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Abstract. Large industrial interoperability projects use syntax-based 
Enterprise Application Integration standards, such as XML Schema, 
to accomplish interoperable data exchange among enterprise 
applications. In this paper, we describe an approach to assess the 
potential impact of Semantic Web technologies on these standards 
and on testability of integration results when using these standards. 
The experimental approach includes an automated translation of an 
XML Schema-based representation of business document content 
models into an OWL-based ontology. Based on this ontology, we use 
the Semantic Web representation and reasoning mechanisms to 
validate ontological constructs and constraints in support of data 
exchange.  We demonstrate novel, model-based integration 
capabilities that go beyond the existing syntax-based approaches.  
These new capabilities are relevant when managing multiple 
enterprise ontologies derived from a common ontology. 

1. Introduction 

Success of large-scale, industry-wide enterprise integration efforts 
depends on the enterprise application integration (EAI) standards.  
Examples of such EAI standards include Open Applications Group 
(OAGIS) [1], RosettaNet [2], and Universal Business Languages (UBL) 
[3].  Currently, these standards are based on XML specifications that are 
syntactic formalisms [4,5,6].  Capabilities of these standards and 
testability of integration results based on these standards are 
significantly limited as a consequence of the limited reasoning capabilities 
supported by syntactic formalisms.  This follows from the fact that syntax-
based approaches to define structure of business documents do not impose 
a common interpretation of the data and there is no way to achieve a 
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repeatable and a verifiable procedure to recognize a semantic unit from a 
domain of interest [7]. 

Take, for example, the Schematron [8] rules that are typically used to 
encode constraints for the application content of the messages exchanged 
among applications.  These rules, however, cannot be reasoned about and 
compared in a context of some integration problem.  Consequently, two 
rules that are perfectly valid syntactically may be conflicting with each 
other within a certain integration context. 

The advent of Semantic Web offers opportunities for more capable EAI 
standards to capture and manipulate semantic relationships.  Semantic 
formalisms at the foundation of these technologies allow use of 
computational approaches to reason about formally expressed concepts 
and make inferences that are useful, yet beyond the capabilities of the 
syntax-based approaches.  Consequently, testability of the application 
integration efforts may become equally more powerful.  Essentially, the 
reasoning methods, such as satisfiability and consistency checking, may 
be readily used to perform various types of validations, such as whether 
two ontologies are compatible and whether a specific business document 
instance has sufficient and necessary data to belong to a specific class of 
documents. 

In principle, the Semantic Web technologies today enable one to draw 
automated inferences about relationships between conceptual structures 
using a subset of the First Order Logic formalism called Description 
Logics.  As an example, it is possible to express constraints on existence of 
an element in a document schema (e.g., ‘The access rights element will 
appear only if the sensitivity type element appears’) and to reason about 
possible conflicts of such a rule with other document rules (e.g., ‘Either the 
access right or sensitivity type element, but not both, will appear’).  These 
types of reasoning are not possible using purely syntactic approaches.   

This paper describes an approach to evaluate capabilities of the 
Semantic Web technologies for EAI and, particularly, how it affects 
integration testing capabilities.  The specific objectives that drive this 
work are (1) to develop an experimental tool enabling assessment of 
Semantic Web technologies for EAI and (2) to design and execute a series 
of experiments to effectively perform such an assessment.  To accomplish 
these objectives, the paper posits Semantic Web-based integration 
architecture and an integration methodology that is enabled by such 
architecture. 

The rest of the paper is structured as follows.  Section 2 describes a 
prototypical problem considered for this work.  Section 3 describes a 
current, traditional EAI standards architecture and, then, proposes a 
Semantic Web-based architecture. Section 4 gives terminology to describe 
our methodology.  Section 5 describes details of the developed integration 
methodology. Section 6 discusses some initial findings. Section 7 includes 

120                                                                     ComSIS Vol.2, No.1,  June 2005 



Semantic Web Technologies for Enterprise Application Integration 

a description of the related work.  Finally, Section 8 provides concluding 
remarks. 

2. A Prototypical Problem 

The scope of our effort is partially defined by the type of problems 
identified in this section.  First, however, we define a few terms. 

By integration of enterprise applications, we mean exchange of 
business document instances (or, simply, business documents) between 
two enterprise applications that are based on two different business 
document content models (or, equivalently, interface models) so that 
interoperable data exchange is achieved.  Obviously, business document 
instances conform to business document content models.  Interoperable 
data exchange is clearly the key objective of an integration effort and may 
be thought of as such an exchange of data that preserves intended 
meaning of the data.   

The prototypical problem discussed here may be readily encountered in 
the traditional standards usage for enterprise application integration, as 
described next and shown in Fig. 1 

 
Fig. 1. A Prototypical Problem: Interface Standards Compatibility Checking 

Two independent, but related, industry consortia develop respective 
enterprise application integration standards (or, equivalently, business 
document content models or interface standards).  First, an automotive 
retail consortium, call it STAR for Standards in Automotive Retail, 
develops XML Schema-based standards to enable business documents to 
be transacted by automotive manufacturers and their retail houses[9].  
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Second, an automotive supply chain consortium, named AIAG for 
Automotive Industry Action Group, develops XML Schema-based 
standards to enable business documents exchange by automotive 
manufacturers and their suppliers [10].   

