

ComSIS Vol. 1, No. 1, February 2004 117

Generating XML Based Specifications of
Information Systems

Miro Govedarica1, Ivan Luković1, and Pavle Mogin2

1 Faculty of Technical Sciences, Trg D. Obradovića 6,
21000 Novi Sad, Serbia and Montenegro

miro@uns.ns.ac.yu, ivan@uns.ns.ac.yu
2 Victoria University of Wellington School of Mathematical and

Computing Sciences, Wellington, New Zeland
pmogin@mcs.vuw.ac.nz

Abstract. This paper outlines a methodology for designing information
systems based on XML. The methodology uses XML DTDs to define the
design standards, and the structure and constraints of the design speci-
fications. The result of the design process is a set of valid XML documents
that are the specifications of transaction programs and applications of the
information system. At the start of a design process, the methodology uses
a CASE tool to map user requirements into initial XML specifications. Final
design specifications are produced by a sequence of XSL transformations
of the initial XML specifications. A key feature of the methodology is that it
produces a platform independent design of an information system. To
enable an early feedback from users, the methodology uses further XSL
transformations that produce an executable prototype of the information
system in the Java programming environment.

1. Introduction

The design of a database schema and the corresponding database applications
is an important task in the development of an information system (IS). The
quality of their design specifications has a great influence on the overall
development cost and the exploitation performance of the IS. The development
of applications alone adds considerably to the overall development costs of an
IS. Namely, each application generally consists of several transaction
programs, and developing transaction programs is a time consuming task,
usually performed by a number of designers and programmers.

The problems of high development costs and long development time of an IS
are resolved, or at least tempered today by applying an appropriate CASE tool.
That CASE tool is supposed to support an automated database schema design,
and defining and generating application prototypes. There are commercial
CASE tools available on the market that partially or fully support application
design and generating.

118 ComSIS Vol. 1, No. 1, February 2004

There are also commercially available common software development
methodologies on the market that incorporate using specific CASE tools. Ex-
amples are Oracle Custom Development Method (CDM) [24] with Oracle Pro-
ject Management Method (PJM) [25], and Rational Unified Process (RUP) [14],
which is based on using Unified Modeling Language (UML) [32]. These
methodologies define a number of abstract concepts, specification types, and
procedures that should be applied in the software development. The structure
and the content of these specifications are usually well defined, but they need
to adhere to a particular document format, such as MS Word DOC format, or to
the particular repository structure of a CASE tool, which is supposed to be used
in the software development process. Consequently, the opportunity to
exchange such structured specifications between different repositories, or to
extend their definitions is often very limited.

The other aspect of the same problem is that the today's CASE tools very
often support generating software solutions that are fully dependent on a spe-
cific run-time environment. In other words:
− The structure of specifications of transaction programs and applications is

tightly coupled to a repository structure and a code generator, and
− A code generator is tightly coupled to the chosen run-time environment.

Thus, selection of a particular runt-time environment is highly influenced by
the chosen CASE tool, and vice versa. This mutual relationship may have
negative consequences, particularly when a reengineering of the IS, or just its
migration to a new software platform is needed. If, for example, there is a need
to migrate IS applications to a new software platform, which is based on the
completely new IT concepts, the run-time environment will change. We may
suppose with a high certainty that the current CASE tool will not support the
new platform. Consequently, it should be replaced by a new one that suits the
new platform. However, changing the CASE will cause a complex problem of
transforming and restructuring IS specifications that must be exported from the
old repository and imported into the new one. Consequently, it may increase the
overall costs and the development time of the project.

The main goal of the paper is to present a methodology for designing
specifications of transaction programs and applications of an IS that are inde-
pendent of a run-time environment. To achieve that goal, we:
− Define initial formal specifications of transaction programs and applications

using a CASE tool, at the start of the methodology. These specifications are
formal, since they are created using a notation with a precise syntax and
meaning.

− Express the initial formal specifications as XML documents. These XML
documents, which we call XML specifications, are valid with regard to DTDs
that define the structure and constraints of the software specifications.

− Apply a sequence of XSL transformations onto initial XML specifications to
produce final XML specifications.
Using XML to express initial and final specifications makes them independent

from both the repository of a chosen CASE tool and any run-time environment.
In this way, project managers will have more freedom in making decisions
regarding the selection of the run-time environment and the CASE tool.

ComSIS Vol. 1, No. 1, February 2004 119

In the design of the specifications of transaction programs, we use a com-
mon model of the user interface (UI), and express its specification as a valid
XML document. The common UI model enables producing software with a
uniform logic and functionality. So, introducing and outlining this common UI
model, is another goal of the paper.

Finally, we also use XML specifications for automated generating executable
prototypes of transaction programs and applications. Hence, outlining the
process of generating prototypes, which is based on using XSL transformations
and Java programming environment is the final goal of the paper.

Apart from Introduction and Conclusion, the paper consists of seven sec-
tions. Section 2 briefly discusses related works. Section 3 is a short overview of
our methodology.

Section 4 outlines developing software specifications using IIS*Case.
IIS*Case is a laboratory CASE tool that we used in designing: (i) conceptual
specifications, and (ii) implementation specifications of an IS, and in trans-
forming implementation specifications into appropriate initial XML specifications.

Section 5 discusses the UI design and the following two fundamental UI con-
cepts: the UI presentation form and UI functioning logic. There, we introduce a
common UI model and identify several characteristic UI form types that may be
used in transaction programs. The model is specified using User Interface
Markup Language (UIML) [33].

The structures of initial XML specifications of applications and transaction
programs are considered in Section 6. The following three main components of
a transaction program specification are discussed: (i) the data presentation
form, (ii) the subschema as an abstract definition of that part of a database
schema, which is used by the program, and (iii) the specification of data pro-
cessing logic.

Section 7 outlines the process of producing final XML specifications of appli-
cations and transaction programs. The process is based on an automated
transforming the corresponding XML specifications. Transforming is done by
merging initial XML specifications with the UIML based UI specification. The
transforming rules are built into a number of XSL [5] documents.

Section 8 gives an overview of the process of generating IS application proto-
types. There, we discuss the automated generation of software components
based on the interpretation of XML specifications of applications and trans-
action programs. We adapted Java Render by Harmonia Incorporation® [31,
33] as the programming and run-time environment.

2. Related Work

This section briefly discusses the works, related to specifying applications,
transaction programs and UI models.

