
DOI: 10.2298/CSIS130120071K

Context Parsing (Not Only) of the
Object-File-Format Description Language
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Abstract. The very first step of each tool such as linker, disassembler, or
debugger is parsing of an input executable or object file. These files are
stored in one of the existing object file formats (OFF). Retargetable tools
are not limited to any particular target platform and they have to deal with
handling of several OFFs. Handling of these formats is similar to parsing
of computer languages — both of them have a predefined structure and a
list of allowed constructions. However, OFF constructions are heavily mu-
tually interconnected and they create context-sensitive units. In present,
there is no generic system, which can be used for OFF description and its
effective parsing.
In this paper, we propose a formal language that can be used for OFF
description. Furthermore, we present a design of a context parser of this
language that is based on the formal models. The major advance of this
solution is an ability to describe context-sensitive properties on the level
of the language itself. This concept is planned to be used in the exist-
ing retargetable decompiler developed within the Lissom project. In this
project, the language and its parser will be used for an object file parsing
and its automatic conversion into the internal uniform file format. It is im-
portant to say that the concept of this parser can be utilized within other
programming languages.

Keywords: object file format, context parsing, scattered context grammar,
priority function, attributed grammar, decompilation, Lissom, ELF

1. Introduction

Reverse compiler (i.e. decompiler) is yet another tool that takes executable files
on its input. Its purpose is to translate this input into a high level language (HLL)
representation, such as a C code. This tool can be used for source code recon-
struction, binary code migration, malware analysis, etc. Retargetable decompi-
lation is a more difficult task because it must handle all the platform, operating
system, and programming language specific features.

Platform-specific decompilation is a well-described discipline, e.g. see [5,7,40].
On the other hand, retargetable (i.e. platform-independent) decompilation is still
a quite unexplored area, despite the first attempts done decades ago. However,
several steps of retargetable decompilation have been already done, such as
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uniform extraction of instruction semantics, machine-code decoding, reverse
compilation into HLL, etc. See [43,44] for details.

However, there is still one non-covered phase of retargetable decompila-
tion — the handling and conversion of platform-dependent object file formats
(OFFs). This is the preliminary step of decompilation. Within this step, an in-
put file is being analyzed, validated, and converted into the internal, uniform
representation. This conversion transforms all the necessary information (e.g.
machine code, data, symbols) into the internal structures. It might be possible
to use one of the existing single-purpose converters or write a new one from a
scratch. However, none of these is a truly generic solution.

This problem can be divided into two tasks. (1) Description of a target OFF
using a specific description language. (2) Automatic generation of an OFF con-
verter based on this description. Afterwards, the converter can be used for con-
version of applications stored in a particular OFF into an internal code repre-
sentation used by a decompiler.

Structure of most OFF is relatively complicated (e.g. Windows PE, UNIX
ELF) because its elements are mutually interconnected and the structure is
heavily influenced by content of these elements. We can say that these ele-
ments create a context-sensitive behavior. This is a problem for design of such
OFF description language because the theory of computer-language compila-
tion settled down on the concept of context-free parsing for most of the existing
languages during the last sixty years.

Within the context-free parsing concept, syntax of programs is usually pro-
cessed using automatically generated context-free parsers. Parser generators
like YACC, Bison, or ANTLR are able to create a skeleton of target language-
specific parser. However, this skeleton has to be enriched of hand-written HLL
code implementing semantics checking (so called semantic actions). This con-
cept is prone to errors and each change of the target language needs reimple-
mentation of the parser (at least its semantic actions).

In this paper, we present a new formal language for the description of OFFs
that is capable to describe context-sensitive elements. We propose a context
parser of this language that is based on the newly created formal models (at-
tributed scattered context grammar with priority function, etc.).

The concept is planned to be used in the existing retargetable decompiler
developed within the Lissom project [23]. In this project, the OFF language
is used for object-file handling and its automatic conversion into the internal
Common-Object-File-Format (COFF)-based file format, which is processed by
the decompiler afterwards, see [45] for details. Moreover, the language is de-
signed to be general enough for usage in other retargetable tools (e.g. loaders,
disassemblers, debuggers) and the context parser can be used for parsing of
different programming languages, not just OFF description language.

The paper is organized as follows. Section 2 introduces some preliminaries.
Section 3 briefly characterizes common OFFs. Then, we discuss existing con-
version techniques and applications in Section 4. The Lissom project is briefly
described in Section 5. Our language for OFF description is presented together
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with an example of its usage in the subsequent Section 6. Within this section,
we also depict several context-sensitive features of this language. In Section 7,
we present a concept of the context parser as well as the definition of the new
formal models that the parser is based on. We also give a short overview on the
current state of the parser’s implementation together with experimental results
within the same section. Finally, discussion of future research closes the paper
in Section 8.

2. Preliminaries and Definitions

We assume a reader is familiar with the formal language theory (for further
reference, see for example [26]).

Definition 1. A phrase-structure grammar is a quadruple

G = (V, T, P, S),

where

– V is a total alphabet ;
– T ⊂ V is a finite set of terminal symbols (terminals);
– S ∈ V − T is the start symbol of G;
– P is a finite set of productions p = x→ y, x ∈ V ∗(V − T )V ∗, y ∈ V ∗.

The symbols in V −T are referred to as nonterminal symbols (nonterminals).
We set lhs(p) = x and rhs(p) = y, which represents the left-hand side and the
right-hand side of the production p, respectively.

Definition 2. A context-sensitive grammar (CSG) is a phrase-structure gram-
mar

G = (V, T, P, S),

such that every production p = x→ y ∈ P satisfies |x| ≤ |y|.

Definition 3. A context-free grammar (CFG) is a phrase-structure grammar

G = (V, T, P, S),

such that every production p = x→ y ∈ P satisfies A→ x, where A ∈ V −T
and x ∈ V ∗.

Definition 4. A scattered context grammar (SCG, see [11]) is a quadruple,

G = (V, T, P, S),

where

– V is a total alphabet;
– T ⊂ V is a finite set of terminals;
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– S ∈ V − T is the start symbol;
– P is a finite set of productions of the form

(A1, . . . , An) → (x1, . . . , xn),

where Ai ∈ V − T , xi ∈ V ∗ for all i : 1 ≤ i ≤ n.

Definition 5. A propagating scattered context grammar (PSCG) is a SCG

G = (V, T, P, S),

in which every (A1, . . . , An) → (x1, . . . , xn) ∈ P satisfies xi ∈ V + for all
i : 1 ≤ i ≤ n.

Definition 6. Let G = (V, T, P, S) be a (propagating) SCG. If

y = u1A1u2 . . . unAnun+1,
z = u1x1u2 . . . unxnun+1,

and y, z ∈ V ∗, p = (A1, . . . , An) → (x1, . . . , xn) ∈ P , then y directly derives
z in the SCG G according to the production p,

y ⇒G z [p] (or simply y ⇒G z).

