
ComSIS Vol. 1, No. 1, February 2004 141

The Multi-courses Tutoring System Design

Goran Šimić

E-mail: gshimic@eunet.yu

The Military educational center for signal, computer science and electronic warfare,
Veljka Lukića Kurjaka 1, 11000 Belgrade, Serbia and Montenegro

Abstract. This paper describes architecture, design, and implementation
of Multitutor, a Web-based environment for the development the e-
learning courses and for the use of them by the students. Multitutor is
designed as a Web-classroom client-server system, ontologically
founded, and is built using modern intelligent and Web-related
technologies. Experience with Multitutor so far shows that both teachers
and learners have positive feelings about using them as a support tool for
creating and learning different courses. In order to illustrate the design of
the system, this paper presents some details of Multitutor architecture.

1. Introduction

The use of current Internet technology to support learning in the classroom is
recently getting much easier and much more feasible than it used to be. If a
network of computers or workstations is available in the classroom, it is easy to
install and use Apache, Orion, Tomcat, or another Web server on a dedicated
server machine. These servers are able to distribute HTML pages generated
statically or dynamically by an educational application. Client
computers/workstations should only have an Internet browser. Hardware and
software requirements for the client machines are minimal. The standardized
ontological structure of different knowledge (courses) in the area of education
exists today.

Today, there are menu ITS1, for different education tasks: the learning of the
DBMS design (ER modeling, normalization), the problem solving (in
programming and using some algorithms), conversation exercises (in the tasks
of the public relationship), the maintenance courses, the language learning,
etc. All of them are domain specialized systems.

The programmers or domain experts design the most ITS systems. Therefore
many ITS need some pedagogical and didactical aspects. One solution of this
problem is to add the course creating functionality for the teachers. There are

1 ITS – Intelligent tutoring systems

142 ComSIS Vol. 1, No. 1, February 2004

many different authoring tools. Also our work is related to an authoring tool
named Multitutor.

Multitutor is a Web-based framework designed both - for the teacher and for
the students. This system enables the teachers to develop tutoring systems for
any course. The teacher has to define the chapters, the lessons and the tests.
The teacher also has to specify the destination of the course materials (the
chapters learning HTML pages). Multitutor is designed to contain an unlimited
number of courses, and course packages. The teacher has full responsibility
for the overall course design. Multitutor enables the students to learn the
specified course, tests them after the learning phase and gives them the
recommendations what to learn for a better score. The course system
navigates the student through the learning space on different ways, based on
the historical and actual student results stored in the student model.

2. Related works

As said above, Multitutor has two parts: the teacher side application and the
student side application. The teacher side represents the tool for the course
development. Therefore this part of the system is designed as an authoring
tool.

Generally there are two types of authoring tools [1]. The first is the easy for the
teacher type and the other one is easy for the programmer type. The first type
is focused on the description of the course, individual student and pedagogical
strategies and techniques. The second type prefers the domain presentation
and the learning strategies.

The Multiutor is designed to provide the teachers an easy way to create the
course. As in the REDEEM tool [2], the teacher can describe the course
contents by using the course metamodel. This means that the course would be
decomposed on the learning units as the chapters and lessons. These units
can be semantically linked in the course body. Like a REDEEM, Multitutor
contains the test editor, with possibility of creating the unlimited number of test
sets. The tests would be proposed for different levels of learning. The KB2
contains only the course metadata entered through the course description
editor. Multitutor supposes that the authors create courses by some other tools.
Also, the system isn’t designed to be used over the Web.

The teacher side also contains the administration functionality. The maintaining
of teachers and students data is the main administration task. The Multitutor
administration module is realized as in the learning management systems
WebCT [3]. The administrator maintains the teachers and students

2 KB - Knowledge base

ComSIS Vol. 1, No. 1, February 2004 143

authentication data. Also the teacher has grants to edit his courses data and
view the results of his students. The teacher can create the student groups;
attach the students to the groups giving them permission to use the courses.
All of the administration tasks are executed on the server side. The users data
are well structured by using XML [4] format, and are readable via the Web
(using the standard browser).

