
DOI: 10.2298/CSIS121218068R

Using Reverse Engineering to Construct the
Platform Independent Model of a Web Application

for Student Information Systems

Igor Rožanc and Boštjan Slivnik

University of Ljubljana
Faculty of Computer and Information Science

Tržaška cesta 25, 1000 Ljubljana, Slovenia
{igor.rozanc,bostjan.slivnik}@fri.uni-lj.si

Abstract. A methodology for extracting the domain knowledge from an
existing three-tier web application and subsequent formulation of the plat-
form independent model (PIM) is described. As it was devised during a re-
verse engineering process of an existing web application which needed to
be reimplemented on a new platform using new technology, it focuses on
the domain knowledge and business functions. It produces the business
model and the hypertext model leaving the presentation model aside. The
methodology is semi-automated — the generation of the activity diagrams
and parts of the hypertext model must be in part performed by an analyst,
preferably the one with some domain knowledge. As the paper is primar-
ily aimed at practitioners, a case study illustrating the application of the
presented method is included.

Keywords: reverse engineering, web application, platform independent
model, PL/SQL

1. Introduction

Reverse engineering of an existing software application can be aimed at differ-
ent goals. One is to gain the insight into a competitors’ product to learn how to
replicate its design, the other is to discover possible patent infringements. Often
it is performed to produce various kinds of documentation [5] as the documen-
tation might be either outdated or even nonexistent. The final result of reverse
engineering is a description of the application at a higher level of abstraction, but
this may be understood differently by different people. If only the documentation
has to be obtained, reverse engineering can result in a formal text description.
However, if the result is to be used further on, i.e., for upgrading, modification
or even reimplementation of the existing application, diverse design models are
needed.

Although a software technical specification can be either missing or out-
dated simply because of a professional misconduct, the deficient software spec-
ification can result from a particular software development model used to pro-
duce the application. For instance, if the agile software development methodol-
ogy is used [29], it is quite possible that no detailed software specification will

Igor Rožanc and Boštjan Slivnik

ever be produced since one of the main principles of the “Manifesto for Agile
Software Development” explicitly values working software over comprehensive
documentation [3]. Furthermore, the agile methodology concentrates more on
management rather than on technical aspect and documentation [25].

Later on the agile approach to software development can become an ob-
stacle for the maintenance of the application for many reasons. First, porting
an application from the existing platform to a new one might be difficult (even if
the new platform is only a major new version of the existing platform). Second,
business processes might change and since they are hard coded, a significant
amount of the code must be changed. Third, in time people initially working on
the application get replaced by new people with less insight into the application.

Hence, at certain point in the application’s life cycle the existence of a model
at a higher level of abstraction is an advantage for both managers and pro-
grammers [37]. Furthermore, it can also reduce maintenance costs [18]. The
appropriate model can be produced even if no domain knowledge nor the appli-
cation’s architecture is known but even a limited amount of domain knowledge
and insight into the application’s architecture proves to be highly beneficial.

As the model-driven development (MDD) promotes a definition of the soft-
ware development through a hierarchy of defined models at different levels of
abstraction, it seems a natural choice for the formulation of the results obtained
by reverse engineering [20, 30, 42]. These models are defined by the model-
driven architecture (MDA) which implements the MDD. An important character-
istic of MDA is promotion of the automatic generation of the lower level descrip-
tion models - the application code in the selected technology. Additionally, MDD
promotes the use UML notation which became a standard modeling approach
supported by various efficient tools. Thus by selecting the platform independent
model (PIM) as defined in MDA for the final result of reverse engineering we
gain a clear definition and an important advantage for the subsequent reimple-
mentation of the application.

This paper describes a methodology of reverse engineering for producing
the platform independent model (PIM) in order to modernize the application. In

Fig. 1. The idea of reimplementation of an existing application using model-driven ap-
proach.

1558 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

the ideal situation it would be used by the Architecture-Driven Modernization
approach [41] as shown in Fig. 1. The methodology is especially targeted for
situations where the team producing the PIM includes at least some members
of the development team. Unlike some other papers [35], the paper includes
an in-depth case study on how the methodology has been applied to a real
world application. Initially the methodology advocated the generation of busi-
ness model only [36]. As described here, it has been extended to include the
generation of the hypertext model as well (leaving the presentation model aside
as it is not needed if the application is reengineered). The generated class di-
agrams are now fully object oriented and by far the most critical part, i.e., the
generation of the activity diagrams, has been improved significantly with (a) a
new step of dead code elimination and (b) semi-automatic code simplification.
Furthermore, the latest experiences with the described method are included as
well.

Nowadays a large number of different languages, technologies and tools for
the development of web applications is available. Hence, a completely general
description of reverse engineering is almost impossible to formulate: either it is
too general to be valuable as no concrete actions and procedures can be de-
scribed or in trying to be comprehensive it becomes too large and imprecise.
To ensure the paper has a practical value, the approach is given for the Oracle
DB and Oracle Portal1 as the selected case study is based on this technology.
It is believed the Oracle technology is a good choice for presenting the new ap-
proach as it is (1) wide spread, (2) suitable for implementing the most complex
web applications, and (3) a market leader and model for others. However, as
PL/SQL is not object oriented (OO), reverse engineering of an existing PL/SQL
application and generation of the PIM involve the shift to the OO-design.

The rest of the paper starts with Section 2 which contains an overview of the
application used as a case study. Section 3 gives a short introduction into what
the PIM of a web application should consist of. Section 4 describes elimination
of unused parts of the application. Sections 5 and 6, the core of the paper,
describe how the PIM can be extracted from an existing web application. The
next two sections present the practical experience gained while producing the
PIM for the actual real-world web application, and the discussion. The paper is
concluded with a section on related work and conclusion. For the purpose of
this paper, figures obtained from the generated diagrams have been manually
translated to English.

2. A student information system as a case study
As the procedure presented in this paper sprang from practice, a case-study
based on a web student information system named e-Študent (developed and
initially deployed at the Faculty of Computer and Information Science of the
University of Ljubljana, Slovenia) is to be introduced first [26, 27].

1 The company, product and service names used in this paper are for identification
purposes only — all trademarks and registered trademarks are the property of their
respective holders.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1559

Igor Rožanc and Boštjan Slivnik

e-Študent is a student information system developed and used at the Uni-
versity of Ljubljana, Slovenia. It is a three-tier web application built using the
Oracle DB and Oracle Portal technology and written primarily in PL/SQL with
some JavaScript. It consists of almost 800 different programming objects (dy-
namic pages, stored procedures and functions) with over 220.000 lines of code
in total; its database contains almost 120 tables. The developer team consisted
of people who were themselves developers and users at the same time, and
hence the agile methodology seemed a natural choice [3, 29].

The development of e-Študent started in 2001 and by 2003 the initial release
has been used by most faculties of the University of Ljubljana. Its main functions
are providing electronic support for student enrollment, management of exami-
nation records and grades, and keeping the alumni records. All together it has
been used by approximately 20.000 users (students, professors and staff). In
2008 the University of Ljubljana decided to replace e-Študent with at that time
yet nonexistent successor. The reasons were many. First, the existing e-Študent
was designed to be used by a single faculty and therefore different faculties
were running their own instances instead of a single inter-faculty instance de-
sired by the University. Second, as the number of elective courses increased
dramatically by the introduction of the imminent new Bologna study programs
(compared with the old pre-Bologna programs), the structure of the study pro-
grams was modified significantly and, sometimes even within the same faculty,
in different directions.

The new system built after 2008 did not meet the expectations as it was
focused more on implementing additional functionalities and less on suitable
implementation of the existing, i.e., essential, ones. After the new system was
made and evaluated it has been realized that during the development and main-
tenance of the original e-Študent a huge amount of the domain knowledge had
been accumulated. In fact, due to the turbulent times of the Bologna reform,
the source code of e-Študent is most likely the most comprehensive and the
most formal specification of the student examination process. It is precisely this
domain knowledge that should be extracted during reverse engineering, and it
should be extracted as a model suitable for the development of e-Študent’s suc-
cessor after the first attempt, i.e., without eŠtudent domain knowledge, failed.

3. Platform independent model of a web application

Model-driven development is based on a notion of automatic transformations
between different models describing an application on different levels. In the
ideal situation, a developer would produce a platform independent model (PIM),
add some platform specifications to reach the platform specific model (PSM),
and finally generate the application [24]. Apart from this, the PIM provides a
standard way to model an application in a technology independent way, i.e., by
using UML diagrams. This approach is supported by a number of tools [42].

For web applications it has been advised [32] that the PIM should consist of

– a business model,

1560 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

– a hypertext model, and
– a presentation model.

Apart from the (usual) business model describing the business processes, the
hypertext model describes how web pages are built and linked while the presen-
tation model contains details of the graphic appearance of a web application.
The three-model web application description is a prevalent approach supported
by most methods, however other model names, i.e., content, navigation and
behavior model, may be used instead [7, 42].

It has been shown that by using the appropriate MD methodology, namely
URDAD [39], out of 13 different kinds of UML diagrams only the following 4
kinds of diagrams are sufficient to produce the business model:

– class diagram,
– use case diagram,
– activity diagram, and
– sequence diagram.

The first three types are usually produced during the analysis phase (which
is not an issue in reverse engineering) while all four types are needed during
the design phase. Class diagrams are used for the service contract and for the
collaboration context, use case diagrams are used for the responsibility identi-
fication and allocation, activity diagrams specify the full business process while
sequence diagrams denote the user work flow and the success scenario [39].

The hypertext model is an abstract description of the composition and navi-
gation between web application pages, page elements, and fragments of page
elements [32]. This model is especially important in case of dynamic web ap-
plications with their distributed integration, user directed flow of execution and
dynamic creation of HTML forms [33].

In most cases the PIM of an existing application is needed when the ap-
plication must be reimplemented using the new platform. Hence, the focus is
on the business model and the hypertext model; the presentation model is less
important as it is to be replaced by a new one suitable for the new platform.

4. Elimination of the dead code and the dead data

During the development and especially during the maintenance developers pro-
duce a number of redundant code and data objects which are not used by the
application anymore. Some of these objects might contain older or alternate
solutions, some are temporary data collections, etc. Most of them are obsolete
or even invalid.

