, launching adversarial attacks on the global model[2]. Two types
of adversarial attacks are prevalent: non-targeted attacks [6] and targeted attacks. The
former aims to degrade overall model performance, causing the model to produce in-
correct predictions without specifying a specific target category. This type of attack is
considered as a Byzantine attack, leading to deteriorating model performance or train-
ing failure[22]. As for targeted attacks[9][6][39], they are specific, aiming to modify the
model’s behavior on particular data instances chosen by the attacker, such as misclas-
sifying an image of a cat as a dog while keeping the model’s performance unaffected
on other data instances. Therefore, this attack requires defining a specific target category
to misclassify the input as the specified target category. Both types of attacks can have
catastrophic consequences, underscoring the importance of promptly detecting malicious
attackers and remove their models from the FL algorithm. Defense against Byzantine at-
tacks has been extensively researched in distributed ML. For instance, Chen proposed a
variant of the classic gradient descent method based on geometric median averaging of
gradients. Firstly, the parameter server groups the received gradients into non-overlapping
batches to increase the similarity of non-Byzantine batches and then applied the median
of batch gradients to mitigate the impact of Byzantine machines[8]. Moreover, Blanchard
et al. introduced Krum, formulating the tolerance properties of aggregation rules; it is the
first provably Byzantine-fault-tolerant distributed SGD algorithm[4]. In addition, Fung et
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al. describes a novel defense method called FoolsGold, which is used to identify poison-
ing sybils based on the diversity of client updates in the distributed learning process. This
system does not limit the expected number of attackers, requires no auxiliary information
outside of the learning process, and makes fewer assumptions about clients and their data
[11]. Furthermore, Han proposed three new robust aggregation rules for distributed syn-
chronous Stochastic Gradient Descent (SGD) under a general Byzantine failure model,
where attackers can randomly manipulate the data transferred between the servers and
the workers within the Parameter Server (PS) architecture[13]. Finally, Yin developed a
median-based distributed learning algorithm, achieving optimal statistical performance,
better communication efficiency, and provable robustness while requiring just one com-
munication round[38]. Obviously, the impact of malicious attacks is severe. The above
is basically based on the improvement of the algorithm, yet it cannot completely block
malicious attacks.

In previous research on federated learning, there are limitations and challenges in
addressing class imbalance and client data integrity. Some studies focus on addressing
the challenges posed by class imbalance but fall short in considering client data integrity
and privacy protection. Other studies concentrate on client data integrity but often over-
look the impact of class imbalance on model performance. Therefore, there are still gaps
and deficiencies in research on addressing class imbalance and client data integrity in
federated learning. In this context, integrating defense against malicious attack and ad-
dressing data imbalance in FL is a logical step forward. To this end, the proposal of
Federated Learning with Committee Consensus and Selection Mechanism (FedCCSM)
is significant[19]. The inclusion of a committee mechanism offers an effective means to
detect malicious clients, thereby bolstering the security and resilience of the FL system.
By implementing the committee mechanism, decisions regarding the acceptance of model
updates from a participant can be made through methods like voting, effectively prevent-
ing malicious clients from impacting the system. According to the data characteristics
of the client data set, the weight is weighted to enhance the anti-unbalance performance
of the model. Moreover, the committee mechanism can incorporate security checks and
validation mechanisms, such as data authenticity verification and model parameter le-
gitimacy, further fortifying the system’s security. Therefore, FedCCSM stands poised to
effectively identify and counteract malicious client behavior while protecting participant
data privacy, thereby enhancing the overall security and trustworthiness of the FL system.
This approach holds significant application value across various fields such as healthcare,
finance, smartphones, and IoT devices, paving the way for widespread adoption of FL in
real-world scenarios.

Through studying the above questions, we will introduce new mechanisms into fed-
erated learning for improvement. As a result, the major contributions of this work can be
summarized as follows:

– Improved global model training speed is achieved through the introduction of a box-
plot coefficient screening mechanism. This method involves selecting high-accuracy
client models for aggregation into the global model in the subsequent round of FL. By
excluding relatively low-accuracy models, this approach accelerates the convergence
speed of the global model;

– Incorporation of a committee consensus mechanism to detect and exclude malicious
client models. Committee members assess and validate the model parameters sub-
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mitted by clients to ensure they are non-malicious and capable of enhancing test
accuracy. Only models meeting the criteria are allowed to participate in model ag-
gregation, effectively screening out malicious clients;

– Implementation of a committee member election mechanism aimed at ensuring the
integrity of elected committee members. Through predefined election criteria, clients
failing to meet the specified standard are identified as malicious and barred from par-
ticipating in client elections. This empowers the committee to effectively distinguish
and exclude malicious models from participation;

– Development of a simulation for imbalanced datasets to emulate real-world client
behavior. Since real client datasets frequently exhibit imbalances, which can impede
training progress and undermine model efficacy, our simulation employs imbalanced
datasets to assess the performance of federated learning algorithms accurately.

