
ComSIS Vol. 1, No. 1, February 2004 91

MDA-based Ontology Infrastructure

Dragan Đurić

dragandj@mail.ru
FON – Faculty of Organizational Sciences, University of Belgrade
POB 52, Jove Ilića 154, 11000 Belgrade, Serbia and Montenegro

Abstract. The paper presents Ontology Definition Metamodel (ODM) and
Ontology UML Profile that enables using Model Driven Architecture
(MDA) standards in ontological engineering. Other similar metamodels
are based on ontology representation languages, such as RDF(S),
DAML+OIL, etc. However, none of these other solutions uses the recent
W3C effort – The Web Ontology Language (OWL). In our approach, we
firstly define the ODM and Ontology UML Profile place in the context of
the MDA four-layer architecture and identify the main OWL concepts.
Then, we define ODM using Meta-Object Facility (MOF). The relations
between similar MOF and OWL concepts are discussed in order to show
their differences (e.g. MOF or UML Class and OWL Class). The proposed
ODM is used as a starting point for defining Ontology UML profile that
enables using the well-known UML notation in ontological engineering
more extensively.

1. Introduction

The Semantic Web and its XML-based languages are the main directions of
the future Web development. Domain ontologies [1] are the most important part
of the Semantic Web applications. They are formal organization of domain
knowledge, and in that way enable knowledge sharing between different
knowledge-base applications. Artificial intelligence (AI) techniques are used for
ontology creation, but those techniques are more related to research
laboratories, and they are unknown to wider software engineering population.

In order to overcome the gap between software engineering practitioners
and AI techniques, there are a few proposals for UML use in ontology
development [2]. But, UML itself does not satisfy needs for representation of
ontology concepts that are borrowed from description logics, and that are
included in Semantic Web ontology languages (e.g. RDF, RDF Schema, OWL,
etc.). The OMG’s Model Driven Architecture (MDA) concept has the ability to
create (using metamodeling) a family of languages [3] that are defined in the
similar way like the UML is. Accordingly, in this paper, the authors define
metamodel for ontology modeling language. This metamodel is defined using
Meta-Object Facility (MOF), and is based on the Web Ontology Language
(OWL).

92 ComSIS Vol. 1, No. 1, February 2004

Since Unified Modeling Language (UML) is widely accepted as a modeling
language, we define a profile that supports ontology design – Ontology UML
Profile. It is a standard extension of UML, and is also based on MOF. Ontology
UML Profile is intended to be used as a support to ODM, not as a stand-alone
solution for Ontology modeling.

The overview of the Semantic Web languages and OWL is given in the next
section, together with the description of the MDA and MOF. In section three we
give a framework for our approach of the ontology language metamodel in the
MDA context. The ontology metamodel definition in detail is shown in the
section four. Section five gives description Of Ontology UML Profile. Based on
the paper appendix, we give a summary of the relations between OWL (as well
as RDF and RDF Schema), ODM concepts, and Ontology UML Profile. The
last section contains final conclusions. This work is a part of the effort of the
Good-Old-AI research group (www.goodoldai.org.yu) in developing AIR - a
platform for building intelligent information systems.

2. An overview of the Semantic Web, Web Ontology
Language, MDA and MOF

The step beyond the World Wide Web is the Semantic Web [4], which will
enable machine-understandable data to be shared across the Net. The
Semantic Web will be powered by metadata, described by ontologies that will
give machine-understandable meaning to its data. Ontology is one of the most
important concepts in knowledge representation. It can be generally defined as
shared formal conceptualization of particular domain [1]. The World Wide Web
and XML will provide the ontologies with interoperability, and these
interoperable ontologies will, in return, facilitate Web that can “know”
something.

Semantic Web architecture is a functional, non-fixed architecture [6]. Barnes-
Lee defined three distinct levels that incrementally introduce expressive
primitives: metadata layer, schema layer and logical layer [7]. Languages that
support this architecture and the place of OWL are shown in Figure 1.

Common data interoperability in present applications is best achieved by
using XML [5]. As shown in the Figure 1, XML supports syntax, while
semantics is provided by RDF, RDF Schema and mainly by OWL [8]. In order
to provide capabilities for unconstrained representation of the Web knowledge
and, in the same time, to support calculations and reasoning in finite time with
tools that can be built on existing or soon available technologies, OWL
introduces three increasingly expressive sublanguages for various purposes:
OWL Full (maximal expressiveness), OWL DL (guaranties computational
completeness) and OWL Lite (for starters).

ComSIS Vol. 1, No. 1, February 2004 93

Figure 1. OWL in the Semantic Web architecture

Model Driven Architecture (MDA) [9] defines three viewpoints (levels of
abstraction) from which some system can be seen. From a chosen viewpoint, a
representation of a given system (viewpoint model) can be defined. These
models are (each corresponding to the viewpoint with the same name):
Computation Independent Model (CIM), Platform Independent Model (PIM) and
Platform Specific Model (PSM).

MDA is based on the four-layer metamodeling architecture, and several
OMG’s complementary standards; which is shown in figure 2. These standards
are Meta-Object Facility (MOF) [10], Unified Modeling Language (UML) [11]
and XML Metadata Interchange (XMI) [12]. Layers are: meta-metamodel (M3)
layer, metamodel (M2) layer, model (M1) layer and instance (M0) layer.

Figure 2. MDA four-layer MOF-based metadata architecture

94 ComSIS Vol. 1, No. 1, February 2004

On the top of this architecture is the meta-metamodel (MOF). It defines an
abstract language and framework for specifying, constructing and managing
technology neutral metamodels. It is the foundation for defining any modeling
language; such as UML or even MOF itself. MOF also defines a framework for
implementing repositories that hold metadata (e.g. models) described by
metamodels [10]. The main aim of having four layers with common meta-
metamodel is to support multiple metamodels and models; to enable their
extensibility, integration and generic model and metamodel management.

