DOI: 10.2298/CSIS121129066A

Batched Evaluation of
Linear Tabled Logic Programs

Miguel Areias and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{miguel-areias,ricroc }@dcc.fc.up.pt

Abstract. Logic Programming languages, such as Prolog, provide a high-
level, declarative approach to programming. Despite the power, flexibility
and good performance that Prolog systems have achieved, some defi-
ciencies in Prolog’s evaluation strategy - SLD resolution - limit the po-
tential of the logic programming paradigm. Tabled evaluation is a rec-
ognized and powerful technique that overcomes SLD’s susceptibility in
dealing with recursion and redundant sub-computations. In a tabled eval-
uation, there are several points where we may have to choose between
different tabling operations. The decision on which operation to perform is
determined by the scheduling algorithm. The two most successful tabling
scheduling algorithms are local scheduling and batched scheduling. In
previous work, we have developed a framework, on top of the Yap Prolog
system, that supports the combination of different linear tabling strate-
gies for local scheduling. In this work, we propose the extension of our
framework to support batched scheduling. In particular, we are interested
in the two most successful linear tabling strategies, the DRA and DRE
strategies. To the best of our knowledge, no other Prolog system supports
both strategies simultaneously for batched scheduling. Our experimental
results show that the combination of the DRA and DRE strategies can
effectively reduce the execution time for batched evaluation.

Keywords: logic programming, linear tabling, scheduling.

1. Introduction

Logic programming provides a high-level, declarative approach to program-
ming. Arguably, Prolog is one of the most popular and powerful logic program-
ming languages. Ideally, one would want Prolog programs to be written as logi-
cal statements first, and for control to be tackled as a separate issue. In practice,
the operational semantics of Prolog is given by SLD resolution [9], an evalua-
tion strategy particularly simple but that suffers from fundamental limitations,
such as in dealing with recursion and redundant sub-computations. Unfortu-
nately, the limitations of SLD resolution mean that Prolog programmers must
be concerned with SLD semantics throughout program development.

Tabling [4] is a proposal that overcomes SLD limitations in dealing with re-
cursion and redundant sub-computations. Tabling based models are able to

M. Areias, R. Rocha

reduce the search space, avoid looping, and always terminate for programs
with the bounded term-size property’. In a nutshell, tabling consists of storing
intermediate solutions for subgoals so that they can be reused when a similar
subgoal appears during the execution of a program and, for that, the calls and
the solutions to tabled subgoals are stored in a global data structure called the
table space. Work on tabling, as initially implemented in the XSB system [11],
proved its viability for application areas such as Natural Language Processing,
Knowledge Based Systems, Model Checking, Program Analysis, among others.

In a tabled evaluation, there are several points where we may have to choose
between continuing forward execution, backtracking, consuming solutions from
the table, or completing subgoals. The decision on which operation to perform
is determined by the scheduling strategy. Whereas a strategy can achieve very
good performance for certain applications, for others it might add overheads and
even lead to unacceptable inefficiency. The two most successful strategies are
local scheduling and batched scheduling [7]. Local scheduling tries to complete
subgoals as soon as possible. When new solutions are found, they are added
to the table space and the evaluation fails. Solutions are only returned when
all program clauses for the subgoal at hand were resolved. Batched scheduling
favors forward execution first, backtracking next, and consuming solutions or
completion last. It thus tries to delay the need to move around the search tree by
batching the return of solutions. When new solutions are found for a particular
tabled subgoal, they are added to the table space and the evaluation continues.

The main difference between the two strategies is that in batched schedul-
ing, variable bindings are immediately propagated to the calling environment
when a solution is found. For some situations, this may result in creating com-
plex dependencies between subgoals and in having more memory space re-
quirements. On the other hand, since local scheduling delays solutions, it does
not benefit from binding propagation, and instead, when explicitly returning the
delayed solutions, it incurs an extra overhead for copying them out of the table.

