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Abstract. Designing and implementing a large-scale parallel system can
be time-consuming and costly. It is therefore desirable to enable system
developers to predict the performance of a parallel system at its design
phase so that they can evaluate design alternatives to better meet per-
formance requirements. Before the target machine is completely built, the
developers can always build an symmetric multi-processor (SMP) for eval-
uation purposes. In this paper, we introduce an SMP-based discrete-event
execution-driven performance simulation method for message passing in-
terface (MPI) programs and describe the design and implementation of
a simulator called SMP-SIM. As the processes share the same memory
space in an SMP, SMP-SIM manages the events globally at the granular-
ity of central processing units (CPUs). Furthermore, by re-implementing
core MPI point-to-point communication primitives, SMP-SIM handles the
communication virtually and sequential computation actually. Our exper-
imental results show that SMP-SIM is highly accurate and scalable, re-
sulting in errors of less than 7.60% for both SMP and SMP-Cluster target
machines.
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1. Introduction

Nowadays, large-scale parallel computers that comprise thousands of proces-
sors cost millions of dollars and take years to design and build. For system
developers, it is greatly desired that the performance of a parallel system can be
predicted efficiently and accurately at its design phase. This can help them eval-
uate different design alternatives to better meet performance requirements [25].

There are two popular performance prediction methods: model-based and
discrete event simulation. The former [3,11] builds a parameterized model based
on the signatures extracted from the given system, such as the number of cores,
the number of instructions executed, and memory access patterns. Then the
model is used to estimate the system performance. However, a model built for
an application cannot be applied to another one. Moreover, as the system com-
plexity increases, the factors that affect the system performance become too
complex to be extracted thoroughly. So it can be difficult to obtain accurate pre-
dictions for large-scale parallel computers with the model-based method.
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Discrete event simulation is capable of simulating large-scale parallel sys-
tems. The simulation procedure jumps from one state to another upon the oc-
currence of an event [5]. A simulator updates the simulation time and state
information by processing the events. Events are generated either by the pre-
extracted trace (trace-driven) or by the execution of the program (execution-
driven). For trace-driven techniques, such as Dimemas [12], PERC [19] and
SIM-MPI [18], the event trace is obtained with instrumentation tools by running
the program before the simulator runs. For execution-driven techniques, such
as WWT [17], WWT II [14], MPI-SIM [15] and BigSim [26], the events are gen-
erated when the program is running.

In discrete event simulation, the large-scale parallel machine to be con-
ducted is called the target machine, the machine on which the simulator exe-
cutes is called the host machine, and the program whose performance is to be
predicted is called the target program. Through analysis, we find that before
the target machine is completely constructed, the system developers can al-
ways build a symmetric multi-processor (SMP), whose central processing units
(CPUs) are the same as those in the target machine. If the target machine is
an SMP, such as NEC SX-9 [20], CRAY CX1000-S [4] or IBM SP-SMP [8], the
developers can use some of the target machine’s CPUs to build a smaller SMP.
If the target machine is an SMP-Cluster, a cluster whose nodes are SMPs, such
as Roadrunner [2], Tianhe-1A [24] or K Computer [1], the developers can have
at least one of the SMP nodes at the design phase. Therefore, we have opted
to use the smaller SMP (or the SMP node) as the host machine to predict the
performance of the target program on the target machine.

SMPs are well suited to discrete event simulation since the processes share
the memory and are controlled by the same operating system. However, there
has not been a simulation method utilizing these characteristics. Thus, in this
paper, for message passing interface (MPI) [22], the de facto standard for paral-
lel computing, we propose and design SMP-SIM, an SMP-based discrete-event
execution-driven performance simulator. Our main contributions are as follows:

– We introduce a discrete-event execution-driven simulation method based
on SMPs.

– We describe the design of SMP-SIM, a discrete-event execution-driven per-
formance simulator, which consists of three modules, primitive decomposer,
communication model, and event management.

– By re-implementing MPI core point-to-point communication primitives, we
have implemented SMP-SIM based on MPICH2 [13].

– We show that SMP-SIM is highly accurate and scalable, with errors of less
than 7.60% for both SMP and SMP-Cluster target machines.

The rest of this paper is organized as follows. Section 2 reviews the related
works. Section 3 describes the basic ideas of SMP-SIM. Section 4 introduces
the framework of SMP-SIM. Section 5 discusses the implementation of SMP-
SIM based on MPICH2. Our experiments are presented in Section 6. Finally,
Section 7 summarizes the paper.
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2. Related Work

Discrete event simulation has been researched extensively in academia and
industries. A number of simulators have been developed, including WWT [17]
and WWT II [14] of University of Wisconsin, Dimemas [12] of CEPBA (European
Center for Parallelism in Barcelona), MPI-SIM [15] of University of California,
PERC [19] of San Diego Supercomputer Center, and BigSim [26] of University
of Illinois at Urbana-Champaign. Among these simulators, MPI-SIM and BigSim
are the most similar with SMP-SIM. All the three predict the performance while
executing the target MPI applications.