A STAR application adopts and implements the proposed STAR XML-
based interface model.  However, an additional requirement is posed for 
the STAR applications: to be able to exchange the automotive parts 
ordering data with the AIAG applications that adopted the AIAG interface 
model. 

Both STAR and AIAG consortia base their interface models on the same 
‘horizontal’ document standard – The OAGIS Business Object Documents 
(BODs).  BODs are specifications of general XML Schema components and 
general aggregations that make up business document content models 
from these components. Each consortium independently uses the OAGIS 
BODs to customize their own document content models and define usage 
rules for the components (e.g., mandatory and conditional components). 

Presently, the usage rules for the business document content models 
are captured outside the XML Schema using syntactic constructs (e.g., 
Schematron rules). A significant manual task is required to identify and 
reconcile differences among constraints and rules of two or more 
standards. We seek an approach to enable automated checking of 
compatibility among rules and constraints that are independently 
developed within the two or more standards groups with a common 
terminology at their bases.  Once such automated checking of 
compatibility is in place, more capable application integration and 
testability of integration results are expected. 

3. A Semantic Web-based Architecture for EAI Standards 

In this section, we compare a traditional and a novel architecture to 
integrate enterprise applications. We continue to use OAG, STAR, and 
AIAG terms to indicate a general, a source, and a target standard 
specification, respectively. 

3.1. Traditional EAI Standards Architecture 

The left portion of Fig. 2 shows a traditional EAI standards architecture 
based on a pure XML Schema-based integration approach.  The following 
steps are required to translate data from a previously developed STAR 
XML Schema interface model to an AIAG XML Schema interface model 
(and vice versa) and to verify the business document translation: 
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(1) Identify and resolve manually any semantic and syntactic differences 
for implementations of the STAR and AIAG XML Schema interface 
models. 

(2) Create two XSLT stylesheet transformations from the source to the 
target XML Schema interface model and vice versa. 

(3) Apply translation to a business document conformant to the source 
XML Schema interface model to obtain a business document 
conformant to the target XML Schema interface model (based on the 
XSLT stylesheet transformations). 

(4) Validate the translation: 
a. Validate translated business documents with respect to the 

target XML Schema interface model (using syntactic 
approaches such as Schematron rules). 

b. Validate translation using equivalence test. The equivalence 
test is between the initial source business document and the 
final source business document that is obtained through a 
sequence of two (forward and reverse) translations compatible 
with transformations in step (2). 

The validation of translation using an equivalence test (step 4b above) 
is not straightforward.  Specifically, applying the two translations in 
sequence (forward and reverse) using different mechanisms and 
comparing the final source business document to the initial source 
business document is problematic.  Namely, some issues arise during the 
validation stage that require capability beyond a simple, syntax-based 
equivalence test. For example, despite a syntactically different element 
order (in the sense of XML Schema), elements may be semantically 
equivalent, if that order is not significant.  In a different example, an 
equivalent time period can be specified either by a start date with (1) an 
end date or (2) a duration of time period.  This may pose a difficulty to 
simple syntax-based equivalence tests. 
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 Fig. 2.  Traditional and Semantic Web-based EAI Standards Architectures 

3.2. A Semantic Web-based EAI Standards Architecture 

The right portion of Fig. 2 shows the proposed Semantic Web-based EAI 
standards architecture.  In this approach, OWL-DL language is employed 
to formally define business document content models [11].  The language 
is based on a subset of the First Order Logic formalism called Description 
Logics.  This, in turn, enables us to readily use automated reasoning 
methods provided by DL reasoners (e.g., Racer [12]).  These reasoning 
methods are fundamental enablers of automated transformations (i.e., 
mapping functions between OWL-DL interface models).  The basic 
assumption is that the interface models are independently developed but 
have a common terminology as their bases. 

As in the previous, traditional approach, we assume previously 
independently developed STAR and AIAG XML Schema interface models.  
At this point, we assume that the OAG, STAR, and AIAG OWL-DL 
ontologies have been created – a step that will be discussed in detail later. 

The following steps are envisioned to translate and verify the 
translation in the proposed architecture: 
(1) Perform model-based equivalence analysis of STAR and AIAG 

schemas. The following steps are involved. 
a. Create a merged ontology from independently developed STAR 

and AIAG ontologies and check for unsatisfiability 
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b. Identify similarity between two schemas based on the 
comparison of their semantic models and using an automated 
inference tool.  

(2) Apply semantic translation using the merged ontology and an OWL-
DL reasoner. 

a. Translate the source (STAR) XML instance to the source 
(STAR) OWL representation 

b. Check for consistency and sufficiency with respect to the 
merged (source-STAR + target-AIAG) ontology 

c. Classify the source OWL individual into the target ontology 
(AIAG) and perform validation and serialization 

We maintain reference to two distinct parts of this proposed 
architecture: the ontology creation part and the translation part. 