Bernstein [1] considers the problem of exchanging information models (i.e.
types and structures of software specifications) and proposes the standardiza-
tion of information models as a solution of the problem. The author states, "It
appears that the best approach is to have the standard information model that

120 ComSIS Vol. 1, No. 1, February 2004

include core functions that most tool vendors and customers can agree to, and
to have tool vendors rely on information model extensibility to add the key
features that allow them to differentiate their tools." In the paper, we propose a
different approach. We introduce the concept of XML specifications of an IS that
are independent of both a CASE tool and a run-time environment. We discuss
the roles of ZML and UML in the realization of standard information models in
the subsequent paragraphs.

Z specification language is a formal language based on the ISO Z Standard
(2002). Generally, it may be used as a standard language for formal specifying
transaction programs and applications. There is an XML representation of Z
language, called ZML [34, 37]. The advantages of using ZML are as follows. (i)
Particular tools do not need to parse Z, directly. It may be done by one tool, and
the results may be used by many other tools. (ii) There are many analysis and
transformation tools for XML, such as the XSLT language that makes it easy to
transform XML files into other formats [37]. The motives and the expected
benefits of introducing ZML are the same as those, proposed in this paper.
However, we consider Z as being a too general specification language that
should be additionally amended for the purpose of IS design in two ways:
− It should be extended by specific abstract concepts, intended for specifying

transaction programs and applications in a more declarative way, and
− The design of such Z based specifications should be supported by a visually

oriented tool, regarding the fact that it is hard to expect that an IS designer
would be able to understand and use mathematically oriented syntax rules of
Z language.
In recent years, the efforts to define standard specification techniques go

trough UML, as an object-oriented specification language, issued by Object
Management Group (OMG). Meta-Object Facility (MOF) [4, 19] is also an OMG
standard, used as a universal meta-metamodel to describe arbitrary
metamodels, such as UML itself. In order to support exchanging concrete
models (i.e. software specifications) between the different repositories sup-
porting UML and MOF, XML Metadata Interchange (XMI) language [4, 36] is
introduced. XMI is an XML representation of MOF. A particular UML model may
be transformed into an XML document that conforms to XMI. In [4] XMI is
considered "as the most promising model interchange format solution. It fulfills
most of the requirements that a good model interchange format should". This
allows UML CASE tools or repositories from different vendors to use XMI to
exchange UML models [13]. In this way, the selection of a CASE tool may not
be tightly related to the selection of a run-time environment.

The goal of Model Driven Architecture (MDA), issued by OMG, is automatic
generation of program code from particular UML models. In [12] it is stated that
"although formal UML models, expressed using Executable UML, often prove
appropriate as MDA’s platform-independent models, a major drawback of this
approach is that these models are too verbose, since Executable UML is kept
as general as possible so that it can be used for a wide variety of different
domains". Moreover, in [6] the authors state that, "unfortunately, the standard
UML metamodel is inadequate for maintaining the consistency between a
design model and the corresponding program code. This is mainly because the

ComSIS Vol. 1, No. 1, February 2004 121

UML metamodel considers the whole method body as implementation specific".
We agree with the authors of [12] that a possible solution of this problem is to
make an extension of the UML metamodel and define domain-specific
abstractions.

The main ideas, proposed in this paper and in [12] are similar and focused
on specific domains. We consider developing XML specifications of an IS and
generating executable IS applications. In [12], the authors consider, as an
example, developing database-intensive applications with application logic
executed on a database server. In both cases, the specifications should be
independent of any run-time environment. The rendering rules, defining the
mapping specification components into platform-specific components must be
defined to enable automatic generating executable applications.

Many research works have been devoted to the methods, techniques and
tools for modeling UI [2, 8, 18, 22, 23, 27, 30]. An open question is how to
design and specify a common UI model, which will be suitable for applying in all
software applications of an IS. One of the desired features of such common
model is independency. The independency here denotes the fact that the UI
model should be independent of:
− Any run-time environment, and
− Any formalisms, notations or structuring rules used to design IS specifica-

tions.
In this way, in the case of a migration of the current IS applications to a new
software platform, an independent UI model will remain unchanged.

Markup languages may also be used for creating UI. Two of their advantages
are that they are declarative and extensible. The extensibility denotes the fact
that they provide mechanisms to introduce new abstract concepts at meta level.
Thus, they may be suitable for designing common UI models, i.e. to provide
abstract concepts that will make such models independent [26]. The ability to
provide the run-time independence was the reason we adopted XML to
describe our common UI.

3. An Outline of The Methodology

The international standards in software engineering, such as ISO 9001 [10] with
ISO 9000-3 [9] proposals, and particularly ISO 12207 [11] outline a common
software development methodology, but they do not specify a common
structure of design specifications for software products, at all. Consequently, a
development methodology of a particular project should be defined in the phase
of project planning. Also, the structure and the content of design speci-fications
must be established by interim standards of a software development project, as
a part of the proposed methodology.

The methodology that we propose in the paper is based on a combination of
the lifecycle and the prototype approach. In this section, we discuss the most
important activities of the methodology and place them in the framework of the
lifecycle methodology. As the most important activities, the Fig. 1 depicts:

122 ComSIS Vol. 1, No. 1, February 2004

developing specifications of applications and transaction programs, and
generating application prototypes.

In addition, we consider that the following activities should take place in the
phase of project planning:
− Defining a common UI model that should specify the structure of presentation

forms and functioning logic,
− Defining the structure of specifications of transaction programs and applica-

tions,
− Defining the design process of program and application specifications and

providing the appropriate software tools, and
− Providing tools for automatic generating application prototypes.

We consider the design of an IS as two parallel groups of activities: (i) the
data base design and (ii) the design of transaction programs and applications.
According to the life cycle methodology, these activities are performed in the
analysis and design phase [20].

According to our approach, conceptual design of an IS is performed in the
analysis phase. The main goal of that phase is to transform user requirements
into the formal specifications of an IS that are independent of any DBMS or a
programming paradigm. Thus, conceptual design of: a database schema, a
transaction program, and an application results in a corresponding formal
specification (see Fig. 1). We propose that the design of these specifications
must be performed using an appropriate CASE tool. In this way, the designed
specifications are stored in the CASE repository. Consequently, the structures
of the aforementioned specifications are defined by the structure of the reposi-
tory schema and each designed specification conforms to it.

