
DOI: 10.2298/CSIS130115069L

Testing framework for embedded languages?

Dániel Leskó1 and Máté Tejfel1

Eötvös Loránd University
Department of Programming Languages and Compilers

{ldani; matej}@elte.hu

Abstract. Embedding a new programming language into an existing one
is a widely used technique, because it fastens the development process
and gives a part of a language infrastructure for free (e.g. lexical, syntac-
tical analyzers). In this paper we are presenting a new advantage of this
development approach regarding to adding testing support for these new
languages.
Tool support for testing is a crucial point for a newly designed program-
ming language. It could be done in the hard way by creating a testing tool
from scratch, or we could try to reuse existing testing tools by extending
them with an interface to our new language. The second approach re-
quires less work, and also it fits very well for the embedded approach.
The problem is that the creation of such interfaces is not straightforward
at all, because the existing testing tools are mostly not designed to be
extendable and to be able to deal with new languages.
This paper presents an extendable and modular model of a testing frame-
work, in which the most basic design decision was to keep the – previously
mentioned – interface creation simple and straightforward. Other impor-
tant aspects of our model are the test data generation, the oracle problem
and the customizability of the whole testing phase.

Keywords: testing support for embedded languages, testing framework,
abstraction over evaluation.

1. Introduction

Nowadays, embedding a language into an existing one (host language), is a
well known and widely used approach to create a new programming language.
This quickens the development process, because the host language’s infras-
tructure (lexical, syntactical analyzer) can be reused. Modern functional host
languages are flexible enough that the resulted combination has more the feel
of a new language than just a library.

The ”embedded” approach has proved to be an excellent technique for spec-
ifying and prototyping domain-specific languages (DSLs) [11]. Basically two
approaches exist: shallow embedding, which directly maps the new language
constructs to their semantics, while the deep embedding first builds an abstract
syntax tree and later this tree is mapped to the language semantics.

? Supported by ELTE TÁMOP-4.2.2/B-10/1-2010-0030

Dániel Leskó and Máté Tejfel

Shallow embedding can be seen as an augmentation to an existing lan-
guage. According to Mernik et al. [17] every library can be seen as a shallowly
embedded language. While deep embedding really forms a new language on
the foundations of the host language. Therefore the deep approach is more
suitable for building a compilable and optimizable language. In this case a host
language can be seen as a very powerful template or macro language.

There are numerous papers about embedded DSLs, such as how to de-
sign [15, 13], implement [10] or compile [7] them. However, as far as we know
there are no specific paper, which aims to present a general solution for adding
testing tool support – at low cost – for already existing embedded languages,
while – as we all know – it is crucial for a language to have a proper testing tool
support.

Implementing a testing system in a DSL is mostly not an option due to its
labour-intensive nature and the fact that most DSLs are not designed for that
kind of task. The realistic option is to use an already existing test environment,
written in the host language. In this case we need to extend the existing frame-
work with an interface to the embedded language, while the business logic re-
mains untouched. Doing this is a much smaller task, than creating the testing
support from scratch. This approach also fits nicely with the motivation of em-
beddedness, namely to save time and resources by reusing as much from the
host language as possible.

The main problem with existing testing tools (QuickCheck [5], JUnit [2], HU-
nit [12]) that they were designed to test programs of one specific language and
sometimes even for specific testing and test data generation methodologies.
Therefore they are not easily extendible with an interface to another program-
ming language or to another evaluation method. Furthermore they could be
quite specific in certain aspects, like how the input test data are produced,
or how the results are evaluated and decided whether a test case failed or
passed. Another aspect regarding a testing framework is the viability and clear
designability of supporting both property based and differential testing method-
ologies.

Our goal in this paper is to present a general and permissive model of a
testing framework which can address properly all the previously mentioned as-
pects. The model is abstracted along four orthogonal aspects such as test data
generation, the used evaluation method, the oracle problem and partly the used
testing methodology.

