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Abstract. The subcarriers of orthogonal frequency division multiplexing 
(OFDM) systems may fail to keep orthogonal to each other under time-
varying channels. The loss of orthogonality among the subcarriers will 
degrade the system performace, and this effect is named intercarrier 
interference (ICI). In this paper, a Wiener-based successive 
interference cancellation (SIC) scheme is proposed to detect the OFDM 
signals. It provides good ICI cancellation performance; however, it 
suffers large computation complexity. Therefore, a modified Wiener-
based SIC scheme is further proposed to reduce the computation 
complexity. Simulation results show the performance of the Wiener-
based SIC scheme is better than those of  zero forcing, zero forcing 
plus SIC and original Wiener-based schemes. Furthermore, with the 
modified Wiener-based SIC scheme, the performance is still better 
than the others. Although the performace of the modified Wiener-based 
SIC scheme suffers little degradation compared to Wiener-based SIC 
scheme, the computation complexity can be dramatically reduced. 

Keywords: Orthogonal frequency division multiplexing (OFDM), fading 
channels, intercarrier interference (ICI), Wiener-based, successive 
interference cancellation (SIC). 

1. Introduction 

Orthogonal frequency division multiplexing (OFDM) has been applied in 
many digital transmission systems, such as digital audio broadcasting (DAB) 
system, digital video broadcasting terrestrial TV (DVB-T) system, asymmetric 
digital subscriber line (ADSL), IEEE 802.11a/g wireless local area network 
(WLAN), IEEE 802.16 worldwide interoperability for microwave access 
(WiMax) systems, and ultra-wideband (UWB) systems [1-6]. It can also be 
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applied to cooperative communication systems [7]. OFDM systems split a 
high-rate data stream into numbers of low-rate data stream. Since the 
available channel is divided into several narrowband subchannels, OFDM 
systems have such advantages: immunity to delay spread, resistance to 
frequency selective fading, simple equalization, and efficient bandwidth 
usage. However, OFDM systems have several disadvantages: the problem of 
synchronization; hardware complexity of FFT units at transmitter and 
receiver; the problem of high peak to average power ratio (PAPR); 
intercarrier interference (ICI) effect. The performance degrades significantly 
for intercarrier interference, and several methods have been proposed to 
mitigate the ICI effect with different efficiency and complexity.  

 The remainder of the paper is organized as follows. Related work is given 
in Section 2. In section 3, channel model of OFDM system is introduced. In 
section 4, signal detection and interference cancellation schemes are 
introduced. The simulation results are shown in section 5. Finally, the 
conclusion is given in section 6. 

2. Related Work 

Carrier frequency offset, caused by Doppler shift, and time-varying channel 
bring the intercarrier interference. Several ICI cancellation schemes have 
been proposed, and ZF (zero forcing) detection scheme is one of them. 
Although conventional ZF detection scheme is widely used in noise free 
environment, the noise enhancement occurs while suppressing the ICI effect. 
Wiener solution has been proved to be able to detect signals without noise 
enhancement [8]. On the other hand, successive interference cancellation  
scheme has been successfully used in MC-CDMA and OFDM systems to 
mitigate multiple access interference and intercarrier interference 
respectively [9-10]. In this paper, we first study the performance of Wiener-
based SIC for OFDM systems over fading channels. Although the Wiener-
based SIC scheme can provide good ICI cancellation performance, its 
computation complexity increases as number of subcarriers increases [11]. 
This is a trade-off between bit error rate (BER) performance and computation 
complexity. Therefore, we further study a modified Wiener-based SIC ICI 
cancellation scheme to reduce computation complexity without reducing BER 
performance or with minor BER performance degradation. 

3. Channel Model 

The block diagram of OFDM system shown in Fig. 1 has several propagation 
paths between transmitter and receiver. The schematic of multipath 
communication environment is shown in Fig. 2. Each path introduces 
different phase, amplitude attenuation, delay and Doppler shift to the signal. 
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Since the transmission environment is time-varying; therefore, the phase, 
attenuation, delay and Doppler shift of the signal are random variables. 