2. Related Work

2.1. Committee Mechanism

The committee mechanism[30] refers to a method of integrating and coordinating multi-
ple independent ML models to improve overall predictive performance. In the committee
mechanism, each model is trained independently, and the final prediction is derived from
the combined voting or weighted average of all models. This integration method helps
overcome the limitations of individual models, thereby enhancing prediction accuracy and
robustness. The committee mechanism finds widespread application across diverse fields
including financial risk assessment, medical diagnosis, natural language processing. Its
advantages lie in its capability to leverage the strengths of multiple models, reduce over-
fitting risks, and improve generalization, demonstrating a strong adaptability in handling
complex and high-dimensional data.

Therefore, the committee mechanism plays a pivotal role in enhancing the perfor-
mance of ML models across various application scenarios, especially in FL[7]. Referring
to Algorithm 1, in a FL training session, the committee mechanism orchestrates the col-
laborative process. Initially, the steps involve initializing the global model, followed by
participants downloading the global model and training their local models using their lo-
cal data to generate parameter updates. Subsequently, these updates are then transmitted
to the committee mechanism, which aggregates them to derive new parameters for the
global model. Finally, the committee mechanism distributes the aggregated global model
parameters to participants for updating their local models. This iterative process facilitates
FL, allowing for the optimization and enhancement of the global model while safeguard-
ing data privacy.

2.2. Consensus Mechanism in Blockchain

The consensus mechanism[20], originated from the Byzantine Generals’ Problem, de-
scribes a trust and consistency problem in a distributed system. This problem involves
ten small countries surrounding a large country, with at least more than half of the small
countries requiring to participate in the siege to achieve victory. However, if betrayal hap-
pens during the attack, the invaders may be annihilated. Therefore, each small country
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Algorithm 1 Federated Learning Committee Mechanism
1: procedure (Global Model Initialization)
2: global model = initialize model()
3: for each round of training do
4: for each participant do
5: train local model = global model
6: local model = train local model(local data)
7: local parameters = get parameters(local model)
8: send parameters to committee(local parameters)
9: end for

10: Committee Aggregation:
11: global parameters = aggregate parameters from committee()
12: global model.update parameters(global parameters)
13: Model Distribution:
14: send global model to participants(global model)
15: end for
16: end procedure

does not trust the others. This example is similar to the need for nodes in a distributed
system to reach a consensus regarding a decision. However, if there is a possibility of un-
faithful behavior among the nodes in the system (i.e., betrayal), a consensus mechanism
is required to ensure that a consensus decision can still be reached even in the presence of
such unfaithful nodes.

Within the consensus mechanism, nodes can be divided into block-producing nodes,
validating nodes, and accounting nodes (in Fig2). Moreover, the nodes responsible for
proposing blocks are called block-producing nodes, also known as block producers, ac-
countants, leaders, master nodes, or proposers. However, the nodes responsible for val-
idating blocks are known as validating nodes, also called validators or backup nodes.
Validating nodes must verify the legitimacy of the block producers and the blocks, as well
as the correctness of the signatures. Finally, the nodes responsible for maintaining the
blockchain database are called accounting nodes. Such nodes must store all blocks and
verify them. Block-producing nodes, validating nodes, and accounting nodes are collec-
tively referred to as consensus nodes. Therefore, the consensus mechanism main process
includes electing block producers, proposing blocks, validating blocks, and updating the
blockchain[26]. In each round, firstly a new block producer is elected. Then, the block
producer proposes a block (packaging legitimate transactions from the network into a
new block). Subsequently, validators verify the legitimacy of the new block. Finally, the
accounting node prescribes the newly agreed block into the local database end to update
the blockchain.

In the current research on federated learning, FedAvg, as a commonly used optimiza-
tion method, is widely applied in the model aggregation process. However, FedAvg has
certain shortcomings in terms of model security. Specifically, due to the use of a simple
average aggregation method, FedAvg poses risks of privacy leakage and model tamper-
ing, which could potentially threaten the overall security of federated learning systems. To
address the security deficiencies of FedAvg, the method proposed in this study combines
committee mechanisms and consensus mechanisms. By introducing committee mecha-
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nisms, each participant forms an independent committee during the model update pro-
cess, where committee members supervise and verify each other, enhancing the reliabil-
ity and security of model updates. Additionally, through the introduction of a consensus
mechanism, participants must reach a consensus before submitting the model update re-
sults to the central server, ensuring the consistency and trustworthiness of model updates.
This federated learning approach that combines committee and consensus mechanisms
not only enhances model security but also effectively improves model performance and
convergence speed, bringing new insights and opportunities for the development of fed-
erated learning systems.

Fig. 2. Consensus Mechanism

2.3. Federal Learning and Imbalanced Dataset

Federated learning[28] is a decentralized machine learning approach that enables multiple
edge devices or clients to collaboratively train a shared global model without exchanging
raw data. Instead, model updates are computed locally on each device using its own data,
and only the encrypted or aggregated updates are sent to a central server for aggregation.
This privacy-preserving technique allows for efficient model training while protecting the
privacy and security of sensitive data, making federated learning ideal for applications in
healthcare, finance, and other industries where data privacy is a top priority.

