
DOI:10.2298/CSIS121105044D

A DSL for the Development of Software Agents

working within a Semantic Web Environment

Sebla Demirkol
1
, Moharram Challenger

1
, Sinem Getir

1
, Tomaž Kosar

2
,

Geylani Kardas
1*, and Marjan Mernik

2

1
 International Computer Institute, Ege University, Bornova, 35100 Izmir, Turkey

sebla.demirkol@ege.edu.tr, moharram.challenger@mail.ege.edu.tr,
sinem.getir@ege.edu.tr, geylani.kardas@ege.edu.tr

2
 Faculty of Electrical Engineering and Computer Science, University of Maribor,

Smetanova 17, 2000 Maribor, Slovenia
tomaz.kosar@uni-mb.si, marjan.mernik@uni-mb.si

Abstract. Software agents became popular in the development of
complex software systems, especially those requiring autonomous and
proactive behavior. Agents interact with each other within a Multi-agent
System (MAS), in order to perform certain defined tasks in a
collaborative and/or selfish manner. However, the autonomous,
proactive and interactive structure of MAS causes difficulties when
developing such software systems. It is within this context, that the use
of a Domain-specific Language (DSL) may support easier and quicker
MAS development methodology. The impact of such DSL usage could
be clearer when considering the development of MASs, especially
those working on new challenging environments like the Semantic
Web. Hence, this paper introduces a new DSL for Semantic Web
enabled MASs. This new DSL is called Semantic web Enabled Agent
Language (SEA_L). Both the SEA_L user-aspects and the way of
implementing SEA_L are discussed in the paper. The practical use of
SEA_L is also demonstrated using a case study which considers the
modeling of a multi-agent based e-barter system. When considering
the language implementation, we first discuss the syntax of SEA_L and
we show how the specifications of SEA_L can be utilized during the
code generation of real MAS implementations. The syntax of SEA_L is
supported by textual modeling toolkits developed with Xtext. Code
generation for the instance models are supplied with the Xpand tool.

Keywords: Domain-specific Language, Metamodel, Multi-agent
System, Semantic Web.

* Corresponding author. Tel:+90-232-3113223 Fax: +90-232-3887230

Sebla Demirkol et al.

1526 ComSIS Vol. 10, No. 4, Special Issue, October 2013

1. Introduction

Software agents [1] [2] are autonomous software components which are able
to act on behalf of their users in order to perform a group of defined tasks.
Many intelligent software agents interact with each other within a system
called Multi-agent System (MAS). Their interactions can be either
cooperative or selfish [45]. Software agents and MASs are recognized as
both useful abstractions and effective technologies for the modeling and
building of complex distributed systems. The implementation of these
autonomous, responsive, and proactive systems is naturally a complex task.

Additionally, the Semantic Web improves the World Wide Web such that
the web pages’ contents can be interpreted using ontologies [46]. Therefore,
this new-generation web helps machines to understand web content. It is
apparent that the interpretation in question will be realized by autonomous
computational entities (i.e. agents) in order to handle the semantic content on
behalf of their users. Surely, a Semantic Web environment has specific
architectural entities, and thus a different semantics needs to be considered
for modeling a MAS within its environment. Thus, the Semantic Web
evolution has spawned a new vision regarding agent research. Software
agents are planned for collecting Web content from diverse sources,
processing the information, and exchanging the results. Autonomous agents
can also evaluate semantic data and collaborate with semantically defined
entities of the Semantic Web like semantic web services, by using content
languages. However, considering agent interactions with Semantic Web
elements adds more complexity for designing and implementing these
systems.

On the other hand, the Model Driven Development (MDD) is also one of
the important software development approaches, moving software
development from code to models [43], which increases productivity [26] and
reduces development costs [47]. The design and implementation of a MAS
may become more complex when new requirements and interactions for new
agent environments like Semantic Web are considered. MDD can provide an
infrastructure that simplifies the development of such MASs. Being able to
work at a higher abstraction level is of critical importance for the
development of MASs since it is almost impossible to observe the code level
details of the MASs due to their internal complexity, distributedness and
openness. Hence, such an MDD application can increase the abstraction
level during MAS development. MDD uses different approaches for realizing
its goals. One of these methods is Domain-specific Language (DSL)
development [8, 14, 29, 32, 48]. DSLs are languages which are comprised of
a domain’s concepts and terminologies in order to supply the requirements of
the domain. A DSL allows end-user programmers (domain experts) to
describe the essence of a problem using abstractions related to a domain
specific problem space.

We present a new DSL for designing and implementing MASs working
within a Semantic Web environment, by motivating from the expressive
powers of DSLs and MDD. We call this new DSL as Semantic web Enabled

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1527

Agent Language (SEA_L). An abstract syntax and a concrete syntax for
SEA_L are discussed in the paper, that originated from the domain-specific
metamodel, which is first introduced in [4]. Furthermore, transformations
required for code generation from the specifications of SEA_L are defined in
order to realize the implementation of modeled MAS in various agent
execution platforms.

This paper is an extended version of the paper [6]. It differs from the latter
by including a discussion of all viewpoints, the full specification of two crucial
viewpoints of the proposed DSL, and a detailed discussion regarding the
practical usage of the language within the scope of a case study. The case
study covers the design and real implementation of an agent-based e-barter
system. Again different from the paper [6], discussion of the agent-based e-
barter business domain is elaborated as well as modeling and code
generation for agent internals have been added in this paper. Moreover, in
this paper the user and implementation aspects of the proposed DSL are
discussed separately. Firstly, we present an overview of the SEA_L
language, together with a case study. Then the implementation details are
stated.

The remainder of the paper is organized as follows: An overview of the
new language is given in Section 2 along with an example. The abstract
syntax, the textual concrete syntax, and the code generation mechanism for
new DSL are discussed in Section 3. In Section 4, the related work is
presented. Finally, Section 5 concludes the paper, and states the future work.

2. The SEA_L Domain-Specific Language

In order to separate the 'user' aspects of the SEA_L from its implementation
details, in this section we present SEA_L concepts and how to use them,
along with a case study and in the next section a discussion on the
implementation details of SEA_L.

Since SEA_L is designed for developers of MASs working within the
Semantic Web environments, the language’s main concepts consist of both
MAS and Semantic Web terminologies.

In a Semantic Web enabled MAS, software agents can gather Web
contents from various resources, process the information, exchange the
results, and negotiate with other agents. Within the context of these MASs,
autonomous agents can evaluate semantic information and work together
with semantically defined entities, like Semantic Web Services, using a
content language.

SEA_L is divided into eight viewpoints in order to provide clear
understanding and efficient usage. These viewpoints are:

1. Agent Internal Viewpoint: This viewpoint is related to the internal
structures of semantic web agents (SWA) and defines those entities and their
relations required for the construction of agents. It covers both reactive and
Belief-Desire-Intention (BDI) [41] agent architectures.

Sebla Demirkol et al.

1528 ComSIS Vol. 10, No. 4, Special Issue, October 2013

2. Interaction Viewpoint: This aspect of the language expresses the
interactions and communications in a MAS by taking messages and message
sequences into account.

3. MAS Viewpoint: This viewpoint solely deals with the construction of a
MAS as a whole. It includes those main blocks of which the complex system
is composed as an organization.

4. Role Viewpoint: This perspective delves into the complex controlling
structure of the agents. All role types such as Ontology Mediator Role or
Registration Role are modeled in this viewpoint.

5. Environmental Viewpoint: Agents may need to access some resources
(e.g. services and knowledge-bases (considering the facts about the
surroundings)) within their environments. The usage of resources and the
interactions of agents with their surroundings are covered in this viewpoint.

6. Plan Viewpoint: This viewpoint deals particularly with Plans’ internal
structures. Plans are composed of some Tasks and atomic elements such as
Actions.

7. Ontology Viewpoint: SWAs know various ontologies as they work with
Semantic Web Services (SWS) and also some ontological concepts which
constitute agents’ knowledge-bases (such as belief and fact).

8. Agent-SWS Interaction Viewpoint: This is probably the most important
viewpoint of SEA_L. The interactions of agents with SWSs are described
within this viewpoint. Entities and relations are defined for service discovery,
agreement, and execution. The internal structures of SWSs are also
modeled.

SemanticWebAgent (SWA) in SEA_L stands for each agent within the

Semantic Web enabled MAS. A SemanticWebAgent is an autonomous entity
which is capable of interaction with both other agents and
SemanticWebServices (SWS) within the environment. SemanticWebAgents
can be associated with more than one Role at any time (multiple
classifications), and can change roles over time (dynamic classification). An
agent can play roles within various environments, have a state (Agent State),
and own a type (Agent Type) during its execution.

A SemanticWebAgent can interact with various services including
SemanticWebServices. A SemanticWebService represents a service (except
for an agent service), its capabilities, and its interactions, semantically. A
SemanticWebService is composed of one or more Web Service entities. The
corresponding services must have a semantic interface that is going to be
used by platforms’ agents.