In MPI-SIM, each process of the target program is simulated by a thread.
MPI-SIM uses a portable library MPI-LITE to translate the target program into
a multithreaded program, and measures the execution time of sequential com-
putation codes when the multithreaded program is executing. However, threads
differ from processs in terms of such program behaviours such as cache re-
placement policy and execution pattern. As a result, the sequential computation
time cannot be measured accurately. Moreover, because MPI-SIM is not based
on the SMP host machine, messages must carry the simulation timestamps that
are used to calculate communication overheads.

BigSim is a simulator developed for BlueGene/C. The simulator contains
two parts, a parallel-function emulator and a parallel-network simulator BigNet-
Sim [27]. BigSim defines a set of application interfaces, such as addMessage
and sendPacket, which are used to implement the MPI interfaces. All the ap-
plication interfaces are executed by the simulator, and the other codes are di-
rectly executed on the host machine. In BigSim, the sequential computation
time is calculated by heuristic approaches, which cannot lead to high accuracy.
Several parallel programming languages are implemented on BigSim, including
MPI, CHARM++ [10] and Adaptive MPI [7].

Zhai et al. [25] proposed a new method, called Phantom, to estimate the
sequential computation time, which is used in a trace-driven simulator SIM-
MPI [18]. Phantom needs to execute the target program twice. During the first
execution, the communication traces of parallel applications are generated by
intercepting all communication operations for each process and the computa-
tion between communication operations is marked as sequential computation
unit. During the second execution, the real sequential computation time is mea-
sured on a target processing node for each process one by one. However, exe-
cuting the target program twice is time-consuming. And it cannot deal with the
uncertain programs because an inaccurate trace is usually generated.

The above simulation approaches are not based on SMP. To the best of our
knowledge, there has not been an SMP-based performance simulator for MPI
programs.

3. Basic Ideas of SMP-SIM

To design a discrete event simulator, three key questions need to be answered:
what events exist in the simulator; how are the events generated; and how the
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events are processed for performance prediction. In this section, we introduce
the basic idea behind SMP-SIM by addressing these questions. Without loss of
generality, we assume that the core count of the target machine is equal to the
process count of the target program. It should be noticed that as mentioned in
Section 1, the CPUs in the host and target machines are the same.

3.1. Event Definition

For an MPI program, at any point during execution, a process is in either the
sequential computation state or the communication state. So there are four
types of events during the simulation of an MPI program: simulation start
events, simulation end events, communication start events and sequen-
tial computation start events. A simulation start event means that the simula-
tion starts, i.e. a process enters the sequential computation state. A simulation
end event means that the simulation ends, i.e. a process ends. A communi-
cation start event means that the process enters the communication state. A
sequential computation start event means that the process enters the sequen-
tial computation state.

It is not difficult to find out that the simulation start event and the simulation
end event for an MPI process are the first event and the last event, respectively,
of the process. Communication start events and sequential computation start
events are generated alternately, as shown in Fig. 1.

Sequential computation state

Communication state

...

Sim 

start event

Sim

end event

Comm 

start event

Seq comp 

start event

Comm 

start event

Comm 

start event

Seq comp 

start event
Seq comp 

start event

Fig. 1. The relationship between events and states.

3.2. Event Generation

Events are generated either by the pre-extracted trace (trace-driven) or by the
execution of the program (execution-driven). For a trace-driven method, the
event trace is extracted with instrumentation tools while running the program.
Then the simulator uses the trace to drive the events and predict the execution
time of the program. However, when predicting the performance of a large-scale
parallel computing system, the time to extract the trace and the space to store
it become intolerable. Moreover, due to some uncertain factors (e.g. branches,
dynamic instruction generations and non-deterministic communications in the
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program), trace-driven simulation may be inaccurate with the incorrect trace
acquired.

For an execution-driven method, events are generated during program ex-
ecution. Thus, program behaviours such as branch prediction and dynamic in-
struction generation can all be simulated. Moreover, an execution-driven method
can make use of available system resources to directly execute portions of
the application code and simulate the features that are of specific interest or
unavailable [16]. We prefer an execution-driven method over a trace-driven
method, because the former is closer to the program execution reality and has
higher efficiency. Therefore, in SMP-SIM, the events are generated when the
target program is running on the host machine:

– The first executable statement in an MPI process is MPI Init and the last
one is MPI Finalize. So the execution time of a process under considera-
tion is the time period between MPI Init and MPI Finalize. Therefore, when
the MPI process encounters MPI Init and MPI Finalize, the simulation start
event and simulation end event are generated respectively.

– When encountering an MPI communication primitive, such as MPI Ibsend
or MPI Irecv, a process enters the communication state and a communica-
tion start event is generated.

– When an MPI communication primitive finishes (i.e. a process returns from
an MPI communication primitive), the process enters the sequential com-
putation state and a sequential computation start event is generated.