Data imbalance is a common and real challenge in federated learning, like FedIBD[14].
Due to the potential increase in computational resource requirements and time costs asso-
ciated with asynchronous learning, FedIBD may face challenges in performance stability
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and model generalization when dealing with imbalanced data. Additionally, data privacy
concerns and deployment complexities are limitations of FedIBD that require further re-
search and improvement to enhance the system’s reliability and scalability. To address
the issue, we need to simulate real-world data. In the simulation test, it is a key to grasp
the data imbalance. A class-imbalanced dataset[3] refers to a dataset where the num-
ber of samples in each class differs significantly, leading to a classification problem. In
such datasets, the number of samples in certain classes may be much larger than in oth-
ers, resulting in an uneven data distribution. Based on the total sample size, representing
the classification standard, class-imbalanced datasets are divided into globally-balanced
locally-imbalanced and globally-imbalanced locally-imbalanced datasets. Referring to
Fig3(b), the total data quantity for each client is balanced. However, data distribution for
different clients highlights a locally imbalanced state, representing the globally-balanced
locally-imbalanced type. Referring to Fig3(c), the total quantity of data for each client is
imbalanced, and their distribution across the different data categories is also imbalanced.
Even in cases where the overall data is of a minority class, it may be the majority class
locally; for instance, data k has the most data on client A, but is in the middle overall,
while data j is in the majority class overall, but does not appear for client A.

The data class imbalance phenomenon is common in several real-world applications,
such as rare diseases in medical diagnosis and in financial fraud detection. Moreover,
the existence of class-imbalanced datasets can affect the training and performance of ML
models, as they tend to predict the classes with more samples, while neglecting those with
fewer samples. Therefore, the unbalance of data sets should be emphasized in federated
learning.

Fig. 3. Balanced and Imbalanced datasets

2.4. Malicious Client Detection

Malicious Client Detection[5][16] is a critical issue in Federated Learning, aiming to
ensure that the global model is not compromised by malicious clients in a collabora-
tive multi-party environment. Several studies have focused on proposing robust detection
and defense mechanisms to address the potential impact of malicious clients on model
training. Li et al. provided a review of the challenges and future directions of Federated
Learning, discussing how to address the interference from malicious clients[23]. Chen and
Zhou proposed a robust Federated Learning algorithm that identifies and mitigates the im-
pact of malicious clients to improve model performance[22]. Konečný et al. proposed a
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Federated Learning framework for distributed optimization, pointing out the impact of
malicious clients on the training process[18]. Zhu and Han provided a detailed review of
attacks and defenses in Federated Learning, proposing defense strategies based on attack
types[34]. Xie et al. proposed a method to enhance the robustness of Federated Learn-
ing through malicious client detection and defense mechanisms[21]. Overall, although
many existing methods provide certain robustness in theory and can handle some ma-
licious client behaviors, their detection accuracy in practical applications still has room
for improvement. These issues significantly limit the applicability of existing methods in
real-world scenarios, especially in tasks with high requirements for accuracy.

3. Federated Learning Based on Committee Consensus and
Selection Mechanism

The classic FedAvg learning algorithm is susceptible to contamination by malicious clients
[17] due to its indiscriminate aggregation of client models. Moreover, the average aggre-
gation method can hinder overall model training speed. FedCCSM addresses these issues
by integration a committee mechanism to select and evaluate clients. In such a defensive
algorithm, two criteria are employed to select committee members from the client pool,
asked with filtering well-trained client models. Committee members must possess the ca-
pability to score models, enabling them to control the client models participating in the
aggregation rather than aggregating all models blindly. By ensuring the integrity of com-
mittee members, the probability of malicious clients disrupting the global model training
process is reduced significantly. To guarantee the honesty of committee members and fa-
cilitate secure aggregation, a new committee mechanism has been devised, encompassing
a scoring system, selection strategy, and election strategy. Meanwhile, to simulate the
actual client dataset distribution, random sharding is utilized to simulate an imbalanced
dataset, achieving the most realistic effect.

Therefore, this section will provide a detailed introduction to the proposed framework
and mechanism. In this case, we assume there are C clients forming a client group {Ci}Ci=1,
and the dataset for each client is denoted as MCi . The meanings of each variable notation
are in Table 1.

3.1. Allocate Client Datasets

Referring to Fig4, step I refers to allocating the training dataset and testing the dataset
for each client. For a dataset M containing m samples with a total of k classes, each
class containing N samples; therefore, the dataset can be represented as M = {Ni}K

i=1. To
construct an imbalanced dataset, it is required to generate first the imbalanced parameters.
Typically, for a collection of data containingk classes, the number of data classes in an
imbalanced dataset is randomly selected between 1 and k. Therefore, a random array S
containing C elements is generated, where each element is a random number between
1 and k. This array serves as the random shard array, where each element denotes the
number of shards for the corresponding client.