A SemanticWebAgent applies Plans to perform their Tasks. 'Semantic
Service Register Plan' (SS_RegisterPlan), 'Semantic Service Finder Plan'
(SS_FinderPlan), 'Semantic Service Agreement Plan' (SS_AgreementPlan)
and 'Semantic Service Executor Plan' (SS_ExecutorPlan) are extensions of
the Plan. Agents use the SS_RegisterPlan for communication with a service
registry to discover service capabilities. Other Plans are used to discover
SemanticWebServices dynamically, call the services, obtain agreement with

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1529

them and execute them, respectively. Finally, a SSMatchmakerAgent can
play a RegistrationRole to advertise a SemanticWebService.

SEA_L also covers the already expected and traditional MAS entities (in
addition to above mentioned items) such as Capabilities, Goal, Belief, and so
on. SEA_L also defines various relations for these entities such as
appliesPlan, includesBelief, usesGoal, postCondition, realized_by, and so on.
When considering SWSs and their use within MASs, there are entities like
Grounding, Process, Interface, SSMatchmakerAgent, RegistrationRole, and
different types of plans. When taking into account the relations regarding
agents and SWS interactions, SEA_L contains relations like appliesPlan,
playsRole, executes, uses, interactsWith, describes, presents, and supports.
Using these relations, a developer can model a high-level program for MASs
working within Semantic Web environments.

2.1. Case Study: E-Barter System

SEA_L can be used in many instances for facilitating the design and
development of agent-based systems for various domains such as agent-
based business evaluation [30], stock exchange [24], document management
[40] and the e-barter system [7]. In order to exhibit the use of the introduced
DSL, the modeling of a simple multi-agent based e-barter system is
considered during this study. A barter system is an alternative commercial
approach where customers meet at a marketplace in order to exchange their
goods or services without currency. In barter marketplaces, purchased goods
or services are exchanged for manufactured goods or offered services [7].

An agent-based e-barter system consists of agents that the exchange
goods or services of owners according to their preferences. In this
application, the base scenario is achieved by the Customer, 'Barter Manager'
and Cargo agents. Interested readers may refer to [7] for a detailed
discussion of barter proposals and the tracking of the bargaining process
between Customer agents. After the finalization of bargaining, Customer
agents send engagement message to the 'Barter Manager' agent. The 'Barter
Manager' agent notifies the Cargo agent for transporting barter products
between Customer agents. This scenario is completed by the acceptances of
all participating agents.

For instance, two Customer Agents (one from the automotive industry and
another from the healthcare sector) may need to exchange their offered
goods and services such that: the car manufacturer offers to sell car spare-
parts to a health insurance company (e.g., for the health company’s service
cars), and wants to procure health insurance for its employees. Let us
consider that the intention of the health insurance company is vice-versa.
During bargaining between the agents of the car manufacturer and the health
insurance company, our Barter Manager agent uses a semantic web service
called 'Barter Service'. In order to invoke this service, the 'Barter Manager'
first needs to discover the proper semantic web service. Then, it interacts

Sebla Demirkol et al.

1530 ComSIS Vol. 10, No. 4, Special Issue, October 2013

with the candidate service(s) and after an agreement the exact execution of
the semantic web service is realized [25]. Figure 1 portrays the partial
instance model of an E-Barter system (conforming to the SEA_L’s
metamodel, as elaborated in Section 3.1).

In the following, we provide a description of the instances and constraint
controls for this case study using SEA_L specifications.

Listing 1 shows the textual instance model for the Agent Internal viewpoint
of the E-barter system. The instance model includes those variables and
relations defined for the E-barter domain. Also, according to the syntax of
SEA_L’s Agent Internal viewpoint (which is discussed in subsection 3.2),
there should be at least one instance of SemanticWebAgent and Capabilities
within the system. Therefore, initially, a SemanticWebAgent and Capabilities
have been defined for this example.

Figure 1. Overview of the E-Barter system as a SEA_L instance [25]

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1531

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

AgentInternalViewPoint e_barter {

 SemanticWebAgent barterManager
 "Barter Manager Agent" // Agent Description
 "Properties" // Agent Properties
 "Active" // Agent State
 "CustomerAgent"; // Agent Type

 Capabilities barterCap
 "Barter Manager Capability";

 Role barterRole;

 Goal bestMatching
 "Doing best matching" 1; // Recur = 1

 Belief barterKnowledge
 "System facts" 2; // Dynamic = 2

 Plan financialPlan
 "Cyclic Plan" 1; // Priority = 1
 barterManager{

 includes barterCap;

 plays barterRole;
 }
 barterCap{

 appliesPlan financialPlan;

 includesBelief barterKnowledge;

 usesGoal bestMatching;
 }

 barterKnowledge{ precondition bestMatching; }
 bestMatching{

 postcondition barterKnowledge;

 realized_by financialPlan;
 }
}

Listing 1. Textual modeling for Agent Internal viewpoint of a multi-agent e-barter
system in SEA_L

Listing 2 shows the use of SEA_L in textual modeling of Agent-SWS

Interaction viewpoint of the multi-agent e-barter system in question. In order
to infer about the semantic closeness between offered and purchased items
based on the defined ontologies, a SemanticWebAgent is defined which can
use a SemanticWebService called barterService.

Sebla Demirkol et al.

1532 ComSIS Vol. 10, No. 4, Special Issue, October 2013

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

SWSInteractionViewPoint e_barter_Interaction{

 SemanticWebAgent barterManager
 "Barter Manager Agent" // Agent Description
 "Properties"; // Agent Properties

 SWS barterService;

 SSMatchmakerAgent barterMatchAgent
 "E-Barter Matchmaker Agent"
 "Properties";

 Grounding barterServiceGrounding;

 Process barterServiceProcess;

 Interface barterServiceInterface;

 SS_RegisterPlan serviceRegistration;

 SS_FinderPlan discoverBarterService;

 SS_AgreementPlan negotiating;

 SS_ExecutorPlan invokeBarterService;

 Role barterRole;

 RegistrationRole matchRole;
 barterManager{

 appliesPlan discoverBarterService;

 appliesPlan negotiating;

 appliesPlan invokeBarterService;

 playsRole barterRole;
 }
 barterMatchAgent{

 appliesPlan serviceRegistration;

 playsRole matchRole;
 }
 invokeBarterService{

 executes barterServiceProcess;

 uses barterServiceGrounding;
 }

 discoverBarterService { interactsWith barterMatchAgent; }

 barterRole { interactswith barterService; }

 barterServiceProcess {describes barterService;}

 barterServiceInterface { presents barterService;}

 barterServiceGrounding { supports barterService;}
}

Listing 2. Textual modeling for Agent-SWS Interaction viewpoint of a multi-agent e-
barter system in SEA_L

barterManager is an instance of the SemanticWebAgent, which has an
important role named barterRole within the system, and applies the
discoverBarterService plan, which is an instance of the SS_FinderPlan for
finding the desired services. In addition, the agent applies a 'negotiating' plan,
which is an SS_AgreementPlan for negotiating with the discovered services.
It also applies the invokeBarterService plan that is an instance of the
SS_ExecutorPlan for executing the agreed service. discoverBarterService

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1533

discovers the barterServiceInterface which presents a barterService.
Moreover, invokeBarterService uses barterServiceGrounding for knowing
about the execution protocol of the service, and executes
barterServiceProcess which declares the internal process of the service.

barterService is an instance of the SemanticWebService, and is described
by the barterServiceProcess. This system also has an SS_Matchmaker Agent
called the barterMatchAgent, which applies serviceRegistration as an
SS_RegistrationPlan for realizing the registration of Interfaces for
SemanticWebServices.

In order to provide more readability for Agent-SWS interaction within the
code, defining plans, SS_RegisterPlan, SS_FinderPlan, SS_AgreementPlan
and SS_ExecutorPlan must be in order, as shown in Listing 2. Otherwise, the
SEA_L editor will indicate an error.

As it is restricted in textual concrete syntax, each instance model must
have at least one SemanticWebAgent and one SemanticWebService (see
Listing 2). After the declarations, the barterManager, being a
SemanticWebAgent, applies the discoverBarterService plan for finding
candidate services, the 'negotiating' plan for making an agreement with one
of them, and the invokeBarterService for executing the agreed service. It also
plays a barterRole for accomplishing these interactions. The
discoverBarterService plan interacts with the barterMatchAgent and the
Matchmaker Agent, in order to find the candidate services. After this
interaction, the result is discovering a set of barterServiceInterfaces.

At the end of the SS_FinderPlan, the SS_ExecutorPlan starts which
executes the Process and uses Grounding. Moreover, the Role interacts with
the SemanticWebService which is presented by the Interface, describes the
Process and is supported by the Grounding. Finally, the
SemanticWebService depends on at least one 'Service Ontology'.