The technique for dead code and dead data elimination is pretty straight-
forward: all objects not identified as live are considered dead. Live objects are
identified using the following two steps:

1. Determining live root objects: In general, this step depends highly on the
technology the application is made in. For the application that has been
designed using the Oracle Portal and Oracle DB, the application’s start page

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1561

Igor Rožanc and Boštjan Slivnik

User pages Dyn. pages Procedures Functions Tables Triggers
All objects 288 253 523 291 382 65
Live objects 236 186 388 207 117 58
Percentage 81.94 73.52 74.19 71.13 30.63 89.23

Table 1. The summary of dead code and dead data elimination.

and start pages of Portal user groups are retrieved from the Portal’s Data
Catalog.

2. Computing all live objects: Once the root objects are known, all objects
reachable from the root objects must be identified. In other words, a tran-
sitive closure of the set containing the root objects must be computed. The
connections among objects can be obtained by (a combination of) the fol-
lowing two methods:

– by inspecting the metadata contained in the Portal’s Data Catalog;
– by parsing every object and extracting all links to other objects.

Inspecting the metadata can most often produce perfectly adequate results.
However, if nonstandard techniques have been used, the second method
must be used also — it requires more effort since a parser for every pro-
gramming language used within the application must be produced.

Note that the dead code elimination works on entire objects: if an object, i.e.,
a dynamic page, stored procedure or function, is found to be used, its entire
contents is considered as live — dead code elimination within each particular
code object is performed during the construction of activity diagrams.

Case study: e-Študent is an application made in Oracle Portal using Oracle DB.
By inspecting the application’s metadata in Oracle Portal the application’s start
page, five user groups and start pages for each user group were identified.

The core of the entry point for each user group is designed as a menu imple-
mented in JavaScript (see also the description of use case diagrams below). By
parsing JavaScript implementations of menus for all user groups the initial list of
live user pages was obtained. Using Portal’s Data Catalog all other live objects
of the application were determined; apart from the user pages the list of live
objects includes dynamic pages, stored procedures and functions, database
tables and triggers.

The results of the dead code and dead data elimination are presented in
Table 1. Note that more than 25 % of all code implementing the business logic,
i.e., dynamic pages, stored procedures and functions, are not used. This is
mainly due to the changes introduced during the Bologna reform. Likewise,
almost 70 % of all tables are not used: many tables were introduced for live
testing but later not removed for safety reasons.

1562 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

5. Producing the business model

5.1. Class diagrams

Class diagrams represent the static structure of software systems in a graphical
way [31]. Hence, it describes the structure of data and the structure of business
processes.

In reverse engineering of a non-OO application based on the relational
database the structure of data is obtained from the entity relationship model
(ERM). The ERM might not exist or might be outdated, but it can be generated
by inspecting the database using standard database tools. Once the relevant
ERM is obtained, it is first transformed automatically into the conceptual class
diagram, i.e., a class diagram without methods. This transformation encom-
passes the following rules [40]:

– Class definition: each entity is transformed into a separate class without any
methods.

– Attribute definition: all table fields are transformed into attributes of appro-
priate classes.

– Associations definition: relations are transformed into associations and ag-
gregations.

The names of classes and attributes are the same as the names of the cor-
responding entities and fields; classes corresponding to composite types get
synthetic names.

The list of different tools that can carry out this transformation (at least to
some degree if not entirely) includes tools like ‘PowerDesigner’ by SAP Sy-
base [4], ‘UML Modeler for SQL’ by Entrionics [2], and ‘Altova UMODEL 2012’
by Altova [1].

Although conceptional class diagram can be considered adequate [40], the
proper way is to augment its classes with methods so that the resulting class
diagram includes the description of behavior. During reverse engineering, the
behavior is extracted from the stored procedures and functions of an existing
application. To enhance the class diagram with methods, each stored procedure
and function should be mapped into a method of a certain class. In cases where
a stored procedure or function is associated with one table only, it is automati-
cally transformed into a method of a class representing that table. Otherwise, a
skilled analyst should manually determine the appropriate class.

Case study: The class diagram of e-Študent was made in two steps. In the first
step, the ERM of e-Študent was automatically generated and transformed into
the conceptional class diagram using PowerDesigner. The entire conceptional
class diagram of e-Študent is shown in Fig. 2 which illustrates the overall struc-
ture of the original ER diagram and of the resulting (conceptual) class diagram
at the same time.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1563

Igor Rožanc and Boštjan Slivnik

12/8/12 4:32 PM

Page 1 of 1file:///Users/sliva/Downloads/s3c.svg

0..*
PRED_ASIS_DEL_A_FK

0..*
PRED_ASIS_DEL_FK

0..*
PO_IZJ_FK

0..*
PO_PRE_FK

0..*
PP1_IZJ_FK

0..*
PP1_PRE_FK

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1 0..*

1..1

0..*

1..1

0..*

1..1
0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

1..1
0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*0..1 0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*
0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1 0..*0..1 0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1
0..*0..1
0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1
0..*

1..1

0..*

0..1
0..*

1..1

0..*

1..1

0..*

1..10..*

1..1

0..*

1..1

0..*

1..1

0..*
1..1

0..*

1..1

0..*

1..1

0..*

1..10..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*
1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1
0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..* 1..1
0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*
0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1
0..*

0..1

0..*
0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*
1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..10..*

1..1

0..*

0..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

0..*
EKV_PRE_B_FK

0..*
EKV_PRE_FK

0..*
PD_PRE_FK

0..*
PD_VSI_FK

ABSOLVENT
+
+
+
+
+
+
+
+

ZAP_ST
ABS_STAZ
USR_INS
TS_INS
IP_INS
IP_UPD
TS_UPD
USR_UPD

: double
: Date
: String
: Date
: String
: String
: Date
: String

APP
+
+
+
+
+
+
+
+

STUD_LETO
ZG_MEJA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: String
: Date
: Date

BIVANJE
+
+

BIVANJE
POMEN_BIV

: String
: String

CENIK
+
+
+
+
+
+
+
+
+
+
+
+

SIFRA_STORITVE
OPIS_STORITVE
CENA
MERSKA_ENOTA
KONTO1
KONTO2
KONTO3
KONTO4
STROSKOVNO_MESTO
STROSKOVNI_NOSILEC
VIR_FINANCIRANJA
STOPNJA_DDV

: double
: String
: double
: String
: String
: String
: String
: String
: String
: String
: String
: double

CENTRI
+
+
+

VRSTA_STUD
IME_CENTRA
ULICA_CENT

: String
: String
: String

DAT DVIG
+
+
+
+

MESEC_DV
DAN_DV
MESEC_ODD
DAN_ODD

: double
: double
: double
: double

DELAVEC
+
+
+
+
+
+
+
+
+
+
+
+

DELAVEC
PRIIMEK_D
IME_D
EMAIL
GESLO
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
IND_VELJ

: String
: String
: String
: String
: String
: String
: String
: String
: String
: Date
: Date
: double

DELNA_OC
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

LETNIK
LETO_UN
DELEZ_I
DELEZ_V
URE1_SL
URE2_SL
URE3_SL
URE4_SL
NADALJ
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
KRED_TOCKE
IND_ZAKLJUC

: double
: double
: double
: double
: double
: double
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: double
: double

DINAMICNA_TABELA
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

ID_SESSION
ID_REPORT
ZAP_ST
DATUM
COL1
COL2
COL3
COL4
COL5
COL6
COL7
COL8
COL9
COL10
COL11
COL12
COL13
COL14
COL15
COL16
COL17
COL18
COL19
COL20

: double
: String
: double
: Date
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String
: String

DIPLOMA
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

DATUM_DV
ROK_ODD
DATUM_ODD
DATUM_POD
PO_IZP
PO_VAJ
DPO_IV
PRVI_TU
SL_ABS
ST_DIPL
OCENA_DN
OCENA_ZG
DATUM_Z
OCENA_ZS
PRILOGA_DIPL
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
PRILOGA_DIPL_ANG

: Date
: Date
: Date
: Date
: double
: double
: double
: Date
: double
: String
: double
: double
: Date
: double
: String
: String
: String
: String
: String
: Date
: Date
: String

DOD_IZP
+
+

DOD_IZP
POMEN_DI

: String
: String

DRUZ_RAZ
+
+

DRUZ_RAZ
OPIS_DR

: String
: String

DRZAVA
+
+

DRZAVA
IME_DRZ

: String
: String

EKVIVAL
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

FREKVENCA
+
+
+
+
+
+
+
+
+
+

STUD_LETO
LETNIK
DATUM_FREKV
FREKVENCA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: double
: Date
: String
: String
: String
: String
: String
: Date
: Date

GESLO
+
+
+
+
+
+

GESLO_I
MAIL_ADDRESS
USERNAME
GESLO_M
GESLO_CIT
GESLO_EDU

: String
: String
: String
: String
: String
: String

IZBIRNI
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

IZBIRNI3
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

IZJEME
+
+
+
+
+
+
+
+
+
+

LETNIK
LETO_UN
SKUPINA
D_VELJAV
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: double
: String
: Date
: String
: String
: String
: String
: Date
: Date

IZPIT
+
+
+
+
+
+
+
+
+
+
+
+
+

DATUM_OC
ST_POL
OCENA_I
OCENA_V
ST_POL1
VPIS_ST
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
VELJAVEN

: Date
: double
: String
: String
: double
: String
: String
: String
: String
: String
: Date
: Date
: double

IZPRASEVALEC
+
+
+
+
+
+
+
+

IZPR
OPIS_IZPR
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: Date
: Date

JEZIK
+
+

JEZIK
IME_JEZ

: String
: String

KANDIDAT
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

KANDIDAT
PRIIMEK
IME
SPOL
EMSO
ULICA_S
ULICA_S1
DRZAVLJAN
LETO_SS
MLAD_ODR
LETO_D
STOPNJA_D
DEL_DOBA
USPEH_3
USPEH_4
USPEH_ZI
USPEH_VS
OCENA_DIP
ST_1_MEST
ST_2_MEST
ST_3_MEST
ZE_VPISAN
ZSS
IZJAVA
PDRZAVLJ
KRAJ
ZELJA
LETNIK
MORA_DIF
MORA_DIF1
MORA_PR
MORA_PR1
MATICNA_PR
TEST
TELEFON
GSM
E_MAIL
MATURA
TOCKE

: String
: String
: String
: double
: String
: String
: String
: String
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: String
: String
: String
: String
: double
: double
: double
: double
: double
: double
: double
: String
: String
: String
: String
: String
: double