Implementation design of an IS is performed in the design phase. The main
goal of that phase is to transform the formal specifications into the equivalent
implementation specifications. These specifications are independent of any
DBMS and run-time environment. We propose an automatic transforming the
conceptual specifications into appropriate implementation specifications (see
Fig. 1). In this way, an application specification is transformed into the Initial
XML Specification of an Application (IXSA). An XML DTD named MenuDTD [7]
defines its structure. A program specification is transformed into the Initial XML
Specification of a Program (IXSP). The UIML DTD and an XML DTD named
SubschemaDTD [7] define its structure. The initial XML specifications are
combined with the XML Based UI Model (XBUM) and transformed into the Final
XML Specification of an Application (FXSA) (see Fig. 1). The XBUM is a UIML
document. It represents the common UI model of an IS, which is independent of
any run-time environment.

ComSIS Vol. 1, No. 1, February 2004 123

Database Schema
Specification

(DBSS)
[conforms to the

Relational Data Model]

Initial XML Specifica-
tions of Programs

(IXSPs)
<UIML documents>

[conform to the UIML DTD]

Repository of A CASE Tool
(Formal specifications: Database Schema Specification, Program Specifications,

Application Specifications)
[conform to the CASE repository]

Generating XML
Specifications

<CASE>

Initial XML Specifica-
tions of Applications

 (IXSAs)
<XML documents>

[conform to the MenuDTD]

XML Based
UI Model
(XBUM)

<UIML document>
[conforms to the UIML DTD]

Merging XML
documents

<XSL transformations>

Mapping Software
Components
(Generating)

<XSL transformations>

Application Prototypes
(Program Code)

<XML, UIML, Java, HTML,...>

Final XML Specifications
of Applications

(FXSAs)
<UIML documents>

[conform to the UIML DTD]

Mapping Rules for
XML Based UI Model

(MRXM)
<UIML document>

[conforms to the UIML DTD]

Fig. 1. An overview of the process of developing IS specifications and application
prototypes

124 ComSIS Vol. 1, No. 1, February 2004

According to the life cycle methodology, programming applications and
transaction programs is performed in the build phase [20]. In our approach, we
perform programming by an automatic transforming the final XML specifications
into executable application prototypes. Prototypes are also specified by means
of XML, but they are platform dependent (see Fig. 1). These prototypes may be
interpreted by a Java render. A UIML document that we call Mapping Rules for
XML based UI Model (MRXM) defines how the components of the FXSA will
map into the appropriate Java specific run-time components.

4. Developing Software Specifications Using IIS*Case

Using a CASE tool in the development of an IS is a common practice today. We
also consider using a CASE tool in applying our methodology being justified
due to the following. First, we stress that XML design specifications are usually
quite long, even much longer than it would be the corresponding code, written
in a particular programming language. Therefore, it is hard to expect that even
well-trained and experienced designers would be able to make error-free XML
specifications by hand in a short time interval. As the second alternative,
suppose designers will use a common tool (like XML Spy) for designing and
validating XML documents. Such tool may assist them only to produce formally
valid XML specifications, since it is not intended to help them in conceptual
design and semantic analysis of design specifications. Thus, there is a little
guarantee that such XML specifications will be semantically correct.

In the application of the methodology, we decided to use a CASE tool,
named IIS*Case [7, 20, 21, 28]. It is a laboratory software product from the
class of integrated CASE tools. IIS*Case is aimed at:
− The conceptual design of a database schema, transaction programs and

applications,
− Automated generating relational database schema, satisfying at least the

third normal form (3NF), and
− Automated generating application prototypes.

IIS*Case works as a client application over its own repository at the server
side. The repository must be implemented as a relational database.

4.1. Conceptual Design of IS Specifications

One of the main motives for developing IIS*Case was to overcome the com-
plexity of identifying, formalizing and specifying database constraints in the
database design. To achieve that goal we introduced the form type as the sole
concept at the conceptual level. Thus, the conceptual design of an IS is based
on the concept of the form type. The form type is a generalization of screen or
print forms, used to specify UI. These user forms are mainly derived form the
corresponding business documents, which bear information about attributes
and constraint in a real system.

ComSIS Vol. 1, No. 1, February 2004 125

The form type is an abstraction very similar to the concept of the object class
in the object-oriented approach. It provides formalisms for expressing:
− The structure over the set of attributes of a transaction program,
− The behavioral characteristics of a transaction program,
− Data constraints of various types, and
− The data presentation form layout. [16, 17, 20, 21, 28, 29].

IIS*Case supports creating: (i) a set of form types, and (ii) a number of hi-
erarchical structures over the set of form types. In this way, we design specifi-
cations of a database, transaction programs and applications, at the conceptual
level.

Each form type represents the formal specification of a program at the con-
ceptual level. The structure over the set of attributes and the data constraints
represent a database view. A data presentation form represents the layout of
the screen or print form of a transaction program. Behavioral characteristics
define the operations, i.e. data processing logic that a transaction program may
perform over the database. They may include predefined ("standard") database
operations: data retrieval, inserting, deleting and updating, and non-standard
(specific) operations. The standard operations are specified declaratively.

The structure over the set of attributes, data constraints and behavioral char-
acteristics of a form type represent an external schema. The set of all external
schemas, created by IIS*Case, represents the formal specification of a data-
base schema at the conceptual level.

Each hierarchical structure over a set of form types represents the formal
specification of an application. It specifies a menu system that provides calls to
the appropriate transaction programs. It should include:
− The specification of the menu structure with menu items, and
− The specification of behavioral and visual properties of each menu item.
Behavioral property of a menu item specifies the association of the item with a
transaction program, represented by the form type, or with another menu. The
visual property of a menu item defines the appearance of the item in the UI.

At the start of the design process, we use IIS*Case to map user requirements
into the following conceptual specifications:
− Conceptual database schema specification, defined by the set of all external

schemas,
− Conceptual program specifications, each defined by a form type, and
− Application specifications, each defined by a hierarchical structure over the

union of a set of form types and a set of menus.

4.2. Implementation Design of IS Specifications

In the process of implementation database design, IIS*Case transforms each
external schema into a subschema. A subschema is expressed using concepts
of the relational data model. Roughly speaking, a subschema consists of a set
of relation schemes, a set of interrelation constraints, and a predefined
behavior. Each relation scheme of a subschema is a view definition over a base
relation scheme. The set of interrelation constraints of a subschema must be

126 ComSIS Vol. 1, No. 1, February 2004

stricter or equal to the projection of database interrelation constraints onto the
set of the subschema relation schemes. The predefined behavior declaratively
specifies the set of basic database operations (such as select, insert, update
and delete) that may be performed by a transaction program using the
subschema.