Based on our model, a Haskell implementation was created. Its main char-
acteristics are modularity and extensibility. The existence of such framework in
Haskell (or in any host language) results that an embedded language can get
a testing support by implementing only a simple and straightforward interface
which spans the gap between the host and the embedded language.

1648 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

2. The model

The following model was inspired by all the previously mentioned reasons and
aspects, and it was designed to nicely fit for all of them. Figure 1 shows the
data-flow model of a test case in our model.

The generator ’s responsibility is to provide correctly typed input for trans-
formers. This input will be referred as the generated test data.

A transformer encapsulates the to-be-tested computation, and gives an uni-
versal interface, which hides such unnecessary details as how and by what
the computation will be evaluated. A transformer can be thought as a function,
whereat the generated test data is applied, and it yields the result of the com-
putation. The number of the transformers are not limited, it could be as many
as the user wants.

A property is a function, which receives each transformer ’s result, and also
the originally generated test data. The outcome is a boolean value, which rep-
resents whether the specific property (given by the user) holds in that particular
case, or not.

An operator is basically a driver, which controls the data-flow between the
small boxes (in the figure). The configuration comes from the outside world
(from the model’s point of view), and it affects the operator (e.g. the number of
performed tests).

Operator

Generator

test
data

Transformer_2

Transformer_1

Property

result

result

failed /
passedconfig

Fig. 1. The data-flow model of a test case with two transformers

To describe a test case in the terms of this model, we need one test data
generator, a non-empty list of transformers, and one property. To be able to run
a test case, we also need an operator, which specifies the way how to do that.

One of the earliest design decision was that the model has to be as gen-
eral as possible, in terms of that the four major parts of the model (generator,
transformer, property, operator) have to be separate, independent and modu-
lar parts while the interactions between them should done through well defined
and public channels.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1649

Dániel Leskó and Máté Tejfel

2.1. Generator

The model’s only expectation about a generator is that it has to supply test data
with a matching type for the given transformers. However there are a lot of un-
controlled aspects by the model, such as the used generation tactics (random,
exhaustive), the test data distribution or controlling the size of the generated
test data. All of these are entirely depending on the particular implementation
of a specific generator.

To give control for the user over the previously mentioned aspects, we defi-
nitely need a small domain-specific language for building and specifying gener-
ators. Since QuickCheck [5] and also SmallCheck [20] has some really powerful
tools to do that, we can easily reuse those existing tools as a library. Note that
the re-usage of such libraries not conflicts with the language independence of
the model, since QuickCheck is re-implemented for more than 20 languages.

The model and the generator notion is not limited to the previously men-
tioned tools, any DSL or library which aims to generate test data could be in-
tegrated easily into the model and also into a testing framework, based on the
model.

2.2. Transformer

Using a transformer is a way to abstract over specific evaluation methods (etc.
interpreting, compiling) and specific programming languages. The model repre-
sents a transformer as one function, but under the hood it is a bit more compli-
cated. A transformer is usually created by applying the to-be-tested function to
a transformer pattern. Therefore the previously mentioned abstraction are done
by the means of transformer patterns.

A specific transformer pattern could evaluate any program of a specific lan-
guage with a specific evaluation method (e.g. C compiler, Haskell compiler,
Haskell interpreter). On the implementation level it is a higher order function
which takes a function (the to-be-tested) as its first argument and a complex
data structure (holds the input data) as its second argument. Adding support
for a new language or evaluation method can be done simply by creating a new
transformer pattern for it.

2.3. Property

One of the most fundamental questions in automated software testing is to
decide whether a test case is passed or failed, because it is hard to create
an algorithm/oraculum which is general enough to correctly judge the results.
However, if we somehow succeed, it is not a flexible solution to hardwire this
decision method into a general framework.