As will be elaborated in subsection 3.3 of this paper, by applying the rules
written in Xpand [50], the SEA_L’s code generation feature enables agent
developers to automatically obtain 1) agent software codes conforming to the
JADEX [23] BDI platform which is one of the popular APIs for developing
software agents, 2) Ontology files in OWL [36] format, and 3) OWL-S [37]
representations of the modeled SWSs. Therefore, after running the code
generation of SEA_L for the case study, a JADEX ADF file for the
barterManager agent and a plan file for each Plan element are generated.
The generated ADF file can be used inside a JADEX platform in order to
initialize the designed barterManager agent and this agent then executes the
generated Java plan code in order to do its tasks. An excerpt from the
generated plan named the financialPlan for the Barter Manager agent is given
in Listing 3. This given code is automatically generated as a result of applying
the generation rules (as discussed in section 3.3). Based on the
transformation, the modeled agents’ behavior is implemented as a JADEX
Plan class that owns the 'body' method to cover the required codes for the
agent tasks.

Part of the generated ADF file is shown in Listing 4. In this file, all of the
keywords and their attributes correspond with the related tags. For example,

Sebla Demirkol et al.

1534 ComSIS Vol. 10, No. 4, Special Issue, October 2013

the required descriptions for agent capabilities (Lines 14-19), plans to be
applied (Lines 20-27), beliefs pertaining to the agent (Lines 28 -32), and the
goal of the Barter Manager agent (Lines 33-46) modeled in SEA_L can now
be included within a JADEX ADF.

With applying code generations of SEA_L, two ADF files, four plan files,
four OWL-S files (Service, Service Process, Service Profile, and Service
Grounding), and one WSDL file are generated for SEA_L's Agent-SWS
Interaction viewpoint. The ADF and plan files are similar to the ones
generated for Agent Internal viewpoint. Therefore, only one part of the
generated OWL-S file for 'Barter Service' is given as an example in Listing 5.
Lines from 1 to 9 contain boilerplate text inserted directly from a template (as
discussed in subsection 3.3). The barterService, barterServiceInterface,
barterServiceProcess and barterServiceGrounding names in lines 24, 27, 30
and 33 of Listing 5 are supplied from the declarations in Listing 2. As
previously discussed, a 'Barter Manager' agent needs a 'Barter Service' SWS
during the bargaining process. Hence, the OWL-S documents referred to in
Listing 5 for service interface (in Line 26), service process (Line 29), and
finally grounding (Line 32) are used by the agent in order to find, process,
and finally invoke the required service.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

import java.util.*;
import jadex.runtime.*;
import java.util.StringTokenizer;
public class financialPlan extends Plan {
 // Plan attributes.
 ...
 // static block or constructor
 ...
 // Constructor code.
 public financialPlan() {
 ...
 }
 // Plan main code.
 public void body() {
 // Send request
 ...
 // Wait for reply
 …
 }
}

Listing 3. Generated plan file for financialPlan

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1535

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

<agent
 xmlns = "http://jadex.sourceforge.net/jadex"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://jadex.sourceforge.net/jadex
 http://jadex.sourceforge.net/jadex-2.0.xsd"
 name = "barterManager"
 description = "Barter Manager Agent"
 properties = "Properties"
 package=”jadex.examples.myProjects”
>
 <imports>
 <import>jadex.adapter.fipa.*</import>
 </imports>
 <capabilities>
 <capability>
 name = "barterCap" file=""
 description = "Barter Manager Capability"
 </capability>
 </capabilities>
 <plans>
 <plan name = "financialPlan"
 description = "Cyclic Plan"
 priority="1" />
 <plan name = "discoverBarterService" />
 <plan name = "negotiating" />
 <plan name = "invokeBarterService" />
 </plans>
 <beliefs>
 <belief name="barterKnowledge"
 description="system facts"
 dynamic="1" />
 </beliefs>
 <goals>
 <achievegoal name="bestMatching"
 recur = 1
 exclude = "when_tried"
 recalculate = "true" retry="true"
 exported = "false"
 posttoall = "false" recurdelay = "0"
 randomselection = "false"
 retrydelay = "0">
 <creationcondition>
 <!-- Write Creation Condition -->
 </creationcondition>
 </achievegoal>
 </goals>
</agent>

Listing 4. Part of generated ADF file from Agent Internal viewpoint of barterManager
in E-Barter System case study

Sebla Demirkol et al.

1536 ComSIS Vol. 10, No. 4, Special Issue, October 2013

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

<?xml version="1.0" encoding = ‘ISO-8859-1’?>
<!DOCTYPE ruidef[
 <!ENTITY barterService_profile
 “http://mas.ube.ege.edu.tr/ barterServiceProfile.owl”>
 <!ENTITY barterService_process
 “http://mas.ube.ege.edu.tr/ barterServiceProcess.owl”>
 <!ENTITY barterService_grounding
 “http://mas.ube.ege.edu.tr/ barterServiceGrounding.owl”>
]>
<rdf:RDF xmlns:rdf= "&rdf;#" xmlns:rdfs="&rdfs;#"
 xmlns:owl = "&owl;#" xmlns:service= "&service;#"
 …
 xml:base="&DEFAULT;" >
 <owl:ontology rdf:about="">
 <owl:versionInfo>
 $Id: barterService.owl,v 1.14 2012/10/08 15:27:40 $
 </owl:versionInfo>
 <rdfs:comment> "This ontology represents the OWL-S
 service description for the barterService service example."
 </rdfs:comment>
 <owl:imports rdf:resource="&service;" />
 …
 </owl:Ontology>
 <service:Service rdf:ID= "barterService">
 <!-- Reference to the Profile -->
 <service:presents rdf:resource="&barterService_profile;
 #barterServiceInterface"/>
 <!-- Reference to the Process Model -->
 <service:describedBy rdf:resource="&barterService_process;
 #barterServiceProcess"/>
 <!-- Reference to the Grounding -->
 <service:supports rdf:resource="&barterService_grounding;
 #barterServiceGrounding"/>
 </service:Service>
 <profile:Profile rdf:about=&
 "barterService_profile;#barterServiceInterface">
 <service:presents rdf:resource=#"barterService"/>
 </profile:Profile>
 <process:AtomicProcess rdf:about=&
 "barterService_process;# barterServiceProcess">
 <service:describedBy rdf:resource=#"barterService"/>
 </process:AtomicProcess>
 <grounding:WsdlGrounding rdf:about=&
 "barterService_grounding;# barterServiceGrounding">
 <service:supports rdf:resource=#"barterService"/>
 </grounding:WsdlGrounding>
 </rdf:RDF>

Listing 5. Part of generated OWL-S Service file

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1537

3. SEA_L Implementation

In this section, the implementation details of SEA_L language are provided
including abstract syntax as a metamodel divided into several viewpoints, its
textual concrete syntax, and the required code generation for presenting the
operational semantics of the language.

3.1. Abstract Syntax

The abstract syntax of a DSL describes the concepts and their relations
without any consideration of meaning. In terms of MDD, the abstract syntax is
described by a metamodel that defines what the models should look like.

The Platform Independent Metamodel (PIMM) which represents the
abstract syntax of SEA_L is divided according to the eight viewpoints which
were previously given in section 2.

We discuss the metamodel over its Agent Internal viewpoint as well as
Agent-SWS Interaction viewpoint throughout this paper due to the vital
importance of these viewpoints. In addition, critical entities from other
viewpoints are already considered during the following discussion. The
related viewpoints are shown in Figures 2 and 3, respectively. In these
Figures, the elements filled-in with light gray come from other viewpoints
which are shown on the top or bottom of the element using '<<' and '>>'. In
other words, these elements are common elements amongst the viewpoints,
and tailor them to each other.

The Agent Internal viewpoint is related to the internal structures of the
semantic web agents and defines the entities and their relations required for
the construction of agents. A partial metamodel which represents this
viewpoint, is given in Figure 2.

SEA_L’s metamodel (hence abstract syntax) supports both reactive and
Belief-Desire-Intention (BDI) agent architectures. BDI was first proposed by
Bratman [3] and is used within many agent systems. In a BDI architecture, an
agent decides about which Goals to achieve and how to achieve them.
Beliefs represent the information an agent has about its surroundings, while
Desires correspond to the things that an agent would like to have achieved.
Intentions, which are the deliberative attitudes of agents, include the agent
planning mechanism in order to achieve the goals. Taking concrete BDI
agent frameworks (such as JADEX [23] and JACK [21]) into consideration, we
propose an entity called Capabilities which includes each agent’s Goals,
Plans and Beliefs about the surroundings.

The Agent-SWS Interaction viewpoint focuses on the internal structure of
the SemanticWebServices and the interaction of any SemanticWebAgent
with SemanticWebServices within a MAS organization. Concepts and their
relations for appropriate service discovery, agreement with the selected
service, and execution of the service are all defined within this viewpoint. A

Sebla Demirkol et al.

1538 ComSIS Vol. 10, No. 4, Special Issue, October 2013

partial metamodel of SEA_L which represents this viewpoint is shown in
Figure 3.

Figure 2. Agent Internal viewpoint

Figure 3. Agent-SWS Interaction viewpoint.