3.3. Processing the Events

The aim of processing the events is to estimate the execution time of the target
program running on the target machine. For this purpose, SMP-SIM maintains
the simulation time for each process of the target program, denoted as ts. When
an event is generated when the target program is executing on the host ma-
chine, the simulation time of this process will be updated to the generation time
of the event. The generation time of an event is the time when the event is gen-
erated if the target program executes on the target machine. Therefore, when a
simulation end event is being processed, the simulation time of its correspond-
ing process (i.e. the generation time of the simulation end event) represents the
execution time of the process when it runs on the target machine.

As a parallel simulator that can be run on a small-scale SMP, SMP-SIM
utilizes the characteristics of SMP to deal with the events efficiently and accu-
rately:

– Manage the events globally at the granularity of CPUs. Because the pro-
cesses allocated to a CPU on the host machine may outnumber the cores
in the CPU and all the processes share the memory in SMP, SMP-SIM glob-
ally manages the events that are generated by the processes allocated to
the same CPU by using a shared-segment. The event with the smallest
generation time will always be selected to be processed first.
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– Use a virtual-actual combined method to process the selected event. If it is
a communication start event, it will be processed virtually, i.e. the communi-
cation overhead is estimated by the communication model; if it is a sequen-
tial computation start event, it will be processed actually, i.e. the sequential
computation time is measured by direct execution.

It should be mentioned that for the MPI programs with non-deterministic
communications (e.g. a receive request contains MPI ANY SOURCE as the
source), the simulator needs a synchronization mechanism to make sure that
the right messages (i.e. the messages that are received when the program
executes on the target machine) are accepted during the simulation on the
host machine. The synchronization mechanism used in SMP-SIM is optimistic
mechanism [9] [21], which allows to process the earliest available event with
no regard to safety. When an older message arrives, a rollback mechanism is
needed to undo an earlier out of order execution and re-execute the events to
guarantee the correct sequence of event processing. However, synchronization
mechanism is not the focus of this work. The interested readers please refer
to [9] for a detailed description.

4. Framework of SMP-SIM

Due to its good configuration, high performance and portability, MPICH [6] has
become one of the most popular MPI libraries. SMP-SIM is designed based on
MPICH. We have modified the MPICH library and integrated all the functionali-
ties of SMP-SIM into the modified MPICH library.

MPIR runtime library

ADI

Primitive 

Decomposer

Communication

Model

Event

Management

Machine-

independent

MPI API

Simulation API

Machine-

dependent

CH3

TCP, SSM, Nemesis, ...

Fig. 2. The framework of SMP-SIM.

MPICH consists of two layers, a machine-independent layer and a machine-
dependent layer, separated by an abstract device interface (ADI), as shown in
Fig. 2. The machine-independent layer consists of an MPI application program-
mer interface (API) layer and an MPIR runtime library layer. The MPI API pro-
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vides the user with programming interfaces and handles the MPI structures ir-
relevant to environments. The MPIR runtime library translates the complex MPI
primitives in MPI API into point-to-point communication operations. The main
functionalities of SMP-SIM are implemented by adding a Simulation API Layer
between the MPI API and MPIR runtime library layers. As shown in Fig. 2, the
simulation API layer comprises three modules: primitive decomposer , com-
munication model and event management .

In the primitive decomposer module, all the MPI communication primitives
are reconstructed by using core point-to-point communication primitives. This is
the base of the other modules. When a process encounters a communication
primitive as the target program runs on the host machine, the primitive decom-
poser module will decompose it into several core point-to-point communication
primitives and then these core point-to-point communication primitives will be
invoked one by one. The invocation and the return of a core point-to-point com-
munication primitive will generate the corresponding events. When an event is
generated, the event management module globally schedules the events, pro-
cesses the selected event and updates the simulation time of the event’s cor-
responding process. When processing a communication start event, the event
management module will interact with the communication model module to cal-
culate the time overheads of the corresponding core point-to-point primitive.
Next, we will introduce these three modules in detail.

4.1. Primitive Decomposer

MPI provides users with a lot of communication primitives, including collec-
tive communication primitives and point-to-point communication primitives. In
MPICH, all collective communication operations are implemented in terms of
point-to-point communication operations. So, we choose four core point-to-point
communication primitives from the MPI library: MPI Ibsend (non-blocking buffered
send), MPI Issend (non-blocking synchronous send), MPI Irecv (non-blocking
receive) and MPI Wait [15]. Using these four core point-to-point communication
primitives, we can reconstruct the other point-to-point and collective communi-
cation primitives.

