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Abstract. Some applications, like MapReduce, ask for heterogeneous network in 

data center network. However, the traditional network topologies, like fat tree and 

BCube, are homogeneous. MapReduce is a distributed data processing 

application. In this paper, we propose a BHyberCube network (BHC), which is a 

new heterogeneous network for MapReduce. Heterogeneous nodes and scalability 

issues are addressed considering the implementation of MapReduce in the 

existing topologies. Mathematical model is established to demonstrate the 

procedure of building a BHC. Comparisons of BHC and other topologies show 

the good properties BHC possesses for MapReduce. We also do simulations of 

BHC in multi-job injection and different probability of worker servers’ 

communications scenarios respectively. The result and analysis show that the 

BHC could be a viable interconnection topology in today’s data center for 

MapReduce. 
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1. Introduction 

In a data center network, up to a few thousands of servers are interconnected via 

switches to form the network infrastructure. Data center networks (DCN) possess the 

characteristic of high performance computing (HPC) and mass storage naturally [1]. 

Based on these properties, data center is used as distributed storage and computing 

infrastructures for some online applications such as search, social networks, E-learning 

[2], and web 2.0 technology [3]. In addition, these data centers also support 

infrastructure services, such as distributed file systems (e.g., GFS [4, 5] and Chubby 

[6]), structured storage (e.g., BigTable [7], and Megastore [8]), distributed execution 

engine (e.g., MapReduce, Dryad and percolator) and large computing units’ schedulers 

(e.g., Omega [9]). Traditional resource efficient architecture has become a barrier to 

meet the diverse application requirements, and it is inevitable that the future network 

should be application driven [10]. A data center should be equipped with specific 

infrastructure services to manage and process massive data efficiently [11]. MapReduce 

is one of the most important distributed execution engines for data processing. 

MapReduce works by dividing input files into chunks and processing these in a series of 

parallelizable steps in a good control and execution model. MapReduce is used by 

companies such as Facebook, IBM, and Google to process or analyze massive data sets 

[12]. 
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In recent years, the scale of data center is growing at an exponential rate. Some 

Internet service providers, like Microsoft, are even doubling the number of servers every 

14 months, exceeding Moore’s Law. Additionally, diverse services emerged in data 

centers, calls for an improvement of the topological performances of a data center 

network, including scalability and reliability, etc. But the current DCN interconnects all 

the servers using a tree hierarchy of edge-switches, core-switches or core-routers 

generally. It is increasingly difficult to meet the requirements, such as scalability and 

high network capability. As some solutions, several new DCN architectures have been 

proposed, such as DCell [13], FiConn [14], and BCube [15]. These architectures have 

optimized some fundamental topological properties and provide good scalability and 

reliability. However, considering the distributed data processing mechanisms running on 

them, they may not have good performance. There are two main reasons. First, many 

distributed data processing mechanisms, especially MapReduce, require that all servers 

being partitioned into master servers and worker servers [16]. However, most data 

center architectures treat all the servers equally [17]. Second, as suggested by the name, 

mapping and reducing constitute the essential phases for a MapReduce job. Therefore, it 

requires a strong inner relationship among the servers that execute these operations to 

exchange the intermediate results. However, these new architectures ignore this 

relationship in MapReduce job. Obviously, we need dedicated data center architecture 

to meet users’ increasing new service requirements in a complex MapReduce. 

In this paper, a new network, called BHyberCube network (BHC) is proposed. BHC 

is a recursively defined topology to interconnect servers. Each worker server connects 

several other worker servers in a hypercube unit and one master server. Each master 

server not only connects several worker servers, but also connects other master servers 

via a high level switch. The interconnection relationships among master servers and 

worker servers are determined according to the procedure of MapReduce. A high-level 

BHC is recursively built from many low-level ones. Due to its heterogeneous 

architecture, it is well suited to support the data processing procedure of MapReduce. 

The evaluation and analysis results show that BHC has good topological performance 

with scalability. 