Let ⇒+
G and ⇒∗

G denote the transitive and the reflexive-transitive closure of
⇒G, respectively. To express that G makes the derivation from u to v by using
the sequence of productions p1, p2, . . . , pn ∈ P , we write u ⇒∗

G v [p1p2 . . . pn]
(or u ⇒+

G v [p1p2 . . . pn] to emphasize that the sequence is non-empty). We
abbreviate ⇒G to ⇒ when it is clear which grammar we are referring to. This
definition also holds for other SCG-based grammars listed below.

Now we are able to define scattered context grammars regulated by priority
functions, see [21] for details of their properties.

Definition 7. A (propagating) scattered context grammar with priority, abbrevi-
ated as ((P)SCGP), is a quintuple

G = (V, T, P, S, π),

where (V, T, P, S) is a (propagating) scattered context grammar and π is a
priority function

π : P → N.

Definition 8. Let G = (V, T, P, S, π) be a (P)SCGP. We say that y directly
derives z in (P)SCG G according to the production p, y ⇒G z [p] (or simply
y ⇒G z), if and only if:

– y = u1A1u2 . . . un Anun+1 ∈ V ∗,
– z = u1x1u2 . . . unxnun+1 ∈ V ∗,
– p = (A1, . . . , An) → (x1, . . . , xn) ∈ P , and
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– there is no p′ = (A′
1, . . . , A

′
n) → (x′1, . . . , x

′
n) ∈ P , such that:

1. y = u′1A
′
1u

′
2 . . . u

′
nA

′
nu

′
n+1 ∈ V ∗, and

2. π(p′) > π(p).

Definition 9. A (propagating) scattered context language with priority is lan-
guage generated by a (propagating) scattered context grammar with priority.
The family of (propagating) scattered context languages with priority is denoted
by L((P)SCP). In [21], it has been proved that

L(CS) = L(PSCP ) ⊂ L(RE) = L(SCP ),

where RE stands for the set of all recursively enumerable languages.

3. Object File Formats

The term object file format refers to a format of an executable code, library
code, or object code that has not been linked yet. In the following text, we focus
mainly on the executable code. A generic OFF usually consists of the following
parts [22]:

– Header – contains essential information about the file (e.g. its identification,
size, section pointers);

– Object code – i.e. sections containing machine code and application data;
– Relocations – “Relocation is the process of assigning load addresses to the

various parts of the program, adjusting the code and data in the program to
reflect the assigned addresses” [22]. We can find a wide range of relocation
types for each target architecture. Some relocations can be resolved during
compilation by linker; while the other ones has to be resolved by loader
before program’s execution;

– Symbols – symbols are usually stored in tables and they characterize its
local, imported, and exported symbols (variables, functions, etc.);

– Debugging information – generated by compilers for debug support. There
exist several debugging information standards [20]. The presence of the
debugging information is optional.

Unfortunately, there is no such generic format and each platform (i.e. a com-
bination of an operating system and a processor architecture) has its own for-
mat, or a derivative of an existing one. In present, we can find two major OFFs
— UNIX ELF [39] and Windows PE [29], see Fig. 1. However, other formats
are on arise (e.g. Apple Mach-O), see [19]. In the Lissom project [23], a COFF-
based file format is used for internal code representation. The overview of other
common formats can be found in [19].

The UNIX ELF [39] file format is a standard on all UNIX-like systems. It is
independent on a particular target architecture (e.g. Intel IA-32, SPARC, ARM).
The leading part of the ELF file is a header with all the essential information. It
also points to the program and section header tables. These tables contain in-
formation about particular segments and sections, respectively (e.g. their sizes,
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offsets within the file). Each section can store different content (e.g. code, data,
symbol, hash tables); furthermore, one or more sections may form a segment.

From the linker point of view, an ELF file consists of a group of sections
defined in a section-header table. Contrariwise, loader handles the ELF file as a
group of segments defined in a program-header table, see 1. The very important
characteristic of this format is its flexibility. Only the header has a fixed offset
within the file, all other elements are optional, as well as their offsets within the
file. Therefore, all elements are scattered throughout the file, and the size or
content of padding is unspecified.

Fig. 1. ELF (on left) and Windows PE (on right) file formats.

The Microsoft’s Windows Portable Executable (WinPE) [29] format also
supports all the three file types — object files, executables, and libraries. Win-
dows PE can be used on all Windows-based systems on architectures Intel
IA-32, IA-64, x86-64, ARM, and others. The structure of the PE format is based
on the COFF format [10]. It consists of a number of headers and sections that
tell the loader how to map the file into memory. Each section has its own header
and often a specific purpose, for illustration see 1. For example, the .text sec-
tion holds the program code; .data sections hold global variables, .edata
and .idata sections contain exported and imported symbols, etc.

The E32Image format is used on the Symbian operation systems, usually
used in smartphones [31]. It was developed by Symbian Ltd., which currently
belongs to Nokia. E32Image is used only on the ARM architecture.

E32Image is a proprietary format, and its specification has never been pub-
licly published; therefore, all the necessary information was gathered using re-
verse engineering. This format was originally based on Windows PE, but since
Symbian version 9.1 (in 2005), its authors switched to an ELF-like format. The
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E32Image file is created from an existing executable PE or ELF file by a special
post-linker. The main idea of this format is to provide basic file format structure
with low-memory overhead. The differences over the mentioned formats include
that the same type sections are merged and might be compressed, information
about the target architecture (e.g. word size) is not explicitly encoded, and that
unnecessary strings (e.g. symbol names) might be removed.

The Mach-O object file format [3] is used in operation systems Darwin,
NeXTSTEP, Mac OS X, or iOS from Apple Inc. It is made up of three parts
— Mach-O header, followed by a series of load commands, and one or more
segments, each of them containing up to 255 sections. Mach-O supports Intel
IA-32, x86-64, PowerPC, and PowerPC64 as the target architectures.

A special feature of this format is its support of multi-architecture binaries,
where multiple Mach-O files can be combined in a single multi-architecture file.
Such binary file contains code for multiple instruction set architectures.

4. Related Work

We can find several projects focused on parsing and binary conversion of OFFs.
They are used mostly in reverse engineering or for code migration between
particular platforms. The largest group consists of hand-coded tools that are
focused on binary conversion between two particular OFFs.

A typical example is the Macintosh Application Environment project [2], which
supports execution of native Apple Macintosh applications on UNIX based work-
stations. AT&T’s FreePort Express [6] is another binary translator, which permits
conversion of SunOS and Solaris executables into Digital UNIX executables.
Wabi allows conversion of executables from Windows 3.x to Solaris [12].