The student side of application is concrete ITS shell that provides the use of
the courses for the students. This way we try to explore the architectural
solutions of the Web based ITS. Extensive discussion on categorization of
such architectures by Alpert et al. [5], and Mitrović and Hausler [6] was our
starting point. They have found out that architectures of many Web-based ITS
are either centralized (the application server performs all tutoring functions), or
replicated (the entire tutor resides in a Java applet that needs to be downloaded and is
executed on the student's machine), or distributed (tutoring functions are
distributed between the client and the server). Each category has some
advantages and some disadvantages, described elsewhere. For example,
Johnson et al. discuss feasibility of client-side tutoring deployed in their
pedagogical agent called Adele [7].

We also studied architectures of a number of specific Web-based ITS, in order
to find out about their characteristics and to relate them to our idea of
Multiututor as a Web-based ITS shell. The systems whose architectures we
found most inspirational in designing Multitutor include ActiveMath [8],
VALIENT [9], and ILESA [10].

Theoretical work of Brusilovsky [11], as well as ELM-ART [12] system for
learning programming in LISP cover a number of important issues related to
adaptivity of Web-based learning environments, such as providing adaptive
navigation support to the learner, links annotation, and adaptive curriculum
sequencing. Based on the functionalities of the ELMART system, Multiututor
offers different possibilities of navigation support. The student navigation is
changeable and is related to the learning (session) phase and the state of the
student model (the student results).

3. Multitutor architecture

The system architecture is very similar to architecture of other ITS
environments [13] and can be represented as in Figure 1. The following
sections further describe some of its details. We opted for a centralized
architecture, since Multitutor had to support the idea of a Web classroom, with
a centralized repository of student models and simultaneously support more
students. Students and teachers work in a real or in a virtual classroom; in both
cases, students learn individually and the Web technology connects the server
and the client sides.

144 ComSIS Vol. 1, No. 1, February 2004

Fig.1. Multitutor’s overall architecture

The system has modular nature. The Student model contains all students’
data. The domain knowledge and the system reasoning are sited in the Expert
module. This module is enhanced with the authoring tool named Course
designer. The administration tools are implemented in the Session monitor.
This component also provides the observing student results to the teacher.

The Tutor module is the kernel of the system. The tutor coordinates the
processing in all other components of the system architecture. Some
pedagogical aspects are incorporated in this module. The student interaction
with the system is also through the tutor module.

The front end of the system consists of three entities. The servlet engine
and the Web server are sited on the server platform and the Internet browser
on the client platform. The changing of the system behavior is expressed
through dynamically created HTML pages by the servlet machine. The Web
server has to deliver these pages to the students.

The learning materials are represented as statically HTML pages that are
copied on the Web server repository in the course creation phase. Not one part
of the system limits of the multimedia support.

ComSIS Vol. 1, No. 1, February 2004 145

4. The design of the knowledge base

The structuring of the KB is the start point of the system development.
Multitutor is essentially a rule-based system. Its expert module contains the KB
in CLIPS [14] format and the Jess3 [15] inference engine (run by the Tutor
module) that interprets the KB. Conceptually, Multitutors’ courses are
contained in chapters, lessons, and test sets (Figure 2). The whole system is
designed using the UML modeling tools and patterns [16]. Every test set
contains questions and answers (quandas). These entities have a number of
attributes (metadata). After the teacher creates a new course, the system
stores the course data and metadata in the XML format.

Fig.2. KB structure

The Global class holds the courses, groups (student classes) and course
paths. There is only one global class in the system. The instances of the
Course class are related to the global class. Every course has a name, an
author and some prerequisites (related courses). If the student selects the
course, the system checks if he/she passed the prerequisites. One or more
instances of the Chapter class are related to an object of the Course class. The
chapter has a name, references (the learning materials for different levels), a
test type and one or more associated lessons. The attributes of the Lesson

3 The second reason for the centralized architecture of the Multituor is the

recommendation of the Jess manufacturer: Jess package is over 500KB, and mobility
containers (as applets, or agents) would disturbe the system performance.

146 ComSIS Vol. 1, No. 1, February 2004

class are the lesson name and the learning material reference. The class
named Quanda (a question and answers) represents the test sets. Each
quanda is specified for appropriate level and has a unique id number. Instance
of quanda implements a question and includes the question string and a
collection of answer objects. An object of the Answer class contains the
answer string and the appropriate mark.

One file contains the basic system data (Figure 3). There are the teachers’
names, the paths of the courses and the names of the classes (student
groups). When the user (the teacher, or the student) runs the system, the first
system action is the reading of the contents of this file.