Currently, the tabling technique is widely available in systems like XSB Pro-
log [14], Yap Prolog [12], B-Prolog [15], ALS-Prolog [8], Mercury [13] and Ciao
Prolog [5]. In these implementations, we can distinguish two main categories of
tabling mechanisms: suspension-based tabling and linear tabling. Suspension-
based tabling mechanisms need to preserve the computation state of sus-
pended tabled subgoals in order to ensure that all solutions are correctly com-
puted. A tabled evaluation can be seen as a sequence of sub-computations
that suspend and later resume. Linear tabling mechanisms use iterative com-
putations of tabled subgoals to compute fix-points and, for that, they maintain
a single execution tree without requiring suspension and resumption of sub-
computations. For that reason, linear tabling mechanisms have less memory
space requirements and can be implemented with less disruption of an existing
Prolog engine. On the other hand, linear tabling mechanisms can be arbitrarily

' A logic program has the bounded term-size property if there is a function f : N — N

such that whenever a query goal @ has no argument whose term size exceeds n,
then no term in the derivation of Q has size greater than f(n).

1776 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

slower than suspension-based tabling. However, they are still very competitive
on a large number of examples. In particular, for batched scheduling, they may
have an additional advantage since, with suspension-based tabling, some eval-
uations may require very large amounts of space.

In previous work, we have developed a framework, on top of the Yap Pro-
log system, that supports the combination of different linear tabling strategies
for local scheduling [1, 2]. As these strategies optimize different aspects of the
evaluation, they were shown to be orthogonal to each other for local scheduling.
In this work, we propose the extension of our framework, to combine different
linear tabling strategies, but for batched scheduling. In particular, we are inter-
ested in the two most successful linear tabling strategies, the DRA and DRE
strategies [2]. To the best of our knowledge, no other Prolog tabling system
supports both strategies simultaneously for batched scheduling. Extending our
framework from local scheduling to batched scheduling should be, in principle,
smooth but, as we will see, there are some relevant details that have to be
considered in order to ensure a correct and efficient integration of the DRA and
DRE strategies with batched scheduling. In more detail, this integration required
changes to the table space data structures, to the tabling operations and a new
mechanism to support the propagation of solutions in reevaluation rounds.

Our experimental results show that the combination of the DRA and DRE
strategies can effectively reduce the execution time for batched evaluation.
When compared with Yap’s suspension-based mechanism, the commonly re-
ferred weakness of linear tabling of doing a huge number of redundant compu-
tations for computing fix-points was not such a problem in our experiments. We
thus argue that an efficient implementation of linear tabling can be a good and
first alternative to incorporate tabling into a Prolog system without such support.

The remainder of the paper is organized as follows. First, we briefly intro-
duce the basics of tabling and describe the execution model for standard linear
tabled evaluation using batched scheduling. Next, we present the DRA and
DRE strategies and discuss how they optimize different aspects of the evalua-
tion. We then describe the most relevant implementation details regarding the
integration of the two strategies on top of the Yap Prolog system. Finally, we
present experimental results and we end by outlining some conclusions.

2. Standard Linear Tabled Evaluation

Tabling works by storing intermediate solutions for tabled subgoals so that they
can be reused when a similar? (or repeated) call appears. In a nutshell, first calls
to tabled subgoals are considered generators and are evaluated as usual, us-
ing SLD resolution, but their solutions are stored in a global data space, called
the table space. Similar calls to tabled subgoals are considered consumers and

2 For the sake of simplicity, we are assuming a variant-based tabling mechanism, where
two terms are considered to be similar if they are the same up to variable renaming.
Alternatively, subsumption-based tabling mechanisms consider that two terms are
similar if one term subsumes (is more general than) the other [6].

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1777

M. Areias, R. Rocha

are not reevaluated against the program clauses because they can potentially
lead to infinite loops, instead they are resolved by consuming the solutions al-
ready stored for the corresponding generator. During this process, as further
new solutions are found, we need to ensure that they will be consumed by all
the consumers, as otherwise we may miss parts of the computation and not
fully explore the search space.