Another important project is the Binary File Descriptor library (BFD) [4]. BFD
was developed by the Cygnus Support company, and currently forms a part of
the GNU Binutils package. It supports unified, canonical format for manipula-
tion tens of OFFs (e.g. ELF, PE, COFF). BFD is used as a front-end of many
existing projects, however, it is not a retargetable solution because support of
each new OFF must be hand-coded. Furthermore, due to BFD’s complexity, the
interconnection of the target application and BFD is often difficult. Details about
a successful BFD-based solution can be found in [19].

The last group of projects uses their own grammar-based systems for a for-
mal description of binary formats. The architecture description language (ADL)
SLED [32], developed within the New Jersey Machine Code Toolkit [33], is sup-
posed to describe the instruction sets of target processor architectures, i.e. syn-
tax and binary encoding of each instruction. Such description can be used for
the automatic generation of retargetable linker [9], debugger [34], or other tools.
However, this language does not support description of OFFs. We can find the
same limitation in all common ADLs, see [25] for more details.

We can find two formalisms called BFF grammar (Binary File Format Gram-
mar). The first one (DWG BFF) [8] was originally designed for description of
non-executable file formats. More precisely, it was designed and tested only on
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the AutoCAD DWG format. This grammar is a state-of-the-art concept, which
has never been implemented, nor used in any tool. The grammar is limited to
the DWG format, but it can be be possibly used on other OFFs. Its author claims
(see [8]) that the grammar is in LL(1) form and it can be parsed by the recursive
descent approach.

The DWG BFF grammar inspired project UQBT [42] and its SRL BFF gram-
mar [41]. Despite the limitations of the original DWG BFF grammar, it was sim-
plified and used within this project for generation of the Simple Retargetable
Loader (SRL). Although, it is claimed that this concept can be used for au-
tomatic generation of other retargetable tools, the grammar constructions are
limited only for a simple loader. According to [41], the SRL was tested as an
ELF loader for existing decompiler dcc [5].

Both BFF grammars have several limitations. For example, they are un-
able to properly model optional elements of OFFs, such as the missing sec-
tion header table in ELF; relocation information is not taken into account, etc.
The most significant drawback of both grammars is the lack of semantic ac-
tions [1] (e.g. semantic checks, validation of OFF content, user-defined actions),
see Figure 2. Therefore, the grammars are only capable to describe syntactical
structure of the input OFFs, but modeling of context-sensitive properties is left
on the user.

DEFINITION FORMAT
header
program_header_table
sections
section_header_table

END FORMAT

DEFINITION header
h_ident SIZE 16
h_type SIZE 16
h_machine SIZE 16
h_version SIZE 32
...

END header

Fig. 2. Example of the BFF grammar description of the ELF format [42].

In conclusion, none of the previously mentioned concepts can be used for
effective handling of OFFs for retargetable decompilation.
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5. Lissom Project’s Retargetable Decompiler

The Lissom project’s [23] retargetable decompiler aims to be independent on
any particular target architecture, operating system, or OFF. It consists of two
main parts—the preprocessing part and the decompilation core, see Figure 3.
Its detailed description can be found in [45,43]. The decompilation process con-
sists of the following phases.

target
architecture

 models

DECOMPILER

LOFF

B A C K - E N D

M I D D L E - E N D

F R O N T - E N D

G
E
N
E
R
A
T
O
R

MIPS

x86

ARM

...

input
application

C Python’ ...

Preprocessing

...ELF WinPE

additional
information

Fig. 3. The concept of the Lissom project’s retargetable decompiler.

(1) At first, the input binary executable file is transformed using a plugin-
based binary file converter from a particular OFF (e.g., Windows PE, ELF) into
its own internal object-file-format called LOFF (Lissom Object File Format) [16].
LOFF was designed in reference to independence on any particular architec-
ture, universality, and to be well readable. Therefore, it is possible to describe
architectures with different types of endianity, byte sizes, instruction lengths, or
instruction alignments. It is also possible to store executable, object, or library
code within the LOFF format.

The LOFF structure is similar to the COFF format. Basically, it has one
header, followed by section headers, sections, and symbolic information (sym-
bols, relocations, and debug information). The section’s content is characterized
by section flags. The format of LOFF is textual; therefore, it is possible to study
its content without any additional tools, see Figure 4. LOFF is used by a com-
plete set of retargetable tools that are automatically generated in this project
(e.g. retargetable disassembler, simulator, and decompiler).
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AgT62kG9y7 // Magic string
32 // Word bit-size
4 // Bytes per word
0 // Byte order, 0-little, 1-big
X // Flags (eXecutable, etc.)
1 // Is the entry point set?
143654972 // Byte address of the entry point
30 // Section count
1 // Symbol table count
... // Information about sections
.text // Section header name
0 // Section byte alignment
1 // Is address absolute?
143654972 // Section address
T // Section flags (Text, Data, BSS, etc.)
10536 // Section data size in bytes
0 // Count of relocations
20 // First line of section data
0 // First line of relocation data

// Section data follows
00111111110000001111110000000101 // .text section data
00000000000000000000000000000000

Fig. 4. Simplified example of the LOFF format (several attributes are not listed).

In present, the conversion plugin from each supported OFF into LOFF is
hand written; thus, the converter is not truly retargetable yet. This is the reason
why we need a fully-automatic retargetable solution, such as presented in this
paper.

(2) Afterwards, the LOFF file is processed in the front-end part which is par-
tially automatically generated based on the description of target architecture
(e.g. MIPS, ARM, Intel x86). The architecture description language ISAC [25],
developed also within the Lissom project, is used for this purpose. This decom-
pilation phase is responsible for decoding of machine-code instructions, their
static analysis, and detection of HLL constructions (e.g. loops, functions). The
resulting code is emitted as LLVM IR [24], which is used as an internal code rep-
resentation of decompiled applications in the remaining decompilation phases.

(3) Afterwards, this program representation is optimized in a middle-end us-
ing many optimization passes.

(4) Finally, the program intermediate representation is emitted as the tar-
get HLL in a back-end. Currently, the C language and a Python-like language
are used for this purpose and the decompiler supports decompilation of MIPS,
ARM, and x86 executables. Both middle-end and back-end are built on the top
of the LLVM Compiler System [38].
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6. Context-Sensitive Description of Object File Formats

In the previous section, we described the current state of the OFF conversion
tool used within the Lissom project. This plugin-based concept has been al-
ready implemented and it is used in practice. Its main drawback is the imple-
mentation complexity of each newly created plugin. Such plugin has to be writ-
ten manually either on the top of some existing library or written entirely from
scratch.

The complexity of existing parsing-libraries differs dramatically based on the
target file format and supported features of library, see Table 1. For example, the
BFD library supports multiple file formats (more than 50), but it contains more
than half million code lines and its maintenance and extensibility is question-
able. On the other hand, there exist lightweight libraries, like ELFIO, containing
only few thousand code lines, but they lack any advanced functionality, such as
processing of the parsed files.