To create a globally balanced and locally imbalanced train dataset, the data volume
for each client has been determined during the simulation. To maximize the use of dataset
M, the data volume for each client is set as m/C. Therefore, each shard size for the ith
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Fig. 4. FedCCSM Framework Diagram

client is m/CSi. As a result, the entire dataset can be divided into CSi shards. By using
the np.random.permutation function to randomly permute the indices of all shards, client
Ni takes the first Si indices corresponding to the shards, ensuring data randomness. This
approach leads to a more realistic simulation for data situation for several clients.

For a globally unbalanced training dataset, the construction process only requires a
modification to one step of the process used for creating a globally balanced and locally
imbalanced dataset. Specifically, the shard size for the entire dataset is not determined by
each client but is instead uniformly defined. We denote this uniform shard size as s, which
must fall between 1 and K (here, s can also serve as an indicator of the imbalance rate).
Considering the scenario with the maximum data volume, the maximum data volume for
each client remains m/C. Hence, the size of each shard becomes m/Cs. The subsequent
steps, where each client acquires a certain number of shards, are still dictated by the array
S, implying that client Ni’s dataset comprises Si different types of data, totaling mSi/sC
of data.

The algorithm also searches for malicious clients; thus, in addition to the imbalanced
dataset, it is required to simulate a portion of malicious clients. To construct malicious
clients, an additional step is added to the algorithm after creating the imbalanced dataset,
where a portion of the information in each shard is modified to become incorrect. This
study uses the Modified National Institute of Standards and Technology (MNIST) hand-
written digit dataset as the basis for detection. For example, the handwritten digit data
corresponding to a number x is changed to correspond to 9−x; thus, the handwritten digit
for 6 becomes 3. A client with such erroneous training data is considered a malicious
client. The trained models by these clients will have significant different performances
compared to those trained by normal clients, leading to the evaluation of the exact model
effectiveness.

When simulating the testing dataset, it is crucial to ensure an adequate representation
of each class of data. Therefore random shuffling of shards is not permissible. Instead, a
portion of data from each class is sequentially selected to form the testing dataset. This
step concludes the simulation of the clients.
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3.2. Electing the Committee for Generation

Next, step II “reorganize the committee” is proposed. The details shown in Fig5, it mainly
consists of selecting clients to form a committee G, consisting of a central server G0 as
fixed member and a number of members, where the number of members set as g. As the
objective consists of detecting clients throughout the committee, the committee members
should meet certain criteria. Step III involves determining the reliability of clients, while
step IV focuses on sorting and selection.

This algorithm defines the reliability scoring criterion e to filter unreliable clients.
Specifically, after the federated learning training is conducted by each client, each client
tests and obtains a local prediction accuracy rate. During the initial selection process,
the local model and the locally measured accuracy rate are transferred to the committee.
The fixed member detects each client’s local model to obtain the prediction accuracy
rate. The absolute value of the difference between the local accuracy rate of each local
model and the accuracy rate measured by the fixed member is taken as the reliability of
this round. According to the magnitude of the reliability from low to high, g temporary
members are selected. In subsequent rounds, the g temporary members selected in the
previous round are responsible for testing the local models of all other clients in this
round. Thus, each local model acquires g prediction accuracy rates. The absolute values
of the differences between each of these accuracy rates and the local accuracy rate of the
model are taken and then averaged to obtain the reliability fi. According to the magnitude
of the reliability from low to high, g temporary members are selected for the next round.
The g temporary members selected in each round, along with the fixed member, form a
g+1 person federated learning committee, which determines the selection criteria for the
local models of each client participating in the global model aggregation.

Fig. 5. The Interaction Between Clients and Committee

The remaining clients that do not meet the criteria participate in the subsequent local
training steps.
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Algorithm 2 Electing the Committee for Generation
1: Server executes:
2: Initialize G0

3: for each round i = 0, 1, 2,... do
4: if i mod v = 0 then
5: for each round j = 0, 1, 2,... do
6: C j→ f j
7: if f j < e then
8: C j→ Gi

9: end if
10: end for
11: end if
12: Gi→C
13: end for

3.3. Model Training

The focus is on non-convex neural network objectives. For machine learning problems,
the typical formulation is fi(w) = l(xi,yi;ω), representing the loss incurred by using
model parameter ω to predict on example (xi,yi). It is assumed that there are K clients
participating in this round of training, where Pi is the set of indices of data points on client
Ci, and ni = |Pi|. Therefore, the algorithm considered applies to the following form of
finite-sum objective[22]:

min
ω∈Rd

f(ω) where f(ω) =
K

∑
i=1

ni

n
Fi(ω) where Fi(ω) =

1
ni

∑
j∈Pj

fj(ω) . (1)

Consequently, we proceed to step V, involving model training. For each client Ci, the
parameters of the global model ω(l)(the lth round) are first loaded into the client’s model.
Then, the client’s data loader is created based on the client’s own training dataset where
each client undergoes d rounds of local training. In each round, a pair of data and labels
is retrieved from the training set and iterated upon. Firstly, data and labels are moved to
the device for computation; in such case, the CPU is deployed. The data is then fed into
the neural network.