Table 1. Point-to-point communication primitives reconstruction in SMP-SIM

Primitive Functionality Re-constructed by

MPI Bsend Blocking buffered send Both MPI Ibsend and MPI Wait

MPI Ssend Blocking synchronous send Both MPI Issend and MPI Wait

MPI Rsend Blocking ready send MPI Ssend

MPI Send Blocking standard send Either MPI Bsend or MPI Ssend

MPI Recv Blocking standard receive Both MPI Irecv and MPI Wait
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Table 1 lists the ways to reconstruct the other five point-to-point commu-
nication primitives in MPI. The collective communication primitives can be re-
constructed by four core point-to-point communication primitives and the five
primitives listed in the first column of Table 1. When a process of the target pro-
gram encounters a communication primitive on the host machine, the primitive
decomposer module will decompose it into several core point-to-point commu-
nication primitives and then these core point-to-point communication primitive
will be invoked one by one. Consequently, the corresponding events will be
generated. Therefore, the communication start events mentioned in Section 3.1
can be further divided into four types, non-blocking buffered send start events,
non-blocking synchronous send start events, non-blocking receive start events
and wait start events, which are generated due to the invocation of MPI Ibsend,
MPI Issend, MPI Irecv and MPI Wait, respectively. All the events that will ap-
pear in SMP-SIM are listed in Table 2, where the four items in the third row are
all communication start events.

Table 2. All the events in SMP-SIM

Event Symbol Generated by

Simulation start event EStart Invocation of MPI Init

Non-blocking buffered send start event EIbsend Invocation of MPI Ibsend
Non-blocking synchronous send start event EIssend Invocation of MPI Issend
Non-blocking receive start event EIrecv Invocation of MPI Irecv
Wait start event EWait Invocation of MPI Wait

Sequential computation start event ESeq Return of MPI Init,
MPI Ibsend, MPI Issend,
MPI Irecv, MPI Wait

Simulation end event EEnd Invocation of MPI Finalize

4.2. Communication Model

This module is responsible for calculating the time overheads of the point-to-
point communication primitives. First, we list all the symbols to be used in Table
3. Then we discuss how to calculate the time overheads of core point-to-point
communication primitives. The way to calculate the time overhead of an core
point-to-point communication primitive is related to the two communicating pro-
cesses’ physical distributions in the target machine.

MPI Ibsend. MPI Ibsend starts a non-blocking buffered send. A buffer space
for the data needs to be reserved at the sender side, and the message is always
sent no matter whether there is a matching receive at the receiver side.
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Table 3. Symbols to be used in Section 4.2

Symbol Meaning

tsend
generate Invocation time of MPI Ibsend or MPI Issend*

tsend
return Return time of MPI Ibsend or MPI Issend
tsend
safe The time when MPI Ibsend or MPI Issend is safe**

trecvgenerate Invocation time of MPI Irecv
trecvreturn Return time of MPI Irecv
trecvsafe The time when MPI Irecv is safe
twait
generate Invocation time of MPI Wait
twait
return Return time of MPI Wait
tarrive The time when the message arrives at the receiver
Lmem Memory latency
Bmem Memory bandwidth
Lnet Network latency
Bnet Network bandwidth
m Message (data) size
δt The time overhead of invocation a primitive
Oa The time overhead of reserving a buffer space
* The invocation time of an primitive is the generation time of

the event generated by the primitive.
** The time when a communication primitive is safe is the time

when its corresponding data are safe.

As shown in Fig. 3(a), if two communicating processes are physically dis-
tributed, MPI Ibsend returns as soon as the buffer at the sender side is avail-
able. The data can be sent to the network while they are being copied to the
buffer (generally speaking, Bmem > Bnet), according to the configurations of the
current machines. The data are safe when they have been completely copied
to the buffer. We can calculate tsendreturn, tsendsafe and tarrive as in Equations 1 – 3:

tsendreturn = tsendgenerate + δt+Oa (1)

tsendsafe = tsendgenerate + δt+Oa +m/Bmem (2)

tarrive = tsendgenerate + δt+Oa + Lnet +m/Bnet (3)

As shown in Fig. 3(b), if two communicating processes are physically cen-
tralized, the buffer will not be reserved and MPI Ibsend returns as soon as it is
invoked. Then, we have:

tsendreturn = tsendgenerate + δt (4)

tsendsafe = tsendgenerate + δt+m/Bmem (5)

tarrive = tsendgenerate + δt+ Lmem +m/Bmem (6)
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DATA

Lmem m/Bmem

tarrive
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m/Bmemtδ Oa

(b)(a)

send
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send

return
t send

safet
send

generate
t

send

return
t send

safet

Fig. 3. Non-blocking buffered send. (a) Physically distributed. (b) Physically centralized.

MPI Issend. MPI Issend starts a non-blocking synchronous send. A hand-
shake, which is used to make sure the matching receive has started, happens
between the sender and the receiver via REQ and ACK messages before the
data message is sent to the receiver. MPI Issend will return when ACK from the
receiver is received. The return time of MPI Issend is affected by the relation-
ship between trecvgenerate and the REQ’s arrival time (denoted as tREQ).
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Lnet m/Bnet
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m/Bmemtδ

(b)(a)

REQ ACK

Lnet Lnet

DATA

Lnet m/Bnet

tarrive

m/Bmemtδ
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send
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send

return
t

send

safet send

generate
t

send

return
t

send
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recv

generate
t recv

generate
tREQ

t
REQ

t

Fig. 4. Non-blocking buffered send (the sender and receiver are physically distributed)
(a)trecvgenerate 6 tREQ. (b)trecvgenerate > tREQ.