Table 1. Complexity of several existing OFF parsing libraries.

Parsing library Lines of code (LoC)

Binary File Descriptor library (BFD) 615,856
PeLib 12,220
LibELF 10,930
pyelftools 10,582
ELFIO 3,068

The existing plugins used within the Lissom project have different complex-
ity too, see Table 2. The former three plugins in the table use the third party
libraries; therefore, they are relatively small. On the other hand, the E32Image
and Android DEX plugins are build from scratch and they are larger than the
others.

Table 2. Complexity of Lissom project OFF-conversion plugins.

Conversion plugin Lines of code (LoC)

WinPE 2,831
ELF 2,154
Mach-O 2,227
E32Image 9,419
Android DEX 10,582

According to our experience, the manual implementation of conversion plu-
gins is slow (in matter of implementation) and prone to errors. This approach
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is also complicated whenever implementing a non-common OFF (e.g. bFLT,
XCOFF, OMF) because there are no suitable existing parsing libraries.

In order to achieve a true decompilation retargetability, we should apply the
concept similar to one used for description of target processor architectures
and automatic generation of the front-end part. This can be done in two steps.
(1) Develop a specific language for OFF description. (2) Create an automatic
generator of OFF-handling tools (i.e. OFF parsing and conversion) based on
the description of the target OFF. Once this concept is adopted, the description
complexity of the new OFFs should significantly decrease (i.e. the user will
need to describe OFF using several hundred lines without using any external
libraries).

In the rest of this section, we introduce the OFF description language. This
language should be able to describe structure of each particular OFF as well as
its context-sensitive aspects. We specify this language by using a grammar de-
noting this language and we add its brief description. At the end of this section,
an example of ELF description is presented.

6.1. Grammar of the OFF Description Language

In programming language terminology, the grammars (see Section 2) are used
for describing syntax of programming languages. In other words, a grammar
creates a core of a programming-language parser. Such parser handles in-
put programs (written in this language) using the grammar productions (rules).
Parser can be used within compilers, verification software, or just for syntax
checking. Within the classical compilation concept (see [1]), grammar serves
only for description of syntax. The programming language semantics have to
be described manually (e.g. HLL code realizing analysis of parsed code, se-
mantic actions coupled with grammar productions).

In our case, we also use grammar to represent some kind of code — OFF
structure. Each particular grammar description specifies one OFF; using this
description, we are able to automatically generate the parser of this OFF. This
parser will be used as a core of OFF converter to LOFF format. Moreover, our
grammar is more advanced and it can also describe context-sensitive properties
as well as semantic actions on the level of the grammar itself (this is another
difference to existing OFF grammars described in Section 4 that are based on
classical context-free grammars as defined in Definition 3). Formal definition
and parsing of this grammar are described in the following section.

The language is designed for a description of the common OFFs (and hope-
fully the future ones, too). Executable or object file on parser’s input are viewed
as a binary stream. Its parsing is done via interconnected analyzers that invoke
each other whenever it is necessary. Analyzers are also able to seek to the de-
sired file offset within the stream. The language is not limited to any particular
OFF construction, and it is capable to describe optional or scattered parts of
the OFFs.

Modified Extended Backus-Naur Form (EBNF) is used for grammar’s syntax
description. Terminal symbols are typeset in boldface. Symbol ∼ is used for
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concatenation. Sequences (i.e. zero or more repetitions) are denoted by {};
optional constructions (i.e. zero or one occurrence) are denoted by []; finally,
selections (i.e. a choice between more constructions) are denoted by |. The
grammar is depicted in Figure 5. For clarity, only the most important productions
are specified.

start -> root analyzer def { parser def } { production }
analyzer def -> analyzer id ( [ offset [ , offset] ] ) { {

statement ; } }
statement -> element [ { semantic actions } ]

-> analyzer id { [ times ] } [ { semantic actions } ]
element -> type idattribute

-> type [ value ]
analyzer id -> idattribute ( [ offset [ , offset] ] )
type -> ( int | uint ) ∼ bitwidth size { [ array size ] }
attribute -> [ < id { , id } ] > ]
production -> ( idattribute { , idattribute } ) ->

( [ id’attribute ] { , [ id’attribute ] } ) [ priority ]

Fig. 5. Grammar of the OFF description language.

start is the start symbol of the grammar (see Definition 1). The keyword
root denotes the starting analyzer, which is executed at the beginning of pars-
ing. Each analyzer can be controlled by the begin and end offset. In that
case, analyzer executes its job from the beginning offset and it must finish anal-
ysis before the stop offset, otherwise it will end as a parsing error. Analyzers
read desired number of bits from an input stream, see Figure 6 for illustration.

The number of bits is specified by element with different sizes (specified by
type). Elements are continual sequences of bits in an input stream. The value
of an element can be skipped (i.e. so-called “don’t care” value), enforced (i.e.
analyzer ends with error if there is an unexpected value on input), or checked
by analyzer, see Figure 7.

Elements and analyzers may contain a list of attributes. Attributes con-
tain information about properties such as element’s value or type. They can be
used either in semantic actions (e.g. checking of element) or in context produc-
tions. In general, attributes are used for re-referencing previously parsed parts,
such as information from OFF header. This context behavior is not common in
classical programming language grammars. Therefore, it is possible to use both
synthesized and inherited attributes from previously parsed elements within the
semantic actions, see [1] for details.

Checking of elements is done either via semantic actions, which are
statements of the ANSI C code. Semantic actions can be used either for ele-
ment checking as well as for interaction with retargetable tools. In our case, they
are used mainly for direct LOFF generation. For illustration see Figure 8.
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// Root (starting) parser of a particular file format XY
root analyzer XY_OFF_parser ()
{

/* It invokes an analyzer of file-header. The header
is located on the first 64 bytes. */

header_parser(0, 512);
// ...

}

// Parser of header - limited by offset range
analyzer header_parser (start_offset, end_offset)
{

// ...
}

// Parser not limited by any offset range
analyzer another_parser ()
{

// ...
}

Fig. 6. Example of analyzers definition.

analyzer header_parser (start_offset, end_offset)
{

uint8 ’X’; // Two magic bytes - enforced values
uint8 ’Y’;
int16; // Don‘t care value (e.g. OFF version)
// ...

}

Fig. 7. Example of statement types that are usable within analyzers.

Parsing can be also controlled via context productions; they are format-
ted as scattered context grammar productions (see Defintion 4); therefore, the
number of items within brackets must be the same on both sides (ε-rules are
allowed). The nonterminals idattribute stand for element or analyzer id
and they are rewritten according to the right-hand-side of those productions.
Attributes are also taken into account during derivation. Finally, it is possible to
describe priority of each production. A higher value means a higher priority.
This is handy whenever we need to perform some actions before any other pro-
duction (e.g. detecting a fault OFF structure as soon as possible). Details about
parsing of these productions are described in the following section.