KLASIUS_SRV
+
+
+
+
+

SIFRA
OPIS
OPIS_ORG
NACIN_ZAK_SOL_ZN_NASLOV
RAVEN

: String
: String
: String
: String
: String

KOMISIJA
+ SKUPINA : String

MATURA
+
+

MATURA
POMEN_MAT

: String
: String

NACIN
+
+

NACIN
NAZIV_NAC

: String
: String

NAC_IZV
+
+

NAC_IZV
OPIS_NAC_IZV

: String
: String

NAC_OC
+
+

NAC_OC
POMEN_NOC

: String
: String

NAMEN_PL
+
+

NAMEN_PL
OPIS

: String
: String

NAMERA_Z
+
+

NAMERA_Z
OPIS_NZ

: String
: String

NAPAKA_IZPIT
+
+
+
+
+

TS
KODA
SPOROCILO
VPIS_ST
ID_ROK

: Date
: double
: String
: String
: double

NAROD
+
+

NAROD
IME_NAROD

: String
: String

OBCINA
+
+
+
+
+
+
+
+

OBCINA
IME_OBC
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: Date
: Date

OBVESTILA
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

LETNIK
STUD_LETO
NASLOV_OBV
OPRAVIL
TEKST_OBV
LETO_PRED
DATUM
ST_OBVESTILA
IP_UPD
IP_INS
USR_INS
USR_UPD
TS_INS
TS_UPD
KOLOKVIJ

: double
: double
: String
: String
: String
: double
: Date
: double
: String
: String
: String
: String
: Date
: Date
: String

OBV_PRED
+
+
+
+
+
+

VSI
SKUPINA
LETNIK
OZN_SKUP
VRSTA_OC
STATUS

: String
: String
: double
: double
: String
: String

OBV_SKUP
+
+
+
+
+

LETNIK
OZN_SKUP
NAP_PON
GLAVA
ST_OPR

: double
: double
: String
: String
: double

OBV_STATUS
+
+

STATUS
OPIS_STATUSA

: String
: String

PAGE_ID
+
+
+
+
+
+

MENU_ID
PAGE_ID
PAGE_NAME
PAGE_ID_PIS
PAGE_ID_SKRB
IND_DOSTOP

: double
: String
: String
: String
: String
: String

PARAMETER
+
+
+
+
+
+
+
+
+

PARAMETER
OPIS
VREDNOST
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: String
: Date
: Date

PLACNIK
+
+

PLACNIK
POMEN_PL

: String
: String

POKLIC
+
+
+
+

POKLIC
IME_POK
POKLIC_MSS
POKLIC_ST

: String
: String
: double
: double

POKLIC_S
+
+

POKLIC_S
IME_POK_S

: String
: String

POLOZAJ
+
+

POLOZAJ
IME_POL

: String
: String

POS_POTREBA
+
+

POS_POTREBA
POMEN_POS_POTREBA

: String
: String

POSTAVKA_DOBROPISA
+
+
+
+
+
+
+

VEZA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: Date
: Date

POSTAVKA_RACUNA
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

ID_POSTAVKE_R
OPIS_STORITVE
DATUM_STORITVE
KOLICINA
ZNESEK
STOPNJA_DDV
RACUN_ST
DATUM_STORNACIJE_POSTAVKE
STORNIRAL
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: Date
: double
: double
: double
: String
: Date
: String
: String
: String
: String
: String
: Date
: Date

POSTE
+
+
+
+
+
+
+
+

POSTA
IME_POSTE
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: String
: Date
: Date

POTRDILO
+
+
+
+
+
+
+

ST_POTRDILA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: Date
: Date

PP
+
+
+
+
+
+
+

STUD_LETO
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: Date
: Date

PRAZNIK
+
+

DATUM
IME_PRAZ

: Date
: String

PRED_AT
+
+
+
+
+
+
+
+
+
+
+
+
+

LETO_UN
URE1_SK
URE2_SK
URE3_SK
URE4_SK
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
KVOTA
PROSTI

: double
: double
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: double
: double

PRED_DIF
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

PRED_IZB
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

LETNIK
SEMESTER
IZBIRNI
NADALJ
STROKOVNI
URE1_SL
URE1_T
URE1_T1
URE2_SL
URE2_T
URE2_T1
URE3_SL
URE3_T
URE3_T1
URE4_SL
URE4_T
URE4_T1
LETO_UN
IP_UPD
IP_INS
USR_INS
USR_UPD
TS_INS
TS_UPD
KRED_TOCKE
KRED_TOCKE_PRAVE
NABOR

: double
: String
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: double
: double
: String

PREDMET
+
+
+
+
+
+
+
+
+
+
+
+
+
+

PREDMET
IME_PRED
DOD_OBV
MAX_ST_TOCK
MEJA_POZITIVNO
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
ROK_ZA_SKUPINO
DOLGO_IME
DOLGO_IME_ANG

: String
: String
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: String
: String
: String

PREDMET_KOL
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

STUD_LETO
ST_KOL
MEJA_OPR
DATUM_PK
URA_PK
MIN_POVPRECJE
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
STEVILKA_KOL
MAX_TOCK
VSI_STUDENTI

: double
: double
: double
: Date
: String
: double
: String
: String
: String
: String
: Date
: Date
: double
: double
: double

PRED_OBC
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

PREDPOG
+
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
LETO_UVELJ

: String
: String
: String
: String
: Date
: Date
: double

PRED_PR
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

PREHRANA
+
+

PREHRANA
POMEN_PREH

: String
: String

PRE_PRE
+
+
+
+
+
+

IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: Date
: Date

PRIJAVA
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

DATUM_ODJ
DATUM_PRIJ
DATUM_ZP
ST_POL
ST_POL1
ST_POL2
SL_POS
KOLOK
LETNIK
PLACA_IZP
ST_TOCK_OST
ST_TOCK_PISNI
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
OPOMBE
SKUPINA

: Date
: Date
: Date
: double
: double
: double
: double
: double
: double
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: String
: String

PRIJAVA_KOL
+
+
+
+
+
+
+
+
+

STUD_LETO
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
TREN_POVPRECJE
OCENA_ZE_VPISANA

: double
: String
: String
: String
: String
: Date
: Date
: double
: double

PRIJAVA_U
+
+
+
+
+
+
+
+
+

DATUM_ODJ
IP_INS
DATUM_PRIJAVE
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
URA_IZPITA

: Date
: String
: Date
: String
: String
: String
: Date
: Date
: String

PRILOGA_DIPLOME
+
+
+
+

DOKUMENT
OPIS
TEMPLATE
TEMPLATE_ANG

: String
: String
: String
: String

PRISPEVEK
+
+

PRISPEVEK
POMEN_PR

: String
: String

RACUN
+
+
+
+
+
+
+
+
+
+
+

RACUN_ST
DATUM_IZDAJE_RACUNA
DATUM_STORITVE
ROK_PLACILA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
SKLIC

: String
: Date
: Date
: Date
: String
: String
: String
: String
: Date
: Date
: String

RANGIRANJE
+
+
+

ID
ZAP_ST
RANG

: double
: double
: double

REZULTAT_KOL
+
+
+
+
+
+
+
+

ZAP_ST_KOL
ST_TOCK
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: double
: String
: String
: String
: String
: Date
: Date

ROK
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

DEJ_STEV
ID_ROK
MAX_STEV
DATUM_IZP
PROSTOR
URA
MEJA
SKPN_ST_TC
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
STEV_KOMIS

: double
: double
: double
: Date
: String
: String
: String
: String
: String
: String
: String
: String
: Date
: Date
: double

ROK_U
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

DATUM_UST
PROSTOR
URA
MAX_STEV
DEJ_STEV
ID_ROK_U
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
STEV_KOMIS
DOLZINA_INTERVALA
STEVILO_NA_INTERVAL

: Date
: String
: String
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: double
: String
: double

SALDO
+
+
+

SALDO
RACUN_ST
ROK_PLACILA

: double
: String
: Date

SIFRANT_DATA
+
+
+
+
+
+
+
+

ID_TABLE
F_OD
F_DO
TABLE_NAME
SORT_COLUMN
FROM_PART
WHERE_PART
TABLE_DESC

: String
: double
: double
: String
: String
: String
: String
: String

SIFR_LOOKUP_DATA
+
+
+
+
+

SIFR_TABLE
SIFR_COLUMN
LOOK_TABLE
LOOK_COLUMN
LOOK_CAPT_COLUMN

: String
: String
: String
: String
: String

SKLEPI
+
+
+
+
+
+
+
+
+
+

ST_SKLEPA
ORGAN
DATUM_S
VSEBINA_S
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: Date
: String
: String
: String
: String
: String
: Date
: Date

SKPOBV
+ SKPOBV : String

SKPP
+
+
+
+
+
+
+
+
+

STUD_LETO
VIP_SMER
ZG_MEJA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: String
: String
: Date
: Date

SKUPINA
+
+
+
+
+
+
+
+

SKUPINA
IME_SK
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: Date
: Date

SLED_IZDELAVE_RACUNOV
+
+
+
+
+
+
+

DATUM_IZDELAVE
ZAP_ST
ZACETEK_POSTOPKA
KONEC_POSTOPKA
PRVI_RACUN
ZADNJI_RACUN
NACIN_IZDELAVE

: Date
: double
: Date
: Date
: String
: String
: String

SMER
+
+
+
+
+
+
+
+
+
+
+
+
+

SMER
IME_SMERI
IME_SMERI_K
VELJA_OD
VELJA_DO
VRSTA_PROG
STAT_89
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: double
: double
: String
: double
: String
: String
: String
: String
: Date
: Date

SPP
+
+
+
+
+
+
+
+
+

STUD_LETO
VIP_SMER
ZG_MEJA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: String
: String
: String
: String
: String
: String
: Date
: Date

SREDSOLA
+
+
+
+
+
+
+
+
+

SREDSOLA
DO_LETA
IME_SS1
IME_SS2
IME_SS3
ULICA
SRED_MSS
OD_LETA
IME_K

: String
: double
: String
: String
: String
: String
: double
: double
: String

STANJE
+
+
+
+
+
+
+
+

STUD_LETO
LETNIK
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: double
: double
: String
: String
: String
: String
: Date
: Date