4. Semantic Web-based Integration Terminology  

Before we describe details of the developed integration methodology, we 
introduce a formalism and terminology to describe the methodology.  In 
this paper, we use the word “concept” (interpreted as a set of individuals) 
to refer to the expressions that define a class in the OWL-DL language 
and a terminology to denote a hierarchical structure that provides a 
representation of the domain of interest. The key features of Description 
Logics reside in constructs for establishing relationships between 
concepts. The meaning of concepts is specified with a logical semantics.  
An important distinction in using logical semantics to describe a concept 
meaning is between the concept description (i.e., class with necessary 
conditions only) and concept definition (i.e., class with both necessary and 
sufficient conditions). 

In the following, we use Description Logics formalism to make 
statements how concepts and roles are related to each other and also to 
describe testing algorithms and results. The use of the formalism allows 
automated reasoning techniques to be used to check the consistency of 
classes and ontologies, and to check entailment relationship. In fact, OWL 
DL could be easily mapped to SHOIN(Dn) an expressive Description Logic 
[13], with an ontology equivalent to a Description Logics knowledge base. 
An OWL essential feature is that it uses a DL style model theory to 
formalize the meaning of the language. In order to define formal 
semantics of OWL DL as Description Logics model, we consider the 
semantics of concepts in terms of an interpretation Ι =(∆Ι, °Ι) that consists 
of a domain of interpretation (nonempty set) ∆Ι and an interpretation 
function °Ι, which maps every atomic concept C to a subset of  ∆Ι (CΙ ⊆ ∆Ι), 
every atomic role R to a binary relation RΙ ⊆ ∆Ι x ∆Ι, and every named 
individual o to an element of ∆Ι (oΙ ∈ ∆Ι).  The interpretation function can 
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be extended from concept names to complex concept descriptions in an 
obvious way. 

A DL knowledge base ∑(T, A) consists of a set of terminological axioms 
T (often called a TBox) and a set of assertions about individuals A (often 
called an ABox). To construct a knowledge base using concept languages 
we permit concept and role expressions to be used in assertions on 
individual, C(a) and R(a,b) where C is a concept of T, R is a role of T and 
a,b are individuals in A. If Ι =(∆Ι, °Ι) is an interpretation , C(a) is satisfied 
by I if aΙ ∈ CΙ, and R(a,b) is satisfied by I if (aΙ,bΙ) ∈ RΙ. 

There are two important tasks that are fundamental to our 
methodology and that are enabled by the formally defined semantics of 
OWL DL: 
− Calculating a concept satisfiability means determining whether the 

concept description is not contradictory with the rest of an ontology. A 
concept C is satisfiable if it has a model for a concept C (i.e., CΙ) that is 
nonempty; the concept is unsatisfiable otherwise. 

− Checking consistency of an individual means determining whether the 
individual is an instance of a concept. Let ∑ be a knowledge base, then 
an individual a ∈ A is an instance of concept C if and only if ∑╞ C(a) 
(i.e., C satisfies all constraints specified for concept description). 
To accomplish the above two fundamental tasks, we use two basic 

functions of an OWL-DL reasoner: 
− Subsumption computation determines whether a concept description is 

more general than another one. We say that C is subsumed by D (C ⊑ 
D) if CΙ ⊆ DΙ  for every interpretation I. 

− Individual classification determines the most specific concept for the 
particular individual. An individual a is recognized to be an instance of 
concept C if and only if a ∈ CΙ for all interpretations I. To check 
individual consistency we follow the usual logical paradigm where two 
individuals with different names are indeed different individuals. This 
characteristic called Unique Named Assumption (UNA), is not 
characteristic of OWL (that requires explicit statement that two 
individuals are different or equal), but is very important when we need 
to perform individual checking. The interpretation function ·I  is 
extended in such way that for every individual a,b ∈ A, a ≠ b if aI ≠ bI.  
One of the most important inference services of DL systems is 

computing the subsumption hierarchy of a given finite set of concept 
descriptions. There are two main approaches to calculate subsumption in 
DL. The first approach, called structural subsumption algorithm, 
transforms concept descriptions into a normal form, and then compares 
the syntactic structure of the normalized concept descriptions [15]. This 
algorithm cannot handle DL with disjunction and full negation and will 
not be considered here. The second approach called tableau-based 
algorithm has been proposed in [17]. The algorithm, instead of directly 
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testing subsumption of concept descriptions C ⊑ D, reduces to checking 
unsatisfiability of axiom C ⊓ ¬ D. If the algorithm can find a finite model, 
then the subsumption relationship does not hold. If the algorithm fails, 
then the subsumption relationship holds. In this case, the algorithm looks 
for a ‘clash’ among constraints, which would preclude a model from 
existing. A concept C is unsatisfiable if it is impossible to create an 
individual that is an instance of C.  