For a time-varying multipath channel, the impulse response could be 
expressed as: 
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where the amplitude of hl(t) is modeled as Rayleigh distribution with the 

maximum Doppler shift fd, and it denotes the channel impulse response as l-

th delay path at the time t. According to (1) the time delay and the attenuation 
are function of time. The Fig. 3 shows the time-varying channel. In the mobile 
radio channels, the Rayleigh distribution is commonly used to describe the 
statistical time-varying channel. It is well known the envelope of sum of two 
quadrature Gaussian noise signals obeying a Rayleigh distribution. Fig. 4 
shows a Rayleigh distributed signal envelope as a function of time.   

 
 

 

Fig. 1. Block diagram of OFDM systems 

 

 

Fig. 2. The multipath environment 
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Fig.3.  The impulse response of the time-varying channel 
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Fig. 4. Rayleigh distributed signal envelope 

 

Fig. 5. Illustration of the Doppler effect 
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As shown in Fig. 5, consider a mobile moving at a constant velocity v, 

along a path with length d between point X and Y, it receives signal from a 

remote source S. The difference in path lengths traveled by the signal wave 

from source S to the mobile at point X and Y is Δl= dcosθ= vΔtcosθ, where Δt is 

the time required for the mobile to travel from X and Y, and the angles θ are 

assumed to be the same at points X and Y since the source is assumed to be 
very far away from the mobile. Therefore, the phase change in the received 
signal due to the difference in path lengths is 

2 2
cos ,

l v t 
 

 

 
    (2) 

and the apparent change in frequency, or Doppler shift is given by fm, 
where 

cos cos ,m c
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f f
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where c is velocity of light and fc is carrier frequency. The Doppler shift fd 

could be maximized when cosθ is equal to 1. 
The time-varying channel is expressed in (1), and the time-varying path 

gain hl(t) is generally represented by a Rayleigh random process. For the 

classical Doppler spectrum [12], the spectral density of hl(t) is 
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where fd is the maximum Doppler frequency. Therefore, if the channel is 
time-varying, the ICI would be occurred. 

In the orthogonal frequency division multiplexing (OFDM) system, the 
transmission bandwidth is divided into many narrow subchannels, and they 
are transmitted in parallel. Because the bandwidth of subchannel is very 
narrow, channel response could be seen constant. In contrast to time domain, 
the symbol duration increases, such that the intersymbol interference (ISI) 
would be happened. If the guard interval is greater than the maximum delay 
path, the ISI will be removed. This is the reason why OFDM could against the 
frequency selective fading. Increase in the symbol duration makes it much 
more vulnerable to time selective fading due to the Doppler spread effect. 

The output of IFFT (inverse fast Fourier transform) in OFDM system could 
be expressed as: 
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The transmitted signal could be represented as: 



Jyh-Horng Wen et al. 

882  ComSIS Vol. 10, No. 2, Special Issue, April 2013 

21

g

0

1
( ) ( )           , -

N j kt
T

k

x t X k e T t T
N





    (6) 

where the interval -Tg≦ t <0 is the guard interval for opposing to the 

intersymbol interference (ISI).  
Then the received signal r(t) could be obtained as: 
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(7) 

where fc is the carrier frequency. 
The signal in the output of down converter is 
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(8) 

where Δf is the carrier frequency offset. After passing through the lowpass 
filter, the signal could be obtained as: 
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Sampling the received signal y(t) with the rate N/T and removing the 

portion of cyclic prefix, the received signal could be obtained as y(n)=y(T/N), n 

=0, 1, 2,…, N-1, within one symbol interval. The received signal could be 
rewritten as: 
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(10) 

where |τl+1 -τl| is assumed equal to T/N, and the normalized frequency offset 

is represented as ε=Δf×T=Δf / f  in which T is the symbol duration, and f  is the 
subcarrier spacing. 