STAT_POS
+
+

STAT_POS
POMEN

: String
: String

STAT_PR
+
+

STAT_PR
POMEN_SP

: String
: String

STATUS_POSTAVKE
+
+

STATUS_POSTAVKE
POMEN

: String
: String

STOP_IZ
+
+

STOP_IZ
POMEN_SI

: String
: String

STOPNJA
+
+
+
+

STOPNJA
IME_STOP
IND_VELJ
IND_VPIS

: String
: String
: String
: String

STUD
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

ULICA_Z
VRSTA_ST
PRVI_TU
PRVI_STUD
SPOL
DATUM_R
LETO_SS
USPEH_SS
USPEH_MA
TOCKE_MA
TOCKE_PZ
TOCKE_SK
UVRSTITEV
VOZNJA
STIP
ZNESEK
DRUZ_POK
LETO_VS
LETO_VIS
OCENA_VIS
ZAP_ST
DO_ZAP
DEL_DOBA
PLACANO
DATUM_PL
IME_OM
VROCANJE_S
VROCANJE_Z
PRVI_TU_LETNIK
SOGLASJE1
SOGLASJE2
SLOVBREZDRZ
OCENA_VS

: String
: String
: double
: double
: double
: Date
: double
: double
: double
: double
: double
: double
: double
: String
: String
: double
: double
: double
: double
: double
: String
: String
: double
: double
: Date
: String
: String
: String
: double
: String
: String
: String
: double

STUDENT
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

PRIIMEK
IME
DATUM_ROJSTVA
EMSO
GESLO
ULICA_S
ULICA_S1
ULICA_P
ULICA_P1
VPIS_ST
KRAJ_ROJSTVA
BLOKADA
GSM
EMAIL
STATUS
PRIJAVA
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
STU_PRIJAVA
ST_OBVESTIL
DNI_OBVESTILA
TELEFON
PRIIMEK_DEKLISKI
DAVCNA_ST

: String
: String
: Date
: String
: String
: String
: String
: String
: String
: String
: String
: double
: String
: String
: String
: double
: String
: String
: String
: String
: Date
: Date
: double
: double
: double
: String
: String
: String

SUM_OCEN_LETNIK_VSI
+
+
+
+
+
+
+
+
+
+

ID
ZAP_ST
VSI
LETNIK
AVG_POLAGANJA_IZPIT
AVG_POLAGANJA_VAJE
AVG_OCENA_IZPIT
AVG_OCENA_VAJE
AVG_OCENA_IZPIT_POZ
AVG_OCENA_VAJE_POZ

: double
: double
: String
: double
: double
: double
: double
: double
: double
: double

TEMA
+
+
+
+
+
+
+
+
+
+
+

ST_TEME
NASLOV_TEME
ST_DVIGOV
KRATEK_OPIS
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
NASLOV_TEME_ANG

: String
: String
: double
: String
: String
: String
: String
: String
: Date
: Date
: String

TMPPRIDNIH5
+
+
+
+
+
+
+
+
+
+
+

VPIS_ST
EMSO
PRIIMEK
IME
POVPRECJE
ST_IZPITOV
ST_VAJ
ST_OPR_IZPITOV
ST_LET
VSI
LETNIK

: String
: String
: String
: String
: double
: double
: double
: double
: double
: String
: double

TOE
+
+

TOE
NAZIV

: String
: String

USMERJANJE
+
+
+
+
+
+

ID
URE
URE_PRVI
SKUPINA
RANG
PONAVLJANJE

: double
: double
: double
: double
: double
: double

VAJE
+
+
+
+
+
+
+
+
+
+
+
+

ST_POL1
OCENA
ST_POL
DATUM_OC
VPIS_ST
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
VELJAVEN

: double
: String
: double
: Date
: String
: String
: String
: String
: String
: Date
: Date
: double

VIP
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

USMERITEV
VIP
IME_VIP
IME_VIP_K
STOPNJA
VELJA_OD
VELJA_DO
STAT_567
ST_SEM
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: double
: double
: double
: double
: String
: String
: String
: String
: Date
: Date

VIP_F
+
+
+

PARAMETER
VREDNOST
OPIS

: String
: String
: String

VLOGA
+
+

VPIS_ST
DATUM

: String
: Date

VPIS
+
+
+
+
+
+
+
+
+
+
+
+
+
+

PLACANO
DATUM_PL
DATUM_ZAJ
LETO_UN
STUD_LETO
LETNIK
KRAJ
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
DALJAVA

: double
: Date
: Date
: double
: double
: double
: String
: String
: String
: String
: String
: Date
: Date
: double

VPIS_DRUG
+
+

VPIS_DRUG
OPIS_VD

: String
: String

VPIS_INT
+
+
+
+
+
+
+
+
+
+
+
+

ZAP_ST
IZB_SK
LETNIK
STEVILKA_PARA
UPORABLJENO
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
IZBIRNI

: double
: String
: double
: double
: double
: String
: String
: String
: String
: Date
: Date
: double

VPLACILO
+
+
+
+
+

ZAP_ST
DATUM
ZNESEK
KREDIT
TRANSAKCIJA

: double
: Date
: double
: double
: String

VRSTA
+
+
+
+

VRSTA
IME_V
IND_VPIS
IND_VELJ

: String
: String
: String
: double

VRSTA_DOKUMENTA
+
+

VRSTA_DOKUMENTA
POMEN

: String
: String

VRSTA_IZJEME
+
+

VRSTA_IZJ
IME_IZJEME

: String
: String

VRSTA_OC
+
+
+

VRSTA_OC
POMEN_VOC1
POMEN_VOC2

: String
: String
: String

VRSTA_POT
+
+
+

VRSTA_POT
NAZIV_VRSTE_POT
OPIS

: double
: String
: String

VSI
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

VSI
IME_VSI
K_IME_VSI
D_IME_VSI
POKLIC
PREIZKUS
VELJA_OD
VELJA_DO
IME_IS
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: double
: double
: String
: String
: String
: String
: String
: Date
: Date

VSI_F
+
+
+

PARAMETER
VREDNOST
OPIS

: String
: String
: String

ZACPOI
+
+
+
+
+
+
+
+
+
+
+
+
+

SESSION_ID
DATUM
ZAP_ST
VPIS_ST
PREDMET
LETNIK
DATUM_IZP
OCENA_IZP
TIP
MORA
OPRAVIL
VSI
KT

: double
: Date
: double
: String
: String
: String
: Date
: String
: double
: double
: double
: String
: double

ZAHF
+
+
+
+
+
+

ID
NUM
ST_ZAHTEVA
ST_POTRDILA
VPIS_ST
VSI

: double
: double
: double
: double
: String
: String

ZAH_IZVOZ
+
+
+
+

SESSION_ID
VRSTA
USER_ID
DATOTEKA

: String
: String
: String
: String

ZAHTEVA
+
+
+
+
+
+
+
+
+
+
+
+
+

ST_POTRDIL
ST_ZAHTEVE
DATUM_ZAH
DATUM_IZD
ULICA_P
ULICA_P1
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
IZBRANO

: double
: double
: Date
: Date
: String
: String
: String
: String
: String
: String
: Date
: Date
: String

ZAVOD
+
+
+
+
+
+
+
+
+
+

ZAVOD
IME_ZAV
ULICA
STAT_1234
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: double
: String
: String
: String
: String
: Date
: Date

Fig. 2. The conceptual class diagram of e-Študent.

In the second step, the conceptual class diagram was transformed into the
proper OO class diagram. The associations, i.e., the mapping of stored pro-
cedures and functions to tables, were first determined using the information
available in Oracle DB Data Catalog and by subsequent parsing of stored pro-
cedures and functions source code2. In cases where a single stored procedure
or function is associated with multiple tables, a heuristic was used to determi-
ne the list of most probable tables a stored procedure or function belongs to:
tables with a higher number of inter table associations are placed higher on
the candidate list. For each such stored procedure and function its sorted list
of table candidates was presented to the analyst. He first selected the right

2 The parser was made using the ANTLR v3.5-based PL/SQL parser by Patrick Higgins,
http://www.antlr3.org/grammar/list.html.

1564 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS
6/18/13 12:03 PM

Page 1 of 2file:///Volumes/NO%20NAME/__COMSIS/class_diagram_1.svg

EXAM_REG
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

STUD_ID
EXAM_ID
REGISTRATION_DATE
CANCELATION_DATE
LAST_REG_DATE
REG_NUM
REG_NUM1
REG_NUM2
ACADEMIC_YEAR
MIDTERM
YEAR
PAYMENT_REQUIRED
POINTS_ON_EXAM
POINTS_LAB_WORK
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
REMARKS
GROUP

: String
: String
: Date
: Date
: Date
: int
: int
: int
: int
: int
: int
: boolean
: int
: int
: String
: String
: String
: String
: Date
: Date
: String
: String

+
+
+
+
+
+
+
+
+
+

FUN_EXAM_REGISTRATION ()
FUN_EXAM_CANCELATION ()
FUN_UPDATE_REMARKS ()
FUN_SAVE_EXAM_RESULTS ()
PROC_WRITTEN_EXAM_REG_LIST ()
PROC_ORAL_EXAM_REG_LIST ()
PROC_OPEN_EXAM_REG_LIST ()
PROC_WRITTEN_EXAM_REGISTRATION ()
PROC_ORAL_EXAM_REGISTRATION ()
PROC_UPDATE_REGISTRATION ()
...

: boolean
: boolean
: int
: int
: void
: void
: void
: void
: void
: void

PERSON
-
-
-
-
-
-
-
-
-
-
-

PERSON_ID
SURNAME
NAME
PASSWORD
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD
IND_VALID

: String
: String
: String
: String
: String
: String
: String
: String
: Date
: Date
: int

+
+
+
+
+
+
+
+
+
+
+
+

FUN_PERSON_NAME ()
FUN_ADD_PERSON ()
FUN_NAME_SURNAME ()
FUN_STAFF_PERSON ()
FUN_USER_IN_GROUP_STAFF ()
FUN_USER_IN_GROUP_PROF ()
PROC_PERSON ()
PROC_PERSON_SUBJECT ()
PROC_SELECT_PERSON ()
PROC_TRUSTEE ()
PROC_MENTOR ()
FUN_SAVE_PERFORMERS ()
...