The individual classification helps us to identify other concepts that the 
particular individual belongs to. Let us define a set of assertions A1  that 
describe an individual a, an instance of  the C concept (e.g., C class is 
defined using two mandatory properties: r1 and r2). For example, the 
individual a has only a property filler r1 (e.g., A1 ={ C(a),  r1(a, value1)} ). 
Because a DL reasoner makes the open world assumption (OWA), if a 
mandatory property is not present, the reasoner cannot conclude that it is 
false (as it is wrong to assume it will never be present). For that reason, 
the reasoner can conclude only contradictory but not insufficient 
information (i.e., missing properties). In a B2B context, a document being 
exchanged contains all required information and  in order to compute that 
an instance has all mandatory properties it is necessary to validate 
instance with “local closed world assumption” (CWA)..    

To check whether a is a valid instance of a concept C it should be 
sufficient to check whether most-specific concept of a is subsumed by C, 
turning instance checking into subsumption: Msc_a ⊑ C. To define most-
specific concept Msc_a, we need to include close operator which takes an 
individual and ‘closes’ roles on the individual, by first counting the known 
fillers for the roles and than asserting number restriction on the most-
specific concept. For example, the most-specific concept for the individual 
a defined above is: Msc_a ≡ C ⊓ (≤1 r1) ⊓ (≤0 r2). 

5. Semantic Web-based Integration Methodology: Details 

In this section, we describe in detail the proposed Web-based integration 
methodology.  Fig. 3 and 4 illustrate the methodology using a scenario-
based view of the semantic integration architecture. Fig. 3 includes a 
group of steps, which we call ‘ontology creation’ to define and test 
possibilities for interoperable data exchange among different XML 
Schemas (e.g., STAR and AIAG schemas).  The ontology creation occurs 
during design time. 
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Fig. 3. Ontology Creation: Design Time View of The Semantic Integration Method 

The following steps define design phase of ontology building. The OAG 
consortium has a role to create the satisfiable generalized terminology 
which can be used by independent users. For that purpose, the first two 
steps have to be done before a user adds any business context information 
to describe the user-specific business documents in a form of a satisfiable 
regular terminology.  
(1) Apply Xsd2Owl Transformation.  Apply an automated transformation 

to the OAG XML Schema representation to obtain an OAG OWL-
based generalized ontology.  

(2) Calculate concept subsumption and check satisfiability of the new 
OAG ontology.  The outcome of this step is a new subsumption 
hierarchy for the OAG generalized ontology and an indication from 
the reasoner that the new ontology is either satisfiable (i.e., not 
contradictory) or not.  

(3) Create an OAG regular terminology (that requires human designer 
input).  The original STAR and AIAG Schemas include free text 
description of the additional document constraints that need to be 
‘layered on top’ of the OAG generalized terminology.  In this step, for 
each of the schemas, these constraints are used to specify concept 
definitions (based on the original concept descriptions).  The outcome 
of this step is a regular terminology. 

(4) Check satisfiability of each individual regular ontology.  Similar to 
Step 2, the outcome of this step is an indication from the reasoner 
whether each individual ontology is satisfiable. In addition, we may 
choose here (during design time) to merge the resulting ontologies 
(same as run time Step 3) and check whether the merged ontologies 
are satisfiable (same as run time Step 4). This is a necessary condition 
for an individual translation from one to the other ontology.   
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Fig. 4 includes a group of steps, which we call ‘data translation’, that 
helps us to reason about concrete XML data based on the XML Schema 
and the possibility to transform the data from one format to another and 
actually achieve interoperable data exchange using the specific data.  The 
following steps define the data translation group of steps at runtime.  

.   

 
Fig. 4.  Data Translation: Run Time View of The Semantic Integration 
Method 
(1) Apply automated transformation from source XML data to OWL 

data.  This transformation is dependent on the transformation defined 
in design phase step 1.  The outcome of this step is transformed source 
(e.g. STAR) OWL data that correspond to the initial XML data. 

(2) Validate source data. This step includes consistency checking under 
both Open World Assumption (OWA) and Closed World Assumption 
(CWA).  Reasoning about individuals in OWL-DL assumes ‘Open 
World’.  The outcome of this step, if successful, is an indication from 
the reasoner that the source OWL data are consistent with respect to 
the source ontology. An individual is valid only if it is consistent (i.e., 
belongs to a specific concept) in both OWA reasoning and CWA 
reasoning. 

(3) Create a satisfiable merged ontology. In order to translate from STAR 
to AIAG OWL data, we need to perform this step. (This and the 
following steps can performed by any other target system ‘User n’ 
similar.)  The outcome of this step is the new merged ontology and the 
new concept hierarchy.  (As explained in design phase Step 4, this and 
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the satisfiability check from the following step may be either run here, 
at run time, or at design time.). 

(4) Check satisfiability of the merged ontology and consistency of the 
STAR data with the new merged ontology.  The successful outcome of 
this step is an indication from the reasoner that the merged ontology 
is satisfiable and, similarly, that the STAR OWL source data are 
consistent with respect to the merged ontology. 

(5) Compute classification of the STAR OWL data in the AIAG ontology.  
The successful outcome of this step is an assignment of the STAR 
OWL data to the specific AIAG class(es). At this point we have a result 
that the specific STAR XML data (instance) may be successfully 
translated into target AIAG XML data.  This, however, doesn’t mean 
that all STAR data may be successfully translated to AIAG, but only 
that the specific data may be translated. 