A common resolution of this problem is to devolve this job to the user, who
writes the actual test case. In our model it can be done with the use of the
so-called property, which can be thought as a boolean function with two pa-
rameters. Note that our notion of property is quite far from QuickCheck’s. Our

1650 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

version means a much smaller part of the model. An expression evaluated to
true indicates a successful test, false indicates a counter example. The first
parameter of a property is the originally generated test data (the input of the
transformers), the second is a list of transformer’s results. The number of the
compared transformers are not limited, but they have to have the same type
signature.

The model does not specify what kind of results should be passed to a prop-
erty, because that could depend on the used specific transformer pattern. For
example a transformer pattern of a C compiler could pass compile time and
ELOC (effective lines of code) information besides the result of the computa-
tion. Having also non-functional results can allow us to build more sophisticated
properties.

2.4. Operator

The role of an operator is much more technical then the previously mentioned
three parts of the model. This difference comes from the fact that an operator
isn’t part of a test case, it is only needed to perform the execution of it.

On the model level an operator ’s job is to handle the data-flow from the gen-
erators towards to a property through one of the transformers. On the frame-
work level there are several other technical responsibilities such as control-
ling the number of required iterations, the level of verbosity, setting logging and
the working directory. The framework contains one predefined operator, which
gives a standard way to handle the previously mentioned aspects. So normally
a user doesn’t have to create a new operator.

2.5. Testing framework - based on our model

The presented model is general in the sense that it doesn’t require any specific
programming language constructs, so it can be implemented in almost any host
language. We have chosen Haskell, because it nicely fits for this job [11], and
lately Haskell is a very favoured host language.

The implemented framework supports both property based testing and dif-
ferential testing. As a property based tester it is a kind of generalization of
QuickCheck and SmallCheck with the support for additional test data gener-
ation approaches. The most important feature – as a differential testing tool
– is a ”common ground” for different evaluation methods and also for differ-
ent languages. The existence of this common ground makes comparability and
modularity really easy.

In the following section we are discussing a detailed use case of the frame-
work. At first sight it may look like that we are using it solely as a differential
testing tool, but in reality it is rather about new transformer patterns, mostly
answering the why and how questions.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1651

Dániel Leskó and Máté Tejfel

3. A detailed use case - Testing support for Feldspar

We used the framework to test the Feldspar1 [1] language, which is a new em-
bedded language for describing digital signal processing algorithms. We have
more than 300 test cases, which were used on a daily basis to test the Feldspar
language itself, and the existing Feldspar example programs. We also had to
ensure that the Feldspar compiler and interpreter are in sync, and the results
are valid (compared to trusted reference implementations or expected output
sets). Besides testing equivalence, most of the test cases are checking non-
functional properties too.

The actual implementation of the testing framework reused QuickCheck’s
Gen class and SmallCheck’s Serial class as generators. The used properties
are mostly check equivalence either strictly or with a given epsilon threshold.
We also used non-functional properties, which were about compile-time, run-
time, ELOC, memory-usage.

The most important and interesting part is the transformer, which we present
in the following subsections. Each subsection firstly introduces an aspect of
Feldspar which will be tested, than shortly presents how such a specific trans-
former pattern can be created and how the testing can be achieved.

3.1. Testing the Feldspar interpreter

Unfortunately Feldspar doesn’t have a written specification about semantics,
so the interpreter couldn’t be tested against that. But in many ways Feldspar
is really similar to Haskell, in fact – by definition – a lot of primitive function
and operator of Feldspar has the exact same semantics like their equivalents in
Haskell.

This realization means, that we could test the Feldspar’s primitive functions
against their Haskell equivalents. In order to do that we need two new trans-
former patterns. The first one will be responsible for the evaluation of a Feldspar
program, using the Feldspar interpreter, while the other one will evaluate a
Haskell function by the Haskell interpreter.

3.2. Testing the Feldspar compiler

The Feldspar compiler [6] has a capability of supporting several different back-
ends to generate code for them. The main and mostly used platform is ANSI C,
there are other developments like Ti specific instrinsics or LLVM back-end, but
from the testing point of view, the C platform is the important one.