Secondly, Refer to Fig6, a Convolutional Neural Network (CNN) is established with
two 5*5 convolutional layers[32], with 32 and 64 channels, respectively. Each layer is
followed by a 2*2 max-pooling layer. This is connected to a fully connected layer with
512 units and ReLU activation, and a final softmax output layer (totaling 1,663,370 pa-
rameters).

Next, the reshaping of the input data into a tensor of shape (-1, 1, 28, 28) is performed.
The process expression for the first convolutional layer is as follows:

h(l) = σ(ω(l) ∗h(l−1)+b(l)) . (2)

Then, applying the ReLU the activation function f (x) = max(0,x) is performed. Fol-
lowing this process, a pooling layer is applied, followed by another convolutional layer,
an activation function, and another pooling layer, resulting in the tensor being flattened
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into a one-dimensional shape having a size of (-1, 7*7*64). Consequently, the flattened
tensor is passed through the first fully connected layer, followed by another ReLU ac-
tivation function. Then, the result is passed through the second fully connected layer to
generate the final output. As a result, the output consists the predicted result.

Fig. 6. The steps of Convolutional Neural Network

Thirdly, the loss function is calculated between the predicted results and the true val-
ues using the cross-entropy loss function. As the MNIST dataset essentially represents a
ten-classification problem, with labels being arrays of length ten where the ith element is
equal to the unit and the rest are null, we use the cross-entropy loss function to calculate
the loss. If i represents the sample, y denotes the actual label, a indicates the predicted
output, and n highlights the total number of samples; then, the loss value is written as
follows:

loss =−1
n ∑

i
yi ln pi . (3)

Fourthly, the backpropagation is performed to calculate the gradients. Fifthly, the
Stochastic Gradient Descent (SGD) algorithm is utilized as the optimizer to update the
model’s parameters. For each i, the algorithm expression is defined as follows:
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θ j := θ j +α(y(i)−hθ (x(i)))x
(i)
j where hθ (x) = θ0 +

n

∑
i=1

θixi . (4)

Finally, after the local training is completed, the client model is updated with the latest
model, and the accuracy of the model is measured with the local test data set in Step VI.

3.4. Model Selection and Aggregation

After each client Ci completes his local training in this round, he obtains the latest model
ω l

i and evaluates its accuracy on the local test set, denoted as ai.
Step VII involves transmitting the trained local updated model parameters and ac-

curacy to the committee. Each committee member Gi and central server G0 receives all
updated model parameters and their accuracies to prepare for the next step.

Step VIII contains the committee members scoring for each client. The members of
the committee test the local models of the other clients based on their local test datasets.
Each local model of the client will obtain g test values.

In step IX, by differentiating these test values with the accuracy of the client’s own
measurement and averaging the absolute value of the difference, the reliability e j of the
client’s local model can be determined. Each model ω

(l)
j corresponds to a score set include

reliability and accuracy. To prevent unreliable clients from infiltrating the committee and
maliciously changing the scores given to the models, all values are analyzed in a unified
centralized analysis to determine the reliability criteria e. (described in section 4.1).

Then, the accuracy rates of the selected local models of the clients are sorted, and
the upper and lower quartiles and the interquartile range are calculated to determine the
accuracy standard line k, as follows:

k = q1− t ∗ iqr . (5)

where t is a tunable multiple of iqr, known as exceedance coefficient.
Step X is represented in Figure 3. Exclude clients with accuracy below k and reliability

above e[12]. The models’ parameters that meet both criteria are aggregated, correspond-
ing to step XI.

θ
(l+1)
i =

1
n+1

n

∑
i=0

θ
(l)
i . (6)

Finally, in step XII, the aggregated global model w(l+1) is transmitted to the Central
Server. In this way, a complete round of federated learning process is achieved.

4. Experimental Results

The experimental testing is divided into two phases based on the imbalanced dataset,
namely, all normal simulation and the introduction of malicious clients. Before starting
the experiment, it is important to determine the key coefficients.
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Table 1. Notation Explanation
Notation Description

Ci Client with the index i
MCi Dataset of client i
Ni Data of the ith category
Dr Train dataSet
De Test dataSet
S Randomly partitioned array
Si The ith shard number
s Uniform shard number(also an indicator for the imbalance rate)
K The number of clients participating in each round of training
Gi The ith committee member
G0 fixed central server
Hi The ith candidate member
Pk The set of indices of data on client k
t Exceedance coefficient
ω General model parameters
ω(l) The lth round global model
W (l) filter
ω
(l)
i The local updated model of the ith client in the lth round

ai The accuracy of client i’s self-assessment
d epoches
e malicious standard
a j

i The accuracy of client i in detecting ω
(l)
i

f j The maliciousness of client j
θ j The parameters
k Accuracy standard
t Threshold multiplier
iqr Interquartile range
q1/3 Lower/upper quartile
pi predicted output
m maliciousness criterion
u committee number
v model validation frequency of communications
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Algorithm 3 Federated Learning Based on Committee Consensus and Selection Mecha-
nism