A generator call C thus keeps trying its matching clauses until a fix-point is
reached. If no new solutions are found during one round of trying the match-
ing clauses, then we have reached a fix-point and we can say that C is com-
pletely evaluated. However, if a number of subgoal calls is mutually dependent,
thus forming a Strongly Connected Component (SCC), then completion is more
complex and we can only complete the calls in a SCC together [11]. SCCs are
usually represented by the leader call, i.e., the generator call which does not de-
pend on older generators. A leader call defines the next completion point, i.e., if
no new solutions are found during one round of trying the matching clauses for
the leader call, then we have reached a fix-point and we can say that all subgoal
calls in the SCC are completely evaluated.

We next illustrate in Fig. 1 the standard execution model for linear tabling us-
ing batched scheduling. At the top, the figure shows the program code (the left
box) and the final state of the table space (the right box). The program defines
two tabled predicates, a/7 and b/1, each defined by two clauses (clauses c1 to
c4). The bottom sub-figure shows the evaluation sequence, numbered in order
of evaluation, for the query goal a(X). Generator calls are depicted by black oval
boxes and consumer calls by white oval boxes.

(.- table a/1, b/l call 5 ons
cl) a(x) :- b(x). 1 a(x) 7o X=2
cg; ;E)Z(; % 22: ;Sgpl ete
c t-oalXx). T X=
. 2: b(X) 13: X=2
- Y o 28: conplete
4 N

8,18,28: fix-point check

2: b(X) 9: b(X) 17: X=2
(repeat ed) 19-27: ...
5: X=1 10: X=1 14: X=2
(repeated) (repeated)

6: fix-point check 16: fix-point check

15: X=1
(repeat ed)

12: X=1 13: X=2
(repeat ed)

Fig. 1. A standard linear tabled evaluation using batched scheduling

1778 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

The evaluation starts by inserting a new entry in the table space represent-
ing the generator call a(X) (step 1). Then, a(X) is resolved against its first match-
ing clause, clause cf1, calling b(X) in the continuation. As this is a first call to
b(X), we insert a new entry in the table space representing b(X) and proceed
as shown in the bottom left tree (step 2). Subgoal b(X) is also resolved against
its first matching clause, clause ¢3, calling again a(X) in the continuation (step
3). Since a(X) is a repeated call, we try to consume solutions from the table
space, but at this stage no solutions are available, so execution fails.

We then try the second matching clause for b(X), clause c4, and a first
solution for b(X), { X=1}, is found and added to the table space (step 4). We then
follow a batched scheduling strategy and the evaluation continues with forward
execution [7]. With batched scheduling, new solutions are immediately returned
to the calling environment, thus the solution for b(X) should now be propagated
to the context of the previous call, which also originates a first solution for a(X),
{X=1} (step 5).

The execution then fails back to node 2 and we check for a fix-point (step
6), but b(X) is not a leader call because it has a dependency (consumer node
3) to an older call, a(X). Remember that we reach a fix-point when no new
solutions are found during the last round of trying the matching clauses for the
leader call. Then, we try the second matching clause for a(X) and a second
solution for it, {X=2}, is found and added to the table space (step 7). We then
backtrack again to the generator call for a(X) and because we have already
explored all matching clauses, we check for a fix-point (step 8). We have found
new solutions for both a(X) and b(X) in this round, thus the current SCC is
scheduled for reevaluation.

The evaluation then repeats the same sequence as in steps 2 to 3 (now
steps 9 to 11), but since we are following a batched scheduling strategy, we first
consume the solutions already available for b(X) (this will be further explained
later in section 4), which leads to a repeated solution for a(X) (step 10). Tabling
does not store duplicate solutions in the table space. Instead, repeated solu-
tions fail. Next, the evaluation moves to the consumer call of a(X) (step 11).
Solution {X=1} is first forwarded to it, which originates a repeated solution for
b(X) (step 12) and thus execution fails. Then, solution {X=2} is also forward to
it and a new solution for b(X) is found (step 13) and propagated to a(X), which
leads to a repeated solution for a(X) (step 14).