3. The Ontology Modeling Architecture

3.1. An overview

To be widely adopted by users and to succeed in real-world applications,
knowledge engineering and ontology modeling must catch up with mainstream
software trends. It will provide a good support in software tools and ease the
integration with existing or upcoming software tools and applications, which will
add values to both sides. To be employed in common applications, software
knowledge management must be taken out of laboratories and isolated high-
tech applications and put closer to ordinary developers. This issue has been
addressed in more details in Cranefield’s papers [2].

MDA and its four-layer architecture provide a solid basis for defining
metamodels of any modeling language, so it is the straight choice to define an
ontology-modeling language in MOF. Such language can utilize MDA’s support
in modeling tools, model management and interoperability with other MOF-
defined metamodels. Present software tools do not implement many of the
concepts that are the basis of MDA. However, most of these applications,
which are mostly oriented to the UML and M1 layer, are expected to be
enhanced in the next few years to support MDA.

Currently, there is a RFP (Request for Proposal) within OMG that tries to
define a suitable language for modeling Semantic Web ontology languages in
the context of MDA [14]. According to this RFP the authors give their proposal
of such architecture. In our approach of ontology modeling in the scope of
MDA, which is shown in Figure 3, several specifications should be defined:

• Ontology Definition Metamodel (ODM)
• Ontology UML Profile – a UML Profile that supports UML notation for

ontology definition
• Two-way mappings between OWL and ODM, ODM and Ontology

UML Profile and from Ontology UML Profile to other UML profiles.
Ontology Definition Metamodel (ODM) should be designed to comprehend

common ontology concepts. A good starting point for ODM construction is
OWL since it is the result of the evolution of existing ontology representation
languages, and is going to be a W3C recommendation. It is at the Logical layer

ComSIS Vol. 1, No. 1, February 2004 95

of the Semantic Web [7], on top of RDF Schema (Schema layer). In order to
make use of graphical modeling capabilities of UML, an ODM should have a
corresponding UML Profile [15]. This profile enables graphical editing of
ontologies using UML diagrams as well as other benefits of using mature UML
CASE tools. Both UML models and ODM models are serialized in XMI format
so the two-way transformation between them can be done using XSL
Transformation. OWL also has representation in the XML format, so another
pair of XSL Transformations should be provided for two-way mapping between
ODM and OWL. For mapping from the Ontology UML Profile into another,
technology-specific UML Profiles, additional transformations can be added to
support usage of ontologies in design of other domains and vice versa.

Figure 3. Ontology modeling in the context of MDA and Semantic Web

3.2. Metamodeling: MDA vs. Functional Architecture

Before we start with more detailed description of ODM, we must clarify
differences between metamodeling based on MDA, and functional architecture
which is used for Web ontology languages definition. RDFS, as a schema layer
language, has a non-standard and non-fixed-layer metamodeling architecture,
which makes some elements in model have dual roles in the RDFS
specification [16]. Therefore, it is difficult to understand by modelers, lacks
clear semantics (by assigning dual roles to some elements) and propagates
“layer mistake” problem to languages it defines, in our case to OWL. MDA, on
the other side, has fixed and well-defined four-layer architecture. It has
separate metamodeling primitives on meta-metamodel and metamodel layer

96 ComSIS Vol. 1, No. 1, February 2004

that are separated from ontology language (or some other MOF-defined
language) primitives, which can have infinite layers, as in the case of OWL Full.

Table 1. A brief description of basic MOF and RDF(S) metamodeling
constructs

MOF
element

Short
description

RDF(S)
element

Short
description

ModelElement

ModelElement
classifies the
elementary, atomic
constructs of models. It
is the root element
within the MOF Model.

rdfs:Resource

Represents
all things
described by
RDF. Root
construct of
majority of RDF
constructs.

DataType Models primitive
data, external types, etc. rdfs:Datatype

Mechanism
for grouping
primitive data.

Class

Defines a
classification over a set
of object instances by
defining the state and
behavior they exhibit.

Classifier

Abstract concept that
defines classification. It
is specialized by Class,
DataType, etc.

rdfs:Class

Provides an
abstraction
mechanism for
grouping similar
resources.

In RDF(S),
rdfs:Class
also have
function that is
similar to a MOF
concept of
Classifier.

Association

Expresses
relationships in the
metamodel between
pairs of instances of
Classes

Attribute

Defines a notional
slot or value holder,
typically in each
instance of its Class.

rdf:Property

Defines
relation between
subject
resources and
object resources.

TypedElement

The TypedElement
is an element that
requires a type as part
of its definition. A
TypedElement does
not itself define a type,
but is associated with a
Classifier. Examples
are object instances,
data values etc.

In RDF(S),
any
rdfs:Resourc
e can be typed
(via the
rdf:type
property) by
some
rdfs:Class

In OWL DL, functional architecture’s problems are partially solved by

introducing new modeling elements (owl:Class for example) that are used for
defining ontologies. In this case, rdfs:Class is used only for defining

ComSIS Vol. 1, No. 1, February 2004 97

owl:Class, owl:ObjectProperty and other ontology-modeling primitives.
It is not used for modeling ontologies, which is done using ontology-modeling
primitives. On the other hand, OWL Full allows unconstrained use of RDFS
constructs, which means that it completely inherits RDFS’ problems. ODM that
supports OWL Full cannot be modeled directly using MOF if we want to
preserve fixed-layer architecture.

Accordingly, ODM will be designed primarily to support OWL DL. Support for
OWL Full will be included partially, for concepts that don’t introduce significant
problems or break fixed-layer architecture.

A brief comparative description of the most important metamodeling
constructs in MOF and RDF(S), which will make reading the next sections
easier, is shown in Table 1. Detailed description of MOF can be found in
OMG’s MOF specification document [10]. RDF, RDFS and their concepts are
described in detail in W3C documents [6].

4. Essential ODM concepts

4.1. Resource

OWL is built on top of RDF; thus it inherits its concepts, such as Resource,
Property, metamodeling capabilities etc. Resource is one of the basic RDF
concepts; it represents all things described by RDFS and OWL. It may
represent anything on the Web: a Web site, a Web page, a part of a Web page,
or some other object named by URI. Compared to ontology concepts, it can be
viewed as a root concept, the Thing. In RDFS, Resource is defined as an
instance of rdfs:Class; since we use MOF as a meta-metamodeling
language, Resource will be defined as an instance of MOF Class. It is the root
class of most other basic ODM concepts that will be described: Ontology,
Classifier, Property, Instance etc. The root of this hierarchy is
shown on Class Diagram in Figure 4. Other class diagrams (shown in figures 5,
6 and 7) will depict these concepts in more detail.