The relational database schema of an IS is obtained by the integration of the
subschemas. We do not subject to integration the predefined behavior of a
subschema. More details about the relationship between an external schema
and a subschema, and the integration process may be found in [15, 16, 17, 20,
28]. For the purpose of the paper, it is important that IIS*Case supports
generating:
− The implementation specification of a database schema, and
− A set of subschema specifications.

Recall that a conceptual program specification consists of an external
schema specification and the specification of data presentation form. A corre-
sponding implementation program specification consists of a subschema
specification and the conceptual specification of data presentation form, since
we only transform each external schema into a subschema.

The next step of the proposed methodology is to map the formal specifica-
tions into the equivalent XML representations. We call them initial XML speci-
fications. IIS*Case supports generating initial XML specifications (see Fig. 2). In
this way, it automatically transforms each subschema specification into the XML
Specification of a Subschema (XSS), each specification of data presentation
form into the Initial XML Specification of data presentation Form (IXSF), and
each application specification into the Initial XML Specification of an Application
(IXSA). Details of these transformations are presented in [7].

The methodology uses XML DTDs to define the design standards, and the
structure and constraints of the XML design specifications. The result of the
whole design process is a set of valid XML documents that represent the
specifications of transaction programs and applications. For that purpose, we
developed a specific XML DTD, named SubschemaDTD, which models the
abstract structure of a subschema. Each XSS document, generated by
IIS*Case, is valid with respect to the SubschemaDTD. Section 6.2 of the paper
is devoted to XSS. A complete specification of the SubschemaDTD may be
found in [7, 16]. It complies with the SQL92 standard [3, 20].

In order to define the structure of an IXSF by an XML DTD document, we
adopted the UIML DTD [33]. Each IXSF, generated by IIS*Case, is valid with re-
spect to the UIML DTD. Section 6.2 is also devoted to IXSF.

We also developed a specific XML DTD, named MenuDTD, which models
the common structure of a menu system. It is defined using the concepts of
UIML. Each IXSA, generated by IIS*Case, is valid with respect to the
MenuDTD. Section 6.1 is devoted to IXSA. A complete specification of the
MenuDTD may be found in [7].

The subsequent sections are devoted to: designing a common UI model
(Section 5), initial XML specifications (Section 6), and final XML specifications
(Section 7), and generating executable application prototypes (Section 8).

ComSIS Vol. 1, No. 1, February 2004 127

XML Specifications
of Subschemas

(XSSs)
<XML documents>

[conform to the
SubschemaDTD]

Initial XML Specifica-
tions of Data Presen-
tation Forms (IXSFs)

<UIML documents>

[conform to the UIML DTD]

Repository of A CASE Tool
(Subschema Specifications, Specifications of Data Presentation Forms,

Application Specifications)
<IIS*Case>

Generating XML
Specifications

<IIS*Case>

Initial XML Specifica-
tions of Applications

(IXSAs)

<XML documents>
[conform to the MenuDTD]

Fig. 2. Generating XML specifications from the IIS*CASE repository

5. XML Specification of The User Interface

Adapting a common software development methodology to the given project
goals is usually done in the planning phase of the lifecycle methodology. Since
International standards in software engineering do not explicitly impose any
general UI model for software products, we advocate that specifying a project
specific UI model of IS applications should be a compulsory task in the same
phase. Although project specific, this UI model should also be common to all
applications of the IS. Consequently, we call it the common UI model.

With respect to the goals of our methodology, we assume that the common
UI model satisfies the following conditions:
− It may be applied as a template for developing UI of all IS applications,
− It is fully independent of any CASE tool, and
− It is fully independent of any run-time environment.

It should be noted that the independence of any CASE tool implies that both
conceptual specifications stored in the repository of a CASE tool, and the output
XML implementation specifications of Fig. 2 should not contain details
specifying common UI characteristics of the IS. The generated initial XML
specifications will be combined with the common UI model later in the process.
In this way, final XML specifications that are obtained from initial XML
specifications, will inherit common UI characteristics from the common UI
model.

128 ComSIS Vol. 1, No. 1, February 2004

We have chosen XML as a declarative markup language for specifying the
common UI model, because it allows formal specifying a common UI model,
which is fully independent of a run-time environment. The other often used
techniques like specific programming environments, or descriptive textual docu-
ments, are either not run-time independent, or the resulting specifications are
not formal.

The first task of designing an XML based common UI model is to establish a
specific XML DTD or XML Schema, which will define the concepts that are
needed to represent specifications of the content and functionality of the UI
model. Next, a UI model should be specified as a valid XML document, i.e. an
instance of that XML DTD or XML Schema. We call that instance XML Based
UI Model (XBUM) and it is the XML document that should be combined with the
initial XML specifications of Fig. 2.

There are several markup languages aimed at specifying UI, which are
based on XML technology. User Interface Markup Language (UIML) [31, 33] is
a language for specifying UI in a device-independent manner. Creating a UI
model using UIML is performed by developing a UIML document, which must
conform to UIML DTD or UIML Schema document. UIML provides some ab-
stract concepts that support defining components of a UI model. It also supports
defining common visual properties (the presentation style) of UI components.
These visual properties are independent of a specific run-time environment.

In our application of the methodology, we adopted the UIML DTD [33] as the
DTD defining concepts of the UI model. Using the UIML DTD, we developed the
XBUM [7], as its valid instance.

The XBUM specifies: (a) the content, and (b) the embedded behavior (i.e.
functionality) of the UI.

The content covers the specifications of: (a1) the structure of UI components
and (a2) presentation rules of UI elements. The structure of UI components
defines the set of basic UI elements and the structuring rules for building the
complex UI components. The specification of the presentation rules defines
common visual properties of the UI elements that are independent of a run-time
environment.

The embedded UI behavior specifies associations of UI elements, i.e. but-
tons, menus and menu items, with: (b1) predefined (common) functions, and
(b2) additional (specific) functions. The predefined functions are associated with
screen or print forms, aimed at presenting data or performing standard
database select and update operations. The specific functions are associated
with the UI elements of only those transaction programs that perform some
specific actions or business rules.