Fig. 4(a)(b) shows the case where two communicating processes are phys-
ically distributed in target machine. The data can be sent to network while they
are being copied to the buffer, and the data are safe after they have been copied
to the buffer. tsendreturn, tsendsafe and tarrive can be calculated as in Equations 8 – 10:

tREQ = tsendgenerate + δt+ Lnet (7)

tsendreturn =

{
tsendgenerate + δt+ Lnet, t

recv
generate 6 tREQ

trecvgenerate + Lnet, trecvgenerate > tREQ
(8)

tsendsafe =

{
tsendgenerate + δt+ 2Lnet +m/Bmem, trecvgenerate 6 tREQ

trecvgenerate + Lnet +m/Bmem, trecvgenerate > tREQ
(9)

tarrive =

{
tsendgenerate + δt+ 3Lnet +m/Bnet, t

recv
generate 6 tREQ

trecvgenerate + 2Lnet +m/Bnet, trecvgenerate > tREQ
(10)

1370 ComSIS Vol. 9, No. 4, Special Issue, December 2012



SMP-SIM

Due to the space limitation, we will not analyze the case where the com-
municating processes are physically centralized. We can calculate tsendreturn, tsendsafe

and tarrive of this case by replacing the Lnet and Bnet in Equations 8 – 10 with
Lmem and Bmem, respectively.

MPI Irecv. MPI Irecv returns as soon as it is invoked. The return of MPI Irecv
means that the message can be received, rather than having been received.
Then, we have:

trecvreturn = trecvgenerate + δt (11)

MPI Wait. MPI Wait is used to guarantee the safety of the data. It will block
the process until the data sent or received by its related non-blocking commu-
nication are safe. The return time of MPI Wait twait

return is the maximum value of
the time when the data are safe (i.e. tsendsafe or trecvsafe) and the invocation time of
MPI Wait twait

generate. So, we have:

twait
return =

{
max{tsendsafe, t

wait
generate}, if the waiting object is a non-blocking send

max{trecvsafe, t
wait
generate}, if the waiting object is a non-blocking receive

(12)
tsendsafe in Equation 12 can be calculated as shown in Equations 2, 5 and 9.

Then, we analyze the way to calculate trecvsafe.

DATA

tarrive

(b)(a)

wait

generate
t

DATA

tarrive
wait

generate
t

recv

safe
t

recv

safe
t

(c)

DATA

tarrive

m/Bmem

recv

safe
t

recv

generate
t

recv

generate
t

recv

generate
t

Fig. 5. Non-blocking receive. (a) trecvgenerate < tarrive, twait
generate 6 tarrive. (b) trecvgenerate <

tarrive, twait
generate > tarrive. (c) trecvgenerate > tarrive.

trecvsafe is affected by the relationships among trecvgenerate, twait
generate and tarrive,

as shown in Fig. 5. It is worth mentioning that the case shown in Fig. 5(c) only
exists when the send primitive is MPI Ibsend. From Fig. 5, we can derive that

trecvsafe =

{
max{tarrive, twait

generate}, trecvgenerate < tarrive
trecvgenerate +m/Bmem, trecvgenerate > tarrive

(13)

where tarrive can be calculated as shown in Equations 3, 6 and 10.

4.3. Event Management Module

SMP-SIM is a parallel simulator, and the processes are fixed to their own CPUs
while the target programs are running on the host machine. The target machine
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has more CPUs than the host machine and the core count of the target machine
is equal to the process count of the target program. So the processes allocated
to a host machine’s CPU outnumber the cores in it. The event management
module maintains a waiting event queue for each CPU, i.e. the processes al-
located to the same CPU share a waiting event queue. At the beginning of
running a target program on the host machine, this module inserts an EStart

event for each process into its corresponding waiting event queue and sets the
generation time of this event as -1. During the execution of the target program,
the module manages the events at the granularity of CPUs using the workflow:

Step 1. The event management module selects the un-processed executable
event e that has the smallest generation time from the CPU’s waiting event
queue. It should be noticed that EStart, EEnd, ESeq, EIbsend and EIrecv events
are always executable; EIssend is executable only when its corresponding re-
ceive primitive has been invoked; and EWait is executable only when the data
of its related send or receive primitive are safe. For convenience, for a given
event e, we use e.tgenerate to represent the generation time of e, e.doing to de-
termine whether e is being processed and e.executable to determine whether e
is executable at present.

Step 2. The event management module switches the process that is related
to e onto an idle core and then processes e. As shown in Algorithm 1, the
detailed dealing methods are different among different types of events. The
completing event queue is used to store the EIbsend, EIssend and EIrecv events,
which have already been processed, and the information of these events is
necessary when processing the corresponding EWait events. For convenience,
for a given communication event e, we use e.treturn, e.tarrive and e.tsafe to refer
to the return time, arrival time and the data’s safe time of e’s corresponding
communication primitive respectively.