Finally, analyzers are interconnected via the analyzer call statement.
Analyzer can be invoked multiple times using times, this is useful for descrip-
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analyzer header_parser (start_offset, end_offset)
{

// ...
int16 architecture <value>
{

if (architecture.value != 1)
{ // Unsupported target architecture type

parse_error();
}
else
{ // C code producing a part of OFF conversion

converter->setArchitectureType(architecture.value);
}

};
// ...

}

Fig. 8. Usage of attributes and semantic actions within analyzers.

tion of repeating parts (e.g. table items). Analyzer invocation can also be done
within the semantic actions by a call to the function with analyzer’s name. There-
fore, it is possible to conditionally invoke different analyzers based-on an actual
context, see Figure 9.

root analyzer XY_OFF_parser ()
{

// Invocation with offset range
header_parser(0, 512);
// Invocation without offset range
another_parser();
// Invocation 10 times
another_parser() [10];
// ...

}

Fig. 9. Example of different types of analyzer call.

6.2. Example of Usage

We can illustrate usage of the previously defined language on the 32-bit ELF
format. A snippet of this description is depicted on Figure 10. The following
description is used for its conversion to the Lissom LOFF format. At first, the
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header is analyzed by invocation of elf header analyzer. This analyzer starts
at zero offset and analyzes all its elements and makes necessary checks.

It also converts basic information (e.g. entry point, endianness) to the LOFF
format. The value attribute is used in several elements for referencing from
other elements. At the end of the elf header analyzer, we can see condi-
tional invocation of section-header-table analyzer. It will be executed only if the
table is present. We can also see that the analyzer elf sht is invoked together
with specification of its beginning and ending offset gathered from previous at-
tributes. This corresponds to the structure depicted in Figure 1.

The last construction depicted on this example is a context production. It
controls that executable files do not contain static relocations (e.g. static reloca-
tion R 386 PC32). It is marked with priority higher than other productions; there-
fore, it will be checked at first. Whenever the preliminary part is satisfied (e.g.
executable file is not properly linked), it blocks parsing by nonterminal error,
which leads to parsing error.

7. Context Parsing

In this section, we present a concept of the context parser that can be used for
parsing the previously described OFF language. The major difference to other
existing languages is its support of describing context-sensitive relations. How-
ever, parsing of these constructions is non-trivial because there is no suitable
formalism capable of describing such grammar in present.

The idea of context parser is not entirely new and we can find several at-
tempts to create a parser for context-sensitive language (Definition 2) in past,
see [37,35,1]. These attempts were only partially successful. They were either
focused on a very specific aspects of some domain-specific language, or they
were not based on formal models; therefore, it was hard to prove such concepts.

Today’s traditional techniques perform context analysis via semantic actions
written in the host language accompanying usually context-free grammar of a
suitable form (see [1]). The other possibility is to use some context-free parser
based on any available technique and then to perform analysis of a data struc-
ture created as an output of the parser (usually some tree-like structure or some
kind of byte-code [30]).

A mixture of several descriptive means (grammar together with host lan-
guage or another combination) bound by explicit data structures stored in trees,
attributes, code, or their mixture is not suitable if an analyzer is to be described
formally. Moreover, a change to the input language syntax usually dramatically
affects other parts of a parser.

Therefore, in this section, we define two new formal models that are based
on scattered context grammars—attributed scattered context grammars and at-
tributed scattered context grammars with priority function. These grammars can
be effectively used for formal description of context-sensitive relations in a par-
ticular language. Furthermore, we modify the existing regulated pushdown au-
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root analyzer ELF32 () {
elf_header(0) { check_header(); }; // parse ELF header

}
analyzer elf_header (start_offset) {

uint8 [16] e_ident { /* Check of the "ELF Identification"
field */ };

uint16 e_type <value> {
if (e_type.value > 4)

parse_error(); // Unsupported ELF file type
};
uint16; // e_machine - a don’t care value
uint32 1; // e_version needs to be ’1’
uint32 e_entry <value> { // Direct generation of LOFF

LOFF->setEntryPoint(e_entry.value);
};
// ...

// Section header table’s offset (SHT)
uint32 e_shoff <value>;
// ...
// Size of entrie in SHT and number of elements in SHT
uint16 e_shentsize;
uint32 e_shnum <value> {

if (e_shoff.value != 0) // Analyze SHT
elf_sht(e_shoff,

e_shoff + e_shnum.value * e_shentsize);
};
// ...

}
analyzer elf_sht (start_offset, end_offset) {

// ...
// Analysis of Section Header Table

}
analyzer elf_section (start_offset, end_offset) {

// ...
// Analysis of each particular section

}

// Productions describing context behavior
// Simplified control of appearance of static relocations
// within executable files
(elf_header<is_executable>, elf_relocation<is_static>}) ->

(error, error) [999] // High-priority production
// Other productions

Fig. 10. A code snippet of an ELF description using OFF language.

tomata (see [17]) for parsing these grammars. Finally, we give a brief overview
of a context parser construction.
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7.1. Attributed Scattered Context Grammars

In this subsection, we define two new formalisms that are based on scattered
context grammars. We assume a reader is familiar with the attributed grammars
(for further details see [36,30,1].

Definition 10. A voidy n-tuple over domain D is the tuple

< d1, . . . , dn > ∈ Dn,

where Dn stands for D1 ×D2 × . . . ×Dn and n ∈ N; if n = 0 then the tuple is
void and we write <> or simply we do not write anything if it is clear from the
context.

Definition 11. Variable voidy Cartesian product ∪D over domain D is defined
as

∪D = ∪n
i=0D

i,

where Dn stands for D1 ×D2 × . . .×Dn and n ∈ N; D0 = {<>}.

Definition 12. An attributed scattered context grammar (aSCG) is a seven-
tuple,

G = (V, T, P, S,D,R, ρ),

where

– V is a total alphabet;
– T ⊂ V is a finite set of terminals;
– S ∈ V − T is the start symbol;
– P is a finite set of productions of the form

(A1
w1
, . . . , An

wn
) → (x1@, . . . , x

n
@),

where Ai ∈ V − T , wi = ρ(Ai), xi@ ∈ V ∗ for all i : 1 ≤ i ≤ n and all symbols
in xi@ have their corresponding voidy tuple of attributes;

– D is the domain of attributes;
– R is the naming of attributes representing any value from D;
– ρ is a mapping ρ : V → ∪R, where ∪R is the variable voidy Cartesian

product.