Ontology is a concept that aggregates other concepts (Classes, Properties,
etc.). It groups instances of other concepts that represent similar or related
knowledge. Classifier is the base class of concepts that are used for
classification – AbstractClass and DataType. Instance is the base class of
concepts that are classified by Classifiers – concrete Individuals and
concrete DataValues. Property is used to represent relationships between
other concepts.

For example, Person is an AbstractClass (more precise - a Class) that
classifies many Individuals: Tom, Dick, Harry etc. All Persons have some
characteristics – name and occupation, which are represented by Properties
– name and occupation. These Properties can have values that are of

98 ComSIS Vol. 1, No. 1, February 2004

certain type; name can be a String (an example of DataType), occupation
can be Profession (another example of AbstractClass). Then,
Profession classifies concrete professions (its instances): Musician,
Writer, Mechanic, Astronaut…

Figure 4. The hierarchy of basic ontology concepts

4.2. Classifier

In RDFS and OWL, Class (rdfs:Class and owl:Class) represents a
concept for grouping resources with similar characteristics. This concept of
Class (we can also call it Ontology Class) is not completely identical as a
concept of Class that is defined in UML and object oriented programming
languages. Every owl:Class is a set of individuals, called class extension.
These individuals are instances of that class. Two classes can have the same
class extension but still be different classes. Ontology classes are set-theoretic,
while traditional classes are more behavioral. Unlike a traditional class, an
OWL class does not directly define any attributes or relations with other
resources, and there is no any concept similar to methods. Attributes and
relations are defined as Properties. In ODM, a Class concept corresponding to
rdfs:Class is defined as Classifier - an instance of MOF Class that
inherits Resource. A concept that complies with owl:Class is ODM’s
AbstractClass.

OWL further introduces six ways of defining a Class – class descriptions:
1. A class can be defined by a class identifier (an URI reference) – For

example, a Class Person.

ComSIS Vol. 1, No. 1, February 2004 99

2. As an exhaustive enumeration of individuals that form the instances
of a Class. For example, individuals Mick, Keith, Ron, Bill and
Charlie form an Enumeration – TheRollingStones. Note that
they are also members of a Class Person.

3. As a property restriction – Class of all individuals that have the same
restriction on some of their characteristics.

4. As an intersection – A Class of all individuals that are members of all
Classes that form an intersection. An intersection of Classes
TheWailers and TheRollingStones is a Class that does not
have any member, since no musician has played in both bands.

5. As a union – A Class of all individuals that are members of any
Class that forms a union. A union of TheWailers and
TheRollingStones, has twelve individuals, all musicians from
both bands.

6. As a complement – A Class of all individuals that are not members
of other, complement class. A complement of TheRollingStones
is a Class that has about six billion members – all Persons that are
not members of TheRollingStones.

7. AllDifferent is a helper class, which states that all of its
instances are have different identity.

The first concept, named class is modeled as ODM Class. Other five species
are defined in OWL as subclasses of owl:Class, and are shown in Figure 5.

If we define class descriptions as simple subclasses of Class, like it is
defined in OWL, we will have some problems related to the differences
between RDFS and MOF concept of a class and the open-world assumption of
the Semantic Web. While in RDFS some class instance can be easily defined
to be a member of many class extensions in the same time, in MOF it can be
instance of exactly one class. The open-world assumption might demand some
flexibility, i.e. that class which was a Union becomes an Intersection, which is
not possible to model in MOF, since each instance can be the instance of only
one Class, i.e. dynamic classifiers are not allowed.

To solve this problem, we used the idea captured in the Decorator design
pattern [17]. In Figure 5, we define ClassDescription as a subclass of
Class which can encapsulate a Class. In that way, we can have a chain of
additions to the starting definition of Class (i.e., speaking in software
engineering terms, we can add further responsibilities to the original concept of
Class). For example, if we have some simple Class, we can define union by
decorating that class with Union, and change it later to intersection, by
removing the union decorator and decorating the class with Intersection

100 ComSIS Vol. 1, No. 1, February 2004

Figure 5. The hierarchy of Ontology Classes in ODM

4.3. Property

Ontology Class attributes or associations are represented through
properties. A property is a relation between a subject resource and an object
resource. Therefore, it might look similar to a concept of attribute and
association in traditional, object oriented sense. However, the important
difference is that Property is stand-alone; it does not depend of any Class (or
resource) as associations or attributes are in UML. In ontology languages, a
property can be defined even with no classes associated to it. In ODM,
Property is an instance of MOF Class that inherits Resource.

In addition to the concept of rdf:Property, which is defined in RDF, OWL
distinguishes two types of properties: owl:ObjectProperty, whose range
can be only an Individual, and owl:DatatypeProperty, whose range can be
only DataValue. In ODM, these concepts are instances of MOF Class that
inherit Property. OWL also defines additional concepts, global cardinality
constraints on a Property that can further refine the Property. These
concepts are also represented as instances of MOF Class.

In OWL, various types of global property constraints are defined as
subclasses of Property. Here we have the same problem we had with OWL
classes, since some property might have multiple global constraints, for

ComSIS Vol. 1, No. 1, February 2004 101

example symmetric and transitive. In this case we also apply the Decorator
design pattern, just like we did with Class Descriptions. The resulting class
diagram is shown in Figure 6. If we want to define, for example, symmetric
property, we will decorate ObjectProperty with SymmetricProperty, and
if we later decide that this property also should be transitive, we can simply
decorate it again with TransitiveProperty.