In the continuation, we find another repeated solution for b(X) (step 15) and
we fail a second time in the fix-point check for b(X) (step 16). Again, as we are
following a batched scheduling strategy, the solutions for b(X) were already all
propagated to the context of a(X), thus we can safely backtrack to the gener-
ator call for a(X). Because we have found a new solution for b(X) during this
last round, the current SCC is scheduled again for reevaluation (step 18). The
reevaluation of the SCC does not find new solutions for both a(X) and b(X)
(steps 19 to 27). Thus, when backtracking again to a(X) we have reached a
fix-point and because a(X) is a leader call, we can declare the two subgoal calls
to be completed (step 28).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1779

M. Areias, R. Rocha

3. Linear Tabling Strategies

The standard linear tabling mechanism uses a naive approach to evaluate
tabled logic programs. Every time a new solution is found during the last round
of evaluation, the complete search space for the current SCC is scheduled for
reevaluation. However, some branches of the SCC can be avoided, since it is
possible to know beforehand that they will only lead to repeated computations,
hence not finding any new solutions. Next, we present two different strategies
for optimizing the standard linear tabled evaluation. The common goal of both
strategies is to minimize the number of branches to be explored, thus reducing
the search space, and each strategy tries to focus on different aspects of the
evaluation to achieve it.

3.1. Dynamic Reordering of Alternatives

The key idea of the Dynamic Reordering of Alternatives (DRA) strategy, as
originally proposed by Guo and Gupta [8], is to memoize the clauses (or al-
ternatives) leading to consumer calls, the looping alternatives, in such a way
that when scheduling an SCC for reevaluation, instead of trying the full set of
matching clauses, we only try the looping alternatives.

Initially, a generator call C explores the matching clauses as in standard lin-
ear tabled evaluation and, if a consumer call is found, the current clause for C
is memoized as a looping alternative. After exploring all the matching clauses,
C enters the looping state and from this point on, it only tries the looping alter-
natives until a fix-point is reached. Figure 2 uses the same program from Fig. 1
to illustrate how DRA evaluation works.

The evaluation sequence for the first SCC round (steps 2 to 7) is identical to
the standard evaluation of Fig. 1. The difference is that this round is also used to
detect the alternatives leading to consumers calls. We only have one consumer
call at node 3 for a(X). The clauses in evaluation up to the corresponding gen-
erator, call a(X) at node 1, are thus marked as looping alternatives and added
to the respective table entries. This includes alternative ¢3 for b(X) and alterna-
tive c1 for a(X). As for the standard strategy, the SCC is then scheduled for two
extra reevaluation rounds (steps 9 to 15 and steps 17 to 23), but now only the
looping alternatives are evaluated, which means that the clauses ¢2 and ¢4 are
ignored.

3.2. Dynamic Reordering of Execution

The second strategy, that we call Dynamic Reordering of Execution (DRE), is
based on the original SLDT strategy, as proposed by Zhou et al. [16]. The key
idea of the DRE strategy is to give priority to the program clauses and, for that,
it lets repeated calls to tabled subgoals execute from the backtracking clause of
the former call. A first call to a tabled subgoal is called a pioneer and repeated
calls are called followers of the pioneer. When backtracking to a pioneer or a
follower, we use the same strategy and we give priority to the exploitation of the

1780 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

_ table a/1, b/1. Cal | Sol uti ons Loopi ng Al ternatives
5: X=1
cl) a(X) - b(X). 1 a(X) 7. X=2 3: ¢l
c2) a(2). 24: conplete
c3) b(X) :- a(X). 4: X=1
c4) b(1). 2: b(X) 13: X=2 3: ¢3
24: conplete
4 N
8,16, 24: fix-point check
2: b(X) 2 9: b(X)
17-23: ...
5: X=1 10: X=1 14: X=2
(repeated) (repeated)
6: fix-point check 15: fix-point check
oX=1 11: a(X)
12: X=1 13: X=2
(repeat ed)
~ J

Fig. 2. A linear tabled evaluation using batched scheduling with DRA evaluation

remaining clauses. The fix-point check operation is still performed by pioneer
calls. Figure 3 uses again the same program from Fig. 1 to illustrate how DRE
evaluation works.