The FFT of y(n) could be expressed as: 
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where the ICI term is defined as: 
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According to the (12), it is clear that if there is no frequency offset, ε=0, 

and the channel is stationary, hl(n)=hl, then the ICI= h(k)δ(m-k), there will be 

no intercarrier interference. If there is no frequency offset, ε=0, due to the 
time-varying channel fading characteristic of the mobile channel, ICI would 
exist in OFDM systems for the mobile application. In contrarily, the channel is 
stationary but the frequency offset is not equal to zero, ICI would still exist in 
OFDM systems. 

In this paper we focus on the time-varying channel fading characteristic of 
the mobile channel, so we set frequency offset ε equal to zero. In time-
varying channels, the ICI term is defined as: 
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where Hl(m-k) is the ICI effect of the k-th subcarrier to the m-th subcarrier. 
Then output of FFT (fast Fourier transform) is also written as: 
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where the first term is the desired signal and the second term is the ICI 
component. 

For a time-varying fading channel, the channel variations would lead to the 
loss of orthogonality between subcarriers, hence the ICI effect could be 
occurred. The ICI effect in OFDM systems would result in an error floor. In 
next section, we would propose a scheme to suppress ICI. 

4. Signal Detection and Interference Cancellation 

Schemes 

4.1. Zero-forcing Detection Scheme 

The received signals y(n) in the time-varying channel could be obtained as: 
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The received signals can be represented as a matrix form, and it is 
represented as: 

.y hx + w  (16) 

Each element of the received signal y, the channel matrix h, the 

transmitted signal x, and the AWGN (additive white Gaussian noise) w can 
be expressed as: 
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(17) 

The element hl(n) in h denotes the channel response of the l-th path at the 

n-th sample time. If N is the number of subcarriers, then x, y, and w can be 

expressed as an N-by-1 vector, and h is an N-by-N matrix. 

The Fourier Transform of the received signal, y, can be multiplied by F on 

both sides of (16). Hence, the received signal vector Y in the frequency 
domain will be expressed as: 

,Y = HX+ W  (18) 

where X, Y, and W denote the Fourier series of x, y, and w, respectively. 

H is defined as the frequency domain channel matrix, and it can be 

expressed in terms of matrix h. The frequency domain channel matrix H can 

be obtained as FhF
H, where F denotes the N-by-N Fourier Transform matrix, 
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which can be seen in (19), and FH denotes applying the Hermitian operation 

on F. 
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(19) 

In order to detect the signals in (18), the zero forcing (ZF) detection 

scheme can be used by inversing the channel matrix H. If the matrix H is not 
a square matrix, the inverse of the matrix will be replaced with the pseudo-

inverse operation. Hence, the detected signals can be obtained as X̂ =H
+
Y, 

where the matrix H
+=(HH

H)-1
H

H is the pseudo-inverse of H. Noise 
enhancement will occur when the ZF method is used, because the detected 

signals will be obtained as X̂ =H
+
Y. 

ˆ ( )      X H Y H HX W IX H W  (20) 

In (20), the first term becomes an identical matrix multiplied with the signal 

X, and the second term cannot become a zero vector. Then, the second term 

H
+
W may enhance the noise term if some components in H+  become large 

due to the operation of (HH
H)-1. In the noise free environment, ZF detection 

will be widely used. However, noise enhancement occurs when the ZF 
detection is used.  

4.2. Wiener-based Detection Scheme 

In the adaptive theory [8], the Wiener filter is useful for communication 
systems. The Wiener filter theory is formulated for the general case of a 
complex valued stochastic process with the filter specified in terms of its 
impulse response. 

In frequency domain, the received signals are Y=HX where X is the 
transmitted signal. In order to estimate signals at the receiver, the estimated 

signal X̂  can be obtained by the Wiener solution. The Wiener solution K can 
be obtained by the following algorithm. 

In order to find the Wiener solution, we must minimize the cost function. 
We define the cost function as the mean square error between the estimated 

signal X̂  and the transmitted signal X. Then, the cost function can be 
expressed as 
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The Wiener solution is shown as follow: 

 2
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Q Q
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The Wiener solution can be achieved by the “orthogonal principle,” and the 
geometric interpretation is presented in Fig. 6. 