Figure 6. The hierarchy of Ontology Properties in ODM

4.4. Properties predefined in RDFS and OWL

We have seen how predefined concepts, which are defined in OWL as
instances of rdf:Class, are defined in ODM as instances of MOF Class with
some changes in the hierarchy. RDF(S) and OWL have some predefined
concepts that are instances of rdf:Property. These predefined properties
are used to make relationships between concepts in OWL metamodel. In ODM,
they are modeled as MOF Associations or as MOF Attributes.

Predefined properties of RDF(S) and OWL and their ODM counterparts are
not completely identical. For example, the predefined property rdf:type
states that a rdfs:Resource is an instance of a rdfs:Class. In ODM, it is
represented as an Association between Classifier and Instance, as shown in
Figure 7, which is obviously a narrower usage than is defined in RDF. Recall
that Classifier is further specialized in AbstractClass and DataType,
and that Instance is specialized in Individual and DataValue. Such
differences are caused by differences between MDA and Functional
architecture. In RDF, rdf:type property is used as both metamodeling and

102 ComSIS Vol. 1, No. 1, February 2004

modeling concept while in MDA, MOF is used for metamodeling, and ODM for
modeling. Since ODM type association is not used for metamodeling, it is a
narrower concept than rdf:type, thereby they are not equal.

Example of predefined property that is modeled as a MOF Attribute is shown
in Figure 4, as each of Resource’s attributes ID, comment and label.

A Classifier describes some general concept that has its Instances
(Individuals and DataValues). On the other hand, a Property describes
some generic characteristic that can describe that Classifier and possibly
other Classifiers. Through domain we state that a Property can be used
to describe a Classifier, and through range a characteristic's type. For
example, a Property nationality can be assigned to a Class Person
(through domain) with possible values which type is a Class Country
(through range). In ODM, these relations are modeled as associations, as
shown in Figure 7.

Figure 7. Key relationships among Ontology concepts

It is obvious that an Individual cannot have a DataType as its type, or that a
DataValue cannot have an AbstractClass as its type. Looking at this class
diagram, we can not see this constraint. Such constraints are described in the
Object Constraint Language (OCL) [10], a standard way of defining constraints
in MOF and UML. For example, to state that type of an Individual must be an
AbstractClass, we add the following OCL constraint:

context: Individual

ComSIS Vol. 1, No. 1, February 2004 103

inv: self.type.oclIsTypeOf(AbstractClass)

4.5. Statement

A Statement is a Subject-Predicate-Object triple that expresses some fact in
a way similar to the way facts are expressed in English. A fact that some
Individual, Bob for example, has some nationality, Jamaican, is expressed
through a Statement, which links the Instance Bob as the subject, the
Property nationality as the predicate, and the Instance Jamaica as the
object. Thus, Statement can be viewed as some kind of Property’s instance. In
ODM, Statement is an instance of MOF Class that is linked with Instance
by subject and object associations and with Property by predicate
association (Figure 7). ODM Statement slightly differs from the Statement
defined in RDF (rdf:subject and rdf:object link rdf:Statement with
rdfs:Resource). The difference arises from the fact that ODM is not
intended for metamodeling as RDF is, similarly to the case with rdf:type.

4.6. Summary of Ontology Definition Metamodel

The summary of ODM concepts is given in Table 1 in the Appendix. The first
column represents original RDF, RDF(S) and OWL concepts, which are used
as the starting point for defining the ODM. The corresponding ODM concepts
are listed in second column. The third and fourth columns summarize the
Ontology UML Profile, which is described in the next section, and is given here
for a brief overview.

5. Ontology UML Profile essentials

UML Profile is a concept used for adapting the basic UML constructs to some
specific purpose. Essentially, this means introducing new kinds of modeling
elements by extending the basic ones, and adding them to the modeler’s tools
repertoire. Also, free-form information can be attached to the new modeling
elements.

5.1. UML Profile Basics

The basic UML constructs (model elements) can be customized and extended
with new semantics by using four UML extension mechanisms defined in the
UML Specification [21]: stereotypes, tag definitions, tagged values, and
constraints. Stereotypes enable defining virtual subclasses of UML

104 ComSIS Vol. 1, No. 1, February 2004

metaclasses, assigning them additional semantics. For example, we may want
to define the «OntClass» stereotype, Figure 8, by extending the UML Class
metaclass to denote the modeling element used to represent ontologies (and
not other kinds of concepts).

Figure 8 – New stereotype definition

Tag definitions can be attached to model elements. They allow for
introducing new kinds of properties that model elements may have and are
analogous to metaatribute definitions. Each tag definition specifies the actual
values of properties of individual model elements, called tagged values. Tag
definitions can be attached to a stereotype to define its virtual metaattributes.
For example, the «OntClass» stereotype in Figure 8 has a tag definition
specifying 4 tagged values (for enumeration, intersection, etc.).

Constraints make possible to additionally refine the semantics of the
modeling element they are attached to. They can be attached to each
stereotype using OCL (Object Constraint Language) [21] or English language
(i.e. spoken language) in order to precisely define the stereotype’s semantics
(see the example in Figure 8).

More details about UML extension mechanisms can be found in [20] and
[21].

A coherent set of extensions of the basic UML model elements, defined for
specific purposes or for a specific modeling domain, constitutes a UML profile.

5.2. Design Rationale for Ontology UML Profile

In order to customize UML for modeling ontologies, we define UML Profile
for ontology representation, called Ontology UML Profile.

In developing our Ontology UML Profile we used experiences of other UML
Profile designers (e.g., see [27]). Applying such experiences to our case, we
wanted our Ontology UML Profile to:

ComSIS Vol. 1, No. 1, February 2004 105

• offer stereotypes and tags for all recurring ontology design elements,
such as classes, individuals, properties, complements, unions, and
the like;

• make specific ontology modeling and design elements easy to
represent on UML diagrams produced by standard CASE tools, thus
keeping track of ontological information on UML models;

• enable encapsulating ontological knowledge in an easy-to-read
format and offer it to software engineers;

• make possible to evaluate ontology UML diagrams and indicate
possible inconsistencies;

• support Ontology Definition Metamodel, hence be able to represent
all ODM concepts.