A routing algorithm designed for BHC is also proposed in this paper. This routing 

algorithm is designed for four scenarios for MapReduce on BHC, routing between a 

master worker and its worker servers, routing between two worker servers belonging to 

the same master server, routing between master servers and routing between two worker 

servers belonging to different smallest recursive units. This routing algorithm is 

designed to utilize the recursively-defined structure, and accelerate the procedure of 

MapReduce by loop iterations. 

The rest of this paper is organized as follows. Section 2 introduces the related work 

and our motivation. Section 3 proposes the physical structure and a construction method 

for BHC and evaluates several topological properties of BHC. Section 4 describes the 

routing algorithm for MapReduce on the BHC. Section 5 shows the procedure of 

MapReduce executing in BHC. Section 6 presents simulation results of multi-job 

injection and different probability of worker servers with dependency relationship. 

Section 7 concludes this paper. 
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2. Related Work 

In these section, we will introduce the existing datacenters architectures, and the details 

of MapReduce. The motivation will be also demonstrated.  

2.1. Data Center Network Architectures 

Existing datacenters generally adopt traditional tree architectures, like Fat tree [18] to 

interconnect servers [19] [20]. In 0, a generic Fat tree network is presented. This 

architecture supports a variety of links between the aggregation switches and the core 

switches, which makes it an architecture with high connectivity and reliability. However, 

this traditional tree architecture does not scale well. 

Some of architectures, like DCell [13] and BCube [15], are recursively constructed, 

as demonstrated in Figure 1. A high-level structure utilizes a lower-level structure as a 

unit and connects many such units by means of a given recursive rule [21]. One of this 

recursive rule’s advantages is that more servers can be added into a hierarchical DCN 

without destroying the existing structure when the level of a network is increasing. 

Hence, the hierarchical topology is scalable naturally. 
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Fig. 1. Fat Tree, DCell and BCube architectures in DCN 

2.2. MapReduce 

The MapReduce paradigm has emerged as a highly successful programming model for 

large-scale data-intensive computing applications [22]. A complex MapReduce 

procedure processes a sequence of jobs, and each job consists of a map phase and a 

reduce phase [23 24].A unit based on MapReduce is composed of two server types: a 

master server and several worker servers. A master server controls many worker servers 

in executing map and reduce tasks. The master server coordinates MapReduce jobs. The 

worker server is responsible for running map tasks and reduces tasks. The map phase 

performs a map function where the master server partitions the input datasets into 

multiple even-sized smaller chunks and distributes them to the worker servers. Each 

chunk of the input is first processed by a map task, which will generate an enormous 

amount of intermediate (key, value) pairs on the local disks and report the keys and their 
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locations to the master server. The master node then partitions the (key, value) into 

different worker servers based on the keys. The reduce tasks will be activated to first 

pull the data from the map worker servers, and then apply a reduce function to the list of 

(key, value) pairs on each key [25]. Reduce tasks merge the intermediate values with the 

same key by means of predefined reduce programs and then generate the output values. 

Considering implementation of MapReduce, the existing architectures addressed 

above, do not support the distribution data management or processing mechanisms like 

MapReduce very well. The reasons are as follows: 

Homogeneous nodes. Existing DCN architectures do not partition servers into 

master servers and worker servers [26]. They simply assume that all servers possess the 

same function and interconnect all the servers in the same way. However, servers are 

classified into masters and workers based on the different functions in MapReduce [27]. 

Therefore, servers of different roles should be interconnected in dedicated ways. 

Collective communication. In the MapReduce procedure, a master will control 

several worker servers, and assign different tasks to different worker servers 

simultaneously [28]. And among these worker servers, they will collect and transmit the 

intermediate information. Heavy collective operations communications happen in these 

phases. Hence, the topology for MapReduce should have a good performance on 

collective communications. 

Network diameter. The topological properties should be sufficiently suitable in the 

DCN with the expanding of their scales. There will be a large number of data 

transmissions in a complex MapReduce [29]. Hence, it requires a low network diameter 

to shorten the transmission length between any pair of servers when the network is 

scaling up [30].  

The BHC is motivated from the above analysis. It will treat the servers as a master 

server or a worker server, according to the function they will perform in the 

MapReduce. Leveraging the deployment of homogeneous nodes, BHC strongly supports 

the collective communications in the mapping and reducing phases. Furthermore, BHC 

employs recursive units, resulting a relatively low network diameter when the network 

scaling. 