Definition 13. An attributed propagating scattered context grammar (aPSCG)
is an aSCG

G = (V, T, P, S,D,R, ρ),

in which every (A1
w1
, . . . , An

wn
) → (x1@, . . . , x

n
@) ∈ P satisfies xi@ ∈ V + for all

i : 1 ≤ i ≤ n.

Notation of attribute use is the following: we write

A<a1,...,an> if ρ(A) = < a1, . . . , an >
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for any n, or simply Aw if attribute names are not in our focus; we write A<> if
we want to stress that void attribute tuple is assigned to the symbol, or we write
just A for the sake of simplicity. If there is a string of symbols x = A1 . . . An and
for every Ai, i ∈ {1 . . . n} there is wi such that ρ(Ai) = wi we write x@ to stress
that every symbol of x has its voidy tuple of attributes.

Definition 14. Let G = (V, T, P, S,D,R, ρ) be a (propagating) aSCG. If

y = u1A
1
w1
u2 . . . unA

n
wn
un+1,

z = u1x
1
@u2 . . . unx

n
@un+1,

and y, z ∈ V ∗, p = (A1
w1
, . . . , An

wn
) → (x1@, . . . , x

n
@) ∈ P , and if every attribute

occurring in A1
w1
, . . . , An

wn
and x1@, . . . , x

n
@ has a value from D defined and every

occurrence of some attribute a ∈ R in A1
w1
, . . . , An

wn
and x1@, . . . , x

n
@ carries

the same value from D then y directly derives z in the (propagating) aSCG G
according to the production p,

y ⇒G z [p] (or simply y ⇒G z).

A language generated by (propagating) aSCG is defined the same way as
for (propagating) SCG. Similarly, family of (propagating) attributed scattered
context languages is defined as L(a(P)SC).

To give a light insight and motivation on usage of attributed grammar, we
present a small example. Let us take into account the language anbncn for n ≥
1. This is truly a context-sensitive language (see [28]). Using SCG1, we can
describe the language by grammar:

G1 = ({S,X,C, a, b, c}, {a, b, c}, P, S),

with P containing

P = { (S) → (XC), [p1]
(X,C) → (aXb, cC), [p2]
(X,C) → (ab, c)} [p3]

As an example of derivation by using this grammar

S ⇒ XC [p1]
⇒ aXbcC [p2]
⇒ aaXbbccC [p2]
⇒ aaabbbccc [p3]

From a formal point of view, the presented grammar represents a perfect
description of a given language. From a practical point of view, this kind of de-
scription is too specific. Let us assume a modification of this language: znunvn

for n ≥ 1. This language has the same structure as the previous one except the

1 This grammar is actually a propagating SCG because it does not contain any erasing
rules.
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different terminal names. However, this small difference means that the original
grammar has to be significantly rewritten.

In particular, terminals a, b, and c are too specific in the original grammar.
In a fact, each of them can be considered as an identifier, which was named
e.g. ’a’. On the other hand, such an identifier is bound to some particular value
(’a’) that can be described by a value of attribute bound to particular (otherwise
anonymous) terminal.

Thus, we introduce attributes to keep fully formal view and obtaining expres-
sive power and variability. Therefore, we define the attributed SCG

G2 = (V, T, P, S,D,R, ρ).

Now we can modify our example in such a way: we add a domain of at-
tributes D of all textual strings (string is written in quotes, e.g. ’z’), we add a
naming R = {q, w, e}, we define mapping ρ such a way, so that:

ρ(S) = <>
ρ(X) = < q,w >
ρ(C) = < e >
ρ(a) = < q >
ρ(b) = < w >
ρ(c) = < e >

and present an aSCG grammar productions (as a modification of the previ-
ous SCG):

(S) → (X<′a′,′b′>C<′c′>)
(X<q,w>, C<e>) → (a<q>X<q,w>b<w>, c<e>C<e>)
(X<q,w>, C<e>) → (a<q>b<w>, c<e>)

A modification of the presented aSCG allows to change terminals with re-
definition of just a single grammar production, in particular, attribute values, as
the production remains the same, as such. To get the second mentioned lan-
guage, we have to change just the first production to (S) → (X<′z′,′u′>C<′v′>)
and the rest remains the same.

To extend expressive power and bring necessary pragmatic features for
practical exploitation of a(P)SCG in context analysis/parsing, we extend a(P)SCG
to priority attributed scattered context grammars.

Definition 15. A (propagating) attributed scattered context grammar with prior-
ity
(a(P)SCGP) is an eight-tuple

G = (V, T, P, S,D,R, ρ, π),

where (V, T, P, S,D,R, ρ) is a (propagating) attributed scattered context gram-
mar and π is a function

π : P → N.
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Definition 16. Let G = (V, T, P, S,D,R, ρ, π) be an a(P)SCGP. We say that y
directly derives z in a(P)SCG G according to the production p, y ⇒G z [p] (or
simply y ⇒G z), if and only if:

– y = u1A
1
w1
u2 . . . un A

n
wn
un+1 ∈ V ∗,

– z = u1x
1
@u2 . . . unx

n
@un+1 ∈ V ∗,

– p = (A1
w1
, . . . , An

wn
) → (x1@, . . . , x

n
@) ∈ P ,

– there is no p′ = (A′1
w1
, . . . , A′n

wn
) → (x′

1
@, . . . , x

′n
@) ∈ P , such that:

1. y = u′1A
′1
w1
u′2 . . . u

′
nA

′n
wn
u′n+1 ∈ V ∗, and

2. π(p′) > π(p);
– and conditions of Definition 14 for attributes must hold.

Language generated by a(P)SCGP is defined similarly as for a(P)SCG.
To give an order of rules when several options could be used, we use priority.

For demonstration, we define the attributed SCG with priority

G3 = (V, T, P, S,D,R, ρ, π).

The grammar is the same as G2 up to priority mapping, which is defined as:

π((S) → (X<′a′,′b′>C<′c′>)) = 1
π((X<q,w>, C<e>) → (a<q>X<q,w>b<w>, c<e>C<e>)) = 1

π((X<q,w>, C<e>) → (a<q>b<w>, c<e>)) = 1

Then, the sentence a<′a′>a<′a′>b<′b′>b<′b′>c<′c′>c<′c′> is obtained by the
following derivation:

S ⇒ X<′a′,′b′>C<′c′> [p1]
⇒ a<′a′>X<′a′,′b′>b<′b′>c<′c′>C<′c′> [p2]
⇒ a<′a′>a<′a′>b<′b′>b<′b′>c<′c′>c<′c′> [p3]

that represents the string aabbcc.

7.2. Regulated Pushdown Automata

As has been illustrated above, the a(P)SCGP can be easily used for description
of context-sensitive languages. However, we still need a formal model for pars-
ing such description. For this reason, we use a Regulated Pushdown Automata.