: String
: boolean
: String
: String
: boolean
: boolean
: void
: void
: void
: void
: void
: boolean

PARAMETER
-
-
-
-
-
-
-
-
-

PARAMETER_ID
DESCRIPTION
VALUE
IP_INS
IP_UPD
USR_INS
USR_UPD
TS_INS
TS_UPD

: String
: String
: String
: String
: String
: String
: String
: Date
: Date

+
+
+
+
+
+
+
+
+
+
+
+
+

FUN_PAR ()
FUN_PARN ()
FUN_TRS ()
FUN_ACADEMIC_YEAR ()
FUN_STAFF_NAME ()
FUN_ADMIN_NAME ()
FUN_NEW_STUD_ID ()
PROC_BANNER ()
PROC_EXCEPTION_PRINT ()
PROC_FORM_FOOTER ()
PROC_DATE_SELECTION ()
PROC_STATUS_REP ()
PROC_REPORT_START ()

: String
: int
: String
: int
: String
: String
: String
: void
: void
: void
: void
: void
: void

PGID
-
-
-
-
-
-

MENU_ID
PAGE_ID
PAGE_NAME
PAGE_ID_STAFF
PAGE_ID_ADMIN
IND_ACCESS

: int
: int
: int
: int
: int
: int

+
+

FUN_PGID ()
FUN_ACCESS ()

: int
: boolean

Fig. 3. Four classes of e-Študent class diagram.

table (usually the first table from the candidate list), and then, using Power De-
signer, declared the method (corresponding to the stored procedure or function
in question) in the class based on the selected table. Four classes of the final
class diagram are shown in Fig. 3. Unfortunately, the entire class diagram with
all details (some methods have 20 parameters!) exceeds the available space.
Method names are the same as names of the stored procedures and functions
the methods are based (prefixes PROC and FUN are inherited from the exist-

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1565

Igor Rožanc and Boštjan Slivnik

ing eŠtudent code, not added). Keeping the same names simplifies the analysts
transition from the old application to the new model.

5.2. Use case diagrams

A use case diagram represents system functionality by exhibiting the interac-
tions between system’s users and the transactions that provide value to users.
They display relationship between actors and use cases [31]. In reverse engi-
neering they are important as they offer unrivaled top-down insight of the sys-
tem’s functionality.

In most web applications, a use case diagram specifies a set of actions that
can be performed by a certain user. In fact, as each user may play different
roles, each use case diagram specifies main operations that can be performed
by a particular user group. Hence a list of user groups must be retrieved from
the system using one of the following two methods:

– by checking the list of user groups stored in the Portal;
– by inspecting the system from the user’s point-of-view (in most cases, user

roles can be determined by inspecting how each user logs into the applica-
tion).

Once the list of user roles is established, one use case diagram per each
user group should be produced. The generation of the use case diagram de-
pends heavily on the technology and tools the web application is made with,
and therefore no list of procedures applicable to all and every tool can be given
here — for the Oracle DB/Portal case, see the case study below.

Users performing different user roles might be allowed to perform operations
common to many different roles. Although a clear sign of an incautious design,
two situations can nevertheless arise in practice:

– One particular function is found in different use case diagrams, either under
the same name or under different names.

– Two functions found in two different use case diagrams share the same
name but denote two substantially different actions.

Using the static analysis of the code it is possible to check whether two functions
are carried out by the same code. However, if they are not, the resolution must
be made manually by a developer/analyst.

Case study: Initially, the five user roles of e-Študent have been determined
using the domain knowledge but the list of user roles kept by the Oracle Portal
has been checked for verification.

The use case diagrams for e-Študent were obtained from the e-Študent
menu files. The menu files were generated by HVMenu 5.413, a public-domain

3 http://www.dynamicdrive.com/dynamicindex1/hvmenu; the latest version
of HVMenu, i.e., 5.5, dates back in 2003.

1566 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

Alumni Menu

Thesis Topics

Thesis Assignments

Thesis Defense

All Thesis Data

Certificate

Thesis Appendix

Book of Alumni Records

List of Alumni Records

Number of Alumni Records

Alumni Analysis

Exit

New / Update

List

Printout

New / Update

Printout

Slovene version

English version

High School

High School Ratings

Overview

Fig. 4. The use case diagram for theses and alumni records: internal nodes represent
(sub)-menus, leaves represent the main operations.

tool for producing Javascript code implementing menus to be used within web
pages. Since generated, these files have a very indicative structure (one call of
Array constructor per menu option) that allowed the entire structure of menus,
submenus and options to be obtained by simple parsing. Hence, under the
assumption (supported by the domain knowledge) that a single menu option re-
flect a single main operation a user can perform, the generation of use case
diagrams was thus reduced to parsing Javascript menu files and producing

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1567

Igor Rožanc and Boštjan Slivnik

the diagrams using the dot tool of GraphViz package by simply ranking graph
nodes from left to right (rankdir=LR). Due to their size, only one of the re-
sulting seven diagrams is shown; see Fig. 4. There are seven diagrams instead
of five because the menu of one particular user group is split into three menus
(one main menu and two submenus).

5.3. Activity diagrams

Activity diagrams are the most important artifacts in terms of the future reimple-
mentation of the existing application as they denote the operational semantics
of business processes [31].

At first glance, the activity diagrams can be produced automatically from the
existing code. Certain tools are available, each specialized for a particular plat-
form. However, no tool seems to be capable of generating activity diagrams for
a real world application that would be suitable for reengineering the application.
In most cases the generated activity diagrams are simply distilled code shown
in a different form and thus they should not be used in the subsequent MDD for
the following two reasons:

– The generated diagrams face granularity problem: understanding of the di-
agrams is obstructed as too many unnecessary details are included while
sometimes some important details are systematically omitted [23, 43, 44].

– The generated diagrams may include some bad design elements which
should not be propagated to the next versions of the application [23].

Hence, producing adequate activity diagrams cannot be fully automated but
it can be machine supported. Namely, before the PL/SQL code is given to an
analyst to retrieve the business logic, the code should be significantly simplified
by automatically removing as much implementation details as possible. The
heuristics used for code simplification is based on the classification of code
fragments into the following categories:

– object structure items;
– control structures (declare, begin, end, if, for, etc.);
– SQL blocks (cursor, select, update, fetch, etc.);
– data presentation (htp. commands for data output);
– data retrieval (textbox, submit, button, checklist, etc.);
– stored procedure and functions calls;
– other PL/SQL code;
– comments;
– other code.

Each fragment containing an SQL block, data presentation or data retrieval
is replaced by a single line. SQL block is replaced by the first SQL command
augmented with the table used; the data presentation fragment and the data re-
trieval fragment are replaced by print <data> and input <data>, respec-
tively, where <data> denotes the data either presented or read. The fragments
of the last kind (other code) are removed.

1568 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

The simplification introduces a risk some important details are removed.
The analyst must be aware of this and when in doubt the original code of each
simplified fragment must be checked.

The described method of code simplification is derived from the method
used for producing workflows in IBM WebSphere Business Integration Work-
bench [43, 44], but it has been modified for the PL/SQL code in the Oracle
platform — the list of categories has been compiled on the basis of authors’
experience.

The code simplified in this way is raised to a higher level of abstraction
and enhances the productivity of the analyst. Once the analyst performs the
transformation of the PL/SQL code, the activity diagram can be generated from
the simplified PL/SQL code automatically.

Case study: To actually produce the activity diagrams for e-Študent, the follow-
ing sources needed to be reverse engineered:

– dynamic pages (HTML + PL/SQL),
– stored procedures and functions (PL/SQL),
– reports (SQL),
– triggers (PL/SQL), and
– JavaScript code.

A naive approach of using a tool to generate activity diagrams, e.g., ‘UML
Modeler for SQL’ as

PL/SQL code: DynPages,procedures,functions

↓ UML Modeler for SQL

Activity Diagrams,

failed exactly for the reasons outlined above. For a single stored procedure the
number of elements within the activity diagram produced automatically using
some tool is proportional to the number of lines of codes, and such a diagram
is not readable even in case of moderate size procedures [36].

Illustrating the processing of a complete dynamic page exceeds the avail-
able space and thus only an excerpt is shown in Fig. 5. The first step consists of
automatic PL/SQL code simplification. Classification of source code constructs
and their subsequent removal or transformation in accordance with the rules
specified above was implemented atop of another PL/SQL parser (also based
on Patrick Higgins’s ANTLR v3-based PL/SQL parser, see Subsection 5.1). Af-
ter manual inspection and further simplification the activity diagram was gener-
ated using the reverse engineering options of ‘UML Modeler for SQL’.

The entire set of activity diagrams includes 781 diagrams — one for every
live dynamic page (186), stored procedure (388) and function (207). Manually

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1569

Igor Rožanc and Boštjan Slivnik

. . .
IF v assistant = a THEN

htp.p(’<tr><td width="30%" align="right">’);
PROC SELECT PERSON(0);
htp.p(’</td><td width="70%"> ’);
PROC SELECT PERSON(1);
htp.p(’</td></tr>’);
t person id := FUN STAFF PERSON;

ELSE
t person id := portal30.wwctx api.get user;

END IF;
htp.p(’<td width="12%" align="right" height="30">*<font class=

"label text">Date from:</td><td width="88%" valign="middle"> ’);
htp.formText(cname => ’f from’, cvalue => v from aux, csize => ’10’, cmaxlength => ’10’, cattributes =>

’class="input field" onChange="checkNull("f from","f from");isValidDate("f from","f from")"’);
PROC DATE SELECTION(’OpenExamRegs form’, ’f from’);
htp.p(’(dd.mm.llll)</td>’);
htp.p(’</tr><tr>’);
htp.p(’<td width="30%" align="right" height="30">*<font class=

"label text">Date from:</td>’);
htp.p(’<td width="70%" valign="middle"> ’);
htp.formText(cname => ’f to’, cvalue => v to aux, csize => ’10’, cmaxlength => ’10’, cattributes =>
’class="input field" onChange="checkNull("f to","f to");isValidDate("f to","f to")"’);

PROC DATE SELECTION(’OpenExamRegs form’, ’f to’);
. . .

. . .
IF v assistant = 1 THEN

PROC SELECT PERSON(0);
PROC SELECT PERSON(1);
t person id := FUN STAFF PERSON;

ELSE
t person id := portal30.wwctx api.get user;

END IF;
INPUT v from aux;
PROC DATE SELECTION(’OpenExamRegs form’, ’f from’);
INPUT v do pom;
PROC DATE SELECTION(’OpenExamRegs form’, ’f to’);

. . .

. . .
IF USER=ASSISTANT THEN

PROFESSOR SELECTION;
ELSE

SET USER STAFF;
END IF;
INPUT DATE1;
CHECK DATE1;
INPUT DATE2;
CHECK DATE2;

. . .

⇓ PL/SQL simplification parser

⇓ manually

UML Modeler for SQL =⇒

Fig. 5. Generating an activity diagram (due to its size only an excerpt is shown): the
source code (top) is simplified twice (first automatically, then by an analyst) to be later
transformed into to the activity diagram.