 

X

e

Y  

Fig. 6. Geometric interpretation of the relationship between the desired signal X, the 

output of FFT Y, and the mean square error e 

To achieve the orthogonal principle, the inner product between Y and e is 
held to zero 
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The Wiener solution can be determined by (23). Then, this solution is 
expressed as follows: 

      
1 1

2H H H HE E 
 

  K Y Y X Y H H I H  (24) 

Therefore, the detected signal X̂  can be obtained by the Wiener solution 

as X̂ =KY. 

4.3. Wiener-based ICI Cancellation Scheme 

Since the Wiener solution can detect a reliable signal, the results will be 
applicable to signal detection in the successive interference cancellation 
scheme. 

In the successive interference cancellation scheme, in order to utilize ICI 
as a source of diversity, both reliable signal detection and an efficient ICI 
cancellation are needed. First, in order to achieve reliable signal detection, 
we utilize the method of ordering received signals based on signal-to-
interference and noise ratio (SINR). 
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In order to fully utilize the time diversity while suppressing the residual 
interference and the noise enhancement, the signal detection is successive, 
but not detecting all the signals simultaneously. 

The detection orders with subcarriers in the SIC scheme are decided by 
the SINR. The SINR can be obtained in the following manner. The vector of 

the received signal Y can be expressed as Y=HX+W. The received signal 
can also be represented as: 

0 1 2 1

(0)

(1)

,

( 2)

( 1)

N N

X

X

h h h h

X N

X N

 

 
 
 

   
 

 
 

  

Y = + W

 

(25) 

where 
kh


 is the k-th column vector of the channel matrix H, and the X(k) is 

the k-th subcarrier signal at the input of IFFT. 
Then, the vector of the received signal can be rewritten as the following 

form: 

0 1 1(0) (1) ( 1) ,Nh X h X h X N     Y W
 

(26) 

Then, we can use the Wiener solution to detect the signal X̂ . Therefore, 
the k-th signal of the k-th subcarrier can be detected by YkkkX


)(ˆ , where 

kk


 

is the k-th row vector of the Wiener solution K, and the k-th signal of the k-th 
subcarrier can be obtained as: 

0 1 1( (0) (1) ( ) ( 1) ( ))k k k N N kk k h X h X h X k h X N h X N k        Y W

 

(27) 

In (27) the desired signal is denoted as )(kXhk kk


, and the others are the ICI 

and noise component. Hence, for the particular subcarrier k, the SINRk is 
defined as: 

2
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k k
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   
    

  

 W

 

(28) 

Each subcarrier’s SINR can be obtained by (28). Hence, the subcarrier with 

the highest SINR is decided, following which we first detect the signal )(ˆ kX . 

Equivalently, we choose the k-th row vector of K to detect the signal of the k-

th subcarrier. After making a hard decision, the detected signal of the k-th 

subcarrier )(ˆ kX  is reconstructed as the ICI component of the k-th subcarrier. 

Then, ICI effect for the k-th subcarrier will be cancelled in the received signal. 
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Following this, after canceling the ICI for the k-th subcarrier, the received 

signal Y will be obtained to 

( 1) ( ) ˆ ( ),j j

kh X k  Y Y
 

(29) 

where )(ˆ kX is the hard decision signal of the k-th subcarrier. 
ˆ ( )kh X k  is the 

ICI term corresponding to k-th subcarrier. As long as this hard decision data 

is correct, the new vector Y(j+1) has less interference. After this operation, the 
ICI  

term of the detected signal will be removed and the channel matrix H 
should be reconstructed by removing the k-th column vector and k-th row 
vector. The column number and row number of the new channel matrix is 
then reduced. Therefore, the proposed Wiener-based SIC scheme repeats 
these steps until all the subcarriers are detected completely. According to this 
process, we will be able to detect all signals completely. The simulation 
results will be shown in section 5. 