3. The BHC Architecture 

Heterogeneous nodes, collective communications and network diameter are the main 

focus on network topologies proposed for DCN to support MapReduce. Servers are 

classified into masters and workers based on the different functions in MapReduce [27]. 

Servers in different roles should be interconnected in dedicated ways. If each master 

server interconnects its worker servers, it will improve collective communication 

greatly. Units are also implemented because they support collective communication 

naturally. The recursively defined architecture is implemented to reduce the network 

diameter when the scale increases. 

Based on these observations, BHC is proposed for DCN to support MapReduce. 

BHC is a recursively-defined architecture with units attached. 
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3.1. BHC Architecture Specification 

BHC uses servers, equipped with multiple network ports, and switches to construct its 

recursively defined architecture. In BHC, servers and switches are connected via 

communication links, which are assumed to be bidirectional. A high-level BHC is 

constructed from low-level BHCs. BHCk (k≥0) denotes a level-k BHC. The smallest 

recursive unit of BHC and how to construct a high-level BHC recursively is presented as 

follows: 

 
level-0                        level-1                           level-2 

 
Fig. 2. level-0, 1, 2 worker units 

 

1. Smallest recursive unit and worker units 

BHC0 is the smallest recursive unit. Meanwhile, it is also the building block to 

construct larger BHCs. It has W worker servers, M master servers also M switches with 

P+1 ports, and P worker units. 

The worker unit is constructed by several worker servers. These worker servers are 

interconnected by a level-k hypercube, for some different applications’ requirements. 0 

illustrates the level-0, 1, 2 worker units. 

In the BHC0, each master server connects to a switch. The master servers do not 

connect each other directly. Neither do the switches. Each switch connects to P worker 

servers in each worker unit. So the number of worker unit in the BHC0 is P. 

The construction of a BHC0 is as follows. A BHC0 is constructed from P worker units 

and 
22i
 switches. 

22i
 switches are numbered from 0 to 22 1i  . The P worker units are 

numbered from 0 to P-1 and the worker servers in each worker unit are numbered from 

0 to 22 1i  . The jth (j∈ [0, P-1]) port of the ith (i∈ [0, 22 1i  ]) switch is connected to 

the ith (i∈ [0, 22 1i  ]) worker servers in the jth (j∈ [0, P-1]) worker unit. 

There are four advantages for designing the smallest recursive unit in such a way.  

Scalability. The worker unit is designed as a hypercube, which makes the worker unit 

increase exponentially. It means that BHC can scale the worker servers quickly and 

efficiently, to support different applications’ requirement.  

Collective communication. The worker servers can transmit intermediate 

information in the worker unit, which will support good collective communication 

performance.  

Heterogeneous nodes. This recursive unit treats servers as masters and workers 

naturally, compared with the current recursive units, like in BCube and DCell.  
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Low percentage of switches. The switch connects with more worker servers, and a 

master server can control as many worker servers as possible. The evaluation will be 

presented in the following sections. 

2. Bild BHC: the Procedure 

As assumed above, the BHC0 has W worker servers, M master servers also connect M 

switches with P+1 ports, and P worker units. Besides, the worker unit is assumed in the 

level i (i≥0). More generally, a BHCk (k≥1) is constructed from P BHCk-1 and P level-

k P+1-port switches.  

 

Worker Server

Master Server

Worker Cluster

 
 

Fig. 3. An example of BHC1 with k =1, P = 4 and i = 0 

 

The construction of a BHCk is as follows. BHCk-1 is numbered from 0 to P-1, the 
22i
 

level-k switches from 0 to 22i -1 and the 22i master servers in each BHCk-1 are 

numbered from 0 to 22i -1. The ith (i∈ [0, 22 1i  ]) master servers in the jth (j∈ [0,P-

1]) BHCk-1 is connected to the jth (j∈ [0,P-1]) port of the ith (i∈ [0, 22 1i  ]) level-k 

switch. 0 illustrates an example with k=1, P= 4 and i=0, and 0 shows an example of 

BHCk. 