Semantic Web Service (SWS) modeling approaches (i.e. OWL-S [37])
generally define a service with three documents: 'Service Interface', 'Process

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1539

Model', and 'Physical Grounding'. 'Service Interface' is the capability
representation of the service in which service inputs, outputs, and any other
necessary service descriptions are listed. The 'Process Model' defines a
service’s internal combinations and service execution dynamics. Finally,
'Physical Grounding' defines the service’s execution protocol. These meta-
entities are shown in Figure 3 with Interface, Process, and Grounding entities,
respectively. These components can use Input, Output, Precondition, and
Effect which are extensions of the Web Ontology Language (OWL [36]) class
from Object Management Group’s (OMG) Ontology Definition Metamodel
(ODM) [35].

On the other hand, agents need to communicate with a service registry
element in order to discover service capabilities. Hence, the metamodel
includes a specialized agent entity, called the SSMatchmaker Agent. This
entity represents those matchmaker agents which store the capability
advertisements of SemanticWebServices within a MAS, and match those
capabilities with service requirements sent by the other platform agents.

When considering the other viewpoints of SEA_L, the MAS viewpoint
solely deals with the construction of a MAS as an overall aspect of the
metamodel. Plan viewpoint defines a Plan’s internal structure. When an
Agent applies a Plan, it executes its Tasks. In addition, message transaction
is considered within this viewpoint. The Role viewpoint shows distinct types of
roles. Agents can use several roles at any time and can alter these roles over
time. The Interaction viewpoint focuses on agent communications and
interactions in a MAS, and defines entities and relations such as Interaction,
Message, and MessageSequence. The Environment viewpoint focuses on
the relations between agents and to what they access. Environment contains
all non-Agent Resources, Facts, and Services. The Ontology viewpoint brings
all ontology sets and ontological concepts together. ODM OWL [36] Ontology
from OMG is a standard for all of our ontology sets such as Role,
Organization, and ServiceOntologies.

3.2. Textual Concrete Syntax

The textual concrete syntax of SEA_L is provided with Xtext [52]. Xtext is a
language development framework for developing textual modeling
languages. It can be used for creating a sophisticated Eclipse-based
development environment. Xtext is based on EBNF (Extended Backus–Naur
Form) [20] rules.

If the metamodel which represents the abstract syntax for SEA_L is
considered as an analysis phase of the concrete syntax of SEA_L, the design
phase will be the part describing the EBNF rules. One of the main
advantages of DSLs is for validating domain-specific constraints. The
constraints of the language can be implemented within the 'Validation
Package' in Xtext, which provides a dedicated hook for validation rules. Also,
other features of SEA_L’s textual concrete syntax are created using both

Sebla Demirkol et al.

1540 ComSIS Vol. 10, No. 4, Special Issue, October 2013

manually-written code and Xtext features. When using Xtext features, the
textual concrete syntax supplies auto completion, syntax coloring, rename
refactoring, bracket matching, auto edit, an outline view that shows the
semantic structure of the model and code formatting for properly indenting
the documents. The above discussed constraints of SEA_L’s metamodel, are
realized by defining the EBNF rules. With these capabilities, the new DSL
possesses both the structural and static semantics of the MAS domain. The
structure is defined by the method signatures and the static semantics are
defined by the constraint code.

During textual modeling with Xtext, the controls over the instance models
can be realized via controlling packages. These packages include formatting,
scoping, and validation.

The formatting package (Pretty Printing [12]) simply controls and applies
the editorial rules for an instance model. In this package, by accessing the
language grammar, we can define additional editorial controls (formatting
configuration) in order to modify the written program automatically, which
help the instance model to be more readable. For example, spaces for
keywords, line-wrap rules, etc can be considered in an instance model of the
DSL.

Using the scoping application programming interface (API), it is possible to
define which elements are referable by a certain variable reference [12]. In
other words, it can be controlled that from which parts of the program, a
variable in a scope (a block of code), can be accessed.

One of the interesting aspects of developing a DSL is static analysis or
validation of the written program. Validation package plays this role within the
Xtext tool. The goal is that the users of the language obtain informative
feedback as they type the program [12]. Some of the validations are
performed automatically, e.g. syntactical and crosslink validations using
parser and linker, respectively; although they can also be customized by the
user. This type of validation is done with the help of grammar and scoping.
However, in addition to the automatic validations, we can specify additional
constraints specific for our Ecore model, called custom validation. For
example, it is possible to control the number of specific elements. Although
some of the constraints could be fulfilled by grammar terminal rules in Xtext
(e.g. controlling the format of the defined variables), we implemented them
using the validation package to ease providing desired messages (warning or
error), and to provide the possibility for fixing the error or warning. In the
remainder of this subsection, we discuss how the textual concrete syntax of
SEA_L's major viewpoints is provided with Xtext.

3.3. Textual Concrete Syntax of Agent Internal Viewpoint

An Xtext grammar is structured with rules which are identified by the text to
the left of a colon. There is at least one rule for each meta-element within the
textual concrete syntax. EBNF rules are defined for Agent Internal viewpoint
according to the constraints in the metamodel. The first constraint is that all

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1541

of the instance model’s elements must be in AgentInternalViewpoint tag.
Also, the instance model must start and end with curly brackets. An example
of another constraint is that each instance model must have at least one
SemanticWebAgent and one Capabilities, in any order. These constraints are
supplied within AgentInternalViewpoint, rule which is given in Listing 6.
According to Xtext syntax, the assignment operator, '=', denotes a single
valued feature, the '+=' operator denotes a multi-valued feature, and the
asterisk operator, '*', denotes a cardinality of 0..n. Also, within each rule,
referring to predefined parser rules is possible using ‘[’ and ‘]’ characters
(called 'cross referencing'), as shown in Listing 7 Line 3.

01
02
03
04
05
06

AgentInternalViewpoint:
 'AgentInternalViewPoint' '{'
 semanticwebagent+=SemanticWebAgent &
 capabilities+=Capabilities
 …
 '}';

Listing 6. A part of AgentInternalViewpoint rule.

01
02
03
04
05
06
07

Capabilities:
 'Capabilities' name = ID description = STRING';' |
 cap = [Capabilities] '{'
 ('includes' belief = [Belief]';' |
 'uses' goal = [Goal]';' |
 'applies' plan = [Plan] ';')*
 '}';

Listing 7. Capabilities rule

SEA_L’s metamodel conforms to BDI [41] architecture. Therefore, a group
of meta-elements exists for supplying the BDI structure. When considering
this structure, a Capabilities meta-element consists of Belief, Goal, and Plan
meta-elements. The user can define numerous relations by considering the
Agent Internal viewpoint. This structure is defined within the Capabilities rule,
which is shown in Listing 7. The developer can define the Belief, Goal, and
Plan meta-elements as often as needed and in any order, regarding lines 4 to
7 of Listing 7.

The agent state and type definitions are considered as string-terminals
within the Agent Internal viewpoint, although they could be implemented as
hard-coded enumerations or references to their definitions. This is because
we believe that agents can conceptually have any user-defined state and
type (not limited to specific states or types). Also, in order to have agent
definition integration within a single line, we do not use references to agent
type and state definitions.

Fewer constraints are defined within the Agent Internal viewpoint in
comparison with the Agent-SWS Interaction viewpoint, since the elements

Sebla Demirkol et al.

1542 ComSIS Vol. 10, No. 4, Special Issue, October 2013

are generally used arbitrarily, and most of the relations are independent
within the Agent Internal viewpoint.

The user can assign a keyword to the name of an instance of any meta-
element inadvertently. All of the keywords within the textual concrete syntax
start with a lower-case letter. Therefore, a prevention mechanism is provided
for preventing the users from defining a name starting with a lower-case for
names which will not cause inconsistency between keywords and names.
Validation Packages of Xtext are overridden for controlling user’s variable
definition. As illustrated in Listing 8, the editor will show an error if the
developer defines a capability name starting with an upper-case. The
corresponding code is written in the 'Validation Package' in Xtext and some
extra code is added to this package. These constraint controls are realized
within the validation package (instead of grammar terminal rules) for
enhancing the provision of customized error and warning messages, and also
the possibility of fixing these errors and warnings. Similar controls are
provided for other entities like Plan, SemanticWebAgent,
SemanticWebService, etc.

01
02
03
04
05
06
07
08

@Check
public void CapabilitiesStartWithLowerCase(
 Capabilities cap) {
 if (! Character.isLowerCase(cap.getName().charAt(0))) {
 error("Name must start with lower case",
 AgentInternalDSLPackage. CAPABILITIES__NAME);
 }
}

Listing 8. Validation Package code for preventing the definition of an upper-case
name within the Semantic Web Agent Internal viewpoint

Additional Xtext features are used to limit the user whilst creating instance
models, for example, another control supplied with the Validation Package
code which prevents the user entering an empty string to an attribute. The
code block in Listing 9 provides an error in the editor, if the user gives an
empty string to the 'type' attribute of a Behavior. Within the Xtext validation
package, '@Check' is a java annotation for defining a validation rule.