4.4. Modified Wiener-Based SIC ICI Cancellation Scheme 

From above, we clearly know that the computation complexity of the  Wiener-
based successive interference cancellation scheme is very high. The size of 

the channel matrix H will be increased with the number of subcarriers. 
Hence, the computation complexity will increase. Therefore, in this section, 
we will propose an algorithm to reduce the computation complexity for the 
Wiener-based SIC scheme. 
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Fig. 7. The ICI amplitude for the desired signal at subcarrier 30 

The traditional Wiener filter or a ZF equalizer is too complicated to be 
implemented, since it involves an N-by-N matrix inverse and matrix 

multiplication. N is usually fairly large, for example, N = 64 for the IEEE 

802.11a standard, and N = 1024 for the IEEE 802.16 standard. As a matter of 
the fact, the ICI power arises from the neighboring subcarriers around the 
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subject subcarrier. If we only focus on the neighboring subcarriers around the 
subject subcarrier, the computation complexity can be reduced significantly. 
Consequently, a simple scheme is investigated in Fig. 7 and Fig. 8, which 
show the ICI amplitude and ICI power for the desired signal. 

10 20 30 40 50 60
-60

-50

-40

-30

-20

-10

0

subcarrier index

d
B

 

 

fdTs=0.1

 

Fig. 8.The ICI power for the desired signal at subcarrier 30 

Fig. 7 and Fig. 8 show the effective subcarriers that contribute the ICI to 
specific subcarrier are actually much smaller than the number of subcarriers 
in one OFDM symbol. Using this fundamental observation, we are going to 
focus on few subcarriers around the desired subcarrier. Now, if we only focus 
on q subcarriers around the desired subcarrier, we can rewrite the frequency-

domain channel matrix H as H , and H  can be expressed as follows: 

0,0 0,1 0, 1 0, 0, 1 0, 1

1,0 1,1 1, 1
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(30) 

The channel matrix H  is shown as (30). Hence, each signal on the 
subcarrier in the output of FFT can be rewritten as: 

,( ) ( ),
m q

m k

k m q

Y m H X k


 

   

where 
2 21 1 ( )

,

0 0

1
( )

L Nj kl j m k n
N N

m k l

l n

H e h n e
N

    

 

    

(31) 
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Hence, for detecting the k-th subcarrier, we only used the partial element 

of Y to detect the signal. For example, if the value q is set as 2, two 
neighboring subcarriers (two on each side) are employed in the simplified 
equalizer; if the desired subcarrier is X(3), then received signal signals Y(1), 

Y(2), Y(4), and Y(5) are all used. Therefore, if we want to detect the k-th 
subcarrier, the vector of the received signal and the vector of the channel 
matrix in the frequency-domain can be reduced as: 

,    0,1,2,..., 1k k k k k N   Y H X W  (32) 

( : )k k q k q  Y Y  (33) 

( : , 2 : 2 )k k q k q k q k q    H H  (34) 

( : )k k q k q  X X  (35) 

where Hk indicates the partial matrix of H  that is the consecutive row 

vector from the (k – q)-th vector to the (k + q)-th vector and column vector 

from the (k – 2q)-th vector to the (k + 2q)-th vector. Yk means the partial 

vector whose elements are consecutive from Y(k-q) to Y(k+q). Here, if k-q<0, 

the related (k-q)-th vector and (k-q)-th element is redefined as ((k-q) mod N)-

th vector and ((k-q) mod N)-th element. 

In the modified algorithm, the channel matrix H is reduced to Hk and the 

size is also reduced from N-by-N to (2q + 1)-by-(4q + 1). Then, the Wiener 
solution will be obtained as:  

 
1

2

0 1 2[ ] ,H H T

k k k k qg g g


  G H H I H  (36) 

where ng  is the n-th row vector of kG
. 