In [15], it is presented, how regulated pushdown automata can be exploited
for building context parsers derived from scattered context grammars of partic-
ular features. Basic concept of regulated pushdown automata can be found in
[17,27] — papers especially present definition and expressive power of various
versions of regulated pushdown automata.

Consider a pushdown automaton (PDA)

M = (Q,Σ,Ω,R, s, S, F ),

where
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– Q is a finite set of states;
– Σ is an input alphabet ;
– Ω is a pushdown alphabet ;
– R is a set of productions of the form

Apa→ wqb,

where A ∈ Ω, p, q ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Ω∗ and b ∈ {a, ε} (if b ̸= ε then the
production ”tests” the value under the reading head, the head is not shifted,
the symbol is not read);

– s ∈ Q is the start state;
– S ∈ Ω is the start symbol ;
– F ⊆ Q is a set of final states.
– Without a loss of generality, we require that Q, Σ, and Ω are pairwise dis-

joint.

Now, consider a control language, Ξ (formally defined below), over M ’s pro-
ductions. Informally, with Ξ, M accepts a word, x, if and only if Ξ contains a
control word according to which M makes a sequence of moves so it reaches
a final configuration after reading x.

Let Ψ be an alphabet of production labels such that card(Ψ) = card(R), and
ψ be a bijection from R to Ψ . For simplicity, to express that ψ maps a production,
Apa → wq ∈ R, to ρ, where ρ ∈ Ψ , this paper writes ρ.Apa → wq ∈ R; in other
words, ρ.Apa→ wq means ψ(Apa→ wq) = ρ.

Definition 17. A configuration of M , χ, is any word from Ω∗QΣ∗. For every
x ∈ Ω∗, y ∈ Σ∗, and ρ.Apa → wq ∈ R, M makes a move from configuration
xApay to configuration xwqy according to ρ, written as xApay ⊢ xwqy [ρ].

Let χ be any configuration ofM .M makes zero moves from χ to χ according
to ε, symbolically written as χ ⊢0 χ [ε]. Let there exist a sequence of configu-
rations χ0, χ1, . . . , χn for some n ≥ 1 such that χi−1 ⊢ χi [ρi], where ρi ∈ Ψ ,
for i = 1, . . . , n, then M makes n moves from χ0 to χn according to ρ1 . . . ρn,
symbolically written as χ0 ⊢n χn [ρ1 . . . ρn].

Definition 18. Let Ξ be a control language over Ψ ; that is, Ξ ⊆ Ψ∗. With Ξ, M
defines the following three types of accepted languages:

L(M,Ξ, 1)—the language accepted by final state
L(M,Ξ, 2)—the language accepted by empty pushdown
L(M,Ξ, 3)—the language accepted by final state and empty pushdown

defined as follows. Let χ ∈ Ω∗QΣ∗. If χ ∈ Ω∗F , χ ∈ Q, χ ∈ F , then χ is
a 1-final configuration, 2-final configuration, 3-final configuration, respectively.
For i = 1, 2, 3, define L(M,Ξ, i) as L(M,Ξ, i) = {w | w ∈ Σ∗, and Ssw ⇒∗

χ [σ] in M for an i-final configuration, χ, and σ ∈ Ξ}.

Definition 19. Regulated pushdown automata (RPDA). For any family of lan-
guages, X, set RPDA(X, i) = {L | L = L(M,Ξ, i), where M is a PDA and
Ξ ∈ X, where i = 1, 2, 3}.
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Namely, pushdown automata regulated by linear languages have the same
power as Turing machine

RE = RPDA(LIN, 1) = RPDA(LIN, 2) = RPDA(LIN, 3),

where RE stands for the set of all recursively enumerable languages and
LIN stands for the set of all linear languages [26] — proof can be found in [17].

Thus, such automata are powerful enough for analysis of context languages.
Nevertheless, we need a deterministic version of such automata. Their detailed
description and a way, how the automaton can be built from a SCG of certain
features, can be found in [15].

Definition 20. Let M = (Q,Σ,Ω,R, s, S, F ) be a regulated pushdown automa-
ton, with set of labels Ψ , bijection ψ from labels Ψ to productions R, and with
control language Ξ. Such an RPDA is deterministic (DRPDA) if being in a state
q, q ∈ Q, the appropriate action, which should be performed, can always be
deterministically selected. This can only be due to the following two circum-
stances:

(1) For the given state, there is only one production r ∈ R that is applicable
in a given situation (state, symbol on the top of the pushdown or under the
reading head) and, moreover, control language admits such a production.

(2) If there are more than one productions that are applicable in a given
situation then the production can be deterministically denoted according to the
actual context of sentential form of the control language applicable to the current
state of operation performed by RPDA.

To give a rough idea from another viewpoint: in a center, there is non-
deterministic pushdown automaton; all of its operations are encoded as a sym-
bols of the control-language alphabet; successful operation of the PDA must be
verified by the control language, which means that operation of PDA produces
a string of symbols (step-by-step operations of the automaton are encoded to
string of symbols) and if the string is a sentence of the control language then
the operation of regulated PDA is successful; if PDA fails during its operation or
the produced string is not in the control language then it means that analyzed
input is not accepted.

7.3. Context Parser Construction

Relation between automata presented above and implementation is quite sim-
ple. We can build appropriate automaton from a given grammar (see [14,15,18])
automatically. Moreover, usage of Haskell programming language enables to
build a kind of domain specific language on the top of Haskell. Thus, it is neces-
sary to define the wanted grammar inside Haskell using supporting predefined
constructs and the parser is done. Lexical analysis is done in the same way as
in any other parser (i.e. definition of lexemes and their transformation to tokens,
see [1]). Also manipulation of the output of the parser is done in a traditional
way. The key feature is that just a simple modification of the grammar allows
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to dramatically modify the parsed input. Thus, any change is much faster then
using any other technique.

Furthermore, we can apply the same principles as in SCG parsing (see [15]):

– regulated PDA can be made deterministic;
– having SCG of suitable features (LL SCG, see [15]), we can algorithmically

derive a deterministic regulated pushdown automaton, which accepts (de-
cides) the language generated by the SCG.

To achieve full flexibility and big expressive power, so that changes in a
language can be efficiently handled on the grammar level, we need to introduce
attributes and priorities to LL SCG parsers.

Attributes Introduction of attributes is not difficult at all — grammar (omitting
attributes) must satisfy the same conditions as LL SCG grammars, plus the
following one — ∀(A1

w1
, . . . , An

wn
) → (x1@, . . . , x

n
@) ∈ P it must hold:

– ρ(A1) =<> and
– let x1@ = X1

v1 . . . X
m
vm then ∀Xi ∈ (V − T ) : ρ(Xi) =<>, i ∈ {1 . . .m}

Priorities Fortunately, priorities are not a problem of construction parsing ta-
bles and automaton as such. They are problem of saving automaton configura-
tion and its restoration — from a formal point of view.