1: Server executes:
2: Initialize ω0

3: for each round i = 1, 2,... do
4: W←Ci(ei > e)
5: CF ← (random set of m clients)
6: for each client j ∈CF do
7: w(l)

j = ClientLocalUpdate(j, ω
(l−1)
j )

8: a j = TestClientAccuracy(CDe,ω(l)
j )

9: end for
10: for each Committee member in Wi do
11: a j

i = TestClientAccuracy(ω(l)
j )

12: end for
13: f j = ∑

w
k=1 a j

i
14: q1, q3, iqr← boxplots(ai)
15: k = q1 - t * iqr
16: ω(l+1)← Aggregation(k,e,ω l

CF
)

17: end for
18:
19: ClientLocalUpdate: // Run on client k
20: β ← (split Mk into batches of size B)
21: for each local epoch i from 1 to e do
22: for each batch b ∈ β do
23: ω

(l+1)
j ← ω

(l)
j - η(ω(l)

j ; b)
24: end for
25: end for
26: return w(l+1)

j to server.
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4.1. Coefficient Adjustment and Determination

This algorithm involves two parameters: the transcendence coefficient t and the reliability
value criterion, both playing a crucial role in the client screening step. The transcendence
coefficient t determines the standard line for screening accuracy, i.e., the lower accuracy
bound. Experiments are conducted with t=0.3,0.4,0.5,0.6 and 0.7 as the imbalance rates
to generate the accuracy of the global model while keeping other parameters constant.

→ →

Fig. 7. Experimental Results with Different Transcendence Coefficient

Referring to Fig7, the algorithm performs best when t=0.4 referring to the speed of
accuracy improvement and the stability during the improvement process. The reliabil-
ity value criterion also applies experimental data as a reference. A large dataset is con-
structed by scoring clients with no malice where the normal range and values of scores
are analyzed. This analysis helps determining the standard for reliability values. During
the experiment, approximately 600 scores are collected from 30 rounds for two randomly
selecting clients. Based on Fig8, 91.59% of clients have reliability scores less than 0.11.
Therefore, the standard for screening unreliability clients in the model is set accordingly.

(a) Distribution of Differences (b) cumulative difference statistics

Fig. 8. Client Malice Score Distribution Chart
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4.2. Global Imbalance

Our goal is to develop outstanding models to enhance the performance of devices in image
classification and language modeling tasks, thereby improving user experience and device
usability.

In the experiment of global balance and local imbalance, MNIST and CIFAR-10
datasets are deployed as the experimental datasets to test the effectiveness of the algo-
rithm.

In the experiments concerning local imbalance in the dataset, a series of experiments
were undertaken to investigate the model’s ability to manage imbalanced classes. In this
section, the dataset was partitioned into multiple subsets according to class combinations.
Models were trained and assessed for each subset to analyze their performance in the
context of local imbalance. Specifically, the study juxtaposed the accuracy, precision, and
other metrics of the models across various subsets, along with their efficacy in identifying
imbalanced classes.

We conducted a significance t-test[35] on the accuracy of multiple experiments under
the same parameters to ensure the stability of the results.

Ensuring all parameters are consistent, we obtained ten accuracy results from ten
experiments: 0.9779, 0.9794, 0.9805, 0.9796, 0.9803, 0.9593, 0.9736, 0.9728, 0.9735,
0.9682. The null hypothesis (H0) is ”These values fluctuate around a mean with a small
amplitude, and the average remains stable around 0.9751.” The alternative hypothesis (H1)
is ”These values fluctuate around a mean with a large amplitude, and the average is not
stable around 0.9751.” Firstly, the calculated average of these values is 0.9751. Secondly,
the sample standard deviation is calculated to be 0.0065. Thirdly, the t-value is computed
as

t =
0.9751−0.9751

0.0065/
√

10
= 0 . (7)

In the fourth step, the critical value for a t-distribution with 9 degrees of freedom is
determined by referring to the t-distribution table. For a two-tailed test, the critical value
is ±2.262. Finally, based on the calculated t-value of 0, which is less than the critical value
of 2.262, we fail to reject the null hypothesis. Therefore, we accept the null hypothesis,
indicating that the stability of these values around the mean of 0.9751 is good, with a
small fluctuation amplitude.