It is important from the testing point of view, that the generated C code is
just a function, which has almost the same arguments, like the original Feldspar
program.

1 Developed by the Feldspar project, which was a joint research project of Ericsson;
Chalmers University of Technology (Göteborg, Sweden) and Eötvös Loránd University
(Budapest, Hungary).

1652 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

As there is no written specification for Feldspar, the interpreter could be
thought as some kind of executable reference implementation of the semantics.
So the best way to verify the compiler is to test it against the interpreter.

The following steps have to be done, if we would like to compile and execute
a Feldspar program and run from Haskell. So creating a transformer pattern –
which evaluates a Feldspar program by the Feldspar compiler – requires that
these steps have to be automated and built-in:

1. Compile a Feldspar program into a C function.
2. Generate a proper C main() function, which reads the input data from stan-

dard input, passes these data to the previously generated C function, and
prints the result to standard output.

3. Compile the previous two C files with gcc.
4. Start an external process from Haskell to run the executable file, and feed it

with proper test data.
5. Wait until the execution ends, read the result from the process, and close it.

3.3. Testing Feldspar programs against reference implementations

As it was mentioned earlier, Feldspar is a domain specific language (DSL),
targeting digital signal processing (DSP). So it is obvious that there is a certain
set of algorithms, which are very typical for that domain. We can assume that
there are notable algorithms (e.g. Fast Fourier Transform [4]), which already
have an implementation from a reliable source. These implementations can be
treated as a reference to check and test the expressiveness, the usability and
the correctness of the Feldspar language itself, and also the programs written
in Feldspar.

Since DSP algorithms are mostly implemented in C, we need a transformer
pattern that can evaluate an arbitrary C function. The function is either given
as a string, or as an external file. Evaluation means here that the transformer
pattern takes the C code, compiles it with a C compiler (e.g. gcc), generates a
proper main() function, feeds this function with the generated input data, and
reads the result back to the testing framework.

Since the C language is not embedded into Haskell, and there is no strong
connection between those two languages, we are losing some type information
there. While in case of Haskell and languages embedded into Haskell we could
statically type-check the assembled test cases. This means that if a generator-
transformer-property is ever wrongly paired or assembled, then we get a com-
pile time type-check error.

Because of the less type information, the transformer pattern for C has to
assume that a few invariant – regarding to the number and order of the parame-
ters – have not been violated, otherwise we could end up with sudden run-time
errors.

The typical use case of this pattern is to first have a transformer for a
Feldspar program and then compare that with a reference C program. At first
this testing approach could be a little bit confusing, because a failure doesn’t

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1653

Dániel Leskó and Máté Tejfel

mean always a bug in the Feldspar language, it is always a possibility that the
Feldspar implementation of the chosen algorithm is simply wrong. But as these
test cases are based on real life examples, eventually the goal is to produce a
properly working Feldspar implementation of those algorithms.

3.4. Simple testing approaches

In the following we will present, how the testing framework supports some basic
testing methodology, such as negative testing, or testing with constant input.

Testing with constant data There are certain cases when the random test
data generation is not enough, and we want to create some hardwired test
case with specific input data. But in this case, we also might want to specify
the result of the computation. It’s basically the oldest and simplest version of
testing, the input and the result are given manually, and we check it against the
computed result.

To support this kind of testing, we need transformer pattern, which gets a
constant as its first arguments, and results a constant transformer, always yield-
ing the given constant.

Negative testing As it was mentioned earlier in subsection 2.2, a transformer
could fail, but this failure is also handled as data. Besides the error message,
there are some information about the source of error (e.g. Haskell, gcc, Feldspar
compiler, Feldspar interpreter).

In order to build such a test case, which passes when one of the transform-
ers fails, we need a new transformer pattern which constantly yields failure with
the given error source.