Our XBUM contains the following UI components, representing the form
templates:
− The authorization form template that is aimed at generating the authorization

form of an application, supporting the authorization of a particular user,
− The title form template that is aimed at generating the first form of an applica-

tion, appearing after the authorization is successfully done. It enables tabular
representation and browsing of database data,

ComSIS Vol. 1, No. 1, February 2004 129

− The query qualification form template that is used to generate forms for
defining query selection criteria,

− The data presentation form template that is used to generate read-only forms
for presenting just one record of database data,

− The insert form template, aimed at generating forms for inserting in the
database one record of data at a time,

− The update form template, aimed at generating forms for modifying one
record of database data at a time,

− The delete form template, aimed at generating forms for deleting one record
of database data at a time,

− The message form template, aimed at generating forms for presenting the
messages to the user, and

− The termination form template, aimed at generating the form notifying that
the execution of an application is terminated.
The XBUM did not specify any run-time specific presentation rules or visual

properties of UI components. On the other hand, each common UI model
should be interpreted in a run-time environment.

Using a markup language to specify a platform independent, common UI
model, enables its interpreting in various runt-time environments. One of the
advantages of using markup languages is that they are supported by so-called
renders that are able to interpret the appropriate markup specifications in a
specific run-time environment.

In Section 8 we consider the mapping of the UI components defined in XBUM
into the components of a specific run-time environment and outline the way of
their interpreting by a specific Java render.

6. Initial XML Specifications of IS

One of the aims of implementation design is to produce initial XML specifica-
tions that may be automatically transformed into executable transaction
programs and applications.

6.1. Initial XML Specification of An Application (IXSA)

An IXSA provides for specifying the menu system of an application. It is an XML
document that is valid with respect to the MenuDTD [7]. The MenuDTD defines
common concepts for specifying a menu system. It enables specifying a tree
structure of menu items in a recursive form. The basic concept is menu item.
Each menu item is a node of a tree structure.

We distinguish the following types of menu items:
− Main menu that is the root of a menu tree,
− Submenu that is a non-leaf node in a menu tree,
− Leaf item that is a leaf node in a menu tree, and

130 ComSIS Vol. 1, No. 1, February 2004

− Context menu that is a separate menu, appearing in the context of a screen
form (usually invoked by right mouse button click on the form).

For each menu item, behavioral and visual properties are defined.
Behavioral properties of a menu item specify:

− The association of the item with one of the following: a menu, submenu,
context menu, or a transaction program, and

− A logical condition that must be satisfied in order to activate the item.
The main visual property of a menu item is the label (title) of the item, which

will appear in the UI. Since the MenuDTD preserves the independence of the
IXSA from the XBUM, there are no overlapping definitions of concepts in the
MenuDTD and the XBUM. Thus, there is no need to define common visual
properties of several menu items in the context of an IXSA. They should be
defined in the XBUM, only.

6.2. Initial XML Specification of A Program (IXSP)

According to our approach, each program specification includes:
− A subschema, and
− A data presentation form.
Thus, an IXSP consists of: (i) an XSS, and (ii) an IXSF (see Fig. 2).

An XSS is an XML document that is valid with respect to the SubschemaDTD
[7, 16]. The SubschemaDTD defines: (a) a data structure at schema level of
abstraction, with data constraints embedded, and (b) characteristics of the
predefined behavior of a transaction program that will use the subschema. The
subschema and it’s embedded behavior are discussed in Section 4.2 of the
paper. Accordingly, an XSS defines the abstract database structure and the
predefined data processing logic of a transaction program are specified. The
logical design of a subschema is discussed in [16, 17, 28].

Apart from the predefined data processing logic, a program specification may
include a definition of specific data processing logic, which defines the specific
functionality of a transaction program. It may be expressed in a procedural
form. We propose using some formal language ("pseudocode") for this purpose.
If it is used, a specific DTD may be provided as a specification of the formal
language itself. One of the examples of such a specification language is the
XML Expression Language (XEXPR) [35]. It would be a matter of further
research to provide for defining specific data processing logic and the automatic
transforming such specifications into initial XML specifications of specific data
processing logic.

An IXSF is a UIML document [7]. It specifies a form type. A user will use form
type to communicate with a transaction program and create form type
instances. The form type will inherit the properties of the appropriate form type
templates in the process of generating final XML program specifications. This
process will be outlined in Section 7. We recall that each form template is
defined in the XBUM and it has an embedded content and behavior (see Sec-
tion 5). The IXSF defines:

ComSIS Vol. 1, No. 1, February 2004 131

− The content, i.e. the components and the structure of the form type,
− The properties of the specific behavior of the form type components, and
− The specific visual properties of the form type components.

The UIML DTD defines types of components of a form type and the rules for
their structuring. A form type component is a UI element, such as: data item,
group (i.e. panel, or block) of data items, scrollbar, toolbar, button, etc. There
are form type components that must be associated with the appropriate
components of a subschema. Such associations are also expressed by this
UIML specification. They model the relationship between user form components
and a database schema. For example, if a data item of a form type is
associated with an attribute of a subschema, then it will hold the database
values of that attribute. If a form type component is associated with an appro-
priate subschema component, then it will inherit its predefined functionality. For
example, if a panel of items is associated with a relation scheme of the
subschema, then it will be used to support database operations associated with
this relation scheme.

Specific visual and behavioral properties are those ones that are not covered
by the XBUM. Specific behavioral properties may define some additional data
processing or validating procedures that should be performed only within a
given form type. For example, it may be a formula for local calculating or
validating the value of a form type item that does not correspond to any sub-
schema attribute.

7. Design of Final XML Specifications

This section outlines the process of creating final XML application specifica-
tions. The inputs in the process are: (i) an IXSA, (ii) a set of IXSPs and (iii) the
XBUM. The output is a Final XML Specification of an Application (FXSA), which
is generated by applying a sequence of XSL transformations. The overall
process has two phases that are shown in Fig. 3 and Fig. 4, respectively.

The first phase generates the first version of a Draft XML Specification of an
Application (DXSA) by merging appropriate XML and UIML input documents
(Fig. 3). The result is a UIML document. The XSL transformation 1 merges an
IXSA and the XBUM and produces a DXSA. The DXSA inherits:
− All UI components with the embedded visual and behavioral properties from

the XBUM, and
− The menu structure, behavioral and specific visual properties of menu items

from the IXSA.
After merging, the DXSA contains the whole specification of the XBUM. A

complete definition of the XSL transformation 1 may be found in [7].

132 ComSIS Vol. 1, No. 1, February 2004

Draft XML Specification
of An Application

(DXSA)
<UIML document>

[conforms to the UIML DTD]

Initial XML Specification
of An Application

(IXSA)
<XML document>

[conforms to the MenuDTD]

XML Based
UI Model
(XBUM)

<UIML document>
[conforms to the UIML DTD]

Merging XML
documents

<XSL transformation 1.>

Fig. 3. Producing the draft XML specification of an application by means of an XSL
transformation

Fig. 4 depicts the next phase of the process. It consists of two steps that are
iteratively applied onto each IXSP at the input, until a FXSA is produced.