3.2. Properties of BHC 

For a high-level BHCk, it is constructed in the same way as stated above. If BHCk-1 has 

been built and each BHCk-1 has M
k-1

 master servers and W
k-1

 worker servers. Each BHCk-

1 is treated as a virtual node, and fully connects these virtual nodes to form a BHCk. 

Theorem 1. 

The number of master servers in a BHCk is Mk, and 22K i

kM P  ; 

The number of worker servers in a BHCk is Wk, and 1 22K i

kW P    

Based on the recursively defined structure of BHC, Mk depends on the P and Mk-1, 

and Wk also depends on the P and Wk-1. Equations 1 and 2 can be derived as follows: 

The number of master servers in a BHCk is MK: 
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The number of worker servers in a BHCk is WK: 
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Theorem 1 shows that the number of worker servers and master servers scales based 

on the number of switch’s ports and the worker unit’s level. For example, when K=3, 

P=6 and i=2, a BHC3 have as many as 3456 master servers and 20736 worker servers 

 

BHCK-1

0 1

level-k switch master server

0 1 0 1

 
Fig. 4. BHCk, a BHyberCube network 

 

Bisection width denotes the minimal number of links to be removed to partition a 

network into parts of equal size. A large bisection width implies high network capacity 

and a more resilient structure against failures.  

Theorem 2. The bisection width of BHC is 12iP  . 

As the procedure of building a BHCk addressed above, each of the P level-k switches 

has 
22i

 links connected to the level-k-1 switches. Hence, it is easy to figure out that the 

bisection width of BHC is 12iP  . 

Theorem 3. The network diameter of BHC is 

3 2BHCD P                                                     (3) 

The network diameter is the longest path between any two servers. In the uniform 

traffic model, the maximal number of hops between any two master servers in a BHCk is 

P, if they are in hi BHC0s. For BHC0, the maximal number of hops is 2. While in the 

MapReduce application, the master server distributes job chunks to the workers, and the 

workers process a map task to generate intermediate and report intermediate to the 

master. The master partitions the intermediate into workers and workers process a 

reduce task to generate the output values. Hence, three hops is the minimal distance to 

complete a job. Theorem 3 is proven. 

MasterK, j denotes the any master server in a BHCK, and s denote the sequence of a 

BHCk which contains MasterK, j in the BHCK. The value of s is given as follows: 

Theorem 4. The sequence of BHCK MasterK, j belongs to in the BHCK is 
2/ 2k is j P                                                             (4) 
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According to Theorem 1 and Equation 1, the number of master servers is 22K iP   in a 

BHCK. j is assumed as the sequence of MasterK, j in the BHCK. Therefore, s is the 

sequence of BHCK MasterK, j belongs to in the BHCK. 

Theorem 5. The number of master servers between MasterK, x and MasterK,y is 
22K ix y P                                                              (5) 

We assume that two master servers, denoted as MasterK, x and MasterK, y, connect to 

the same switch at levelk+1, and belongs to a pair of adjacent BHCks in a BHCk+1. 

|x-y| means the absolute value of x minus y in the Equation 5. Based on recursive 

rules, in this pair of adjacent BHCks, MasterK, x and MasterK,y are the only two master 

servers connected to the same switch at levelk+1. For a BHCk+1, the number of switches at 

levelk+1 is 22iP  , and other master servers between MasterK, x and MasterK, y, are 

connected to the other 22 1iP    switches. So the number of master servers between 

MasterK, x and MasterK, y is 22 1iP   , namely |x-y| = 22iP  . 

4. Routing in a BHC 

According to the procedure of MapReduce in the DCN and the roles of the servers in 

MapReduce, the routing algorithm is designed for four scenarios [31]. The first is the 

routing algorithm between a master server and its worker servers, used for assigning 

map and reduce tasks. The second one is the routing algorithm between two worker 

servers that are controlled by the same master server, used for transmitting intermediate 

data. The third one is the routing algorithm among master servers, used for assigning 

jobs. The fourth one is the routing algorithm between two worker servers that belong to 

different smallest recursive units, used for transmitting the necessary data that are not 

stored on local disks. Because there are only one or two hops in the second routings, 

which can be addressed only in the smallest recursive unit, this paper mainly focuses on 

the third and fourth scenarios. 