1570 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

processing all this code objects is a tremendous task, but it is significantly re-
duced using the automatic code simplification and automatic generation of ac-
tivity diagrams using UML Modeler for SQL. In many cases, e.q., maintenance
or consulting, not all activity diagrams should be produced.

In e-Študent, the complexity of reports (generated using Oracle Report Buil-
der), triggers and Javascript sources is not an issue. Therefore, they are con-
sidered as an appendix to the business model.

5.4. Sequence diagrams

Sequence diagrams express interactions and data flow between different ob-
jects within an application and thus describe a dynamic component of business
processes. They may be used at different levels of abstraction to present differ-
ent views of the application: usage scenarios (a description of a potential way
the application is used), the logic of methods (explore the logic of a complex
operation, function, or procedure) or the logic of services (a high-level method,
often invoked by clients).

To generate sequence diagrams, a sequence of calls performed by every
programming object must be obtained first. In PL/SQL code the programming
object are dynamic pages (representing user’s main operations) and stored pro-
cedures and functions (transformed to class methods).

Next, for each object a direct call tree is constructed: the root node contains
the artifact itself and the leaves contain, from left to right, the artifacts called.
Thus, the direct call tree is an ordered tree of height 1 if there are some calls
from the programming object in the root node or 0 otherwise.

A direct call tree is transformed into a complete call tree by repetitive re-
placement of leaves with their direct call trees: a leaf is replaced if its direct call
tree is of height 1 and no internal node on the path from the root to the leaf does
not contain the programming object in the leaf. The transformation is completed
once no leaf can be replaced any more.

Finally, the generated sequence diagram contains user’s main operations
(found in the use case diagrams) and classes (found in the class diagram) in
the head sections while transitions are obtained by a preorder traversal of the
complete call tree.

In this manner, a complete sequence diagram is obtained statically (disre-
garding PL/SQL control structures). There are at least two ways of producing
the sequence diagram dynamically during reverse engineering. The first one is
based on the reconstruction of clickstreams from the data obtained in the ap-
plication’s log files accumulated over many years [34]. The other way is to con-
struct and apply a comprehensive set of test cases [9]. Using the dynamic ap-
proach, a number of sequence diagrams are obtained for each user’s main op-
erations while using the static method outlined above one complete sequence
diagram per user’s main operation, although bigger, is generated.

Case study: For all dynamic pages, stored procedures and functions of eŠtud-
ent, sequences of inter-method calls were retrieved by a simple scanner of the

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1571

Igor Rožanc and Boštjan Slivnik

source code additionally relying on information stored in Portal’s Data Catalog.
By another custom tool these sequences were transformed using the method
described above into a GraphViz format and finally produced by dot.

An example of a sequence diagram is shown in Fig. 6. Due to the size of
direct/complete call trees and the size of sequence diagrams, only a small ex-
cerpt of a single sequence diagram can be presented.

6. Producing the hypertext model

A suitable model is needed to adequately present the complex navigation of a
dynamic web application. Several formal descriptions like FSM [10] and WebML
[15] more or less meet this criterion, but the Atomic Section Model (ASM) [33]
was chosen as it is capable of representing complex web applications with sim-
ple graphs. Furthermore, it can be produced using the static analysis.

ASM is a well known model primarily developed for testing web applications.
Each HTML page is represented by a Component Interaction Model (CIM);
CIMs of all HTML pages are combined together into an Application Transition
Graph (ATG) representing ASM. Thus, the ATG of a web application is the for-
mal representation of the hypertext model.

The CIM of a single HTML page is a quadruple CIM = 〈S,A,CE,T〉 with

– a set of start pages S from which the page is referenced,
– a set of atomic sections A the page is made of,
– a component expression CE describing the page structure, and
– a set of transitions T pointing from and to (other) HTML pages.

An atomic section (AS) is a basic block of PL/SQL code producing the HTML
page contents send to a client. The component expression is a regular ex-
pression denoting all possible sequences, selections and iterations of diverse
ASs when dynamically constructing HTML page. All sets are fixed; in reverse
engineering they can be retrieved by parsing HTML code or objects which dy-
namically create HTML pages, and by some manual processing by an analyst.

Originally the first component of a CIM is a single start page [33]. However,
to produce the adequate hypertext model the first component of a CIM must be
a set of all pages pointing to a page the CIM is made for. This is important for
the construction of the ATG.

The ATG of an application is a quadruple ATG = 〈Γ,Θ,Σ, α〉 with

– a set Γ of software components (CIMs),
– a set Θ containing all transitions of all CIMs,
– a set Σ of variables defining possible states of the presentation layer, and
– a set α of of all diverse starting pages (usually one).

The ATG is usually presented as a directed graph with a set of vertices Γ and
a set of edges Θ.

1572 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

PA
RA
M
ET
ER
.P
RO
C_
ST
AT
U
S_
RE
P

PG
ID
.F
U
N
_P
G
ID

PG
ID
.F
U
N
_P
G
ID

PG
ID
.F
U
N
_P
G
ID

PA
RA
M
ET
ER
.F
U
N
_A
D
M
IN
_N
A
M
E

PA
RA
M
ET
ER
.F
U
N
_S
TA
FF
_N
A
M
E

PA
RA
M
ET
ER
.F
U
N
_S
TA
FF
_N
A
M
E

PA
RA
M
ET
ER
.F
U
N
_S
TA
FF
_N
A
M
E

PA
RA
M
ET
ER
.P
RO
C_
ST
AT
U
S_
RE
P

PG
ID
.F
U
N
_P
G
ID

PG
ID
.F
U
N
_P
G
ID

PA
RA
M
ET
ER
.F
U
N
_A
D
M
IN
_N
A
M
E

PA
RA
M
ET
ER
.F
U
N
_S
TA
FF
_N
A
M
E

PA
RA
M
ET
ER
.F
U
N
_A
D
M
IN
_N
A
M
E

PA
RA
M
ET
ER
.F
U
N
_S
TA
FF
_N
A
M
E

PA
RA
M
ET
ER
.F
U
N
_S
TA
FF
_N
A
M
E

PA
RA
M
ET
ER
.F
U
N
_S
TA
FF
_N
A
M
E

DYN_OPEN_
EXAM_REGS PARAMETER PGID PERSON EXAM_REG

FUN_PAR

PROC_STATUS_REP

FUN_PAR

FUN_STAFF_NAME

FUN_PGID

FUN_STAFF_PERSON

PROC_OPEN_EXAM_REG_LIST

FUN_PGID

FUN_PGID

FUN_ADMIN_NAME

FUN_STAFF_NAME

FUN_ADMIN_NAME

FUN_STAFF_NAME

FUN_ADMIN_NAME

FUN_STAFF_NAME

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

FUN_TRS

PROC_OBROBA

FUN_PREDMET_SKUPINAH

PROC_OBROBA

PROC_OBROBA

PROC_OBROBA

PROC_OBROBA

Fig. 6. An example of a sequence diagram generation (only cca 15 % is shown). The
transitions corresponding to the call of PARAMETER.PROC STATUS REP from dynamic
page DYN OPEN EXAM REGS is based on the complete call graph (center) produced from
the three direct call graphs (left).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1573

Igor Rožanc and Boštjan Slivnik

A CIM is extracted from a dynamic page or a stored procedure using a
method similar to extracting an activity diagram: it consists of (1) code sim-
plification, (2) manual extraction of CIM structure and generation of graphical
representation of CIM.

Code simplification is performed by the parser used for generation of ac-
tivity diagrams except that the code fragments are classified into the following
categories:

– presentation elements (code fragments which are copied to HTML page or
produce the contents that is copied to HTML page);

– links (links to other HTML pages, SUBMIT parameter definitions, etc.);
– control structures;
– procedure and function calls;
– other code (SQL blocks, declarations, etc.).

All fragments classified as ’other code’ are eliminated. Note that this code sim-
plification concentrates on code fragments that were mostly left out by the code
simplification used for producing activity diagrams.

Once the code is simplified, the CIM is produced manually by an analyst
defining atomic sections and the control flow among them, and the transitions
to and from other dynamic pages. Each atomic section represent a description
of a group of presentation elements, stored procedure and function calls at a
higher level of abstraction. The ATG is constructed simply by connecting CIMs
using the transitions among them.

Case study: For instance, the CIM of a dynamic page for open exam regis-
trations is shown in Fig. 7. It contains 15 atomic sections (labeled P1 . . .P15)
connected as described by the regular expression

P1((P2|ε)P3((P4(P5|P6)(P7|ε)P8)|(P9(P10|ε)P11(P12|ε)P13)|ε)P15)|P14

where P1 is “HeadSectionAndTitle”, P2 is “StatusMissingURL”, etc. Futhermore,
it contains 4 transitions, namely

MenuProfessor −→ DYN OPEN EXAM REGS[POST(⊥,⊥,⊥,⊥)]

MenuStaff −→ DYN OPEN EXAM REGS[POST(⊥,⊥,⊥,⊥)]

DYN OPEN EXAM REGS.PrintReport −→ GetReport[POST(id)]

DYN OPEN EXAM REGS.EndOfBodySection−→
DYN OPEN EXAM REGS[POST(f from, f to, f button, f print)]

The first two transitions specify where is this dynamic page reachable from
while the third one specifies which dynamic page is used after the main oper-
ation performed by this dynamic page has been finished. The fourth transition
specifies a return to the same dynamic page once the parameters have been
refined using HTML form elements contained within the page.

To produce CIMs for eŠtudent, the source code of a dynamic page was
simplified by the same parser as used for activity diagrams but using the code

1574 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

OPEN_EXAM_REGS

HeadSectionAndTitle

StatusMissingURL

BeginBodySection

OpenFormForInput OpenFormForOutput

EndOfBodySection

ErrorReport

ProfessorSelection

InsertDatesAndSubmit

OutputScreenStaffOutputScreenProf POST,(f_from,f_to,f_button,f_print)

PrintReport

SubmitAndFormCloseStatusIncorrectData

FormClose

GetReport

POST,(id)

MenuProfessor

POST,(NULL,NULL,NULL,NULL)

MenuStaff

POST,(NULL,NULL,NULL,NULL)

Fig. 7. The CIM for the dynamic page for processing open exam registrations.

classification as described above. Once the analyst produced the CIM descrip-
tion, the graphical presentation of CIMs was generated using the dot tool from
the GraphViz package.

Apart from the four pages used during the login process, e-Študent contains
five entry points, one for each user group. After a quick check it was established
that one CIM must be produced for each of 186 dynamic pages 349 of 388
stored procedures and 65 of 207 stored functions. Thus, the hypertext model
of e-Študent consists of almost 600 CIMs. To produce the ATG, each transition
is augmented with a link to a dot file containing a CIM of a dynamic page
reachable by the transition.