01
02
03
04
05
06
07
08

@Check
public void checkTypeIsNotEmpty (Behavior beh)
{
 if (beh.getType().isEmpty()) {
 error("Behavior type is empty",
 AgentInternalDSLPackage.BEHAVIOR__TYPE);
 }
}

Listing 9. Validation Package code to prevent defining an empty string

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1543

01
02
03
04
05
06

public void checkNegativeElement (Plan plan)
{
 If (plan.getPriority () < 0)
 error ("Negative value is not accepted",
 MyDslPackage.PLAN__DESCRIPTION);
}

Listing 10. Validation Package code to check the negative values for plan priority

In some part of the language, validity for a variable’s value is examined
using an overridden Xtext validation package. For example, as shown in
Listing 10, the value of the priority for the plan element is checked, and
negative values are not accepted.

3.4. Textual Concrete Syntax of Agent-Semantic Web Service

Interaction Viewpoint

When considering Agent-SWS Interaction viewpoint, instances of related
meta-elements and their relations must be defined inside a
SWSInteractionViewpoint code-block as part of the instance model. Similar to
the Agent Internal viewpoint, in this viewpoint, the left-hand bracket must be
at the beginning of the model and the right-hand bracket at the end of it.
Every instance model must have at least one SemanticWebAgent and one
SemanticWebService, and every command or declaration must end with a
semicolon. Otherwise, an error will occur in the editor. According to Figure 3,
a SemanticWebService must have relations with Grounding, Process, and
Interface. Each instance model must contain these elements and the
relations between them. Part of the Xtext code for supplying these relations is
given in Listing 11. Line 4 forces the user to use the 'describes' relation. Lines
10, 11, and 16 have similar meanings.

Some rules are written in order to provide a specific sequence of code,
while another group of rules allows them to be independent of a sequence
within the textual instance model, where it is required. For example, Lines 10
and 11 are written to supply the independency within the sequence of
relations in Listing 11. The user can define the 'supports SWS' relation before
or after a 'calls WebService' relation. In addition, the user can define the 'calls
WebService' relation as often as necessary, whereas it is restricted to
defining only one 'supports SWS' relation.

According to the Agent-SWS Interaction viewpoint, each instance model
should have at least one SemanticWebAgent and one SemanticWebService
supplied with the 'Validation Package'. Listing 12 shows the implementation
of the checkAtLeastOneSWS constraint.

In Listing 12, Lines 4 to 8 capture the SemanticWebServices from the
AgentSWSInteractionViewpoint and place them on a list (swslist). In Line 9,
the size of the 'swslist' is controlled. If there is no element within the list, the
editor will show an error.

Sebla Demirkol et al.

1544 ComSIS Vol. 10, No. 4, Special Issue, October 2013

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

Process:
 'Process' name=ID';'|
 process=[Process] '{'
 'describes' sws=[SWS] ';'
 …
 '}';
Grounding:
 'Grounding' name = ID';' |
 grounding = [Grounding] '{'
 ('supports' sws=[SWS] ';') &
 ('calls' service += [WebService] ';')*
 '}';
Interface:
 'Interface' name = ID ';' |
 interface=[Interface] '{'
 'presents' sws=[SWS] ';'
 …
 '}';

Listing 11. Parts of Process, Grounding, and Interface rules

In regard to the constraints when creating plans, we can consider plan
types in Agent-SWS Interaction viewpoint. According to SEA_L, textual
concrete syntax, Semantic Service Plans (SS_RegisterPlan, SS_FinderPlan,
SS_AgreementPlan and SS_ExecutorPlan), and their relations, must be in a
specific order within the instance models. This order helps increasing
readability of the program. These sequence restrictions are supplied with
EBNF rules in Listing 13.

01

02

03

04

05

06

07

08

09

10

11

12

13

@Check

public void checkAtLeastOneSWS(
 AgentSWSInteractionViewpoint sws) {
 SWSInteractionViewpoint agent =

 EcoreUtil2.getContainerOfType(sws,

 SWSInteractionViewpoint.class);
 List<SWS> swslist =

 EcoreUtil2.getAllContentsOfType(agent, SWS.class);

 if((swslist.size()<1))
 error("There must be at least one
 SWS", AgentSWSInteractionPackage.Literals.

 SWS_INTERACTION_VIEWPOINT__NAME);
}

Listing 12. Validation Package code for supplying at least one SWS constraint

According to Lines 2 and 3, any general Plan or Semantic Service Plan
can be defined within the instance model. A Plan can be defined with or
without its 'type', 'description' and 'priority' attributes. The ‘?’ character at the
end of each statement makes it optional. If Semantic Service Plans are
considered, the order should be as defined in Lines 5 to 8. In Line 11, it is

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1545

stated that one or more ‘advertises interface’ relation can exist. Similar rules
are defined for other plan types in Lines 15-16, 20, and 24-25.

The Xtext can generate EBNF rules from a given metamodel. It can also
generate a metamodel from the EBNF rules. However, we preferred to define
EBNF rules manually in order to supply some syntactical restrictions and
constraints such as defining relations in a specific order (Xtext cannot extract
the order from the metamodel because the metamodel has not such an
attribute by itself). It is worth noting that when starting from the already-
existing metamodel and defining EBNF rules manually, one should be careful
to properly match the metamodel with the grammar.

In this study, as mentioned previously, some controls are also used with a
formatting package in addition to using some controls with a validation
package. For example, some rules are defined for modifying the written
program in order to rearrange the format of the code to gain more readability.
Moreover, some other Xtext facilities are used, e.g. Wizard sample code,
Highlighting (for keywords, comments, variables, etc), and Quick-fixing for
errors.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Plan returns Plan:
 ('Plan' name = ID (type=STRING)?
 (description = STRING)?(priority=INT)? ';') | PlanSequence;

PlanSequence returns Plan:
 reg = SS_RegisterPlanDef
 find = SS_FinderPlanDef
 agree = SS_AgreementPlanDef
 exe = SS_ExecutorPlanDef ;
SS_RegisterPlan:
 plan=[SS_RegisterPlanDef] '{'
 ('advertises' interface+=[Interface] ';')+
 '}';
SS_FinderPlan:
 plan=[SS_FinderPlanDef] '{'
 'interactsWith' matchmaker=[SSMatchmakerAgent]';'
 ('discovers' interface+=[Interface]';')*
 '}';
SS_AgreementPlan:
 plan=[SS_AgreementPlanDef] '{'
 ‘negotiates' interface=[Interface] ';'
 '}';
SS_ExecutorPlan:
 plan=[SS_ExecutorPlanDef] '{'
 'executes' process=[Process] ';'
 'uses' grounding=[Grounding] ';'
 '}';

Listing 13. Sample Plan rules

Sebla Demirkol et al.

1546 ComSIS Vol. 10, No. 4, Special Issue, October 2013

3.5. Code Generation

It is not sufficient to complete the DSL definition only by specifying the
notions and their representations. A complete definition requires that one
provides the semantics of language concepts in terms of other concepts, the
meanings of which are already established. Therefore the syntax of the
SEA_L is mapped into the metamodels of existing agent platforms that have
well-defined, understood, and executable semantics. This mapping is
provided through model transformations [5, 9, 31, 44]. Model to code
transformations follow these model transformations and, finally, an
executable software code is achieved for exact MAS.

In our study, code generation for the instance models is supplied with the
Xpand tool [50]. Many of model driven engineering approaches accomplish
code generation by writing strings to the text files. Xpand is a template engine
which is used to make this process easier. It allows for creating textual output
using EMF [10] models. The text output can be coded within any
programming language. Xpand requires an EMF metamodel and one or more
templates for translating the model into text. Once the requirements are
provided, code generation can be provided by first defining an EMF model
and running the generator. Xpand supplies traverse the abstract tree of the
provided model and generate the code along the way [51].

In this study, Xpand is used for the generation of JADEX [23] code, along
with OWL [36] and OWL-S [37] files from SEA_L specifications, and
corresponding instance models. The code generation of JADEX agents from
the SEA_L's Agent Internal viewpoint, and the generation of OWL-S SWS
documents from SEA_L's Agent-SWS Interaction viewpoint, are exemplified
in this paper.

JADEX is one of the popular APIs for developing software agents. JADEX
code is composed of two files: the Agent Definition File (ADF), in which an
agent’s Beliefs, Goals, and Plans are defined using XML code, and the
JADEX Plan File, in which Agent plans are defined using Java code.
According to the JADEX platform, each agent has an ADF file. Therefore, in
our study, an ADF file is generated for each SemanticWebAgent of a SEA_L
instance model. The Beliefs, Goals, Plans, Behaviors, and Capabilities of
SemanticWebAgents are defined within ADF with corresponding tags, but the
JADEX Plan files include pure Java code for defining corresponding tasks.