Algorithm 1 :AssigningJobs (int j, int L)  

List ServersSought;  

for  l=0; l＜L; l++ 

 if MasterI,y’s worker severs hold the data for Jobl ;  

   assign Jobl to MasterI ,y;  

   MasterI,y.RoutingPath={ MasterI,j }; 

  MasterI,y.RoutingPath=FindRouting1(I- 1,j ,y);  

  ServersSought.add(MasterI ,y );  

 

4.1. Master-to-master Routing 

The routing algorithm among master servers depends on the job-assigning scheme of 

MapReduce service [32]. A master server that receives a multijob MapReduce request 

sends each job to the nearest master server, which controls the worker servers containing 

the necessary data for the job. 
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Algorithms 1 and 2 are proposed to implement the master-to-master routing algorithm 

for assigning MapReduce jobs on BHC. Here MasterI,j means the jth master server in the 

BHCI. MasterI,j is supposed to receives a MapReduce service request, which needs to be 

assigned to L (L＞ 1) master servers. Algorithm 1 demonstrates the algorithm of 

assigning jobs. In Algorithm 1, Jobl (0≤l≤L) denotes the jobs that need to be assigned 

to a master server. Algorithm 1 first finds the master server, denoted as MasterI,y which 

controls the worker servers with the data required by Jobl. It then assigns Jobl to 

MasterI,y and finds a routing path from MasterI,j to MasterI,y by citing Algorithm 2 and 

adds the routing path to the Path attribute of MasterI,y. Finally, it adds MasterI, y to the 

object list ServersSought. 

Algorithm 2 is designed to find a master-to-master routing path for assigning jobs. 

Algorithm 2 recursively records each node in the routing path from MasterI,j to MasterI,y 

from level I to level 0, For level I, Algorithm 2 takes MasterI,j and MasterI,y as the 

source and destination nodes of the routing path, respectively. It determines if MasterI,j 

and MasterI,y connect to the same switch at level I through Theorem 3. Otherwise, 

according to Theorem 4 and Equation 3 and 4, Algorithm 2 records the master server, 

namely MasterI,x, which not only connects to the same switch at level I with MasterI,j, 

but also belongs to the same BHCI-1 with MasterI,y. Above process is performed again 

for level I-1.with taking MasterI,x as the new source node, also denoted as MasterI,j. This 

process is performed recursively until MasterI,y is taken as the new source node or 

MasterI,j and MasterI,y belong to the same BHC0. For the latter event, if the number of 

hops from MasterI,j to MasterI,y is larger than one, minimal master servers  are further 

recorded in order in the routing path from MasterI,j to MasterI,y. Otherwise, Algorithm 2 

just records MasterI,y as the last node and returns the whole routing path. 

Algorithm 2 : FindRouting1 (int f , int j , int y)  

int k = 0; int x = 0;  

for  i = f ; i ≥ 0; i-- 

   if  i ＞ 0 

     if j/ 22iP    ≠ y/j/ 22iP  ;  

       int h = (y-j) / 22iP  ;  

       x = j + h × 22iP  ;  

       add MasterI ,x to MasterI ,y.RoutingPath;  

       if  x == y 

         return MasterI ,y.RoutingPath;  

      k = i ;  

   break;  

   if  i = 0 

     if  j-y ＞2;  

       for  x = j - 2; x＞y; x-=2 

         add MasterI ,x to MasterI ,y.RoutingPath;  

       if  y -j ＞2 

         for  x = j +2; x ＜y; x+=2 

         add MasterI ,x to MasterI ,y.RoutingPath;  

     add MasterI ,y to MasterI ,y.RoutingPath;  

     return MasterI ,y.RoutingPath;  

FindRouting1 (k,x,y); 
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4.2. Worker-to-worker Routing 

A worker server may need the data stored at another worker server, when it is executing 

a map or reduce task. Based on the master-to-master routing algorithm, Algorithm 3 is 

proposed as the worker-to-worker routing algorithm in BHC. Algorithm 3 adds two 

worker servers and the routing path between their master servers. Routing path can be 

obtained from Algorithm 2. Workerj,m1 denotes any worker server which are controlled 

by MasterI,j, and Workery,m2 denotes any worker server controlled by MasterI,y. 