Fig.3. The global metadata that Multitutor uses on the startup

The system is ready to use after the data loading is finished. The first action
of the user (teacher or student) is logging on the system. Multitutor then checks
their data (names, passwords and the student class), and decides which
courses the system offers to the user. After the student selects the course, the
system follows the course path and opens the course XML file (Figure 4).

Fig.4. The example of the course metadata

ComSIS Vol. 1, No. 1, February 2004 147

Multitutor then fills the middle layer classes with the concrete course data. After
the students’ logging, the student model is filed with the historical data of
student results. The tutor module correlates these data with the course data
and decides what chapters, level of learning, learning materials, test types and
test sets should be used in the student session.

As said above the Jess shell is used as a reasoning machine. Only the CLIPS
formatted files are readable for this component. Therefore, the XML/CLIPS
translator is implemented in the course designer (the part of the expert
module). The system translates XML data and generates the separate KB file
for each chapter of the course. These serialized data are stored in the same
folder as the course XML file. This way the system easily finds the appropriate
KB file in the time of execution.

The KB file consists of the global variables, two templates and the rules. One
template is named Setup and is described in the next paragraph. The other
one is the chapter template. As the template represents the chapter, the pair of
the template slots represents a lesson of the chapter. One slot is designed to
receive the student answer, and the other is for the answer mark. The KB
contains the rules, since the Jess inference engine interprets rules. There are
five types of rules in the Multitutor.

The startup rule initiates the operation of the reasoning machine (Figure 5).
There is only one start rule per chapter (KB file).

Fig.5. Startup rule

This rule hasn’t a premise, only the action part. The start rule, like the
listener, waits for the learning level and setnum to be fired. The second
variable represents how many times the student passes the same chapter
through the session. The reasoning machine fires a startup rule when the
system sets the global variables (SETNUM and LEVEL). This event causes
that the template slots are filled (on the figure the template is named Setup
and slots are setnum and level) with the values received from the environment
(from the tutor module).

The second type is the queries-and-answers rule (Figure 6). This rule
displays questions to the student.

148 ComSIS Vol. 1, No. 1, February 2004

Fig.6. The rule that contains a test set data

The precondition of this rule is that the slots of the Setup template are
fulfilled. The number of these rules is the same as the number of test sets for
the specified chapter. The recommendation for the teacher is that the chapter
should be composed of more than one test set. This prevents the student from
solving the same test set two or more times during the same session. The
action part of the rule sends the number of lessons in the chapter, the lesson
names and related questions and answers (the composed string named
quanda).

The third rule type is a receive-answer rule (Figure 7). This rule collects the
students’ input when he is answering questions. The receive-answer rule is
similar to the startup rule. There is only one receive-answer rule per chapter
(KB file). The receive-answer rule sets the template slots with the student
answers.

Fig.7. The rule that receives the students’ answers

The next type in the sequence are the working rules. These rules evaluate the
students’ answers (Figure 8). In the IF clause the inference machine checks
the slots values. In the case of pattern matching, one of the working rules is
fired per every student answer. The rule firing sets the value of the mark slot of
chapter template. This means that every lesson in the chapter is represented
with the one question during the test.

ComSIS Vol. 1, No. 1, February 2004 149

Fig.8. The example of the working rules

The last rule in the sequence is the goal rule. This rule calculates the
students' final score (Figure 9).

Fig.9.The goal rule

The goal rule is fired when the inference engine assesses every student
answer. There is one goal rule in one KB file. While the previous rule receives
or processes the input data, the goal rule sends the results of inference to the
environment (the tutor module). The system receives the results and updates
the student model. This affects on the future system behavior against the
student.

5. The new course designing

The system requires that the learning materials should be created in the HTML
format. As in the REEDEM tool [2], Multitutor expects from the teacher to
create the learning contents with some other tools (visual HTML editors like
FrontPage, or some text editor like MSWord that is possible to save the
document in the HTML format).When the teacher starts to design a new

150 ComSIS Vol. 1, No. 1, February 2004

course, he has to link these materials to the course. Our recommendation is to
create at least one HTML page per course chapter.

At the begining of the new course design, the system activates the course
wizard. In the first dialog (Figure 10a), the teacher specifies the name of the
new course. In the next step the teacher associates the classes to the new
course.

a) Connecting the classes to the new course

b) Connecting the learning materials to the new
course

Fig.10. The teacher interface for the course design

ComSIS Vol. 1, No. 1, February 2004 151

The learning materials represent the other initial data of the new course. In the
new dialog the teacher selects all HTML pages that are designed for the
course. Multitutor copes these files on the new created course folder at the
Web server repository.