7. Lessons from the case study

Since the start of the reverse engineering of eŠtudent in 2012 [36], the focus of
the reverse engineering has changed. Namely, in autumn 2012 the initial goal
of producing the PIM suitable for fully automatic reengineering of eŠtudent has
been replaced by producing the PIM suitable for maintenance and consulting.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1575

Igor Rožanc and Boštjan Slivnik

The change of the goal was due to the decision of the new development team
not to implement the new eŠtudent from the described models because of the
complexity of the application, major modifications of the existing requirements
and a number of new requirements.

The initial eŠtudent development team consisted of 9 developers but only
one developer (the first author) actively maintains the application nowadays.
The construction of the models proved to be a great advantage during main-
tenance for a number of reasons. First, it provided the maintainer a consistent
top-down understanding of various aspects of the entire application. Second,
it enabled the maintainer to understand the entire source code even though
most of the past developers are no longer of any help. It turned out that code
modifications (due to an urgent requirement changes) or bug fixes were much
easier to perform once the corresponding activity diagrams were constructed.
Before the diagrams were produced, finding and fixing the part of the code to
be changed and testing the fix demanded significantly more work.

Once the new development team started on the next generation of eŠtudent
in autumn 2012, the models were used intensively for the domain knowledge
transfer during the design phase of the new application. The class diagram
was transferred into the new application and later modified according to new
requirements, and the use case diagrams were user for establishment of the
compulsory tasks.

The consultant (the first author) found the activity diagrams made at a higher
level of abstraction as described in this paper invaluable since the new devel-
opment team needed information on operations at a higher level of granularity.
More precisely, once the main elements of the PIM were available, the con-
sulting became far more comprehensive and compact. The need for consult-
ing services decreased sharply after approximately 3 months during which the
consultant-analyst was producing and conveying the model (especially the ac-
tivity diagrams). Hence, the method proved its importance in practice. When-
ever low-level details were required, the original source code was preferred to
the automatically generated activity diagrams, i.e., as described in [36].

As the construction of models requires a considerable amount of analyst’s
work, the models were constructed to the extent requested by maintenance
needs and consulting work only. Additionally, the construction of the models
was interleaved with the development of the necessary custom tools and thus
no clear separation of time used for each of these two tasks is available.

The construction of class diagram and use case diagrams took 2 man-weeks
to complete. The most of this time was spent for assigning methods based on
stored procedures and functions to classes of the conceptual class diagram.

As expected, the most time consuming part of the reverse engineering pro-
ved to be the construction of activity diagrams. After the initial attempt described
in [36], the dead code elimination and source code simplification were intro-
duced. Now, an analyst roughly familiar with eŠtudent needs approximately 1
hour to produce the activity diagram for a relatively simple dynamic page shown
in Fig. 5. Based on all activity diagrams constructed (51 in total so far) during

1576 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

maintenance and consulting, we estimate that 2 hours per activity diagram are
needed on average and thus for the entire set of 781 activity diagrams 40 man-
weeks suffices.

As the generation of sequence diagrams is fully automated, the time needed
for the generation is not an issue. The CIMs are usually produced by the same
analyst as activity diagrams and thus approximately 60 % less time is needed
as for the activity diagrams (but since less CIMs than activity diagrams has been
produced so far, this estimation is less reliable).

Many papers agree that a large part of the reverse engineering must be per-
formed manually, but the paper by Di Lucca et al. is one of the few that provide
at least some metrics on actual reverse engineering of a web application. Their
conclusions are the same as ours: “the most expensive steps are those requir-
ing human intervention” [17, p. 96] (even though there are some inconsistencies
regarding Table V on the same page).

8. Discussion

An important issue in reverse engineering is to properly define the focus:

1. If the produced model can be used by the MDD tools to generate the new
version of the application, a lot is gained since the automated code genera-
tion is less error prone and can be done quickly for different platforms.
However, to produce the adequate model for automated MDD, the proper
understanding of the existing web application must be gained first. This
understanding usually requires a shift to a higher level of abstraction which,
as all authors agree, cannot be fully automated. Only after the model on
the higher level of abstraction is obtained, the usual forward engineering
involving “understanding→ model→ code” can be applied [32].

2. Otherwise, the produced model can serve as a well formalized documenta-
tion and therefore it enables the switch from agile software development to
other software development methodologies.
Furthermore, a proper formal documentation provides a foundation for effi-
cient maintenance and consulting. Like above, the models must be shifted
on the higher level of abstraction in order to yield an insight rather than
simply machine readable description.

In either case, the shift to a higher level of abstraction involves primarily pro-
cessing of the existing source code to produce proper activity diagrams since
these diagrams represent the main formalization of business logic. The next in
line are CIMs since they specify the navigation aspect. Generation of both kinds
of diagrams requires analyst support.

PL/SQL proved to be far too low-level formalism any automatic transforma-
tion into the PIM could be successful [13]. Even if activity diagrams are gen-
erated automatically, they are too detailed and include too many past design
elements (including bad solutions that should not be propagated to newer ver-
sions).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1577

Igor Rožanc and Boštjan Slivnik

There are certain tools available that can ease reverse engineering signifi-
cantly (Visual Paradigm, UModel, PowerDesigner, . . .), but for two reasons the
task cannot be fully automated using any of them. First, even if they produce
a formally correct model or a part of it, it is usually too large and too detailed,
and thus inadequate for later use as shown in [36]. Second, obviously no tool
can gain a proper insight into the logic behind the application. This proves to be
the major obstacle in reverse engineering of an application based on the entity
relationship diagrams and PL/SQL code as producing the PIM involves a shift to
the OO design. Hence, a number of custom tools must be made during reverse
engineering to support but not replace the manual construction of the PIM.

As it turns out reverse engineering of PL/SQL code must be done by some-
one who is at least to some degree familiar with the design of the system being
reverse engineered. There are at least three operations that must be human
assisted: transformation of the entity relationship diagrams to class diagrams,
transformation of the PL/SQL code to activity diagrams, and transformation of
the presentation elements of the PL/SQL code into the hypertext model.

Furthermore, a lesson learnt the hard way is that if a reverse engineering
of a PL/SQL-based web application that was produced by agile development is
to be economically viable, reverse engineering must be performed by at least
some members with the domain knowledge who participated in the develop-
ment of the application.

Finally, even though PL/SQL is not a good starting point for a reverse en-
gineering towards the PIM, sometimes it simply must be done. And although it
might encompass a lot of manual processing, the resulting model is worth the
effort [18].

9. Related work

Recently, a number of authors reported a different approaches to reverse engi-
neering of dynamic web or similar applications. Favre described a MDA-based
framework of platform-independent and platform-dependent models that are
to be produced by reverse engineering of object-oriented code [20]. It is “pro-
pose(d) to apply static and dynamic analysis to generate models” [20] but no
actual procedures for the generation of these models are given and no test
based on a real-world application is included.

Di Lucca et al. [17] presented a reverse engineering process for dynamic
web application supported by the WARE tool. Both static and dynamic analysis
were performed to describe business model using class diagrams, use-case di-
agrams and sequence diagrams. Although similar to our work, their approach
does not include activity diagrams — but only activity diagrams enable a com-
prehensive understanding of business logic, i.e., not just what tasks are per-
formed but also how they are actually performed.

Concentrating on the actual procedures of static reverse engineering, Zou
et al. describe how a business model definition can be constructed after un-
documented changes to the source code were made [44, 45]. Like ours their

1578 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

technique involves source code simplification using a heuristic based on cat-
egorizing programming language constructs. However, they only describe the
generation of workflows which roughly correspond to activity diagrams while
our method covers other models of PIM and the hypertext model as well.

Bellucci et al. described the MARIA tool to perform static reverse engineer-
ing of user interfaces of dynamic web applications [12]. The static transforma-
tion from the concrete language (HTML, CSS, Ajax, JavaScript) to the abstract
(platform independent) one is described — again it is based on categorizing
source code constructs. The tool produces the description of the user interface
at two different abstract levels but it cannot be used to generate a complete
business and hypertext model.

The dynamic approach to reverse engineering has also been considered.
Like Zou et al. [44, 45] Di Francescomarino et al. presented a reverse engi-
neering process leading to the web application’s business model only using
the dynamic analysis of GUI-forms [16]. Amalfitano et al. focused on dynamic
analysis of Rich Internet Applications (RIA) user interface to produce a proper
description using Finite State Machines (FSMs) [8]. Similarly, Marcheto et al.
presented a ReAjax tool to perform on Ajax web applications [28]. It is focused
on Ajax specifics and produces GUI-based state model. Alalfi et al. [6] perform
reverse engineering to obtain UML sequence diagrams for PHP web applica-
tions using instrumentation and analysis of execution traces. Likewise, Briand
et al. described reverse engineering of distributed Java applications to produce
sequential diagrams as well [14].

To summarize, certain papers include no or very little concrete procedures
for reverse engineering [19, 20, 35] while we include the generation of these
models as well. Other papers focus on a single aspect, i.e, workflow based
business model [44, 45], reverse engineering of UIs [12, 16, 28], sequence dia-
grams [6, 14], or leave out some important aspect [17]. However, our approach
tends to come as close as possible to the PIM of a web application which should
consist of a business model, a presentation model and a hypertext model as
many authors working on a standard (forward) modeling agree, i.e., UWE [21,
22], WebML [15], OOHDM [38], Netsilon [32], W2000 [11].

10. Conclusion

Instead of yet another paper describing a methodology of a reverse engineering
for producing different models, we concentrated on one particular kind of web
applications, namely those written primarily in PL/SQL and based on Oracle
Portal/DB. Our methodology produces the business and the hypertext model,
both at the level of abstraction suitable for human insight into the application.
In presenting it, we focused on procedures rather than on a tool that might
implement them.

We tried to avoid the approach of (1) some sources [35] which describe what
models are to be made without giving any hints about how this models could be
made, (2) of some sources [44, 45] which do not provide the entire PIM, or (3)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1579

Igor Rožanc and Boštjan Slivnik

of some sources [17] that leave out the most important components, i.e., the
activity diagrams. We find these approaches inadequate as the problems are
not in the selection of the appropriate models but in gaining the insight into the
existing application and the subsequent applicability of the produced models.