(6) Validate target OWL data. The outcome of this step, if successful, is 
an indication from the reasoner that the target OWL data are 
consistent with respect to the target ontology.   

(7) Apply serialization of OWL data into XML data.  The outcome of this 
step is an target XML instance (e.g., AIAG) that preserves semantics 
defined in the original STAR OWL data. 

5.1. Apply Xsd2Owl Transformation 

An automated transformation was devised for the OAG XML Schema 
representation to obtain an OAG OWL-based ontology.  This is a 
generalized ontology that contains concept descriptions only (i.e., 
necessary conditions) and no definitions (i.e., sufficient and necessary 
conditions).  The automated transformation was possible because we took 
into account decisions for the OAG components and document design. Fig. 
5 gives some of these rules while a detailed account of the transformation 
is out of scope of this paper and is a subject of a future publication.  
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Fig. 5. Example Transformation Rules from OAG XML Schema into OAG OWL-DL 
Generalized Ontology 

An application of the transformation rules is illustrated in the 
following. Fig. 6 shows a rendering of the simplified XML Schema for the 
OAG aggregate component AddressBase. The AddressBase component has 
a relatively complex structure and it describes all possible elements that 
an OAG Address instance (that uses AddressBase) may have.  For that 
reason, all the elements are optional in the complexType definition of the 
AddressBase. 

Within the AddressBase schema definition we can see choice between 
‘unstructured’ AddressLine and the ‘structured Line’ that consists of parts 
such as StreetName, BuldingNumber, Unit, and Floor. We capture this 
constraint in the resulting OWL description by using a hierarchy of 
properties. Every property has a strictly defined range when it is used as 
a property of this class. The ranges for those properties are extensions of 
other concept (class) descriptions (e.g. IdentifierType and TextType 
classes).  
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Fig. 6. A Rendering of the simplified XML Schema for the OAG AddressBase 
component 

The generalized terminology T1 contains basic concepts such as 
IdentifierType, TextType, NameCode, CountryCodeType,  CodeType,…etc, 
and the following complex axiom description: 

AddressBase ⊑ (∀ hasId.IdentifierType)  
⊓ (∀ hasAdressee.TextType)  
⊓ (∀ hasCity.NameType)⊓ (≤1 hasCity)  
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⊓ (∀ hasCountry.CountryCodeType) ⊓ (≤1 hasCountry)  
⊓ (∀ hasPostalCode.CodeType) ⊓ (≤1 hasPostalCode) 
⊓ (∀ hasAddressLine.TextType) 
⊓ (∀ hasStreetName.TextType)  
⊓ (∀ hasBuldingNumber.TextType)  
⊓ (∀ hasUnit.TextType) ⊓ (∀ hasFloor.TextType)  
⊓ (¬(≥1 hasAddressLine) ⊔  ¬(≥1 sequence63736952)) 
⊓ (¬ (≥1 sequence63736952) 
    ⊔ ((≤1 hasStreetName) ⊓ (≤1 hasBulidingNumber)   
                 ⊓ (≤1 hasUnit) ⊓ (≤1 hasFloor))) 

All roles are defined as atomic. Furthermore, to represent relationships 
between roles we can also use inclusion. This set of inclusion role axioms 
defines a role hierarchy:    

hasAddressLine ⊑  choice49723144 
sequence63736952 ⊑ choice49723144 
hasStreetName ⊑ sequence63736952 
hasBulidingNumber ⊑ sequence63736952 
hasUnit ⊑ sequence63736952 
hasFloor ⊑ sequence63736952 

where sequence63736952 and choice49723144 are computer 
generated identifiers for the role names. 

5.2. Calculate Concept Subsumption and Check Satisfiability  

When dealing with large ontology transformations, a designer may specify 
concept descriptions that may turn out to be contradictory. A DL reasoner 
may calculate concept subsumption and check whether any concept 
description is contradictory in the resulting ontology. An example 
situation that results in an unsatisfiable concept (using our 
transformation approach) is when a complexType definition is specified as 
a restriction of an existing type with different cardinality constraints (e.g., 
an element that is mandatory in the super-type definition is prohibited in 
the new definition).   

5.3. Create Regular Terminologies 

Once we have a satisfiable generalized terminology, every individual 
application integrator (i.e., a human responsible for defining a business 
document content model and an application integration) can 
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independently use the terminology to specify additional constraints and to 
provide definition for concepts in a particular context of the intended 
application.   

When an integrator describes a component or builds a new one, 
likelihood of automated interoperable data exchange will be increased if 
new axioms (introduced by the integrator) reference the generalized 
terminology. The new axioms are defined as extensions where all new 
concepts, defined as definitions, agree with the atomic concept and roles 
defined in the generalized terminology. That new terminology we call 
regular terminology.   Terminological axioms to represent defined 
concepts are given in form called equality (≡). 