Step 3. After accomplishing the processing of the selected event e, the event
management module deletes e from the waiting event queue and may insert a
new event enew into the waiting event queue as follows:

– e.type is EStart, EIbsend, EIssend, EIrecv or EWait: after executing the com-
munication operations corresponding to event e, the process will deal with
sequential computation codes, so enew.type = ESeq and enew.executalbe =
True.

– e.type is ESeq: denote the MPI primitive behind the sequential computation
codes as S.
• S is MPI Ibsend: enew.type = EIbsend and enew.executalbe = True.
• S is MPI Issend: enew.type = EIssend; if the EIrecv event that matches

enew is in the waiting/completing event queue, enew.executalbe = True,
otherwise enew.executalbe = False.

• S is MPI Irecv: enew.type = EIrecv and enew.executalbe = True.
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Algorithm 1 The Algorithm of EventHandler
Input: Event e
Output: Void
1. e.doing ← True
2. if e.type = EStart then
3. execute the body codes of MPI Init;
4. ts ← 0;
5. else if e.type = EEnd then
6. print ts;
7. execute the body codes of MPI Finalize;
8. else if e.type = ESeq then
9. get the current system time t1;

10. execute the sequential computation codes;
11. get the current system time t2;
12. ts ← ts + (t2 − t1);
13. else if e.type = EIbsend then
14. execute the body codes of MPI Ibsend;
15. calculate e.treturn, e.tsafe and e.tarrive based on Equations 1 – 3 and 4 – 6;
16. if there is the EIrecv event e′ matched with e in waiting event queue then
17. e′.tarrive ← e.tarrive
18. else if there is the EIrecv event e′ matched with e in completing event queue then
19. e′.tarrive ← e.tarrive
20. if there is the EWait event e′′ matched with e′ in waiting event queue then
21. e′′.executable← True;
22. end if
23. end if
24. ts ← e.treturn;
25. insert e into its completing event queue;
26. else if e.type = EIssend then
27. execute the body codes of MPI Issend;
28. get EIrecv event e′ which matches with e from the completing event queue;
29. calculate e.treturn, e.tsafe and e′.tarrive based on Equations 8 – 10;
30. if there is the EWait event e′′ matched with e′ in waiting event queue then
31. e′′.executable← True;
32. end if
33. ts ← e.treturn;
34. insert e into its completing event queue;
35. else if e.type = EIrecv then
36. execute the body codes of MPI Irecv;
37. e.tarrive ← −1;
38. if there is the EIbsend event e′ matched with e in completing event queue then
39. e.tarrive ← e′.tarrive;
40. else if there is the EIssend event e′ matched with e in waiting event queue then
41. e′.executable← True;
42. end if
43. ts ← ts + δt;
44. insert e into its completing event queue;
45. else if e.type = EWait then
46. execute the body codes of MPI Wait;
47. get event e′ which matches with e from the completing event queue;
48. calculate e.treturn based on Equations 12 and 13;
49. delete e′ from the completing event queue;
50. end if
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• S is MPI Wait: enew.type = EWait; if e′.tarrive > 0 (e′ is the EIrecv event
that matches enew), enew.executalbe = True, otherwise
enew.executalbe = False.

• S is MPI Finalize: enew.type = EEnd and enew.executalbe = True.
– e.type is EEnd: the process finishes after executing MPI Finalize, so event

management module will not insert any new event into the waiting event
queue, i.e. no event enew will be created.

Whatever the type of enew is, enew.doing = False always holds after inserting
enew into the waiting event queue.

After the work of step 2 and step 3, if there is any un-processed event in the
waiting event queue, the event management module will start the work of step
1 again and deal with the new selected event as described in step 2 and step
3. It is not difficult to find out that for each process, there is only one related
event in the waiting event queue at any time during the simulation. Because
only the processes whose events are selected to be processed can run, the
unselected processes must be suspended. Processes allocated to the same
CPU may be switched when a new event is selected to be processed, and the
detailed implementation will be introduced in Section 5.

5. MPICH2-based Implementation of SMP-SIM

This section describes the MPICH2-based implementation of SMP-SIM. By rec-
ognizing the fact that the processes share the memory in SMPs, SMP-SIM cre-
ates event queues in the shared segment for all the processes at the granularity
of CPUs. SMP-SIM re-implements the core MPI primitives and integrates the
functionalities of event management into them.

Fig. 6 shows the directory of the source codes of MPICH2. The major mod-
ification of the implementation of SMP-SIM is in the sub-directory /src/mpi. The
implementations of MPI Init and MPI Finalize are in /src/mpi/init; the implemen-
tations of all point-to-point MPI primitives are in /src/mpi/pt2pt; and the imple-
mentations of all collective MPI primitives are in /src/mpi/coll.

5.1. Data Structure

Event is the core of SMP-SIM, and we implement the data structure of an event
as shown in Fig. 7.

– Attributes type, processID, doing, executable and t generate are used for all
types of events. type, processID and t generate stand for the type, process
ID and generation time of the event respectively; doing and executable judge
whether the event is being and can be processed respectively.