In the generated code for SEA_L models, SEA_L ontological entities such
as agent knowledge-bases are coded in OWL. Moreover, SWSs modeled in
SEA_L instances are implemented according to OWL-S specifications. Both
OWL and OWL-S are perhaps the most popular and in-use technologies for
describing ontologies and SWS definitions.

An instance model, which conforms to the SEA_L metamodel, is in fact a
platform independent model. In order to achieve its platform specific
counterparts (e.g. its JADEX counterpart), mappings are needed between the
SEA_L metamodel and metamodels of agent development frameworks (e.g.,
JADEX, JADE [22]). Since we focus on the JADEX platform in this study, we
need to provide entity mappings between SEA_L and JADEX metamodels.

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1547

These mappings pave the way for transforming the source model (SEA_L)
into the target model (JADEX). The mappings are illustrated in Table 1.

As discussed in subsection 3.1, the Agent Internal viewpoint focuses on the
internal structure of every Agent within a MAS organization. Hence, in order
to generate JADEX code, Agent Internal viewpoint is mapped to a JADEX
metamodel. On the other hand, the Agent-SWS Interaction viewpoint
represents the interaction between SemanticWebAgents and
SemanticWebServices. Thus, it is mapped to both JADEX and OWL-S
metamodels (see Table 1). The generated ontology files for Agent-SWS
Interaction viewpoint are provided together with the ADF and Plan files for
the Agent Internal viewpoint. Since the generations of ADF and Plan files for
the Agent-SWS Interaction viewpoint are very similar to those for the Agent
Internal viewpoint, it is not repeated here.

It is worth noting that both the mappings between SEA_L and JADEX and
SEA_L and OWL-S take place simultaneously. In fact the SEA_L instance
elements pertaining to agent and MAS viewpoints are transformed into
JADEX instances while remaining elements of the same SEA_L instance
model, which are used to model semantic web services, are transformed into
OWL-S instances.

Table 1. Mapping between SEA_L, JADEX and OWL-S Metamodels

SEA_L JADEX OWL-S

SemanticWebAgent Agent

SSMatchmakerAgent Agent

Plan Plan

Behavior Plan

Capabilities Capability

Goal AchieveGoal

Goal QueryGoal

Goal PerformGoal

SS_AgreementPlan Plan

SS_ExecutorPlan Plan

SS_FinderPlan Plan

SS_RegisterPlan Plan

SemanticWebService Service

Interface ServiceProfile

Process ServiceModel

Grounding ServiceGrounding

Input Input

Output Output

Precondition Condition

Effect ResultVar

For code generation, a metamodel namespace is initially imported in order

to make the meta-types known to the editor, as shown in Line 1 of Listing 14.
Next, the main template is created. Each template is defined by a rule
starting with the DEFINE keyword (see Line 2 of Listing 14). Xpand’s

Sebla Demirkol et al.

1548 ComSIS Vol. 10, No. 4, Special Issue, October 2013

keywords and meta-type references are always enclosed in '«' and '»'
characters.

01
02
03
04
05
06
07
08
09

«IMPORT org::xtext::example::mydsl::myDsl»
«DEFINE main FOR SWSInteractionViewpoint»
…
«EXPAND owlservice FOREACH service»
«EXPAND owlsprofile FOREACH service»
«EXPAND owlsmodel FOREACH service»
«EXPAND owlgrounding FOREACH service»
«EXPAND wsdl FOREACH service»
«ENDDEFINE»

Listing 14. Defining main elements and invoking templates

Each template consists of a template name and meta-type on which the
template can be called. In this way a template is rather like a sub-routine,
parameterized by a meta-type and other optional parameters [27]. So, in our
study, model transformations are supplied in a built-in way between the
SEA_L, JADEX, and OWL-S metamodels. For example, a
SemanticWebAgent element in an instance model of SEA_L is transformed
into a JADEX Agent element while generating the code. These
transformations are supplied regarding the mappings in Table 1.

In Listing 14, for each Service, 'owlservice', 'owlsprofile', 'owlsmodel',
'owlsgrounding', and 'wsdl' (Web Service Definition Language) templates are
invoked between lines 4 to 8. Each SemanticWebService is represented in a
'Service.owl' file. For example, for an 'Electronic Barter Service', an
'EBarterService.owl' file will be produced. 'Service Profile', 'Service Process'
and 'Service Grounding' are described within the 'profile.owl', 'process.owl'
and 'grounding.owl' files, respectively.

According to the second line of Listing 15, a 'Service.owl' file is created.
The other lines of the code are added to the end of this file. The bold
keywords (int, pro and gro) are the predefined variables representing the
Interface, Process, and Grounding, respectively. Lines 4, 7 and 11 are the
point references for the Profile, ProcessModel and Grounding, respectively.
Also, the related service name will be written in generated code by using
'«this.name»' in Lines 3, 5, 9, and 13.

Nested templates are defined for invoking input, output, precondition, and
effect where they are needed. In the Agent Internal viewpoint, an ADF file is
needed for each SemanticWebAgent, and a Plan file is needed for each
Plan. Therefore, the Plans and SemanticWebAgent templates are invoked
within the main template, as represented in Listing 16.

Listing 17 shows the Xpand code for creating Plan files. Lines 3 to 22 are
all boilerplate texts for inserting into the plan file.

The code-block given in Listing 18 represents the belief definitions, as a
sample element, within the generated ADF file. Beliefs are defined in
<beliefs> tags. The attributes of a belief meta-entity are generated using
Lines 3-5 of Listing 18.

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1549

Code generations for other parts of ADF (e.g. Goal and Capability) are
realized in a similar manner.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

«DEFINE owlservice FOR Service»
«FILE this.name + "Service.owl"»
<service:Service rdf:ID= "«this.name»">
 <!-- Reference to the Profile -->
 <service:presents rdf:resource="&«this.name»_profile;#

 «int.name»"/>
 <!-- Reference to the Process Model -->
 <service:describedBy
 rdf:resource="&«this.name»_process;#

 «pro.name»"/>
 <!-- Reference to the Grounding -->
 <service:supports
 rdf:resource="&«this.name»_grounding;#

 «gro.name»"/>
</service:Service>

Listing 15. A part of the Xpand code for defining the OWL-S Service File

01
02
03
04
05

«IMPORT org::xtext::example::agentinternal::agentInternal»
«DEFINE main FOR AgentInternalViewpoint»
«EXPAND plans FOREACH plan»
«EXPAND semanticwebagents FOREACH semanticwebagent»
«ENDDEFINE»

Listing 16. Sample template for invoking plans and semanticwebagents templates

Code generation for other viewpoints including the Environment, Role,
Plan, and Interaction viewpoints are provided similarly. The required code
generated from these viewpoints extend the agents’ files, ADFs and plans, in
the same way as Agent Internal and Agent-SWS Interaction viewpoints do.

As an expected result of applying MDD techniques, SEA_L simplifies the
process of software development for MASs working within a semantic web
environment. When considering the traditional approach for developing this
type of software, a programmer should develop an ADF file (XML format) for
each agent and a plan file (a Java file) for each plan of the agent, and then
interconnect them. Also, the programmer should provide service, profile,
grounding, process model, and WSDL documents for each semantic web
service as required in the OWL-S standard. Meanwhile, the developer should
consider the relation between these documents as well as the interaction
between both the intra agents and agents with semantic web services.
Therefore, the process is quite complex. However, in order to develop this
type of software in SEA_L, the developer only needs to provide a program at
the higher level (abstracting from the target platform constraints), which can
help to produce all the above-mentioned documents and their
interconnections, automatically.

Sebla Demirkol et al.

1550 ComSIS Vol. 10, No. 4, Special Issue, October 2013

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

«DEFINE plans FOR Plan»
«FILE name + ".java"»
import java.util.*;
import jadex.runtime.*;
import java.util.StringTokenizer;
public class «this.name» extends Plan {
 // Plan attributes.
 ...
 // static block or constructor
 ...
 // Constructor code.
 public «this.name»() {
 ...
 }
 // Plan main code.
 public void body() {
 // Send request
 ...
 // Wait for reply
 …
 }
}
«ENDFILE»
«ENDDEFINE»

Listing 17. Xpand code to generate JADEX Plan files

01
02
03
04
05
06
07

«DEFINE beliefs FOR Belief»
<beliefs
 Name = «this.name»
 Description = «this.description»
 dynamic = «this.dynamic»
/>
 «ENDDEFINE»

Listing 18. Sample Xpand code for defining beliefs in ADF

4. Related Work

Studies on DSLs and Domain-specific Modeling Languages (DSML) for
agents have recently emerged, and these very few studies are still at their
preliminary stages. For instance, a DSL called Agent-DSL is introduced in
[28]. Agent-DSL is used to specify those agency properties that an agent
should have in order to accomplish its tasks. However, the proposed DSL is
only presented with its metamodel and just provides visual modeling of the
agent systems according to agent features, such as knowledge, interaction,
adaptation, autonomy, and collaboration. Likewise in [42], the authors
introduced two dedicated modeling languages and call these languages

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1551

DSMLs. These languages are described by metamodels which can be seen
as representations of the main concepts and the relations identified for each
of the particular domains, again introduced in [42]. However, this study
obviously included just the abstract syntax of the related DSMLs and does
not give the concrete syntax or semantics of the DSMLs. In fact, the study
only defines the generic agent metamodels for the MDD of MASs.