For example, with such axioms, we associate the left-hand side concept 
name Address to the description on right-hand side AddressBase with two 
cardinality constraints:  

Address ≡ AddressBase ⊓ (≥1 hasCity) ⊓ (≥1 hasCountry) 

The new concept Address is introduced using the OAG AddressBase 
description.  Address is defined as AddressBase with mandatory 
properties hasCity and hasCountry. When an integrator customizes 
component for a particular context (i.e., a BOD document), he or she needs 
to specify required fields and business rules for the document in that 
particular context. 

5.4. Check Satisfiability of the Regular Terminologies  

For a created regular terminology, a reasoner will calculate a new 
subsumption hierarchy. (All OAG concept descriptions (axioms) are 
imported into the new ontology). Within the new hierarchy, every concept 
contains both inherited and its own axioms. These axioms are either part 
of definition or description and need to be non-contradictory to each other. 
If all concepts are satisfiable, than this regular terminology (that contains 
definitions) can be used for application integration.  

Every time when we make changes in an ontology, we need to check for 
the ontology satisfiability. Suppose that a logical constraint is specified for 
the OAG AddressBase component to state an exclusive option between an 
unstructured (free) text address line and a structured line (that contains 
hasStreetName, hasAddressLine, hasCity, hasCountry, and other 
elements of address). If the integrator defines a new address concept with 
mandatory properties hasStreetName (that is a part of ‘structured’ line 
defined via sequence63736952 super property) and hasAddressLine using 
the OAG AddressBase defined above, a reasoner will find that the concept 
is unsatisfiable.   
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Testing Integration Capabilities  

Once we determine satisfiability of two independently defined regular 
terminologies, we may proceed to determine whether two interface models 
based on those ontologies can facilitate interoperable data exchange. 

The first step is to create a merged ontology from the two regular 
terminologies. The merged ontology contains concept axioms from both 
ontologies. As both ontologies use the same generalized terminology, a 
new subsumption hierarchy will be calculated and new relationships may 
emerge among concepts. A reasoner is utilized to check satisfiability of 
each concept in the merged ontology. If there are no contradictory 
concepts, then we can say that it is possible that two interface models may 
support interoperable data exchange.  Fig. 7 shows this testing step. 

A reasoner can calculate relationships such as subClassOf or 
equivalent.  When the subsumption or equivalency relationship cannot be 
calculated (i.e., when subClassOf or equivalent relationships do not hold 
for two concepts), an individual may still be classified to belong to either 
one or both of the concepts depending only on the particular individual 
assertion. 

   

 
Fig. 7.  Testing for Necessary Integration Conditions  

The result of this satisfiability checking can be that business document 
content models (i.e., interface models) are either compatible (i.e., allowing 
bidirectional interoperable data exchange), incompatible, unidirectional, 
or unknown (i.e. the reasoner does not have enough information to make 
any conclusion and reasoning should include individuals).  

If the result is unknown, a designer can provide new axioms such as 
conditional equivalence relationships among concepts, as indicated in step 
3 in Fig. 7. New axioms might change subsumption hierarchy, produce 
new relationships, and may increase compatibility between two 
ontologies.   
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5.5. Transforming Source Data into OWL Individuals 

In this step, we transform XMLSchema instances into OWL-DL 
individuals in order to conform with the OWL model-based assumptions 
used in ontological reasoning (i.e., satisfiability checking).   We have 
developed a tool that enables this translation. The translation rules 
include the following: 
− For every element (including root element) we create an OWL 

individual with a corresponding type. 
− Parent-child relationships are translated to class-property 

relationships: every child element is a value of the respective property 
of parent class.  

− The text content (the data) of element/attribute is mapped into 
datatype property with an RDF literal as a value for that property. 
An individual that is created during this transformation gets a unique 

ID (URI) generated by the transformation tool. The ID of an individual is 
important for classification but it is not significant, which means that for 
the same message we can have generated different ids. Two individuals 
can be content equivalent if they have identical content (property values).  
According to the previously defined rules, an AddressBase XML Schema 
instance is transformed, as shown in Fig. 8. 

 
Fig. 8.  An Example Transformation of XML Data into OWL Individuals 

Conjunction of things asserted about an individual forms the 
descriptions of the individual. DL allows the user to specify that an 
individual is an instance of a primitive concept. For example, address12 is 
asserted to be an instance of AddressBase and contains roles hasId, 
hasCity, hasCountry filled by id34, city56, country78 respectively.  
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5.6. Validating Source Data 

Validation is a necessary step not only to check transformation result 
with respect to the concept definition but also to check other semantic 
constraints which are defined in the corresponding ontology. Validate the 
data means to check whether data are consistent in OWA and valid in 
CWA reasoning.  

If we have an individual address1 with explicit assertion that it is an 
instance of the star:Address  with two hasCity role fillers, then using 
UNA, a particular individual will be calculated to have property 
hasCity=2, which violates the constraint for concept description (≥ 1 
hasCity) and, consequently, results in an inconsistent individual.  

Consider the following example: star:Address(address2). We have an 
individual with an explicit assertion that it is an instance of the 
star:Address class and without any roles. Based on the instance checking 
in OWA, one can conclude that this individual is consistent. However, 
when an individual is not complete, as in this case, we can still recognize 
concept membership. If we know that an individual address2 is 
star:Address, then adding more information to the model cannot cause it 
to become false. 