Currently, several different approaches to ontology representation in UML
have been proposed. We note two major trends among them:

• Extending UML with new constructs to support specific ontology
concepts (Property for example) [19].

• Using standard UML and defining a UML Profile for ontology
representation [22].

We believe that ontology representation in UML can be achieved without
non-standard UML extensions, hence our approach belongs to the latter of the
above two trends. In our Ontology UML profile, specific ontology concepts are
annotated using the standard UML extension mechanisms described above.
Models created with such a UML Profile will be supported by standard UML
tools, since they do not add non-standard concepts to UML, thus they are UML
models. Since in our approach UML is used to support ODM, not as a stand-
alone tool for ontology modeling, Ontology UML Profile will not cover all of the
essential ODM (Ontology Definition Metamodel) concepts. Ontology UML
Profile should define only constructs for concrete concepts, such as
ObjectProperty, Class or Individual, leaving ODM to deal with abstract
constructs like Resource, Instance, Classifier, etc, which are not used in
development of real ontologies (models), and do not relate to real-world things;
they are only introduced to ODM in order to create a coherent hierarchy.

A UML Profile definition in the context of the MDA four-layer metamodeling
architecture means extending UML at the metamodel layer (M2). One can
understand these extensions as a new language, but also UML as a family of
languages [3]. Each of these languages uses UML notation with the four UML
extension mechanisms. Recent UML specifications [21] enable using graphical
notation for specifying stereotypes and tagged definitions [23]. Thus, all
stereotypes and tagged values that are defined in this paper can be shown in
this way.

The notation used for stereotype creation of Ontology UML Profile
(«OntClass» stereotype) accomodetes UML’s Class («metaclass»). Having
this graphical notation for the UML extension mechanism can be useful for
explaining certain relations between UML constructs and new stereotypes, but
also between stereotypes themselves.

Since stereotypes are the principle UML extension mechanism, one might be
tempted to think that defining Ontology UML Profile is a matter of specifying a

106 ComSIS Vol. 1, No. 1, February 2004

couple of stereoptypes and using them carefully in a coherent manner. In
reality, however, it is much more complicated than that. The reason is that
there is a number of fine details to take care of, as well as the existence of
some conceptual inconsistencies between MDA and UML that may call for
alternative design decisions. The following subsections describe the most
important Ontology UML Profile concepts in detail. All concepts are
summarized in Table 1 in the Appendix.

5.3. Ontology Classes

Class is one of the most fundamental concepts in ODM and Ontology UML
Profile. As we noted in the discussion about the essential ODM concepts, there
are some differences between traditional UML Class or OO programming
language Class concept and ontology class as it is defined in OWL (owl:Class).
Fortunately, we are not trying to adopt UML as stand-alone ontology language,
since that might require changes to UML basic concepts (Class and other). We
only need to customize UML as a support to ODM.

In ODM, Ontology Class concept is represented as an instance of MOF
Class, and has several concrete species, according to the class description:
Class, Enumeration, Union, Intersection, Complement, Restriction and
AllDifferent. These constructs in the Ontology UML Profile are all inherited from
the UML concept that is most similar to them, UML Class. But, we must
explicitly specify that they are not the same as UML Class, which we can do
using UML stereotypes. An example of Classes modeled in Ontology UML
Profile is shown in Figure 9.

ODM Class identified by a class identifier will have the stereotype
«OntClass», AllDifferent - «AllDifferent» and Restriction -
«Restriction». In ODM, Enumeration, Intersection, Union and
Complement are descendants of ODM Class; in Ontology UML Profile they
have stereotypes «Enumeration», «Intersection», «Union» and
«Complement». The «OntClass» stereotype would be extended by each of
these new stereotypes. Additionally, enumeration, intersection, union and
complement are defined by Boolean tagged values - enumeration,
intersection, union and complement, which can be added to
«OntClass» with the constraint that only one of them can be true. This would
be similar to the solution used in other UML profiles. A good example is the
XML Schema UML profile [24] that has stereotypes for modeling the content
model of the XML Schema complex type: any, choice, and sequence. Complex
type itself is a distinct stereotype as well. Also, in parallel with these
stereotypes, there is a tagged value modelGroup attributed to the complex type
stereotype that can take a value from the set consisting of: any, choice, and
sequence.

Figure 9 shows various types of ontology classes modeled in UML. The
Class Person is an example of an ontology Class that is identified by a class
identifier, TheRollingStones and TheWailers are enumerations,

ComSIS Vol. 1, No. 1, February 2004 107

StonesWailersIntersection is an intersection, and
StonesWailersUnion is a union. There is a class that represents
complement of TheWailers – all individuals that are not members of
TheWailers. AllDifferent is an auxiliary class whose members are
different individuals. Also shown is an «OntClass» Human and the
Dependency «equivalentClass», which means that Person and Human
are classes that have the same class description (i.e. all Persons are Humans
and vice versa).

Figure 9 – Class Diagram showing relations between Ontology Classes
and Individuals in the Ontology UML Profile

108 ComSIS Vol. 1, No. 1, February 2004

5.4. Individuals

In ODM, an instance of an AbstractClass is called Individual. In UML, an
instance of a Class is an Object. ODM Individual and UML Object have
some differences, but they are similar enough, so in Ontology UML Profile,
Individual is modeled as UML Object, which is shown in Figure 9. The
stereotype for an object must match the stereotype for its class («OntClass»
in this case). Stating that some Individual has some type is done in three ways:

1. by using an underlined name of an Individual followed by “:” and its
«ontClass» name (for example, Mick:Person is an Individual
whose type is Person. This is the usual UML method of stating an
Object’s type.

2. by using a UML Dependency’s stereotype «instanceOf» between
an Individual and its «OntClass». This method is also allowed
in standard UML. For example, Mick is an instance of
TheRollingStones.

3. indirectly – through logical operators on «OntClass». If some
«OntClass» is a union, intersection or complement, it is a class of
Individuals that are not explicitly defined as its instances. For
example, Mick is not explicitly defined as a member of
StonesWailersUnion, but it is its member since he is a member
of TheRollingStones, which is connected with
StonesWailersUnion through a «unionOf» connection.