In [17], the author introduces a DSML for MAS. The abstract syntax of the
DSML is derived from a platform independent metamodel, which is structured
into several aspects each focusing on a specific viewpoint of a MAS. This
approach is similar to our study. In order to provide the concrete syntax, the
appropriate notations for the concepts and relations are defined in [49]. The
semantics of the language is also given in [18]. These studies are noteworthy
because they seem to provide the first complete DSML for agents, with all of
its specifications. However it supports neither the agents on the Semantic
Web nor the interaction of Semantic Web enabled agents with other
environment members, such as semantic web services. Our study contributes
to the aforementioned efforts by also specializing in the Semantic Web
support of the MASs.

In [19], the authors introduce their approach on integrating agents with
Semantic Web Services (SWSs) on a platform independent level. In addition
to the MAS metamodel described in [17], a new platform independent
metamodel is proposed for SWS. A relation between these two metamodels
is established in a way that the MAS metamodel is extended with new meta-
entities in order to support SWS interoperability and it also inherits some
meta-entities from the metamodel proposed for SWS. Instead of using two
separate metamodels, SEA_L has a built-in support for the modeling of agent
and SWS interactions by including a special viewpoint. Moreover, semantic
knowledge-base and agent internals can also be modeled in SEA_L.

Likewise, a new DSML is provided for MASs in [16]. The abstract syntax is
presented using Meta-object Facility (MOF) [33] architecture. The concrete
syntax and its tool are provided within a Graphical Modeling Framework
(GMF) [11], and finally the code generation for the JACK agent platform [21]
is realized by model transformations using JET [13]. However, the developed
modeling language is not generic since it is only based on the metamodel of
one of the specific MAS methodologies called Prometheus [38]. A similar
study has been realized in [15] which proposes a technique for the definition
of agent-oriented engineering process models and can be used for defining
processes for creating both hardware and software agents. This study also
offers the related MDD tool using Software & System Process Metamodel
(SPEM) [34] and based on INGENIAS methodology [39] for MAS
development. Nevertheless, similar to the DSML introduced in [17], neither
[16] nor [15] cover software agents within the Semantic Web.

By considering our previous studies, in [25], we show how domain specific
engineering can provide easy and rapid construction of Semantic Web
enabled MASs. Ideas have been discussed for abstract syntax, concrete
syntax, and formal semantics. Furthermore, a metamodel, which in fact
constitutes the preliminary version of the abstract syntax of SEA_L, is

Sebla Demirkol et al.

1552 ComSIS Vol. 10, No. 4, Special Issue, October 2013

introduced in [4]. Based on these building blocks, in this paper we have
discussed SEA_L by including its syntax and semantics definitions, and
shown how the language and its tools can be used during the development of
real MASs.

5. Conclusion

This paper discussed the textual concrete syntax of a new DSL, called
SEA_L, for Semantic Web enabled MASs. Additionally, we showed how the
specifications of SEA_L can be used during the development of real MASs.
Hence, agent software developers can first design their MASs by only taking
care of the MAS domain specifications and abstracting from the target
platform constraints. Following this domain specific design, the automatic
application of predefined transformations enables developers to achieve
executable code for the agent system that is intended for implementation in
target platforms such as JADEX. Apart from its unique support for the
Semantic Web, the use of SEA_L also brings an easier way of MAS
development compared to merely programming with JADEX or any other
specific MAS development framework.

For the concrete syntax, meta-elements are mapped to textual notations in
Xtext, textual constraints are provided, and verification of these constraints
was shown within the instance models. In this way, we have provided an
interpreter mechanism and created an automatic code generation for users of
the domain using Xtext and Xpand tools. Transformations from SEA_L to the
other MAS platforms, e.g. JADE and JACK, are aimed in the next step.
Hence, our Xpand-based interpreter for SEA_L presented in this paper can
also be used for the implementation of SEA_L instances in other MAS
platforms in addition to the JADEX.

As future work, we aim to evaluate SEA_L by providing two groups of MAS
programmers with the same programming ability and then give them a real
problem which can be solved by agents working within a semantic web
environment. The first group would apply the classical approach of agent
programming within the JADEX platform and semantic web programming in
OWL-S. The second group would use SEA_L language to develop the
solution and later they would add a complementary code (in JADEX and
OWL-S) to the generated code by SEA_L. Based on their results, we would
compare the development time, the amount of errors occurring for both
groups, and the quality of the final code, again for both groups. In addition,
we would compare the ratio of generated code with the full final code for the
performance evaluation of SEA_L.

Acknowledgment. This study is funded as a bilateral project by the Scientific and
Technological Research Council of Turkey (TUBITAK) under grant 109E125, and the
Slovenian Research Agency (ARRS) under grant BI-TR/10-12-004. Also, we
gratefully acknowledge the helpful comments from anonymous referees.

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1553

References

1. Badica, C., Budimac, Z., Burkhard, H. D., and Ivanovic, M.: Software agents:
Languages, tools, platforms. Computer Science and Information Systems, Vol. 8,
No. 2, 255-298. (2011)

2. Bradshaw, J. M.: Software Agents. MIT Press Cambridge, MA, USA. (1997)
3. Bratman, M. E.: Intention, Plans, and Practical Reason. Harvard University

Press, Cambridge, Massachusetts. (1987)
4. Challenger, M., Getir, S., Demirkol, S., and Kardas, G.: A Domain Specific

Metamodel for Semantic Web enabled Multi-agent Systems. Lecture Notes in
Business Information Processing, Vol. 83, 177-186. (2011)

5. Czarnecki, K., and Helsen, S.: Feature-Based Survey of Model Transformation
Approaches. IBM Systems Journal - Model-driven software development, Vol. 45,
Issue 3, 621-645. (2006)

6. Demirkol S., Challenger M., Getir S., Kosar, T., Kardas G. and Mernik, M.:
SEA_L: A Domain-specific Language for Semantic Web enabled Multi-agent
Systems. Second Workshop on Model Driven Approaches in System
Development (MDASD 2012), held at Federated Conference on Computer
Science and Information Systems (FedCSIS 2012), Wrocław-Poland, 9-12
September, 1373-1380. (2012)

7. Demirkol, S., Getir, S., Challenger M., and Kardas, G.: Development of an Agent
based E-barter System. In International Symposium on Innovations in Intelligent
Systems and Applications (INISTA), IEEE Computer Society, 193-198. (2011)

8. van Deursen, A., Klint, P., and Visser, J.: Domain-specific Languages: an
annotated bibliography. ACM SIGPLAN Notices, Vol. 35, No. 6, 26-36. (2000)

9. Duddy, K., Gerber A., Lawley, M., Raymond, K. and Steel, J.: Model
Transformation: A Declarative, Reusable Patterns Approach. In Azada, D. (Ed.)
proceedings of Seventh IEEE International Enterprise Distributed Object
Computing Conference (EDOC’03), IEEE Computer Society, Brisbane, Australia,
174-185. (2003)

10. Eclipse EMF: [Online] Available: http://www.eclipse.org/modeling/emf (Last
access: March 2013)

11. Eclipse GMF: [Online] Available: http:// www.eclipse.org/modeling/gmp/ (Last
access: March 2013)

12. Eclipse Help for Xtext: [Online] Available: http://help.eclipse.org/helios/index.jsp
(Last access: March 2013)

13. Eclipse JET: [Online] Available:
http://www.eclipse.org/modeling/m2t/?project=jet (Last access: March 2013)

14. Fowler, M.: Domain-specific Languages. Addison Wesley. (2011)
15. Fuentes-Fernandez, R., Garcia-Magarino, I., Gomez-Rodriguez, A. M., and

Gonzalez-Moreno, J. C.: A Technique for Defining Agent-Oriented Engineering
Processes with Tool Support. Engineering Applications of Artificial Intelligence,
Vol. 23, Issue 3, 432–444. (2010)

16. Gascuena J. M., Navarro, E., and Caballero, A. F.: Model-Driven Engineering
Techniques for the Development of Multi-agent Systems. Engineering
Applications of Artificial Intelligence, Vol. 25, 159–173. (2012)

17. Hahn, C.: A Domain Specific Modeling Language for Multi-agent Systems. In
Seventh International Conference on Autonomous Agents and Multi-agent
Systems (AAMAS’08), ACM Press, 233-240. (2008)

Sebla Demirkol et al.