In the first step, the XSL transformation 2 merges the current version of a
DXSA with the IXSF of the current program specification. The resulting UIML
document is a new version of the DXSA. It inherits all form templates from the
current version of the DXSA. The XSL transformation 2 maps these templates
into concrete form types. The new version of the DXSA inherits the content and
the structure of these form types, and the behavioral and specific visual
properties of the form type components from the user form type, specified by
the IXSF.

After the first step, the new version of the DXSA becomes the current one. It
will be one of the inputs into the XSL transformation 3. In the second step, the
XSL transformation 3 merges the current version of a DXSA with the XSS of the
current program specification. In this way, a new version of the DXSA is
obtained. The new DXSA is a UIML document that unifies concepts of data
presentation form and a subschema.

The XSS augments the functionality of the new DXSA with the predefined
data processing logic. Accordingly, the new DXSA inherits from the previous
version of the DXSA only those form types that are necessary to support the
basic database operations, allowed by the subschema. In addition, the new
DXSA inherits from the XSS definitions of relation schemes and data con-
straints that the transaction program should validate.

ComSIS Vol. 1, No. 1, February 2004 133

 Initial XML Specification
of Data Presentation

Form (IXSF)
<UIML document>

[conforms to the UIML DTD]

Draft XML Specification
of An Application

(DXSA)
<UIML document>

[conforms to the UIML DTD]

Final XML Specificatoin of
An Application

(FXSA)
<UIML document>

[conforms to the UIML DTD]

Draft XML Specification
of An Application

(DXSA)
<UIML document>

[conforms to the UIML DTD]

XML Specification of A
Subschema (XSS)

<XML document>
 [conforms to the

SubschemaDTD]

Merging XML
documents

<XSL transformation 2.>

Merging XML
documents

<XSL transformation 3.>

Draft XML Specification
of An Application

(DXSA)
<UIML document>

[conforms to the UIML DTD]

Is there another Initial XML spe-
cification of a program (IXSP)?

Yes

No

Fig. 4. Producing the final XML specification of an application by means of XSL trans-
formations

After the XSL transformation 3, the new DXSA contains information about
components of a form type, components of a subschema, and their relation-
ships. This enables the corresponding transaction program to validate database
constraints and to warn the user about their violation earlier, than if the
constraints were validated only at the level of a DBMS. Thus, we make the UI of
a transaction program "more reactive".

The next (third) step of our approach would be to create a new XSL trans-
formation, which would support transforming a DXSA with the predefined

134 ComSIS Vol. 1, No. 1, February 2004

functionality of transaction programs into a DXSA with a full (predefined and
specific) functionality of transaction programs. A DXSA with full functionality
may inherit the specific functionality from an initial XML specification of specific
data processing logic mentioned in Section 6.2. It will be the subject of a further
research to specify such an XSL transformation.

After the application of the XSL transformation 3 on an IXSP, the new version
of a DXSA either becomes the current one and a new IXSP will augment it in
the next iteration, or becomes a FXSA. A FXSA unifies all structural, functioning
and visual characteristics of an IXSA, a set of IXSPs, and the XBUM, and it is
fully independent of any run-time environment.

Complete definitions of XSL transformations from Fig. 3 and Fig. 4 may be
found in [7].

8. Generating Application Prototypes

One of the main goals of our methodology is to enable a direct interpreting of
XML specifications as program prototypes in a chosen run-time environment.

Generally, there are three techniques of transforming design specifications
into the executable software applications:
− The manual coding,
− The automatic coding, i.e. full generating, and
− A combination of the previous two techniques.

With respect to the proclaimed goal of the methodology, the technique of full
code generating is the only appropriate one. However, applying this technique
assumes that the input program specifications must be formal and semantically
rich enough to express all necessary details concerning the functionality and UI
characteristics of the generated software. We assume here that the formal
specifications of programs and applications, and their XML representations
satisfy these conditions. Thus, the input in the process of generating an
executable application prototype is a Final XML Specification of an Application
(FXSA). The output will be an XML based application prototype, intended for
direct interpreting under a specific run-time environment.

Renders are run-time environments that are able to transform software
components of one (source) class into software components of another
(executable) class and then interpret them under a given run-time engine. Since
our source software components are specified by means of UIML (i.e. XML),
there are Java renders, which are able to transform them into the appropriate
Java software components that may be executed under Java Virtual Machine
(JVM) engine. In the application of the methodology, we chose Java Render by
Harmonia Incorporation® [31, 33] as a programming and run-time environment
and adapted it [7] for interpreting generated application prototypes. The main
characteristic of that render is that it is able to interpret UIML specifications
under JVM engine.

Since the FXSA is platform independent, rendering generally requires:

ComSIS Vol. 1, No. 1, February 2004 135

− Defining mapping rules for transforming components of a FXSA into the
appropriate run-time components, and

− Establishing an XSL transformation that will map a FXSA into an XML speci-
fication that is interpretable by the rendering software.
In this way, the XSL transformation will play the role of a generator of the

complete program code.
If the UIML model of a UI is independent of a run-time environment and we

intend to render the UI, we must specify mapping between UI components and
run-time software components. UIML provides the syntax for defining mapping
between UI components and the appropriate Java software components.

Java Render by Harmonia incorporates only mapping rules and Java soft-
ware components that enable transforming some of the UIML components into
the provided Java software components. These components implement only
the visual characteristics of UI components. We used them to enable visual
interpreting of the XBUM under JVM. [7]

On the other hand, Java Render by Harmonia provides neither Java software
components nor the appropriate mapping rules that may support the
communication with a DBMS. Therefore, Java Render by Harmonia does not
support embedded behavioral characteristics of XBUM. Thus, we had to extend
it by adding new Java software components intended for supporting the
embedded behavioral characteristics of the XBUM. [7]

We extended Java Render by Harmonia with the new Java software com-
ponents, intended for:
− Supporting the screen form fields that should contain and present database

data,
− Communication with a DBMS by means of the JDBC protocol and SQL, and
− Validating constraints locally within a transaction program.

Additionally, we defined the mapping rules that enable transforming beha-
vioral characteristics of the XBUM into the appropriate Java software com-
ponents. The Mapping Rules for XML based UI Model (MRXM) is an UIML
document. It supplements the XBUM with mapping rules that enable interpre-
ting the XBUM under Java Render by Harmonia.