– Attributes t return, t arrive, t safe, pairID and tag are used for three
types of events: EIbsend, EIssend and EIrecv. These attributes stand for the
return time, message arrival time, safe time, matched process ID and tag of
the corresponding communication primitive respectively. Given an EIbsend,
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MPICH2 root

confdb srcmaint test examplesdoc www

util mpimpl mpid pminclude pmi

pt2ptinit coll

Fig. 6. The directory of the source codes of MPICH2

struct Event{

    int type;

    int processID;

    bool doing;

    bool executable;

    double t_generate;

    double t_return;

    double t_arrive;

    double t_safe;

    int pairID;

    int tag;

    MPI_Request *request;

}

Fig. 7. The data structure of event

EIssend or EIrecv event, we can find the matched EIrecv, EIbsend or EIssend

event with pairID and tag.
– Attribute request is used for four types of events: EIbsend, EIssend, EIrecv

and EWait. This attribute stands for the object of the corresponding non-
blocking communication. Given an EWait event, we can find the matched
EIbsend, EIssend or EIrecv event with request.

Based on the definition of the data structure of an event, we create two event
queues, Wait Event Queue and Complete Event Queue, at the granularity of
CPUs, and store them in the shared segment so that all the processes can
access them conveniently. It should be noticed that in order to guarantee cor-
rectness, all the operations on the event queues must be protected by the lock
mechanism, i.e. only one process is permitted to access a given event queue
at one time. In order to briefly describe our implementation, all the operations
on the event queues described in the rest of this section are encapsulated by
lock() and unlock() implicitly.
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5.2. Re-implementations of Core Primitives

This subsection introduce the re-implementations of six core MPI primitives
MPI Init, MPI Finalize, MPI Ibsend, MPI Issend, MPI Irecv and MPI Wait. These
re-implementations realize the functionalities of event management described
in Section 4.3.

MPI_Init(){

    Codes of original body;

    // codes added for SMP-SIM

    new a event e;

e.type=ESeq; e.processID=myRank; e.doing=False;

e.t_executable=True; e.t_generate=0; ts=0;

    Insert e into its Wait_Event_Queue;

    MPI_Barrier();

    lock();

    if(Count<CORE_NUM){

        Count++;

        set the priority of this process HIGH;

        if(Count == CORE_NUM)

suspend all the processes allocated to this CPU without  HIGH priority;        

     }

    unlock();

e.doing=True;

    t1=gettime();

    return;     

}

Fig. 8. The re-implementation of MPI Init

MPI Init As shown in Fig. 8, besides the codes of the original MPI Init body, the
re-implementation of MPI Init does the work as follows: firstly, each process in-
serts an ESqe event into its corresponding Wait Event Queue; secondly, make
sure that only one process is running on a given processing core and the other
processes are suspended; thirdly, the process that has not been suspended
starts to deal with the ESqe event.

In the re-implementation of MPI Init, Count is a global variable shared by all
the processes allocated to the same CPU, and it is used for logging the count
of the processes whose ESqe events have been started to be processed. lock()
and unlock() are two functions used to protect the critical section between them.
While the target program is running, the process switching mechanism is the pri-
ority scheduling mechanism instead of the time-sliced round-robin mechanism,
so the line set the priority of this process HIGH in Fig. 8 guarantees that the
current running process can not be switched.
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MPI_Ibsend(buf, count, datatype, dest, tag, comm, request){

    // codes added for SMP-SIM: remove ESqe type event     

    t2=gettime();

    remove the event whose processID is myRnak from the Wait_Event_Queue;

    // codes added for SMP-SIM: generate EIbsend type event 

    new a event e;

e.type=EIbsend; e.processID=myRank; e.doing=False; 

    e.t_executable=True; e.t_generate=ts+(t2-t1);  t
s=e.t_generate;

e.pairID=dest; e.tag=tag; e.request=request;

Insert e into its Wait_Event_Queue;

pID = findNextEvent();

    if (pID != myRank)

suspend the current process and switch to the process whose ID is pID;

    Codes of original body;

    // codes added for SMP-SIM: deal with event e

    execute the codes whose function is same as line 15-25 in Algorithm 1;

    // codes added for SMP-SIM: generate ESeq type event

    new a event e1;

e1.type=ESeq; e1.processID=myRank; e1.doing=False;

e1.t_executable=True; e1.t_generate=ts;

    Insert e1 into its Wait_Event_Queue;

pID = findNextEvent();

    if (pID != myRank)

suspend the current process and switch to the process whose ID is pID;

    t1=gettime();

    return;     

}

Fig. 9. The re-implementation of MPI Ibsend

MPI Ibsend, MPI Issend, MPI Irecv and MPI Wait The re-implementations of
MPI Ibsend, MPI Issend, MPI Irecv and MPI Wait are similar, and the major
work is divided into four steps as follows:

– Firstly, remove the ESeq event that has just been processed from the
Wait Event Queue.