The teacher links these pages with the chapters in the next phase of the
course design. Then the course wizard directs the teacher to specify the
chapters. After the teacher enters the chapter name and test type (that will be
implemented in the chapter tests), he has to select one page from the list. The
system saves this selection as the chapter reference. The same action occurs
when the teacher creates the chapter lessons. This way, the page bookmarks
fill the list of the lesson references. After the chapter material (page) is
selected, Multitutor extracts all bookmarks from this page. The bookmark list is
presented on the new lesson dialog. The last phase of the course design is the
defining of the test sets.

Multitutor visualizes the course by the tree structure (Figure 11). There is the
course global data in the root. The course branches on the chapters, chapters
on the lessons, and quandas are the leaves of the tree.

Fig.11. The visualized structure of the course

On the right pane the system shows selected item's data that can be edited.
The teacher opens the appropriate dialog by selecting an item from the popup
menu.

After the course is designed, the student can use it. He/She logs on the
system, customizes the interface, selects the course and chapter, and starts
the learning. The system limits the student selections based on previous

152 ComSIS Vol. 1, No. 1, February 2004

sessions and results. The student can navigate through the pages and learn.
The learning materials of the higher level aren't available to the student.

Learning a chapter is followed by an appropriate assessment. The student
results affect the system behavior. If the student fails, he has to repeat the
same chapter. There are three options for a student who completes a lesson
successfully. The first one is to choose another lesson, and the process is the
same as described in the previous paragraphs. The second one is to repeat
the same chapter and try to get a better score. In this case, the new score
overwrites the previous one. The last one is to learn the new level of the same
chapter. An intelligent manifestation of the Multitutor is that the system helps
the student by recommending him what to learn next.

6. Evaluation

Multitutor is used in two courses. One course is in domain of radio-
communications, and other is about the human possibilities of adaptation
(psychology). The learners are high school students. The students get a
questionnaire before and after using the system. The first questionnaire is
about their abilities and experiences in the use of computers and e-learning
systems (Figure 12). About 80% of students used the computer. Most of them
have experiences and use of the Internet. Usually they use the PC for
entertainment.

0

2

4

6

8

10

12

Number of
students

Ex
pi

rie
nc

e
ab

ou
t

co
m

pu
te

rs
E-

le
ar

ni
ng

ex
pi

rie
nc

e

W
eb

Ex
pi

rie
nc

e

Questions

Yes
No

Fig.12. The results of the first questionnaire

The second questionnaire represents the students' impressions about the
system. One of the questions is What are your general impressions about the

ComSIS Vol. 1, No. 1, February 2004 153

system. The students typed their answers in a free form. We grouped these
answers in three main categories (Figure 13).

0

2

4

6

8

10

Number of students

The system
is very
usefull

The system
is helpful and
easy for use

No
comments

Fig.13. The student impressions about the system

The students' opinions about the system are very positive. They prefer the free
navigation through the learning space and individualized learning. The students
accent their active participation in the learning process. Also, they have
considerable suggestions for the system improvement: more questions in the
tests, more test sets and more multimedia contents in the learning materials.
Multitutor has no limits for the number of test sets, questions or the learning
materials contents.

7. Conclusions

The first two versions of the system have no possibility of the course design.
There are only the student functionalities. The present version of Multitutor is
developed and implemented using the latest technology. Big technological
changes would not mean big changes in Multitutor. The changes would only
affect parts of the system. The object-oriented design contributes to the system
extensibility.

One of the first steps in further development of Multitutor is to make it capable
of learning by itself. This means that the system should be able to interlink the
teacher's input based on the keywords [17] of the learning units (course,
chapters or lessons) and generate the appropriate XML file(s). This way the
system should be able to construct a semantical web between different KB,
and to improve reusability of the learning units. For these purposes we have to
improve Multitutor ontology support. The number of formatting standards like
DOM, OWL, OIL, RDF, RDFS, provides the realization of this goal.

154 ComSIS Vol. 1, No. 1, February 2004

The system is scalable because there are no limitations of the number of
courses, the course chapters, the chapter lessons and the test sets. Multitutor
represents the domain independent authoring tool and environment that
provides different services for the course composing and learning. The learning
materials are created as the statically html pages, but if the teacher has spirit
and certain skills, he can add the miscellaneous multimedia contents. Multitutor
incorporates the links in the learning pages before they are copied on the Web
repository. The links associates the learning materials with the rest of the
system4.