In the experimental analysis, a noticeable trend emerged wherein the improved Fed-
CCSM model showed a swifter improvement in global model accuracy in comparison to
FedAvg. Fig9(a) and (b) illustrates the phenomenon, showcasing an increase in training
rounds and the accuracy of the improved model speed, while FedAvg displayed a compar-
atively slower progress. It is evident that on the Cifar-10 dataset, especially when the un-
rate is 0.5, FedCCSM shows an overall accuracy improvement of around 5% compared to
FedAvg throughout the entire federated learning process. Additionally, there are improve-
ments of 1-2% on other un-rates as well. Furthermore, the improved model surpassed Fe-
dAvg in overall accuracy, reflecting superior precision. Additionally, the smoother curve
of the improved model, characterized by minimal fluctuations, indicates a more stable
response to changes in the dataset. These findings underscore the superior performance
and enhanced stability of the improved model in managing imbalanced datasets, providing
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(a) FedCCSM and FedAvg in Cifar-10 (b) FedCCSM and FedAvg in Mnist

(c) FedCCSM along in Cifar-10 (d) FedCCSM along in Mnist

Fig. 9. Differ Global Imbalance Accuracy Results between FedAvg and FedCCSM in
Mnist and Cifar-10
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more reliable results for practical applications. Currently, the experimental results support
the superior performance of the improved model over FedAvg.

Moreover, Fig9(c) and (d) corroborate the aforementioned observations, depicting
a rapid improvement in accuracy with an increase in training rounds for the improved
model. Despite the varying resistance encountered during model training due to different
imbalance rates, as the imbalance rate increases, a trend of increased rounds is applied to
reach the peak; yet, good results can be achieved.

Table 2. Comparison of methods in different hyperparameters on MNIST
Hyperparameters value FedAvg FedCCSM

batchsize

b = 8 0.9463 0.9363
b = 10 (used) 0.9593 0.9499
b = 15 0.9298 0.9041
b = 20 0.9090 0.8975

learning rate

lr = 0.001 0.8297 0.7887
lr = 0.005 0.9218 0.9052
lr = 0.01 (used) 0.9593 0.9499
lr = 0.05 0.9493 0.9408

Based on the experimental results and sensitivity analysis of hyperparameters, we
found that in this study, the FedCCSM method demonstrates better robustness and sta-
bility. Particularly, under the conditions of batch size = 0.01 and learning rate = 10, its
performance significantly outperforms the FedAvg method. Therefore, in this experiment,
we used these parameters for overall experimentation and comparison. This indicates that
the FedCCSM method exhibits better adaptability and stability in federated learning tasks,
serving as an effective optimization method to enhance model performance and conver-
gence speed. Hence, it is recommended to prioritize the use of the FedCCSM method in
practical applications to achieve better results.

4.3. Global Balance

In the global balance experiment section, this study conducted unified training and evalu-
ation on the entire dataset, incorporating malicious clients into the simulated client group.
From the experimental data, it is evident that our proposed federated learning model, Fed-
CCSM, demonstrates accelerated initial performance enhancement compared to the tradi-
tional FedAvg. Furthermore, in terms of the change in global model accuracy, the balance
between local imbalance and global imbalance is closer to Independent and Identically
Distributed (IID), as evidenced by the relatively higher accuracy.

According to Fig10(a), FedCCSM exhibits higher accuracy and a steeper slope, in-
dicating faster convergence and superior performance during the early stages of model
training. Additionally, as the training progresses, the performance improvement of Fed-
CCSM gradually stabilizes and surpasses FedAvg, suggesting that FedCCSM can main-
tain stable performance in the later stages of training. Compared to FedAvg, FedCCSM
demonstrates clear advantages in terms of convergence speed and performance stability.
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(a) FedCCSM and FedAvg in Honest
Global Balance

(b) FedCCSM and FedAvg in Malicious
Device Detection

Fig. 10. Results about Global Balance in Honest and Malicious

The following experiment involved manipulating the training set based on imbalance,
simulating malicious clients by introducing incorrect training sets. This was conducted to
evaluate the algorithm’s resistance to malicious behavior. When applied to MNIST and
CIFAR-10, we intentionally disrupted the correspondence between the data and labels,
resulting in mislabeled data. This adversely affected the overall training process.

The results in Fig10(b) demonstrate that the improved code outperforms FedAvg in
overall accuracy, indicating greater resistance to malicious behavior. Furthermore, the
curve of the enhanced code exhibits smoother trajectories with smaller fluctuations, sug-
gesting that it can maintain accuracy more consistently when faced with malicious data.
This provides more reliable results for practical applications.

Table 3. Comparison of methods on the MNIST dataset under global balance and
malicious

Hyperparameters value Methods

FedAvg FedProx MOON FedCCSM(this paper)

Reliable

un-rate=0.1 0.9599 0.9393 0.9526 0.9652
un-rate=0.2 0.9533 0.9592 0.9621 0.9735
un-rate=0.3 0.9601 0.9526 0.9592 0.9717
un-rate=0.35 0.9719 0.9622 0.9637 0.9709

Malicious Malic-ratio=0.2 0.8728 0.8841 0.8775 0.9160

The experimental results demonstrate that the FedCCSM model shows improvement
in federated learning, with higher accuracy compared to traditional FedAvg, FedProx, and
MOON models, regardless of the imbalance rate. In this experiment, the highest accuracy
improvement was observed at an imbalance rate of 0.2, with an increase of 2.02%. When
facing malicious clients with a simulated proportion of 0.2, FedCCSM showed improve-
ments of 4.32%, 3.19%, and 3.85% compared to FedAvg, FedProx, and MOON, respec-
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tively. Clearly, when dealing with a higher proportion of malicious devices, FedCCSM
can better maintain model accuracy, demonstrating stronger robustness and generaliza-
tion capabilities.