Fig. 5 depicts the process of generating and rendering an XML application
prototype. The MRXM augments the FXSA by mapping UI components into the
appropriate Java software components. The XSL transformation of Fig. 5 is the
generator of an XML application prototype. An XML application prototype is a
UIML document, which is adapted for interpreting by Java Render by Harmonia
under JVM.

It should be noted that the XBUM itself might be merged with MRXM by the
XSL transformation. Thus, it would be directly transformed into a stand-alone
XML application prototype, just like a FXSA. In this way, we enable visual
testing the UI model during its design.

136 ComSIS Vol. 1, No. 1, February 2004

Running Application
Prototype

<Run-time Environment>

Mapping Software
Components
(Generating)

<XSL transformation>

Interpreting (Rendering)
The Program Code

<Java Render,...>

Application Prototype
(Program Code)

<XML, UIML, Java, HTML,...>

Final XML Specification of
An Application

(FXSA)
<UIML document>

[conforms to the UIML DTD]

Mapping Rules for
XML Based UI Model

(MRXM)
<UIML document>

[conforms to the UIML DTD]

Fig. 5. The process of generating an application prototype

To conclude this section, we stress that the amending the FXSA for in-
terpreting in a specific run-time environment must include:
− Programming software components that will implement the XBUM,
− Designing an appropriate UIML document, which specifies the mapping rules

for XBUM, and
− Programming an appropriate XSL transformation that will generate exe-

cutable application prototypes.
More details concerning transforming FXSAs into the executable application

prototypes and applying Java Render by Harmonia for interpreting generated
prototypes may be found in [7].

ComSIS Vol. 1, No. 1, February 2004 137

9. Conclusion

An approach to formal specifying and automatic generating application proto-
types of an IS is presented in the paper. The approach is based on XML, as a
language for expressing specifications of IS applications and the applications
themselves as the executable software components. The concept of software
design and generating, presented in the paper, is built into a specific CASE tool
and practically verified.

By applying this approach, designers will be able to generate quickly almost
fully functional and highly standardized application prototypes during the design
of an IS. Thus, they may use such application prototypes to communicate with
the end users, in order to identify early and precisely all user requirements, data
structures, business rules and constraints that must be covered by the IS.

One of the advantages of this approach is that the XML design specifications
and the UI model are independent of any run-time environment and the
repository structure of any CASE tool. In order to achieve this independence, it
is necessary to develop the appropriate:
− Software drivers that will generate initial XML specifications from the reposi-

tory of the chosen CASE tool (see Fig. 2), and
− XSL transformations that will generate software components from the final

XML specifications of applications and programs for a specific run-time en-
vironment (see Fig. 5).

In this way, reengineering or migrating an IS to a new IT platform does not im-
pose any change to our initial XML specifications, XML based UI model and the
XSL transformations for producing final XML specifications.

Our future research will focus on the following two extensions of our metho-
dology:
− Generating fully functional applications by including the definition of specific

data processing logic into the structure of program specifications, and
− Transforming definitions of our formal specifications to conform UML meta-

model. We believe that this research will also initiate extending the UML
meta-model by adding some specific abstractions.

10. References

1. Bernstein, P. A.: Repositories and Object-Oriented Databases. In Proceedings of the
7th Conference on Database Systems for Business, Technology and Web (BTW),
Ulm, Germany. Lecture Notes in Computer Science, Springer-Verlag, Berlin, 34-46.
(1997)

2. Boswell, D., King, B., Oeschger, I., Collins, P., Murphy, E.: Creating Applications with
Mozilla. O'Reilly, USA. (2002)

3. Date, C. J.: A Guide to the SQL Standard. Addison-Wesley-Publishing-Company,
USA. (1994)

4. Denis, S. G., Schauer, R., Keller, K. R.: Selecting a model interchange format: The
SPOOL Case Study. In Proceedings of the 33rd Hawaii International Conference on
System Sciences, Maui, Hawaii, 1-10. (2000)

138 ComSIS Vol. 1, No. 1, February 2004

5. Extensible Markup Language (XML) and Extensible Stylesheet Language Family
(XSL). W3C World Wide Web Consortium. [Online]. Available: http://www.w3.org/.
(current: November, 2003)

6. Gorp, P. V., Stenten, H., Mens, T., Demeyer, S: Towards automating source-
consistent UML Refactorings. In Proceedings of the 6th International Conference on
Unified Modeling Language (UIML), San Francisco, USA. Lecture Notes in
Computer Science, Springer-Verlag, 144-159. (2003)

7. Govedarica, M.: An Automated Development of Information System Application
Prototypes. Ph.D. Thesis. University of Novi Sad, Faculty of Technical Sciences,
Novi Sad, Yugoslavia. (2001)

8. Hartson, H. R., Hix, D.: Human-Computer Interface Development: Concepts and
Systems for Its Management. ACM Computing Surveys, Vol. 21, No. 1, 5-92. (1989)

9. ISO 9000-3:1997, Quality management and quality assurance standards -- Part 3:
Guidelines for the application of ISO 9001:1994 to the development, supply, in-
stallation and maintenance of computer software. International Organization for
Standardization (ISO). [Online]. Available: http://www.iso.org/. (current: December,
2003)

10. ISO 9001:2000, Quality management systems – Requirements. International
Organization for Standardization (ISO). [Online]. Available: http://www.iso.org/.
(current: December, 2003)

11. ISO/IEC 12207:1995, Information technology -- Software life cycle processes.
International Organization for Standardization (ISO). [Online]. Available:
http://www.iso.org/. (current: December, 2003)

12. Kovse, J., Härder, T.: DSL-DIA - An Environment for Domain-Specific Languages for
Database-Intensive Applications. In Proceedings of the 9th International Conference
on Object Oriented Information Systems (OOIS), Geneva, Switzerland. Lecture
Notes in Computer Science, Springer-Verlag, Heidelberg, 304-310. (2003)

13. Kovse, J., Härder, T.: Generic XMI-Based UML Model Transformations. In Proceed-
ings of the 8th International Conference on Object Oriented Information Systems
(OOIS), Montpellier, France. Lecture Notes in Computer Science, Springer-Verlag,
Heidelberg, 192-198. (2002)