The most likely use case for this kind of testing, if there are a certain set
of Feldspar functions, which shouldn’t be compiled to C, because they clearly
hasn’t got enough information (e.g. too general type signature) to produce a
proper C code.

3.5. Concrete test case

The following is a Feldspar function, which takes an int stored on 32 bit (as the
starting value of the accumulator) and a list of ints. The list is folded, while every
element is added to the accumulator, which is the result of the function.

foldAdd :: Data Int32 -> DVector Int32 -> Data Int32
foldAdd = Feldspar.Vector.fold (+)

The tc1 example test case tests the foldAdd function by comparing the
Feldspar compiler, the Feldspar interpreter and the corresponding foldl (+)
Haskell function.

1654 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

tc1 = TestCase
{ tc_name = "testing fold with addition"
, gen = genInt32 ::> vectorOf 200 genInt32 ::> ()
, trans = [refHaskellTP (Prelude.foldl (+))

, evalTP foldAdd
, compilerTP foldAdd]

, prop = base 1 strictEquality}

The results are strictly compared to the result of the Haskell function, which
is treated as a reference implementation for Feldspar’s fold function.

The test data is coming from a list of QuickCheck generators. Please note,
that Feldspar uses fixed length lists (vectors) due to efficiency and optimization
reasons, therefore we have to fix this information (200) at test data generation,
otherwise we could use QuickCheck’s arbitrary function or SmallCheck’s
serial function too, as a generator.

4. Improving transformers

Every testing system is made to support the development or maintenance by
saving time and resources which allows to create and run more tests in an
automated way.

The presented model and framework supports this goal, but still we have to
create every test case manually for every function (like foldAdd) we would like
to test, which is a very boring and time consuming work. Besides this obvious
drawback there is an other disadvantage, namely that it is very easy to leave
out a few functions during test case production.

This motivated us to enhance the previously presented transformer concept
by generalizing the parameter of a transformer pattern. Previously a pattern ex-
pected a concrete function as its parameter to form a transformer. The new,
enhanced transformer patterns expects only a type signature instead of a con-
crete function.

Meta-transformers Type wise a meta-transformer looks and feels like an av-
erage transformer, but internally it is a bit more complicated. We can form a
meta-transformer by applying only some type signature information on a trans-
former pattern. Based on this type information, the meta-transformer will inter-
nally generate the to be tested function with a matching signature to the given
type information. This internal generation instantiates a meta-transformer and
creates an ordinary transformer.

Basically we need type signature guided, automatic program generation.
Since it is not an easy task, we solve it in two consecutive steps. The first phase
does the real generation, and ensures the type correctness by producing closed
and correctly typed lambda calculus terms. While the second phase translates
the generated lambda term into a concrete program.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1655

Dániel Leskó and Máté Tejfel

Palka et al. [18] successfully applies correctly typed lambda term genera-
tion to generate and test Haskell list expressions. Our approach is basically a
generalization and improvement of their work.

The details and background of this two-phase generation go way beyond the
scope of this paper and testing framework. Our point here is that the presented
model and testing framework is so modular and flexible enough to accommo-
date even this kind of improvements too.

5. Related work

Helvetia [19] is a tool chain for developing an internal DSL by transforming an
abstract syntax tree. The benefit of this approach is that a homogeneous tool
support can be given for the newly created embedded languages. Therefore –
in this case – there is no need for our testing framework. However our approach
is applicable for already existing embedded languages, while to benefit from
the homogeneous tool support of Helvetia we have to reimplement and embed
our language into Helvetia, which is a much bigger task than just creating a
transformer for our test framework.

So Helvetia only suits well for you if you are at the beginning of the lan-
guage development process, but later it is not really an option to apply. While
our solution is easily applicable for new and also existing languages too.