The aim of this study, as demonstrated through the above experiments, is to thor-
oughly analyze the performance of the model on malicious clients with imbalanced class
datasets. Additionally, the study seeks to explore effective training strategies for address-
ing imbalanced class datasets and enhance the model’s ability to resist malicious attacks.
The results consistently demonstrate that FedCCSM has the capability to handle imbal-
anced datasets and resist malicious attacks.

4.4. All Balance

In order to test the algorithm’s defense effectiveness against malicious attacks and com-
pare its advantages and disadvantages with other similar algorithms, this part is based on
the MNIST dataset, comparing the performance of FedCCSM with three methods, MUD-
HoG, Foolgolds, and Fedavg, evaluating the performance indicators. Malicious attacks are
categorized into non-targeted poisoning attacks[39] and targeted poisoning attacks, with
targeted poisoning attacks including single-label flip attacks[8], multi-label flip attacks,
and backdoor attacks[4][11]. We selected backdoor attacks as the type of attack to test the
algorithm’s performance. Backdoor attacks involve attackers implanting trigger patterns
(backdoor triggers) in certain training/testing data to inject a backdoor, causing the model
to make incorrect judgments on data with specific features. The experiment initializes the
number of clients to 40, including 50% malicious clients. A federated learning model is
trained over 200 communication rounds with 10 local training rounds.

Table 4. Comparison of methods on the MNIST dataset under iid distribution
Methods Backdoor Accuracy Model Testing Accuracy
Fedavg 99.3 97.9

Foolsgold 99.6 98.3
MUD-HoG 82.5 98.4

FedCCSM(this paper) 11.6 98.7

The experiment evaluated the effectiveness of defense methods from two aspects:
model testing accuracy and backdoor accuracy. Model testing accuracy refers to the accu-
racy of the global model on the test set. Backdoor accuracy assesses adversarial backdoor
training, measuring the number of injected samples classified as the attacker’s target label.
If a client’s sample with a backdoor attack is predicted as the malicious target, it is consid-
ered successful in identifying and defending against the attack on that client. Depending
on the exclusion of clients with backdoor attacks, a decrease in backdoor accuracy implies
a reduction in the number of clients carrying backdoor attacks in the client group. There-
fore, as the algorithm trains the model towards the later stages, a low value of backdoor
accuracy indicates the exclusion of more backdoor attacks, suggesting that the algorithm
provides the best defense against backdoor attacks.

Table 2 shows the performance results on the MNIST dataset. Compared to other de-
fense methods, FedCCSM provides the best protection, being able to effectively eliminate
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backdoor attacks to the greatest extent, demonstrating the strongest defense capability.
Additionally, it improves model testing accuracy while minimizing the impact on model
training.

In this study, we delve into the theoretical implications of federated learning and deep
learning in the context of imbalanced datasets and privacy security. Our research find-
ings reveal the performance differences of different algorithms in handling imbalanced
datasets, providing theoretical guidance for adjusting algorithms to improve model accu-
racy and robustness. Additionally, our study explores the effectiveness and limitations of
privacy protection technologies in federated learning and deep learning, laying a theoret-
ical foundation for designing more secure federated learning frameworks. These discov-
eries offer important theoretical support for addressing challenges related to imbalanced
datasets and privacy security, and provide valuable insights for future research and prac-
tical applications.

However, it is worth noting that this study also has some limitations that need further
exploration and resolution. Firstly, our experimental datasets are limited to MNIST and
Cifar-10, without studying more datasets. Additionally, our research is primarily focused
on theoretical analysis and simulated experiments, and the practical application effects
in real-world scenarios still need further validation. Therefore, ongoing attention and up-
dates are necessary.

5. Conclusion

This paper introduces FedCCSM, a federated learning framework that addresses class im-
balance and malicious client behavior through a committee-based consensus mechanism.
Experiments on MNIST and CIFAR-10 datasets demonstrate significant improvements
in accuracy and robustness compared to baseline methods, highlighting the effectiveness
of FedCCSM. These findings contribute to advancing federated learning by improving
fairness and reliability in distributed systems.

Future research should focus on exploring adaptive committee selection strategies,
applying FedCCSM to diverse datasets, and assessing its scalability in real-world appli-
cations. Research can be conducted on how to make federated learning systems resilient
to a wider range of malicious attacks, including data poisoning, model manipulation, and
privacy breaches. This may involve the development of new security and privacy protec-
tion techniques to ensure the security and robustness of federated learning systems. Ad-
ditionally, new evaluation metrics can be developed to assess performance on imbalanced
datasets.
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