To check whether address2 is an valid instance of a concept 
star:Address it should be sufficient to check whether most-specific concept 
of address is subsumed by star:Address, turning instance checking into 
subsumption. As this subsumption does not hold we can conclude that 
individual address2 is not a valid instance of star:Address.  

5.7. Create Merged Ontology 

In order to translate XML data from one format to another, we need to 
create a merged ontology. The merged ontology contains all concept 
axioms from relevant ontology sources (e.g. OAG, STAR and AIAG). The 
Semantic Web is a universally accessible platform that enables those 
ontologies to be shared and processed by the integration tool. Because new 
independently defined ontologies are based on the same generalized OAG 
terminology, a reasoner may combine axioms and calculate a new concept 
subsumption hierarchy. In the merged ontology one concept might be 
dependent on some concepts in the other ontology namespace. The merged 
semantics provides support for inferences over the source data that may 
yield unexpected results (such as those we discussed in the previous 
section). If integration capability between those specific ontologies is done 
at design time, as described in section 5.4, and enriched with new 
mapping axioms, then this entire additional axiom set will be included in 
the merged ontology.   
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5.8. Check Satisfiability and Consistency  

Because the integration tool is a complete reasoner that includes 
consistency checkers, all axioms of the merged ontology must be loaded. 
The tool has to check satisifiability for every concept of the merged 
ontology (as described in section 5.4). An additional checking is the 
individual consistency checking for source individuals with respect to the 
merged ontology. An individual that belongs to the source concept and 
which satisfies all constraints in the source definition has to satisfy all 
constraints defined for the equivalent concept definitions in the target 
ontology.   (For details, see Section 5.6) 

5.9. Compute Target Data  

In order to compute target data, we use the merged ontology to calculate a 
new concept subsumption hierarchy, as described in the previous two 
steps. In addition, we checked consistency of the source individuals with 
respect to the merged ontology. If the outcome of these steps included 
satisfiable concepts and consistent individuals, then we can use the 
individual classification capability of a DL reasoner to compute target 
data (i.e., individuals). The individual classification allows us to find what 
the most-specific concept is for every individual in the target ontology. The 
individual classification helps us to identify other concepts that the 
particular individual belongs to. 

By using the merged ontology T’ (that combines axioms from source and 
target terminology), we check satisfiability between the auxiliary most-
specific concepts and other concept in the merged ontology. For 
terminology T’, new axioms might be calculated (e.g., equivalence). The 
equivalence between two concepts may force an individual to be checked 
for consistency with respect to both concepts (i.e., equivalence between 
two concepts means that the two concepts share exactly the same set of 
individuals.)   

5.10. Validating Target Data  

As we saw in the discussion of validating a source (i.e., STAR OWL) data, 
it is necessary to have not only OWA consistency but also to check that 
the same individual is a valid instance of the target concept in the CWA 
reasoning. The individual consistency checking in OWA is already done 
with respect to the merged ontology. The OWL individuals classified to 
the AIAG concept hierarchy have to be checked for sufficiency with 
respective to target (AIAG) concepts. If the individual is inconsistent in 
CWA with respect to the target ontology, then translation is not possible 
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(e.g. the individual does not have all the required properties or violates 
some of the business rule constraints). If successful, however, the specific 
XML source data (i.e., STAR_Address from step 5), can be said to be 
translatable into a target OWL data and allowing interoperable data 
exchange. 

As we have seen above, new individuals can be calculated from source 
data (described in 5.9.) in a way that all new individuals are consistent. 
However, having new individuals consistent is still not sufficient for 
interoperability in B2B context. This is the case when a consistent 
individual in OWA sense might not have all mandatory elements, as 
required by the necessary conditions in the subsumption between the 
auxiliary most-specific concept for target ontology and the intended 
concept.  

5.11. Serializing Target Data   

The serialization into OWL format is straightforward. A new file will 
contain a set of individuals with types from target (AIAG) ontology. 

For serialization into XML format we use concept and property 
hierarchy. If we use default XSD serialization from our OWL ontology, 
then the serialization is also provided. If we have a customized mapping 
to specific XMLSchema syntax (e.g., a sequence of elements defined in a 
separate file), then that serialization is dependent on the mapping rules. 
The serialization algorithm will be discussed in a future publication. 

6. Initial Findings 

6.1. Individual Equivalence Test 

One of the important tests when dealing with enterprise application 
integrations in a B2B setting is to check for content equivalence between 
two business documents. As mentioned before, during XML to OWL 
transformation, every new OWL individual is assigned a new URI 
identifier. That identifier is only necessary for individual classification 
and its actual value is not significant. That means that the same XML 
data business document instance may be transformed to individuals with 
different URI identifiers but same content. For datatypes ‘semantically 
equal’ means that the lexical representation of the literals maps to the 
same value. For individuals it means that they either have the same URI 
reference or are defined as being the same individual.   
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Two individuals are ‘semantically equal’ if their respective auxiliary 
most-specific concepts are equivalent. Let us consider an example where 
we have ABox A with assertion about two individuals a and b as following. 
The individuals contain oag:hasCity with different fillers: ‘city56’ and 
‘city78’ respectively. If it is given (or calculated) that two individuals are 
equal (e.g. city56=city78), then applying subsumption checking algorithm 
we can conclude that the corresponding most-specific concepts Msc_a  and 
Msc_b are equivalent, and infer that equality between two individuals, a = 
b, holds.  