Although there are some UML tools (Together, Visio) that allow relations
between a UML Class and a UML Object in a UML Class Diagram, many
popular UML tools (e.g. Rational Rose, Poseidon for UML) do not support this,
even though the UML specification [21] clearly states that Objects and Links
can be drawn on Class Diagrams. The authors believe that this is closely
related to understanding UML as a graphical notation for modeling and using it
with object-oriented programming languages. Another very important issue is
related to the MDA metamodeling architecture. UML classes are usually
thought of as belonging to the model layer (M1), whereas UML objects are
believed to belong exclusively to the instance level (M0). But, this is not quite
correct: the UML class and object are defined at the same MDA layer (i.e. M2).
Thus, their instances are at the same layer – the model layer (i.e. M1). Actually,
a UML object models a thing from the real world [26]. But, objects only model
real world things; they are not real things (e.g. in Figure 9 the object Mick only
models an instance of Human). Then, how can we distinguish between the
instance-of relation between objects and classes, and, on the other hand,
between UML Class (metaclass) and some concrete class? We believe that
Atkinson and Kühne [25] have adequately proposed the solution to this
problem by introducing two kinds of instance-of relations: linguistic and
ontological. The linguistic instance-of relation is the instance-of relation
between concepts from different layers (UML Class definition and some
concrete class, for instance TheWailers). The ontological instance-of relation

ComSIS Vol. 1, No. 1, February 2004 109

is the instance-of relation between concepts that are at the same linguistic
layer, but which are at different ontological layers (for instance, «OntClass»
Person and object Keith are at different ontological layers since Human is
the class (type) of Keith).

5.5. Ontology Properties

Property is one of the most unsuitable ontology concepts to model with object-
oriented languages and UML. The problem arises from the major difference
between Property and its similar UML concepts – Association and Attribute.
Since Property is an independent, stand-alone concept, it can not be directly
modeled with Association or Attribute, which can not exist on their own. Some
authors [19] suggested extending UML with new constructs to support the
stand-alone Property, introducing aspect-oriented programming concepts into
UML. In our view, this solution is rather extreme, since it demands non-
standard changes to UML. We try to introduce Property in UML in some other
way instead.

Since Property is a stand-alone concept it can be modeled using a stand-
alone concept from UML. That concept could be the UML Class’ stereotype
«Property». However, Property must be able to represent relationships
between Resources (Classes, Datatypes, etc. in the case of UML), which
the UML Class alone is not able to do. If we look at the ODM Property definition
more closely, we will see that it accomplishes relation representation through
its range and domain. According to the ODM Model, we found that in the
Ontology UML Profile, the representation of relations should be modeled with
UML Association’s or UML Attribute’s stereotypes «domain» and «range». In
order to increase the readability of diagrams, the «range» association is
unidirectional (from a Property to a Class).

ODM defines two types (subclasses) of Property – ObjectProperty and
DatatypeProperty. ObjectProperty, which can have only Individuals
in its range and domain, is represented in Ontology UML Profile as the Class’
stereotype «ObjectProperty». DatatypeProperty is modeled with the
Class’ stereotype «DatatypeProperty».

An example of a Class Diagram that shows ontology properties modeled in
UML is shown in Figure 10. It contains four properties: two
«DatatypeProperty»s (name and socialSecurityNumber) and two
«ObjectProperty»s (nationality and colleague) UML Classes. In
cooperation with «domain» and «range» UML Associations, or «domain»
and «range» UML Attributes, they are used to model relationships between
«OntClass» UML Classes. Tagged values describe additional characteristics,
for example, «ObjectProperty» colleague is symmetric (if one Person is a
colleague of another Person, the other Person is also a colleague of the first
Person) and transitive (if the first Person is a colleague of the second Person,
who is a colleague of the third Person, the first and third Person are

110 ComSIS Vol. 1, No. 1, February 2004

colleagues). In ODM, these characteristics are added to an ODM Class
applying the Decorator Design Pattern [17]. The transformation that maps an
Ontology UML Profile model to an ODM model should create one decoration of
an ODM Property per attribute of Ontology UML Profile «ObjectProperty»
or «DatatypeProperty».

Figure 10 – Ontology Properties shown in UML Class Diagram

There is an important issue that must be clarified with this diagram. In UML,
relations are represented by Associations (graphically represented as lines) or
Attributes, which looks nice and simple. Ontology UML Profile diagrams may
look overcrowded, since each relationship requires a box and two lines to be
properly represented. The solution shown in this paper uses standard graphical
symbols, but UML allows custom graphical symbols for a UML Profile. For
example, a custom graphical symbol for Property could be a tiny circle with
lines, which reduces the space on diagrams. Also, additional custom settings,
like distinct colors for «OntClass» (green), «ObjectProperty» (orange) or
«DatatypeProperty» (orange) in this paper, can be used to increase the
diagram readability. For the sake of readability, this UML Profile allows two
styles of «DatatypeProperty» domain and range presentation. An example
of the first style (a UML Class with two UML Associations) is
socialSecurityNumber, and an example of the second one (a Class with
Attributes as domain or range) is name. The second style is allowed only for
«DatatypeProperty» whose range multiplicity is equal or less than one. So,
if a «DatatypeProperty» has range multiplicity of 0..1 or 1, the style with
Attributes can be used to reduce the clutter.

5.6. Statement

ODM Statement is a concept that represents concrete links between ODM
instances – Individuals and DataValues. In UML, this is done through
Link (an instance of an Association) or AttributeLink (an instance of an

ComSIS Vol. 1, No. 1, February 2004 111

Attribute). Statement is some kind of instance of a Property, which is
represented by the UML Class’ stereotype («ObjectProperty» or
«DatatypeProperty»). Since in UML a Class’ instance is an Object, in
Ontology UML Profile Statement is modeled with Object’s stereotype
«ObjectProperty» or «DatatypeProperty» (stereotype for Object in UML
must match the stereotype for its Class’ stereotype). UML Links are used to
represent the subject and the object of a Statement. To indicate that a Link is
the subject of a Statement, LinkEnd’s stereotype «subject» is used, while the
object of the Statement is indicated with LinkEnd’s stereotype «object».
LinkEnd’s stereotype is used because in UML Link can not have a stereotype.
These Links are actually instances of Property’s «domain» and «range». In
brief, in Ontology UML Profile Statement is represented as an Object with two
Links – the subject Link and the object Link, which is shown in Figure 11. The
represented Persons Mick and Keith are colleagues. They both have UK
(United Kingdom) nationality.