Testing embedded languages Grima et. al [8] developed an embedded lan-
guage (in Haskell) addressing geometrical problems. The paper presents two
different methodologies to test programs, written in that new language. The first
simply reuses QuickCheck, while the second works on C level. Both using ran-
dom input generation to verify the given properties, but they are two, completely
separate solution on implementation level.

Our test framework could solve this in an unified way instead of those sep-
arate solutions. Furthermore the usage of our framework would save a consid-
erable amount of time and resources, because we only need to create the two
transformer patterns (one for the Haskell level and one for the C level testing),
the rest is already in the framework.

Test data generation The test data generation is always a crucial point in
automated software testing. Numerous property or specification based testing
tools are using some kind of test data generation. For example: QuickCheck [5],
SmallCheck [20], Gast [14], Korat [3]. QuickCheck uses random generation
(with the ability to shrink the founded counterexamples), while SmallCheck,
Gast and Korat do exhaustive generation up to a limit given by the user.

It looks like that every tool supports only a specific programming language
and a specific test data generation methodology. Our framework is designed to
support arbitrary number of different test data generation methodologies and

1656 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

also to hide their differences by giving a unified generator interface. For exam-
ple the presented model can accommodate QuickCheck’s random generator as
well as SmallCheck’s serial generator at the same time.

Differential testing McKeeman states the following: ”The ugliest problem in
testing is evaluating the result of a test.” [16]. He was the first, who described
the use of randomized differential testing for C compilers. His domain was es-
sentially static: a test data was randomly generated based on a model of the
valid inputs. The tested programs were compiled by different translators, and
if the obtained results are different, the situation is considered to be potentially
erroneous. The word ”potentially” is important here, because the results – given
by the two tested programs – may differ and yet still be correct depending on
the requirements. This is the starting point of our property notion, which solves
the oracle problem by simply porting it to the user.

McKeeman’s model is really close to ours in the sense that he had a test
data generator, translators – which corresponds with our transformer notion
– and some kind of very simple property to check the results. However, his
solution was specifically designed to test different C compilers with random test
data, therefore there is no chance for such kind of extendability and flexibility
like new test data generation methods, language interfaces and properties.

A reusable framework One of the simplest reusable framework is JUnit [2],
and it’s clones for other languages, like HUnit [12] for Haskell. Our model aims
to preserve the simplicity of the previously mentioned tools, but also tries to
support differential and property based testing, arbitrary test data generation
methodologies and language independence in the sense of the tested program.

A test framework was developed for testing the Flash file system, and later
it was reused for two other testing projects [9]. Their conclusion was that initial
efforts to develop an effective test system pay off in re-use on similar projects,
because the significant differences were less important than the similarities.
Their experiences confirms that we have chosen the right design decision in
case of our model. It also points out that resources can be saved in the long
run, by developing a modular and extensible testing framework, like ours.

6. Conclusion and future work

We presented a permissive model of a modular and extensible testing frame-
work. The main contributions of the model are the followings:

– testing support for embedded languages at low cost. To add support for
a new language, we only have to create a new transformer, the test data
generation and the basic properties are already there.

– an unified interface to support different test data generation methods. The
integration of a new test data generator is very easy, nearly ”plug and play”.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1657

Dániel Leskó and Máté Tejfel

– using abstraction over different evaluation methodologies. This latter as-
sures that programs written in different languages can be tested against
each other.

The model essentially supports property based and differential testing, where
the oracle problem is ported to the user.

Language and platform independency was an early design decision for the
model. A real test of this would be to try to create another (non-Haskell) imple-
mentation of the model, maybe in an object-oriented or imperative programming
language.

A possible future work is to extend the framework with new transformer pat-
terns to support new programming languages. For Feldspar, it could be a rea-
sonable goal to add support for testing against reference MatLab programs.