Workerj,m1 and Workery,m2 are assumed not to be controlled by the same master server. 

 

Algorithm 3: FindRouting2 (int j , int y , int m1, int m2)  

  Workerj,m1.RoutingPath = { Workerj,m1, MasterI,j }; 

  Workerj,m1.RoutingPath = FindRouting1(I-1,j,y);  

  add Workery,m2 to Workerj,m1.RoutingPath;  

  return Workerj,m1.RoutingPath; 

5. Map and Reduce on BHC 

Based on routing algorithm described above, the jobs of a complex MapReduce are 

assigned to several master servers. These master servers will control a number of worker 

servers to execute the received jobs. Map and reduce operations are involved in the 

execution of each job. This procedure is demonstrated in Figure 5. 
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Fig. 5. The procedure of Map and Reduce on BHC 

5.1. Map on BHC 

Suppose that MasterI,y receives a job. The number of map tasks is determined by the 

number of data chunks that job needs to process. The default mapping approach, which 

consists of three steps, is one map task for one data chunk. In the first step, MasterI,y 

chooses some idle worker servers, named map worker servers, and assigns a map task to 

each of them. In the second step, map worker servers divide the corresponding input 

data into intermediate key/value pairs by means of predefined map programs and store 
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the intermediate data on local hard disks. In the third step, map worker servers feedback 

the keys of intermediate data to MasterI,y and then send the number of waiting tasks in 

their local queues, namely their state information, to the corresponding master servers. 

5.2. Reduce on BHC 

The number of reduce tasks is determined by the types of intermediate data’ keys. One 

reduce task can process one or several types of key/value pairs. But one type of 

key/value pairs is usually processed by only one reduce task. The default reducing 

approach consists of four steps. In the first step, MasterI,y chooses some idle or not busy 

worker servers, named reduce worker servers, and assigns a reduce task to each of them. 

In the second step, according to the types of keys of their received reduce tasks, reduce 

worker servers fetch the intermediate data from the corresponding map worker servers. 

In the third step, reduce worker servers merge the same type of key/value pairs by means 

of predefined reduce programs to generate output values. In the fourth step, reduce 

worker servers feedback the output values to MasterI,y. They also send their state 

information to the corresponding master servers. The output data of some jobs might be 

the input data of other jobs. When MasterI,y has finished its job, it sends the result 

directly to the master server that receives the next job, namely the next object in the 

object list FindedServers, which is derived from Algorithm 1. The routing algorithm 

between MasterI,y and that master server can be obtained by means of Algorithm 2. The 

master server that executes the final job forwards its result to MasterI,j through the 

routing path recorded in its Path attribute. 

6. Properties and Simulation 

In this section, a comparison of properties of BHC and BCube is demonstrated. 

Additionally, the performance of two scenarios: different numbers of jobs and different 

probability of communications in worker servers is shown respectively. 

 

 

Fig. 6. The network size and percentage of switches of BCube and BHC in case that N = 4 servers 

in BCube0 and P = 8 and i = 0 in BHCi. 
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6.1. Comparison of Properties 

Based on the Theorem 1, the network size and percentage of switches can be figured out 

with the level increasing. The comparison between BCube and BHC is illustrated by 

Figure 6. 

Figure 6 shows the number of servers versus the number of levels in the network. The 

scalability of BHC is better than the BCube structure, when the level is higher than 3.  

Figure 6 also shows the percentage of switches in BCube and BHC. The result of 

BHC is lower than BCube, which implies that BHC needs much less switches than 

BCube while the same number of servers can be connected. 

 

 
 

Fig. 7. The comparison of bisection width and diameter in BCube, DCell, 2D Torus and BHC in 

case that N = 4 servers in BCube0 and DCell0 and P = 8 and i = 2 in BHCi. 

 

Based on the Theorem 2 and 3, the diameter and bisection width can be figured out 

with the number of servers increasing. The comparison of bisection width is illustrated 

by Figure 7. 