Figure 11 – Individuals and Statements shown in a UML Object Diagram.

As with Ontology Properties, the diagram’s readability can be further
increased by using distinct colors and custom graphical symbols. A tiny circle
can be used instead of the standard box for representing a Statement in order
to reduce clutter on a diagram.

5.7. Summary of Ontology UML Profile

We have seen in detail how the most important Ontology Definition Metamodel
concepts are translated into Ontology UML Profile. Table 1 in the Appendix
shows the summary of all Ontology UML Profile concepts, together with the
corresponding ODM and OWL concepts.

112 ComSIS Vol. 1, No. 1, February 2004

6. Conclusions

The Ontology Definition Metamodel and Ontology UML Profile defined in this
paper are in accordance with the OMG’s RFP initiative for ontology modeling.
Accordingly, we borrowed the name ODM for our metamodel from the OMG’s
RFP. The proposed solution enables using ontologies in the way that is closer
to software engineering practitioners. Also, since the UML and ODM are
defined as MOF-compliant languages it is possible to store ontologies in MOF-
based repositories, to store ontology diagrams in a standard way (UML2 XMI),
as well as to share and interchange ontologies using XMI.

The proposed ODM and Ontology UML Profile can be considered as a part
of the effort to specify standard ontology metamodel. Their important feature is
that they are based on OWL. With the Ontology UML Profile, the ODM
concepts can be used as stereotypes in the UML models (similar to UML
CORBA Profile or other OMG’s UML Profiles).

The possibilities of defining other AI metamodels in MOF should and will be
explored in the future work. This means that MDA and MOF will be the
integrating point for metamodels, both common and AI-related. Further plans
include using Java Metadata Interface (JMI) [18] to enable creation, storage,
access, discovery, and exchange of ODM-defined ontologies using standard
Java interfaces.

7. References

1. Gruber, T. R., “A translation approach to portable ontology specifications”,
Knowledge Acquisition, Vol. 5, No. 2, 1993.

2. Cranefield, S., “UML and the Semantic Web”, In Proceedings of the International
Semantic Web Working Symposium, Palo Alto, 2001,
www.semanticweb.org/SWWS/program/full/paper1.pdf.

3. Duddy, K., “UML2 Must Enable A Family of Languages”, Communications of the
ACM, Vol. 45, No. 11, November 2002, pp 73-75.

4. Tim Berners-Lee, Weaving the Web, Orion Business Books, London, 1999.

5. Bray, T., et al (eds.), “Extensible Markup Language (XML) 1.0 (Second Edition)”,
W3C Recommendation, http://www.w3.org/TR/2000/REC-xml-20001006, 2000.

6. Brickley, D., Guha, R.V. (eds.), “Resource Description Framework (RDF) Schema
Specification 1.0”, W3C Candidate Recommendation,
http://www.w3.org/TR/2000/CR-rdf-schema-20000327, 2000.

7. Tim Berners-Lee, “Semantic Web Road Map”, W3C Design Issues,
http://www.w3.org/DesignIssues/Semantic.html, 1998.

8. van Harmelen, F., et al, “OWL Web Ontology Language Reference”, W3C Working
Draft, http://www.w3.org/TR/2003/WD-owl-ref-20030331/, 2003.

9. Miller, J., Mukerji, J. (eds.), “MDA Guide Version 1.0”, OMG Document: omg/2003-
05-01, http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf, May 2003.

ComSIS Vol. 1, No. 1, February 2004 113

10. “Meta Object Facility (MOF) Specification v1.4”, OMG Document formal/02-04-03,
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf, April 2002.

11. Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language User
Guide, Addison-Wesley, Massachusetts, 1998.

12. “OMG XMI Specification, v1.2”, OMGDocument formal/02-01-01,
http://www.omg.org/cgi-bin/doc?formal/2002-01-01, 2002.

13. Gasevic, D., Damjanovic, V., Devedzic, V., “Analysis of the MDA Standards in
Ontological Engineering”, submitted for publication to the Sixth International
Conference of Information Technology, Bhubaneswar, India, December 22-25,
2003.

14. “Ontology Definition Metamodel Request for Proposal”, OMG Document: ad/2003-
03-40, http://www.omg.org/cgi-bin/doc?ad/2003-03-40, 2003.

15. Sigel, J., “Developing in OMG’s Model-Driven Architecture”, Revision 2.6, Object
Management Group White Paper, ftp://ftp.omg.org/pub/docs/-omg/01-12-01.pdf,
2001.

16. Pan, J., Horrocks, I., “Metamodeling Architecture of Web Ontology Languages”, In
Proceedings of the First Semantic Web Working Symposium (SWWS'01), Stanford,
July 2001, pp 131-149 http://img.cs.man.ac.uk/jpan/Zhilin/download/Paper/Pan-
Horrocks-rdfsfa-2001.pdf.

17. Gamma, E., et al, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

18. Dirckze, R. (spec. leader), “Java Metadata Interface (JMI) Specification Version
1.0”, http://jcp.org/aboutJava/communityprocess/final/jsr040/index.html, 07 June
2002.

19. Baclawski, K., et al., “Extending UML to support ontology engineering for the
Semantic Web”. Fourth International Conference on The Unified Modeling
Language, volume 2185, pages 342–360. Springer-Verlag, Berlin, October 2001.

20. Rumbaugh, J., Jacobson, I., Booch, G., “The Unified Modeling Language
Reference Manual”, Addison-Wesley, 1998.

21. “OMG Unified Modeling Language Specification”, Object Management Group,
http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.zip, March 2003.