6.2. Concept equivalence with inconsistent business document 
instances 

In Section 5.4, we investigated whether two ontologies can facilitate 
interoperable data exchange and we used reasoning capabilities to 
perform satisfiability check between the two ontologies.  We determined 
that if there are no contradictory concepts in the merged ontology, then we 
can say that it is possible that two interface models (i.e., ontologies) may 
support interoperable data exchange.  However, that is only a necessary 
condition to accomplish interoperable data exchange. The following is a 
description of a translation problem when the necessary condition is 
satisfied but interoperable data exchange may not be accomplished 
because some individuals may violate business constraints defined for 
that concept.   

For example, presence of a mandatory property (i.e., a necessary 
condition) within the target concept, may give rise to an inconsistent 
source individual if the source concept specifies that property as optional. 
It is important to keep in mind that for calculating subsumption and 
equivalence among concepts we use only axioms there are part of 
definitions – constraints, however, are not always a part of definition, they 
might be part of concept description.  As indicated above, the mandatory 
property was not part of definition but only defined as a necessary 
condition.  In a general case, any logical constraint that is not a part of 
either target or source concept definition but only their necessary 
conditions may cause a similar inconsistency and prevent interoperable 
data exchange. 

7. Related Work 

Early work in development of Semantic Web technologies pointed at the 
fact that semantic interoperability requires standards not only for the 
syntactic form of documents, but also for the semantic content [7].   
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A previous effort investigated use of Semantic Web technologies (e.g., 
DAML+OIL) in support of semantic constraints definitions and 
management for RosettaNet, a B2B integration standard [18].  Here, an 
approach for mapping from XML Schema to DAML+OIL was outlined. 
This approach uses RosettaNet XML Schema design decisions which are 
different from OAG and , consequently the mapping rules are slightly 
different. The authors’ evolutionary approach that uses (but does not 
change) the integration standard and their focus on automatic validation 
of XML documents is similar to ours. However, the main difference is in 
our focus on evaluation and validation of integration results in the EAI 
domain. Another paper describes an initial exploration of OWL as a 
model-based language for integrating XML data sources [19]. In this 
work, OWL is introduced as a top layer of heterogeneous XML data 
sources. The focus here is on a query language for OWL as an extension of 
XQuery that may be used for hybrid reasoning (i.e., relies on procedural 
computation) in our approach. Recently, a new layered model for XML 
schemas was proposed, which offers a semantic view for XML schemas 
through the specification of concepts and semantic relationships among 
them [20]. The work introduces a transformation framework that 
encompasses the whole XML document transformation process, from 
modeling and semantic matching to transformation script generation. In 
this paper, conceptual modeling is used to automate the transformation 
algorithm. Unlike this work, that deals with diversity of schema 
constructs and semantic matching,  our approach is based on OWL DL 
representation of a conceptual model using a core set of concept 
descriptions that may be customized. Moreover, our approach enables 
automated inferred relationships among concepts (in models) using logical 
matching of their definitions.  

8. Conclusion 

In this paper, we described a Semantic Web-based integration 
methodology to serve as a blueprint to assess capabilities of these 
emerging technologies to enhance syntax-based standards approaches for 
enterprise applications integration.  In particular, we were interested to 
investigate possible advances in testability of integration efforts using the 
new technologies.  This novel integration methodology is described 
through a scenario of integration and validation steps that are performed 
both at design time and run time.  During design time, the methodology 
supports development of generalized and regular ontologies (that describe 
application interface models) and allow model-based similarity analysis of 
these ontological models.  During run time, the methodology enables 
semantic translation of instances of business documents (conforming to 
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the developed ontologies) using the previously developed ontologies and 
automated reasoning tools.   

Initial experimental results in testing the methodology show 
interesting capabilities such as the ability to perform individual 
equivalence test that is content based.  Through experimental work, we 
have also gained a significant number of insights into the issues of 
necessary and sufficient conditions for achieving interoperable data 
exchange. 

Our immediate future work will focus on experimental assessment of 
the initial ideas for Semantic Web-based EAI standards.  The work will 
draw from on-going industrial standards-based integration efforts such as 
the ones going within STAR and AIAG industrial groups.  We expect to 
identify key technical issues for the proposed approach, and through 
experimental demonstration show how such issue may or may not be 
addressed using the proposed approach. Our key contribution, we 
anticipate, will be to increase significantly understanding of whether and 
how Semantic Web technologies may be applied in a near future to 
realistic industrial integration efforts. 

Disclaimer 
Certain commercial software products are identified in this paper. 

These products were used only for demonstration purposes. This use does 
not imply approval or endorsement by NIST, nor does it imply these 
products are necessarily the best available for the purpose. 
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