– Secondly, insert a new communication event according to this MPI com-
munication primitive into the Wait Event Queue; select the next event to
process from the Wait Event Queue; switch to the process corresponding
to the selected event.

– Thirdly, after this process is switched on again, execute the codes of the
original body and process the event related to this primitive.

– Fourthly, insert a new ESeq event into the Wait Event Queue; select the
next event to process from the Wait Event Queue; switch to the process
corresponding to the selected event.
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The re-implementation of MPI Ibsend is shown in Fig. 9, where the function
findNextEvent() is used for selecting the un-processed executable event e
with the minimum generation time, and the return value of findNextEvent() is
e.processID. The major difference between MPI Issend(/MPI Irecv/MPI Wait)
and MPI Ibsend is the work of processing the event related to the primitive, and
the detailed processing methods can be found in Algorithm 1.

MPI_Finalize(){

    // codes added for SMP-SIM

    t2=gettime();

    remove the event whose processID is myRnak from the Wait_Event_Queue;

ts = ts+(t2-t1);

    print ts;

    Codes of original body;

    return;     

}

Fig. 10. The re-implementation of MPI Finalize

MPI Finalize As shown in Fig. 10, in the re-implementation of MPI Finalize,
before executing the codes of the original MPI Finalize body, we first remove
the ESeq event that has just been processed from the Wait Event Queue, and
then update and print the current simulation time of this process.

6. Experiments

We demonstrate the validation and accuracy of SMP-SIM in this section. Sec-
tion 6.1 introduces the benchmarks and experimental platform used. Section 6.2
describes the methodology used for evaluating our work. Section 6.3 presents
and analyzes the experimental results.

6.1. Benchmarks and Platform

We select three parallel kernels EP, CG, FT from NPB3.3-MPI benchmarks and
Sweep3D-2.2d to evaluate SMP-SIM. The problem sizes of EP, CG and FT
are all Class C, and the problem size of Sweep3D is 100 × 100 × 100. All the
benchmarks are executed in Red Hat Enterprise Linux Server Release 5.5, and
MPICH2-1.3.1 is used.

Our platform is a cluster with eight nodes, and each node is an SMP equipped
with two 2.93G Intel Xeon X5670 CPUs and 24GB RAM. The interconnection is
described in [23]. Notice that although there are 6 cores in Xeon X5670 CPU,
we only use it as a 4-core CPU because most of the benchmarks must be exe-
cuted by 2n processes.
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6.2. Evaluation Methodology

In order to validate the accuracy of SMP-SIM for different target machines, our
experiments include two parts:

– SMP target machine: for a single SMP node in our platform, firstly, we use
the two CPU as the target machine and only one CPU as the host machine,
and test the accuracy of SMP-SIM; secondly, we use only one core as the
host machine, and test the scalability of SMP-SIM with varying the scale of
the target machine.

– SMP-Cluster target machine: for the whole platform, we use all the eight
nodes as the target machine and only one node as the host machine, and
test the accuracy of SMP-SIM.

6.3. Results and Analysis

SMP Target Machine As shown in Fig. 11, when using two CPUs as the target
machine and only one CPU as the host machine, for all the four benchmarks,
the errors of SMP-SIM are between 2.56% and 6.14%. The accuracy of SMP-
SIM for EP benchmark is the highest, because EP has the fewest communica-
tions. The sequential computation time is measured by direct execution, so the
simulation of sequential computation is more accurate than that of communica-
tion. Consequently, the more communications a benchmark contains, the lower
accuracy of SMP-SIM is.
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Fig. 11. The accuracy of SMP-SIM for SMP target machine

In order to test the scalability of SMP-SIM, we fix the host machine as a
single processing core, and vary the scale of the target machine as 2, 4, and
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Fig. 12. The scalability of SMP-SIM

8 processing cores. As shown in Fig. 12, the results show that SMP-SIM has
good scalability.
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Fig. 13. The accuracy of SMP-SIM for SMP-Cluster target machine

SMP-Cluster Target Machine As shown in Fig. 13, when using all the eight
nodes as the target machine and only one node as the host machine, for all
the four benchmarks, the accuracies of SMP-SIM are high and the errors are
between 2.67% and 7.60%.
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7. Conclusion

For the system developers, it has been long desired that the performance of a
parallel system can be predicted at the design phase. Before the target machine
is completely constructed, the developers can always build an SMP machine
used as a host machine. In this paper, we introduce SMP-SIM, an SMP-based
discrete-event execution-driven performance simulator that exploits the charac-
teristics of SMP to achieve accurate and scalable performance prediction.

In SMP-SIM, we have integrated three modules, primitive decomposer, com-
munication model and event management, by adding a simulation API layer on
top of the MPICH library. By executing the target program on the host machine
with the modified MPICH library, SMP-SIM manages the events globally, han-
dles the communication start events virtually and sequential computation start
events actually. In our experimental evaluation, SMP-SIM shows high accuracy
and good scalability with prediction errors of less than 7.60%.
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