22. Baclawski, K. et al, “UOL: Unified Ontology Language”, Assorted papers discussed
at the DC Ontology SIG meeting, http://www.omg.org/cgi-bin/doc?ontology/2002-
11-02, 2002.

23. Kobryn, C., “The Road to UML 2.0: Fast track or Detour”, Software Development
Magazine, April 2001,
http://www.sdmagazine.com/documents/s=732/sdm0104b/0104b.htm.

24. Carlson, D., Modeling XML Applications whit UML: Practical E-Business
Applications, Addison-Wesley, Boston, USA, 2001.

25. Colin Atkinson, Thomas Kühne, , “Model-Driven Development: A Metamodeling
Foundation” (Spec. issue on Model-Driven Development), IEEE Software, Vol. 20,
No. 5, Sep/Oct, 2003, pp 36-41.

114 ComSIS Vol. 1, No. 1, February 2004

26. Colin Atkinson, Thomas Kühne, “Rearchitecting the UML Infrastructure”, ACM
Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002,
pp 290–321

27. Juerjens, J., Secure Systems Development with UML. Springer-Verlag, Berlin,
2003.

Appendix

Table 1. ODM and Ontology UML Profile Summary

RDFS Concept Ontology Definition
Metamodel Concept

Base UML
Class

UML Stereotype
(inside « ») or Tag

rdfs:Resource abstract class Resource

rdfs:Datatype class Datatype DataType

rdfs:range association range Association or
Attribute

«range»

rdfs:domain association domain Association or
Attribute

«domain»

rdfs:type association type Dependency «instanceOf»

rdfs:subClassOf association subclassOf Generalizatio
n

«subClassOf»

rdfs:subPropertyOf association subPropertyOf Generalizatio
n

«subPropertyOf»

rdfs:label attribute label

rdfs:seeAlso association seeAlso Association «seeAlso»

RDF Concept Ontology Definition
Metamodel Concept

Base UML
Class

UML Stereotype
(inside «») or Tag

rdf:Property abstract class Property

rdf:Statement class Statement Object «ObjectProperty» or
«DatatypeProperty»

rdf:subject association subject Link or
AttributeLink

«subject»

rdf:object association object Link or
AttributeLink

«object»

rdf:predicate association predicate Dependency «instanceOf»

rdf:ID attribute ID Element
Name

OWL Ontology Concept Ontology Definition
Metamodel Concept

Base UML
Class

UML Stereotype
(inside «») or Tag

owl:Ontology class Ontology Package «ontology»

ComSIS Vol. 1, No. 1, February 2004 115

owl:Class class Class Class «OntClass»

Enumeration class Enumeration Class «Enumeration» or
enumeration

owl:Restriction abstract class Restriction

owl:onProperty association onProperty Association «onProperty»

ValueConstraint abstract class
ValueConstraint

owl:allValuesFrom association allValuesFrom
and class AllValuesFrom

Association
and Class

«allValuesFrom»
(Assoc.) and
«AllValuesFrom»

owl:someValuesFrom association
someValuesFrom and
class SomeValuesFrom

Association
and Class

«someValuesFrom»
(Assoc.) andv
«SomeValuesFrom»

owl:hasValue association hasValue and
class HasValue

Dependency
and Class

«hasValue» (Assoc.)
and «HasValue»

CardinalityConstraint abstract class
CardinalityConstraint

owl:minCardinality class MinCardinality AssociationEn
d multiplicity

owl:maxCardinality class MaxCardinality AssociationEn
d multiplicity

owl:cardinality class Cardinality AssociationEn
d multiplicity

owl:intersectionOf association intersectionOf
and
class Intersection

Dependency
and
TaggedValue

«intersectionOf»
(Dep.), intersection
tag or «Intersection»
for Class

owl:unionOf association unionOf and
class Union

Dependency
and
TaggedValue

«unionOf» (Dep.),
union tag or
«Union» for Class

owl:complementOf association complementOf
andClass ComplementOf

Dependency
and
TaggedValue

«complementOf»
(for Dependency),
complement tag or
«Complement» for
Class

owl:equivalentClass association
equivalentClass

Dependency «equivalentClass»

owl:disjointWith association disjointWith Dependency «disjointWith»

owl:ObjectProperty class Objectproperty Class «ObjectProperty»

owl:DatatypeProperty class DatatypeProperty Class «DatatypeProperty»

owl:equivalentProperty association
equivalentProperty

Dependency «equivalentProperty
»

owl:inverseOf association inverseOf Dependency «inverseOf»

owl:FunctionalProperty class FunctionalProperty TaggedValue functional

owl:InverseFunctiona
Property

class
InverseFunctionalProperty

TaggedValue inverseFunctional

116 ComSIS Vol. 1, No. 1, February 2004

owl:TransitiveProperty class TransitiveProperty TaggedValue transitive

owl:SymmetricProperty class SymmetricProperty TaggedValue symmetric

Individual class Individual Object «ontClass»

owl:Thing instance of class Individual

owl:sameAs and
owl:sameIndividualAs

association sameAs Dependency «sameAs»

owl:differentFrom association differentFrom Dependency «differentFrom»

owl:allDifferent association allDifferent Dependency «allDifferent»

owl:oneOf association type Dependency «instanceOf»

owl:AllDiferent class AllDifferent Class «AllDifferent»

owl:distinctMembers association
distinctMembers

Dependency «distinctMembers»

owl:equivalentProperty association
equivalentProperty

Dependency «equivalentProperty
»

owl:backwardCompaibleW
ith

owl.backwardCompatibleW
ith

Dependency «backwardCompatib
le With»

owl:imports owl.imports Dependency «imports»

owl:incompatibleWith owl.incompatibleWith Dependency «incompatibleWith»

owl:inverseOf owl.inverseOf Dependency «inverseOf»

owl:priorVersion owl.priorVersion Dependency «priorVersion»

Dragan Djuric is a MSc student at FON – Faculty of Organizational Sciences,
University of Belgrade, and also a member of Good-Old-AI research group. His interests
mostly include Enterprise software architecture, Object-Oriented development, Java
platform and Intelligent Information Systems.