1554 ComSIS Vol. 10, No. 4, Special Issue, October 2013

18. Hahn C., and Fischer K.: The Formal Semantics of the Domain Specific Modeling
Language for Multi-agent Systems. Lecture Notes in Computer Science, Vol.
5386, 145-158. (2009)

19. Hahn, C., Nesbigall, S., Warwas, S., Zinnikus, I., Fischer, K., and Klusch, M.:
Integration of Multi-agent Systems and Semantic Web Services on a Platform
Independent Level. In IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, 200-206. (2008)

20. ISO/IEC 14977:1996 Standard, Information technology, Syntactic meta language
- Extended BNF.

21. JACK: [Online] Available: http://aosgrp.com/products/jack/ (Last access:
March 2013)

22. JADE: Java Agent DEvelopment Framework. [Online] Available:
http://jade.tilab.com/ (Last access: March 2013)

23. JADEX: [Online] Available: http://jadex-agents.informatik.uni-
hamburg.de/xwiki/bin/view/About/Overview (Last access: March 2013)

24. Kardas G., Challenger M., Yildirim S., and Yamuc A.: Design and
Implementation of a Multi-agent Stock Trading System. Software: Practice and
Experience, Vol. 42, Issue 10, 1247–1273. (2012)

25. Kardas, G., Demirezen, Z., and Challenger, M.: Towards a DSML for Semantic
Web enabled Multi-agent Systems. In International Workshop on Formalization
of Modeling Languages, held in conjunction with the Twenty fourth European
Conference on Object-Oriented Programming (ECOOP2010), ACM Press, 1-5.
(2010)

26. Kos, T., Kosar, T., Knez J., and Mernik, M.: From DCOM interfaces to domain-
specific modeling language: A case study on the Sequencer. Computer Science
and Information Systems, Vol. 8, No. 2, 361-378. (2011)

27. Koster, V.: Implementation and Integration of a Domain Specific Language with
oAW and Xtext. Technical Report. (2007)

28. Kulesza, U., Garcia, A., Lucena C., and Alencar, P.: A Generative Approach for
Multi-agent System Development. Lecture Notes in Computer Science, Vol.
3390, 52-69. (2005)

29. Liu, S-H., Cardenas, A., Mernik, M., Bryant, B. R., Gray, J., and Xiong, X.:
Introducing Domain-specific Language Implementation Using Web-Service
Oriented Technologies. Multiagent and Grid Systems, Vol. 8, 19-44. (2012)

30. Macikenas, E., and Makunaite, R.: Applying Agent in Business Evaluation
Systems. Information Technology and Control, Vol. 37, No. 2, 101 – 105. (2008)

31. Mens, T., and Van Grop, P.: A Taxonomy of Model Transformation. Electronic
Notes in Theoretical Computer Science, Vol. 152, 125-142. (2005)

32. Mernik, M., Heering, J., and Sloane, A.: When and how to develop domain-
specific languages. ACM Computing Surveys, Vol. 37, No. 4, 316-344. (2005)

33. Object Management Group, Meta Object Facility (MOF) 2.0 Core Specification.
[Online] Available: www.omg.org/spec/MOF/2.0/ (Last access: March 2013)

34. Object Management Group, Software & System Process Engineering Metamodel
Specification Version 2.0, formal/2008-04-01, 2008. [Online] available at:
http://www.omg.org/spec/SPEM/2.0/ (Last access: March 2013)

35. OMG ODM: [Online] Available: http://www.omg.org/spec/ODM/1.0/ (Last access:
March 2013)

36. OWL: [Online] Available: http://www.w3.org/TR/owl-features (Last access: March
2013)

37. OWL-S: [Online] Available: http://www.w3.org/Submission/OWL-S/ (Last access:
March 2013)

A DSL for the Development of Software Agents working within a Semantic Web
Environment

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1555

38. Padgham, L., and Winikoff, M.: Developing Intelligent Agent Systems: A
Practical Guide. John Wiley & Sons, Ltd Publications. (2004)

39. Pavon, J., Gomez-Sanz, J. J., and Fuentes, R.: The INGENIAS Methodology and
Tools. In Henderson-Sellers, B., Giorgini, P. (Eds.), Agent-Oriented
Methodologies, Article IX. Idea Group Publishing, 236–276. (2005)

40. Pešović D., Vidaković M., Ivanović M., Budimac Z. and Vidaković J.: Usage of
Agents in Document Management. Computer Science and Information Systems,
Vol. 8, No. 1, 193-210. (2011)

41. Rao, A., and Georgeff, M.: BDI Agents: From Theory to Practice. In Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS-95), 312-
319, San Francisco. (1995)

42. Rougemaille, S., Migeon, F., Maurel, C., and Gleizes, M-P.: Model Driven
Engineering for Designing Adaptive Multi-agent Systems. Lecture Notes in
Artificial Intelligence, Vol. 4995, 318-33. (2007)

43. Schmidt, D. C.: Guest Editor's Introduction: Model-Driven Engineering. IEEE
Computer, Vol. 39, No. 2, 25-31. (2006)

44. Sendall, S., and Kozaczynski, W.: Model Transformation: the Heart and Soul of
Model-Driven Software Development. IEEE Software, Vol. 20, Issue 5, 42-45.
(2003)

45. Shadbolt, N., Hall, W., and Berners-Lee, T.: The Semantic Web Revisited. IEEE
IEEE Intelligent, Vol. 21, Issue. 3, 96-101. (2006)

46. Sycara, K.: Multi-agent Systems. AI Magazine, Vol. 19, 79-92. (1998)
47. Vallecillo, A.: A Journey through the Secret Life of Models. In Perspectives

Workshop: Model Engineering of Complex Systems (MECS), 08331 in Dagstuhl
Seminar Proceedings, Germany. (2008)

48. Varanda-Pereira, M. J., Mernik, M., Da Cruz, D., and Henriques, P. R.: Program
Comprehension for Domain-specific Languages. Computer Science and
Information Systems, Vol. 5, No. 2, 1-17, (2008)

49. Warwas S., and Hahn, C.: The Concrete Syntax of the Platform Independent
Modeling Language for Multi-agent Systems. In Agent-based technologies and
applications for enterprise interoperability, held in conjunction with the Seventh
International Conference on Autonomous Agents and MASs, AAMAS. (2008)

50. Xpand: [Online] Available: http://wiki.eclipse.org/Xpand (Last access: March
2013)

51. Xpand documentation: [Online] Available:
http://ditec.um.es/ssdd/xpand_reference.pdf (Last access: March 2013)

52. Xtext: [Online] Available: http://www.eclipse.org/Xtext/ (Last access: March 2013)

Sebla Demirkol received her B.Sc in Mathematics (Computer Science
division) and M.Sc in Information Technologies from Ege University in 2009
and 2012 respectively. She is currently working as an Assistant Project
Manager in Veripark Software Company. Her main research interests are
model-driven development, multi agent systems and domain-specific
languages.

Moharram Challenger received his B.Sc., and M.Sc. degrees in computer
engineering from IAU-Shabestar and IAU-Arak Universities (Iran) in 2001 and
2005 respectively. Since 2006, he has been a tenure-track faculty member,
as a lecturer, at computer engineering department, IAU-Shabestar University.

Sebla Demirkol et al.

1556 ComSIS Vol. 10, No. 4, Special Issue, October 2013

He is currently a Ph.D. candidate at Ege University, International Computer
Institute with expected graduation of 2013. His research interests include
domain-specific (modeling) languages, multi-agent and distributed systems
with a current focus on the semantics of DSMLs. Moharram is also a student
member of the IEEE and ACM.

Sinem Getir received her B.Sc in Mathematics (Computer Science division)
and M.Sc in Information Technologies from Ege University in 2009 and 2012
respectively. She is currently a research assistant and a Ph.D. candidate in
the University of Stuttgart. Her main research interests are model-driven
development, formal semantics, model checking, and run-time verification.
Other research interests are multi-agent systems and self-adaptive systems.

Tomaž Kosar received the Ph.D. degree in computer science at the
University of Maribor, Slovenia in 2007. His research is mainly concerned
with design and implementation of domain-specific languages. Other
research interest in computer science include also domain-specific modelling
languages, empirical software engineering, software security, generative
programming, compiler construction, object oriented programming, object-
oriented design, refactoring, and unit testing. He is currently a teaching
assistant at the University of Maribor, Faculty of Electrical Engineering and
Computer Science.

Geylani Kardas received his B.Sc. in computer engineering and both M.Sc.,
and Ph.D. degrees in information technologies from Ege University in 2001,
2003 and 2008 respectively. He is currently an assistant professor at Ege
University, International Computer Institute. His research interests include
model-driven software development, domain-specific (modeling) languages,
agent-oriented software engineering and the Semantic Web. He is a member
of the ACM.

Marjan Mernik received his M.Sc., and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998 respectively. He is currently
a professor at the University of Maribor, Faculty of Electrical Engineering and
Computer Science. He is also a visiting professor at the University of
Alabama in Birmingham, Department of Computer and Information Sciences,
and at the University of Novi Sad, Faculty of Technical Sciences. His
research interests include programming languages, compilers, domain-
specific (modeling) languages, grammar-based systems, grammatical
inference, and evolutionary computations. He is a member of the IEEE, ACM
and EAPLS.

Received: November 5, 2012; Accepted: April 29, 2013