Figure 7 illustrates the comparison of bisection width in BCube, DCell, 2D Torus and 

BHC. BHC has the highest bisection width with about 100 servers. However, as network 

scale growing, the BCube’s bisection is the highest and BHC still keeps a fixed value, 

and is just better than 2D Torus.  

The comparison of network diameter illustrates the comparison of diameter in 

BCube, DCell, 2D Torus and BHC. The diameter of BHC is close to BCube and DCell, 

but 2D Torus gets worse when the network size grows. 

 
Table 1. Parameters in simulations 

Parameter Value 

Traffic pattern Uniform 

Switching mechanism Wormhole 

Packet length(flits) 3 

Flit length(bits) 256 

Cycle period(ns) 50 

Number of Virtual channels 8 

Offered load(flits/cycle/node) 0.01~0.4 
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6.2. Simulations on BHC 

In this section, a simulator based on OPNET is built to evaluate the performance of 

BHC on MapReduce. Every simulated node is configured to use wormhole switching 

mechanism. The routing algorithm presented in section 4 is implemented in the 

simulations. We set P = 4, i = 0 and K=2 to build a BHC2 with 64 master servers and 

256 worker servers. Our results quantify two metrics: ETE (End to End) delay and 

throughput. The ETE delay is the elapsed time (in ns) between the generation of a 

packet at a source host and its delivery at a destination host. The throughput sum of the 

data rates (in Gaps) that are delivered to all terminals in a network. The simulation 

parameters are set as Table 1. Offered load denotes the traffic injection of each node in 

per cycle. 

Performance of different numbers of jobs. The more jobs are injected in the network 

in the same time, the heavier pressure is exerted on the network. It is essential to test 

different numbers of jobs injected in the same time on BHC. BHC0 is the unity to be 

injected. Hence, BHC0 is chose as our test unity. 

Figure 8 plots the throughput and ETE delay in different numbers of jobs. The single 

job’s saturation point is offered load = 0.2 and the dual jobs’ and four jobs’ saturation 

point is about offered load = 0.05, which is about 1/4 of single job’s saturation point. 

This verifies the theoretical value. The results also imply that BHC has a graceful 

performance even all of the master servers are injected jobs at the same time. 

 

 
 

Fig. 8. The comparison of throughput and ETE delay in different numbers of jobs 

 

 

Fig. 9. The comparison of throughput and ETE delay in different P 
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Performance of different probability of communications in worker servers. As 

proposed in section IV, when a worker server is executing a map or reduce task, it may 

need the data stored at another worker server. P is supposed as the probability that a 

worker server needs the intermediate data stored at another worker server. If the P is 

getting higher, the more communications will happen in the worker servers. Hence, the 

simulation results under different P can be one of the metrics of worker-to-worker 

communication performance. 

Figure 9 plots the throughput and ETE delay in different P of workers servers’ 

communications. With the P growth, the performance of BHC is deteriorating. For 

example, when offered load is 0.3, the throughput with P = 20% is three times of the 

throughput with P = 60%. When P is getting higher, it is more probable that the a 

worker server, executing a map or reduce task, needs the data stored at the another 

worker server, and this dependency relationship will reduce the efficiency of handling a 

job, even turn into congestion to deteriorate the performance. Hence, this dependency 

relationship should be cut down as much as possible in practical, and we can improve 

the routing algorithm of BHC in future work. 

7. Conclusion 

Several new DCN architectures have been proposed to improve the topological 

properties of data centers, however, they do not match well with the specific 

requirements of some dedicated applications. This paper presents a MapReduce-

supported DCN network, named BHC. Through comprehensive analysis and evaluation, 

BHC is a scalable topology with excellent topological properties and communication 

performance. It is proven that BHC is competent for MapReduce under different traffic 

characteristics. The simulation results show that BHC has a graceful performance in 

multi-job injection. But when the worker servers have a high probability (60% or 

higher) of dependency relationship, the performance is deteriorating because the 

efficiency of handling a job is dropping, even resulting in congestion. Hence, this 

dependency relationship should be cut down as much as possible in practical. 
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