The detection scheme presented above is modified in the Wiener-based 
SIC scheme. If the size of the matrix is reduced, the computation complexity 
of matrix multiplication and matrix inverse is also reduced. In the modified 
scheme, first, we find the SINR for each subcarrier and sort each. The 
detection order is from the maximum SINR to the minimum SINR. 
Equivalently, we apply the modified detection scheme in the Wiener-based 
scheme. The algorithm of the modified scheme for reducing the computation 
complexity is shown in the following steps. 

Step 1. Find the Wiener solution and compute the SINR for each 
subcarrier.  

Step 2. Find the maximum SINRk with the k-th subcarrier of undetected 
subcarriers, and find the Wiener solution. 

 
1

2 .H H

k k k k


 G H H I H
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Step 3. Detect the k-th subcarrier signal that has the maximum SINR. 

ˆ ( ) ( ) where  is the th row of q k q kX k decision g g q Y G  

Step 4. Cancel the intercarrier interference for )(ˆ kX . 

( 1) ( ) ˆ ( ) where  is the th column of j j

k kh X k h k   Y Y H  

Step 5. Let the k-th column vector of H equal zero. ( 0kh


) 

Step 6. If H becomes a zero matrix, stop the scheme; if not, return to Step 
2. 

According to the modified algorithm for reducing the computation 
complexity, we analyze the complexity for different methods, and compare 
the order of computation complexity in section 4.5. In section 5, we show the 
BER performance of the modified SIC scheme for a different value q.  

4.5. Complexity Analysis 

The evaluation of the computation complexity for matrix operations follows 
the rules in [13–14]. For an N-by-N matrix multiplication or inversion, its order 

of the computation complexity is equivalent to O(N
2.376

). For an M-by-N 

matrix multiplication with an N-by-M matrix and an M-by-N matrix, it is 

equivalent to O(N
1.376 + r

) of computation complexity where r = logMN. 
In the Wiener-based SIC scheme, it is necessary to undertake matrix 

multiplication and inverse operation for each iteration. The Wiener solution 

can be obtained as K=(HH
H+σ2

I)-1
H

H; hence, the computation complexity of 
the Wiener solution for each OFDM symbol is obtained as: 

( 1.376) 2.376 ( 1.376) ,r rk k k    (37) 

where k is the size of matrix H. The first term denotes the computation 

complexity of the matrix multiplication, H
H
H, the second term denotes the 

computation complexity of the inverse operation, and third term denotes the 
computation complexity of the results that are caused by the inverse of 

H
H
H+σ2

I multiplication with HH. According to the Wiener-based SIC scheme 
in section 4.3 , the complexity for an OFDM symbol can be computed as: 

( 1.376) 2.376 2.376 2.376 2.376

2 2 2

[2( ) ] [2( ) ] 3( ).
N N N

r

k k k

k k k k k

  

       (38) 

In the modified Wiener-based SIC scheme, the Wiener solution is rewritten 

as Gk=(Hk
H
Hk+σ

2
I)-1

Hk
H; hence, the computation complexity for an OFDM 

symbol is also computed as: 
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2.376 1.376 2.376 .376

2.376 2.376 1.376

3 ((2 1) (2 1) (2 1) )

3 (2(2 1) (2 1) ),

r r

r

N N q q q

N N q q

 



     

    

 (39) 

where r = log(4q + 1)(2q + 1). Table 1. shows the complexity for each 
method. 

Table 1. Order of computation complexity for the presented methods 

Method Multiplication  Results (N=64) 

ZF 2.3763N  58,696 

Wiener solution 2.3763N  58,696   

ZF+SIC 2.376

2

3( )
N

k

k



 

1,142,237  

Wiener+SIC 2.376

2

3( )
N

k

k



 

1,142,237  

Reduced complexity  

scheme  

  376.2

376.1

376.2

12

122

3






qN

qN

N

r

 

175,075 (for q=8) 

85,002  (for q=4) 

 
According to Table 1., we can discover that the computation complexity of 

the modified Wiener-based SIC scheme is less than that of the original 
Wiener-based SIC scheme. If the number of subcarriers is very large, the 
gap of computation complexity between the original Wiener-based SIC 
scheme and the modified Wiener-based SIC scheme will increase. In the 
next section, we show the performance for the different value q. 