The second task in the future is to add the collaboration learning support.
While the student is in the learning phase (before assessment), the system
should be able to provide some collaboration tools like chats, mailing and
whiteboard. This way the student can help other students and vice versa.
The extended functionalities complicate the data storage structure. More data
require the DBMS. In other words, there would be one more layer in the
system. The data translation from the DB format to the XML format is
incorporated into the new DBMS. Our opinion is that in the Multitutor design the
hardware requirements for the server side are minimized. Three servers (DB,
Web and servlet engine) would overcharge the system. Therefore, the services
of the new Multiutor version require better hardware profile. The modularity of
the architecture provides us an easy way to improve the system possibilities.

8. References

1. Murray, T. Woolf, B.: Results of Encoding Knowledge with Tutor Construction Tools.
In Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose,
CA, 17-23. (1992)

2. Major, N.: REDEEM: Creating Reusable Intelligent Courseware. In Proceedings of
The International Conference on Artificial Intelligence in Education, Greer, J., ed.,
AACE, Charlottesville, VA, 75-82. (1995)

3. WebCT, http://www.webct.com. (2003)
4. W3C Recommendation, http://www.w3.org/TR/2001/REC-XMLschema-1-

20010502/. (2003)
5. Alpert, S.R. et al: Deploying Intelligent Tutors on the Web: An Architecture and an

Example. In International Journal of Artificial Intelligence in Education, Vol.10, 183-
197. (1999)

6. Mitrović, A. and Hausler, K.: Porting SQL-Tutor to the Web. In Proceedings of the
International Workshop on Adaptive and Intelligent Web-based Educational
Systems. Montreal, Canada, 50-60. (2000)

7. Johnson, W.L. et al: Pedagogical Agents on the Web. In Proceedings of The
Workshop on Web-Based ITS. San Antonio, TX, USA, electronic edition. (1998)

4 The servlet tehnology is used to generate the student interface. The meta tags are the

bridges between the servlets and HTML pages on the Web server.

ComSIS Vol. 1, No. 1, February 2004 155

8. Melis, E. et al: ActiveMath: A Generic and Adaptive Web-Based Learning
Environment. In International Journal of Artificial Intelligence in Education. Vol.12,
385-407.(2001)

9. Hall, L., Gordon, A., Synergy on the Net: Integrating the Web and Intelligent
Learning Environments. In Proceedings of The Workshop on Web-Based ITS. San
Antonio, TX, USA, electronic edition. (1998)

10. López, J.M. et al: Design and Implementation of a Web-based Tutoring Tool for
Linear Programming Problems. In Proceedings of The Workshop on Web-Based
ITS. San Antonio, TX, USA, electronic edition. (1998)

11. Brusilovsky, P.: Adaptive Educational Systems on the World Wide Web. In
Proceedings of The World Congress on Expert Systems Workshop on Current
Trends and Applications of Artificial Intelligence in Education. Mexico City, 9-16.
(1998)

12. G. Weber, Brusilovsky P.: ELM-ART: An Adaptive Versatile System for Web-Based
Instruction, In International Journal of Artificial Intelligence and Education, Vol.12,
351-384. (2001)

13. Beck, J., Stern, M., Haugsjaa, E.: Applications of AI in
Educationhttp://www.acm.org/crossroads/xrds3-1/aied.html. (2000)

14. CLIPS tool, http://www.ghg.net/clips/CLIPS.HTML.
15. 1. Jess – Java ES Shell, [1] http://herzberg.ca.sandia.gov/jess/
16. Larman C.: Applying UML and Patterns. NJ: Prentice-Hall, Englewood Cliffs.

(1999)
17. Devedžić, V.: Understanding Ontological Engineering. Communications of the ACM,

Vol. 45, 136-144. (2002)

Goran Šimic (Shimic) graduated electronic warfare on the Military Academy,
Belgrade and he is a teacher on The Military Educational Center for Signal, Computer
Science and Electronic Warfare. He is post-graduate student on The Faculty of
Business Administration (Department of Computer Since), University of Belgrade. His
current interests are in the field of Expert Systems, Web Design&Applications and
Intelligent Tutoring Systems. Other fields of interest are OOA, OOD (UML) and OOP
(C++, Java), XML.