References

1. Axelsson, E., Dévai, G., Horváth, Z., Keijzer, K., Lyckegård, B., Persson, A.,
Sheeran, M., Svenningsson, J., Vajda, A.: Feldspar: A Domain Specific Language
for Digital Signal Processing algorithms. In: Proc. Eighth MemoCode (2010)

2. Beck, K., Gamma, E.: Test infected: Programmers love writing tests. Java Report
3(7), 51–56 (1998)

3. Boyapati, R., Khurshid, S., Marinov, D.: Korat: Automated testing based on java
predicates. In: In Proc. International Symposium on Software Testing and Analysis
(ISSTA. pp. 123–133 (2002)

4. Brigham, E.O.: The Fast Fourier Transform (1974)
5. Claessen, K., Hughes, J.: Quickcheck: A Lightweight Tool for Random Testing of

Haskell Programs. In: ACM SIGPLAN Notices. pp. 268–279 (2000)
6. Dévai, G., Tejfel, M., Gera, Z., Páli, G., Nagy, G., Horváth, Z., Axelsson, E., Sheeran,

M., Vajda, A., Lyckegård, B., Persson, A.: Efficient Code Generation from the High-
level Domain-specific Language Feldspar for DSPs. In: Proc. ODES-8: 8th Work-
shop on Optimizations for DSP and Embedded Systems, assoc. with IEEE/ACM
International Symposium on Code Generation and Optimization (CGO) (2010)

7. Elliott, C., Finne, S., Moor, O.d.: Compiling embedded languages. In: Proceedings
of the International Workshop on Semantics, Applications, and Implementation of
Program Generation. pp. 9–27. SAIG ’00 (2000)

8. Grima, M., Pace, G.J.: An embedded geometrical language in haskell: Construction,
visualisation, proof (2007)

9. Groce, A., Holzmann, G., Joshi, R.: Randomized differential testing as a prelude to
formal verification. In: Proceedings of the 29th international conference on Software
Engineering. pp. 621–631. ICSE ’07 (2007)

10. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of the 5th
International Conference on Software Reuse. pp. 134–142. ICSR ’98 (1998)

11. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv. 28
(December 1996)

12. HUnit: Haskell unit testing. http://hunit.sourceforge.net/ (2012)
13. Kamin, S.N.: Research on domain-specific embedded languages and program gen-

erators. In: Electronic Notes in Theoretical Computer Science (1998)

1658 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Testing framework for embedded languages

14. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic automated
software testing. In: The 14th IFL’02, Selected Papers, volume 2670 of LNCS. pp.
84–100 (2002)

15. Leijen, D., Meijer, E.: Domain specific embedded compilers. SIGPLAN Not. 35, 109–
122 (December 1999)

16. McKeeman, W.M.: Differential testing for software. Digital Technical Journal 10(1),
100–107 (December 1998)

17. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37, 316–344 (December 2005)

18. Palka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler by
generating random lambda terms. In: Proceedings of the 6th International Workshop
on Automation of Software Test. pp. 91–97. AST ’11, ACM, New York, NY, USA
(2011), http://doi.acm.org/10.1145/1982595.1982615

19. Renggli, L., Girba, T., Nierstrasz, O.: Embedding languages without breaking tools.
In: In ECOOP 2010: Proceedings of the 24th European Conference on Object-
Oriented Programming (2010)

20. Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy smallcheck: automatic
exhaustive testing for small values. In: Proceedings of the first ACM SIGPLAN sym-
posium on Haskell. pp. 37–48. Haskell ’08 (2008)

Dániel Leskó is pursuing his Ph.D. in Test data generation and static analy-
sis at Eötvös Loránd University in Hungary, where he received his B.Sc. and
M.Sc. degree in software technology in 2008 and in 2010. His research in-
terests include functional programming, compilers, automated testing and test
data generation.

Máté Tejfel is an assistant professor at Eötvös Loránd University, Faculty of
Informatics, Department of Programming Languages and Compilers. His main
research topics are parallel programming, functional programming and verifica-
tion.

Received: January 15, 2013; Accepted: September 10, 2013.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1659