The methodology has been tested on the real-world application intensively
used in practice, i.e., a student information system eŠtudent. The models re-
trieved by reverse engineering have been used successfully for maintenance
and consulting. We believe that the produced models represent a viable start-
ing point for the design of a model suitable for automated MDA.

References

1. Altova UModel 2012, http://www.altova.com/umodel.html (retrieved June 4th, 2013)
2. Entrionics UML modelling for SQL, http://www.entrionics.com (retrieved June 4th,

2013)
3. Manifesto for agile software development, http://agilemanifesto.org (retrieved: June

4th, 2013)
4. SAP Sybase PowerDesigner, http://www.sybase.com/products/modelingdevelopment/power-

designer (retrieved November 5th, 2012)
5. Akkiraju, R., Mitra, T., Thulasiram, U.: Reverse engineering platform independent

models from business software applications. In: Telea, A.C. (ed.) Reverse Engineer-
ing - Recent Advances and Applications, chap. 4, pp. 83–94. InTech Press (2012)

6. Alalfi, M.H., Cordy, J.R., Dean, T.R.: Automated reverse engineering of UML se-
quence diagrams for dynamic web applications. In: Proceedings of the 2nd Inter-
national Conference on Software Testing, Verification and Validation (ICST’09). pp.
287–294. IEEE Computer Society Press, Denver, CO, USA (2009)

7. Alalfi, M.H., Cordy, J.R., Dean, T.R.: Modelling methods for web application verifi-
cation and testing: state of the art. Software Testing, Verification and Reliability 19,
265–296 (2009)

8. Amalfitano, D., Fasolino, R., Tramontana, P.: Experimenting a reverse engineering
technique for modelling the behaviour of rich internet applications. In: Proceddings
of the IEEE International Conference on Software Maintenance (ICSM’09). pp. 571–
574. IEEE Computer Society Press, Edmonton, AL, Canada (2009)

9. Ammann, P., Offut, J.: Introduction to Software Testing. Cambridge University Press,
New York, NY, USA (2008)

10. Andrews, A.A., Offut, J., Alexander, R.T.: Testing web applications by modeling with
fsms. Software & Systems Modeling 4(3), 326–345 (2005)

11. Baresi, L., Garzotto, F., Paolini, P.: Extending UML for modeling web applications.
In: Proceedings of the 34th Annual Hawaii International Conference on System Sci-
ences. pp. 1–10. Honolulu, HI, USA (2001)

12. Bellucci, F., Ghiani, G., Paternò, F., Porta, C.: Automatic reverse engineering of in-
teractive dynamic web applications to support adaptation across platforms. In: Pro-
ceedings of the 2012 ACM International Conference on Intelligent User Interfaces
(IUI’12). pp. 217–226. Lisbon, Portugal (2012)

13. Billig, A., Busse, S., Leicher, A., Süss, J.G.: Platform independent model transforma-
tion based on triple. In: Proceddings of the 5th ACM/IFIP/USENIX International Con-
ference on Middleware (Middleware’04). pp. 493–511. Springer-Verlag, New York,
NY, USA (2004)

1580 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

14. Briand, L.C., Labiche, Y., Leduc, J.: Toward the reverse engineering of UML se-
quence diagrams for distributed Java software. IEEE Transactions on Software En-
gineering 32(9), 642–663 (2006)

15. Ceri, S., Piero, F., Bongio, A.: Web modeling language (WebML): a modeling lan-
guage for designing Web sites. Computer Networks 33(1–6), 137–157 (2000)

16. Di Francescomarino, C., Marchetto, A., Tonella, P.: Reverse engineering of busi-
ness processes exposed as web applications. In: Proceedings of the 13th Euro-
pean Conference on Software Maintenance and Reengineering. pp. 139–148. IEEE
Computer Society Press, Kaiserlautern, Germany (2009)

17. Di Lucca, G.A., Fasolino, A.R., Tramontana, P.: Reverse engineering web applica-
tions: the WARE approach. Journal of Software Maintenance and Evolution: Re-
search and Practice 16(1-2), 71–101 (2004)

18. Dzidek, W.J., Arisholm, E., Briand, L.C.: A realistic empirical evaluation of the costs
and benefits of UML in software maintenance. IEEE Transactions on Software En-
gineering 34(3), 407–432 (2008)

19. Escalona, M.J., Gutiérrez, J.J., Rodrı́guez-Catalán, L., Guevara, A.: Model-driven
in reverse: the practical experience of the AQUA project. In: Proceedings of the
2009 Euro American Conference on Telematics and Information Systems: New Op-
portunities to increase Digital Citizenship (EATIS’09). pp. 17:1–17:6. ACM, Prague,
Czech Republic (2009)

20. Favre, L.: Formalizing MDA-based reverse engineering processes. In: Proceedings
of the 6th International Conference on Software Engineering Research, Manage-
ment and Applications (SERA’08). pp. 153–160. IEEE Computer Society Press,
Prague, Czech Republic (2008)

21. Knapp, A., Koch, N., Zhang, G.: ArgoUWE: A CASE tool for web applications. In:
Proceedings of the 1st International Workshop on Engineering Methods to Support
Information Systems Evolution. Geneva, Switzerland (2003)

22. Koch, N., Kraus, A.: The expressive power of UML-based web engineering. In: Pro-
ceedings of the 2nd International Workshop on Web-Oriented Software Technology
(IWWOST’02). pp. 105–119. Malaga, Spain (2002)

23. Liebarman, B.: UML activity diagrams: Versatile roadmaps for understanding system
behavior. The Rational Edge p. 12 (2001)

24. Luković, I., Varanda Pereira, M.J., Oliveira, N., da Cruz, D., Henriques, P.R.: A DSL
for PIM specifications: Design and attribute grammar based implementation. Com-
puter Science and Information Systems 8(2), 379–403 (2011)

25. Mahnič, V.: A case study on agile estimating and planning using scrum. Electronics
and Electrical Engineering 5(111), 123–128 (2011)

26. Mahnič, V., Drnovšček, S.: Introducing agile methods in the development of univer-
sity information systems. In: Proceedings of the 12th International Conference on
European University Information Systems (EUNIS 2006). pp. 61–68. Tartu, Estonia
(2006)

27. Mahnič, V., Rožanc, I., Poženel, M.: Using e-business technology in a student
records information system. In: Proceedings of the 7th WSEAS International Con-
ference on E-Activities (E-Activities’08). pp. 589–594. Cairo, Egipt (2008)

28. Marchetto, A., Tonello, P., Ricca, F.: Reajax: a reverse engineering tool for ajax web
applications. IET Software 6(1), 33–49 (2012)

29. Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices. Pren-
tice Hall, Englewood Cliffs, NJ, USA (2002)

30. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA distilled - principles of model-driven
architecture. Addison-Wesley, Boston, MA, USA (2004)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1581

Igor Rožanc and Boštjan Slivnik

31. Miles, R., Hamilton, K.: Learning UML 2.0. O’Reilly Media, Sebastopol, CA, USA
(2006)

32. Muller, P.A., Studer, P., Fondement, F., Bezivin, J.: Platform independent Web appli-
cation modeling and development with Netsilon. Software & System Modeling 4(4),
424–442 (2005)

33. Offutt, J., Wu, Y.: Modeling presentation layers of web applications for testing. Soft-
ware & Systems Modeling 9(2), 257–280 (2010)

34. Poženel, M., Mahnič, V., Kukar, M.: Separation of interleaved web sessions with
heuristic search. In: Proceedings of the IEEE International Conference on Data Min-
ing (ICDM). pp. 411–420. IEEE Computer Society Press (2010)

35. Raghupathi, W., Umar, A.: Exploring a model-driven architecture (MDA) approach
to health care information systems development. International Journal of Medical
Informatics 77(5), 305–314 (2008)

36. Rožanc, I., Slivnik, B.: Producing the platform independent model of an existing web
application. In: Proceedings of the Federated Conference on Computer Science
and Information Systems. pp. 1385–1392. IEEE Computer Society Press, Wroclaw,
Poland (2012)

37. Rugaber, S., Stirewalt, K.: Model-driven reverse engineering. IEEE Software 21(4),
45–53 (2004)

38. Schwabe, D., Rossi, G., Barbosa, S.D.J.: Systematic hypermedia application design
with OOHDM. In: Proceedings of the 7th ACM Conference on Hypertext. pp. 116–
128. ACM, Bethesda, Maryland, USA (1996)

39. Solms, F., Loubser, D.: Generating MDA’s platform independent model using UR-
DAD. Journal of Knowledge-Based Systems 22(3), 174–185 (2009)

40. Sparks, G.: Database modelling in UML. Methods & Tools 9(1), 10–23 (2001)
41. Ulrich, W.M., Newcomb, P.: Information Systems Transformation: Architecture-

Driven Modernization Case Studies. Morgan Kaufmann, Burlington, Mass., USA
(2010)

42. Valderas, P., Pelechano, V.: A survey of requirements specification in model-driven
development of web applications. ACM Transactions on the Web 5(2), article(10)
(2011)

43. Zou, Y., Guo, J., Foo, K.C., Hung, M.: Recovering business processes from busi-
ness applications. Journal of Software Maintenance and Evolution: Research and
Practice 21(5), 315–348 (2009)

44. Zou, Y., Lau, T.C., Kontogiannis, K., Tong, T., McKegney, R.: Model-driven busi-
ness process recovery. In: Proceedings of the 11th Working Conference on Re-
verse Engineering (WCRE’04). pp. 224–233. IEEE Computer Society Press, Delft,
The Netherlands (2004)

45. Zou, Y., Zhang, Q., Zhao, X.: Improving the usability of e-commerce applications us-
ing business processes. IEEE Transactions on Software Engineering 33(12), 837–
855 (2007)

Igor Rožanc received the M.Sc. and Ph.D. degrees in computer science from
the University of Ljubljana in 1995 and 2003, respectively. He is currently at the
University of Ljubljana, Faculty of Computer and Information Science. Through-
out his career he has been actively involved in the design and development of
student information systems. His research interests include distance learning
and programming methodologies.

1582 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Using Reverse Engineering to Construct the PIM of a Web App for Student IS

Boštjan Slivnik is an Assistant Professor at the University of Ljubljana, Faculty
of Computer and Information Science where he received the M.Sc. and Ph.D.
degrees in computer science in 1996 and 2003, respectively. His research in-
terests include parsing algorithms, compilers, formal languages, scheduling and
distributed algorithms. He has been a member of the ACM since 1996.

Received: December 18, 2012; Accepted: August 23, 2013.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1583