14. Kruchten, P.: The Rational Unified Process: An Introduction (2nd Edition). Addison-
Wesley Pub. Co. (2000)

15. Luković, I., Mogin, P.: On The Role of Subschema as A Component of The Imple-
mentation Program Specification. In Proceedings of the 6th Symposium on Computer
Science and Information Technologies YUINFO, Kopaonik, Yugoslavia, CD ROM.
(2000)

16. Luković, I., Mogin, P., Govedarica, M., Ristić, S.: The Structure of A Subschema and
Its XML Specification. In Proceedings of the 13th International Conference on
Information and Intelligent Systems, Varaždin, Croatia, 45-56. (2002)

17. Luković, I., Ristić, S., Mogin, P.: A Methodology of A Database Schema Design
Using The Subschemas. In Proceedings of IEEE International Conference on
Computational Cybernetics, Siofok, Hungary, CD ROM. (2003)

18. Luo, P., Szekely, P., Neches, R.: Management of Interface Design in Humanoid. In
Proceedings of INTERCHI ’93, Amsterdam, The Netherlands, 107-114. (1993)

19. Meta-Object Facility (MOF), V.1.4. Object Management Group, Inc (OMG). [Online].
Available: http://www.omg.org/technology/documents/formal/mof.htm (current:
December, 2003)

20. Mogin, P., Luković, I., Govedarica, M.: The Principles of Database Design. University
of Novi Sad and MP Stylos, Novi Sad, Serbia and Montenegro. (2000)

ComSIS Vol. 1, No. 1, February 2004 139

21. Mogin, P., Luković, I., Karadžić, Ž.: Relational Database Schema Design and Appli-
cation Generating Using IIS*CASE Tool. In Proceedings of International Conference
on Technical Informatics, Timisoara, Romania, Vol. 5, 49-58. (1994)

22. Myers, B. A.: User Interface Software Tools. ACM Transactions on Computer-
Human Interaction, Vol. 2, No. 1, 64-103. (1995)

23. Myers, B. A., Ferrency, A., McDaniel, R., Miller, R. C., Doane, P., Mickish, A.,
Klimovitski, A.: The Amulet V2.0 Reference Manual. Technical Report CMU-CS-95-
166-R1. Carnegie Mellon University, Computer Science Department. (1996).
[Online]. Available: http://www.cs.cmu.edu/~amulet (current: November, 2003)

24. ORACLE Custom Development Method Handbook, Rel. 1.0. ORACLE Corporation.
(1996)

25. ORACLE Project Management Method Handbook, Rel. 1.0. ORACLE Corporation.
(1996)

26. Phanouriou, C.: UIML: A Device-Independent User Interface Markup Language. PhD
Thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
(2000)

27. Phanouriou, C., Abrams, M.: Transforming Command-Line Driven Systems to Web
Applications. Computer Networks and ISDN Systems, Vol. 29, 1497-1505. (1997)

28. Ristić, S.: A Research of Subschema Consolidation Problem. Ph.D. Thesis. Univer-
sity of Novi Sad, Faculty of Economics, Subotica, Serbia and Montenegro. (2003)

29. Ristić, S., Mogin, P., Luković, I.: Specifying Database Updates Using A Subschema.
In Proceedings of the 7th IEEE International Conference on Intelligent Engineering
Systems, Assiut – Luxor, Egypt, 203-212. (2003)

30. Szekely, P., Luo, P., Neches, R.: Beyond Interface Builders: Model-Based Interface
Tools. Human Factors in Computing Systems, Proceedings of INTERCHI ’93,
Amsterdam, The Netherlands, 383-390. (1993)

31. UIML Presentations and Examples. [Online]. Available:
http://www.harmonia.com/resources/ (current: November, 2003)

32. Unified Modeling Language (UML), V.1.5. Object Management Group, Inc (OMG).
[Online]. Available: http://www.omg.org/technology/documents/formal/uml.htm
(current: December, 2003)

33. User Interface Markup Language (UIML), Draft Specification, Version 2.0. Harmonia
Inc. (2000). [Online]. Available: http://www.uiml.org/specs/index.htm (current:
November, 2003)

34. Utting, M., Toyn, I., Sun, J., Martin, A., Dong, J. S., Daley, N., Currie, D.: ZML: XML
Support for Standard Z. In Proceedings of the 3th International Conference of B and
Z Users, Turku, Finland. Lecture Notes in Computer Science, Springer-Verlag
Heidelberg, 437-456. (2003)

35. XEXPR – A Scripting Language for XML. Copyright ©2000 eBusiness Technologies,
Inc. (2000). [Online]. Available: http://www.w3.org/TR/2000/NOTE-xexpr-20001121/
(current: November, 2003)

36. XML Metadata Interchange (XMI). Object Management Group, Inc (OMG). [Online].
Available: http://www.omg.org/technology/documents/formal/xmi.htm (current:
December, 2003)

37. ZML: An XML markup for the Z specification language. The Community Z Tools
project. [Online]. Available: http://czt.sourceforge.net/zml/. (current: December,
2003)

140 ComSIS Vol. 1, No. 1, February 2004

Miro Govedarica graduated at the Faculty of Civil Engineering in Sarajevo in 1987,
where he received a B.Sc. degree. He finished his M.Sc. studies at the University of Novi
Sad, Faculty of Technical Science in 1998, and he completed his Ph.D. thesis at the
same University in 2001. Currently, he holds the position of an Assistant Professor at the
Faculty of Technical Sciences, where he lectures in Computer Science and Informatics
courses. His research interests are in the area of Information System Design, Geo-
Information Systems and Object Oriented Software Engineering. He published
extensively and he is the author or co-author of one book and 40 papers.

Ivan Luković received his B.Sc. degree in Informatics from the Faculty of Military and

Technical Sciences in Zagreb in 1990. He completed his M.Sc. at the University of
Belgrade, Faculty of Electrical Engineering in 1993, and his Ph.D. at the University of
Novi Sad, Faculty of Technical Sciences in 1996. Currently, he works as an Associate
Professor at the Faculty of Technical Sciences at the University of Novi Sad, where he
lectures in several Computer Science and Informatics courses. His research interests are
related to Information System Design and Database Systems. He is the author or co-
author of over 40 papers and 4 books in the area.

Pavle Mogin received his B.Eng.(Honours) degree from the University of Belgrade,

Faculty of Electrical Engineering in 1964. He completed his Ph.D. at the University of Nis
in 1974. Currently, he holds the position of a Senior Lecturer at the University of
Wellington, Faculty of Science, where he lectures Computer Science courses. His
research interests are in the area of Database Systems. He is the author or co-author of
six books and over 80 papers in the area.