5. Simulation Results 

In this section, we demonstrate the BER performance of our proposed 
scheme. We investigate the performance of the proposed scheme over 
Rayleigh fading channels. The environment of simulation is shown in Table 2. 

Table 2. The environment of the simulation 

Modulation scheme QPSK 

Number of subcarriers 64 

Channel Rayleigh fading multipath channel 

Normalized Doppler frequency fdTs 0.1, 0.05 

Path number 6 

 



Wiener-based ICI Cancellation Schemes for OFDM Systems over Fading 
Channels 

ComSIS Vol. 10, No. 2, Special Issue, April 2013  893 

In Fig. 9, we simulated the BER performance of the OFDM system with 
different schemes. The simulation results show that the BER performance 
would be error floor when ICI occurs. The performance with the Wiener 
solution scheme is better than that with the ZF scheme, because the latter 
does not consider the noise term. Therefore, using the ZF method involves 
noise enhancement. The use of the Wiener solution to detect the signal in the 
Wiener-based SIC scheme ensures that the noise enhancement will be 
avoided. Hence, the Wiener-based SIC scheme’s performance is also better 
than that of ZF-SIC scheme.  

Fig. 10 shows that the BER performance with different normalized Doppler 
frequencies. The system has better BER performance when the normalized 
Doppler frequency is large. Meanwhile, as the fdTs gets large, the Wiener-
based SIC scheme achieves more diversity gain. This shows that the Wiener-
based SIC scheme can utilize the ICI as a source of diversity. 

According to the Fig. 11, the modified Wiener-based SIC scheme’s 
performance is not better than that of the original Wiener-based SIC scheme. 
Comparing the modified Wiener-based SIC scheme with the original Wiener-
based SIC scheme, the performance loss of the modified Wiener-based SIC 
scheme is 2 dB for q = 8 at BER = 10

–3
. However, according to the Table 2, 

the computation complexity of the modified Wiener-based SIC scheme is 
much lower than that of the original Wiener-based SIC scheme. Therefore, a 
suitable value, q, is a trade-off problem between performance and 
computation complexity. 

6. Conclusions 

A refined SIC detection for OFDM systems under Rayleigh fading channels 
has been presented. The performance for a low SINR subcarrier can be 
significantly improved due to ICI reduction scheme. According to the 
simulation results, SIC detection is very suitable for high fading rate mobile 
communications, such as the high-speed rail communication systems. The 
algorithm and the BER performance for the Wiener-based SIC scheme have 
been presented. According to the simulation results, we could clearly realize 
the performance of the Wiener-based SIC scheme is better than the ZF-SIC 
scheme’s. Because the detection scheme may have noise enhancement in 
ZF-SIC scheme, the performance would be degraded. Although the Wiener-
based SIC scheme has better performance, it has high computation 
complexity. In order to reduce the computation complexity for the Wiener-
based SIC scheme, the modified Wiener-based SIC scheme is proposed.  

According to the analysis, the computation complexity of the modified 
Wiener-based SIC scheme with q = 8 is 15% of the original Wiener-based 
SIC scheme. According to complexity analysis and simulation results, the 
performance with a large q is better than the performance with a small q, but 
the computation complexity is higher. Hence, this is a trade-off problem 
between the system performance and the computation complexity. 
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The schemes studied in this paper require perfect channel state 
information. To obtain a precision channel state information becomes an 
important issue worthy of further studying. Besides, due to the population of 
MIMO-OFDM technology, applying the proposed scheme to MIMO-OFDM 
systems is also worthy to investigate.  
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Fig. 9. BER versus SNR of four methods for fdTs = 0.1 

 

0 2 4 6 8 10 12 14 16 18 20
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

 

 

W-SIC-0.1

W-SIC-0.05

Wiener-0.1

Wiener-0.05

 

Fig. 10. BER versus SNR for different fdTs 
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Fig. 11.  BER versus SNR for different q 
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