The situation is such, priorities can cause that we have several grammar
productions for expansion for the same automaton configuration (symbol under
the reading head and top of the pushdown) — we say the productions are over-
lapping. In the traditional notion of deterministic PDA it means a conflict and no
automaton can be built.

If we have priorities for grammar productions introduced then this situation
is conflict if two or more such overlapping productions have the same priority
assigned.

If the priorities for overlapping productions are different then we have to
order such set of productions from the highest priority to the lowest one. When
the automaton configuration gets to the point when some of these productions
could be applied, the production with the highest priority is applied at first. If it
fails then the original configuration is restored and the next production is applied
and so on and so on, until some production succeeds. If none of the productions
succeeds then the analysis fails with an error.

The problem is about storing the configuration and restoration, especially,
how we can recognize that some production expansion fails. Fortunately, as it
can be seen in [14,15,18], during expansion, when we search for suitable non-
terminals on the pushdown, we use the control language to save the content
of the pushdown that is popped out of the pushdown. Thus, when we reach
bottom of the pushdown it means that the production cannot be expanded in the
situation, so that we should apply another one. In such a situation the content
of the pushdown is saved in the context of the control language and we can
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restore it to its original content before trying to expand the production. It is used
the same technique with a small difference, when right hand sides of the so far
expanded part are not pushed to the pushdown, but the original content is.

7.4. Experimental Results

In present, the context parser of the OFF language is in the prototype phase.
Therefore, we are unable to give any experimental results in a deeper detail yet.
On the other hand, the concept of the parser can be described using the simple
context-sensitive language.

Performance measurement of our approach is not easy. The reason is that
there is no context parser based on grammar input available. General approaches
are well known to be inefficient. Thus, it was quite difficult to find simple use
case for comparison.

Our implementation language is Haskell due to ease of use for our purposes.
Re-implementing our parser in C/C++ would be time consuming, so we decided
to implement competitive parser of some suitable language in Haskell directly,
without using our grammar based context parser.

We have decided to use parser of the aforementioned language anbncn

based on the presented grammar, but without any attributes and priority —
firstly, they are not necessary for such a simple case; secondly, it would be
quite complicated to implement something similar in the other program for com-
parison.

The comparison is unfair for the SCG-based solution, though. We compare
parser based on complex SCG with straightforward ”C-like” implementation of
analysis of the language anbncn. There are several reasons, why it is unfair:

– The grammar based parser uses stack to create contextual information and
its consumption is proportional to input size.

– The ”C-like” implementation is very much Haskell syntax of C approach, on
the other hand the grammar based parser is very much of the Haskell.

– ”C-like” implementation is constant space so it provokes for better perfor-
mance.

In other words, we compared something incomparable, in a fact. The com-
parison of speed is depicted in Figure 11. The tests were limited on size due to
stack utilization and application size limitation in Windows 32-bit application.

Surprisingly, the time complexity according to input size is almost the same.
Thus, we can state that our approach is not only very efficient in change in-
corporation both on user and implementation side, but is is even quite efficient
from the evaluation speed viewpoint.

The evaluation of this concept on a more complex examples (such as the
OFF language) is marked as our future research but unavailable yet.

8. Conclusion and Future Work

This paper was focused on handling of OFFs and its usage in retargetable tools.
Several existing solutions were presented, and their limitations were discussed.
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Fig. 11. Speed comparison between two parsers of the anbncn language.

The main contribution of this paper is a presentation of the language for OFF
description and concept of its parser. The major advantage of this concept is its
ability to describe and parse context-sensitive properties. The parser is based
on the formal models that were designed for this purpose.

A prototype of this context parser is under development. The Haskell pro-
gramming language is used for this purpose because it is well-suited for our
needs (lazy evaluation [13], type inference, etc.). According to the preliminary
experimental results, which were focused on simple languages like anbncn, this
approach is faster than other parsers of the same language.

The language can be used for OFF parsing and manipulation. Its main us-
age is within an existing retargetable decompiler, where it will be used for con-
version from platform-dependent OFFs into an internal COFF-based file format.
However, this is not a limitation because the language can be used in other re-
targetable tools, such as disassemblers, loaders, or debuggers.

In the future research, we would like to use the context parser in other areas.
For example it can be used for natural language processing, description of other
binary file formats (i.e. not just OFF), or parsing of HLL programming languages,
such C, where it will be able to automatically check consistency of declaration,
definition, and usage of variables, see [28,41,37] for details.
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17. Kolář, D., Meduna, A.: Regulated pushdown automata. Acta Cybernetica 2000(4),
653–664 (2000)
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19. Křoustek, J., Matula, P., Ďurfina, L.: Generic plugin-based convertor of executable
file formats and its usage in retargetable decompilation. In: 6th International Sci-
entific and Technical Conference (CSIT’11). pp. 127–130. Ministry of Education,
Science, Youth and Sports of Ukraine, Lviv Polytechnic National University, Institute
of Computer Science and Information Technologies (2011)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1699

http://www.mae.apple.com
http://www.novalink.com/freeport-express
http://www.iwriteiam.nl/Ha_BFF.html
http://www.iwriteiam.nl/Ha_BFF.html
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27. Meduna, A., Kolář, D.: One-turn regulated pushdown automata and their reduction.

Fundamenta Informaticae 2001, 1001–1007 (2001)
28. Meduna, A., Techet, J.: Scattered Context Grammars and their Applications. WIT

Press, Southampton, GB (2010)
29. Microsoft Corporation: Microsoft portable executable and common object file for-

mat specification. http://www.microsoft.com/whdc/system/platform/
firmware/PECOFF.mspx (2013), version 8.3

30. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, San Francisco, US-CA (1997)

31. Nokia: E32Image. http://www.developer.nokia.com/Community/Wiki/
E32Image (2012)

32. Ramsey, N., Fernández, M.: Specifying representations of machine instructions.
ACM Transactions on Programming Languages and Systems 19(3), 492–524
(1997)

33. Ramsey, N., Fernandez, M.F.: The New Jersey Machine-Code Toolkit. In: USENIX
Technical Conference. pp. 289–302 (1995)

34. Ramsey, N., Hanson, D.R.: A retargetable debugger. Tech. rep., Princeton Univer-
sity, Princeton, US-NJ (1992)

35. Roberts, D.M.: Earley parsing for context-sensitive grammars. http://
danielmattosroberts.com/earley/context-sensitive-earley.pdf
(2009)

36. Rodriguez-Cerezo, D., Cabezuelo, A.S., Sierra, J.L.: A systematic approach to the
implementation of attribute grammars with conventional compiler construction tools.
Computer Science and Information Systems (ComSIS) 9(3), 983–1017 (2012)
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