As for the standard strategy, the evaluation starts with (pioneer) calls to a(X)
(step 1) and b(X) (step 2), and then, in the continuation, a(X) is called repeatedly
(step 3). With DRE evaluation, a(X) is now considered a follower and thus we
steal the backtracking clause of the former call at node 1, i.e., clause c2. The
evaluation then proceeds as for a generator call (right upper tree in Fig. 3),
which means that new solutions can be generated for a(X). We thus try clause
c2 and a first solution for a(X), {X=2}, is found and added to the table space
(step 4). Then, we follow a batched scheduling strategy and the solution { X=2}
is propagated to the context of b(X), which originates the solution {X=2} (step
5), and to the context of a(X), which leads to a repeated solution (step 6).

As both matching clauses for a(X) were already taken, the execution back-
tracks to the pioneer node 2. Next, we find a second solution for b(X) (step 7),
which is then propagated, leading also to a second solution for a(X) (step 8). In
step 9, we check for a fix-point, but b(X) is not a leader call because it has a
dependency (follower node 3) to an older call, a(X). We then backtrack to the pi-
oneer call for a(X) and because we have already explored the matching clause
c2 in the follower node 3, we check for a fix-point. Since we have found new
solutions during the last round, the current SCC is scheduled for reevaluation
(step 10). As the full set of solutions was already found during the first round,
the reevaluation of the SCC does not find any further solutions (steps 11 to 19),
and thus the evaluation can be completed at step 20.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1781

M. Areias, R. Rocha

- table a/1, b/l Cal | Sol uti ons
4: X=2
c1) a(X) :- b(X). 1 a(X) 8: x=1
c2) a(2). 20: conplete
c3) b(X) :- a(X). 5: X=2
c4) b(1). 2: b(X) 7. X=1
20: conplete
()
10, 20: fix-point check
cl c2
2: b(X) 4: X=2
11-19: ...
6: X=2 8. X=1
(repeated) 9: fix-point check
c3 c4
3: a(Xx 7. X=1
5: X=2
- J

Fig. 3. A linear tabled evaluation using batched scheduling with DRE evaluation

4. Propagation of Solutions in Reevaluation Rounds

In the previous sections, one could observe that tabling does not store duplicate
solutions in the table space and, instead, repeated solutions fail. This is how
tabling avoids unnecessary computations and looping for duplicate solutions.
However, since repeated solutions also fail in reevaluation rounds, this means
that, in fact, a solution is only propagated once, i.e., in the round it is first found,
which might be not sufficient to ensure the completeness of the evaluation. To
solve this problem, in a reevaluation round, we start by propagating (consuming)
the solutions already available for the subgoal call at hand. Alternatively, we
could propagate the solutions at the end, after the fix-point check procedure,
but by doing that some solutions will be propagated more than once in the
same round, which is worthless.

In the previous examples, for simplicity of explanation, we have omitted
some steps regarding the propagation of solutions in the leader call since, for
all the examples, one propagation per solution was enough to correctly com-
pute the corresponding evaluations. To better illustrate the importance of the
propagation of solutions in reevaluation rounds and, in particular, for the leader
call, Fig. 4 shows a new example, using again the same program from Fig. 1,
but for the query goal a(X1), b(X2). For simplicity of explanation, we consider
a standard linear tabled evaluation, i.e., without DRA and DRE support. In or-
der to have a common representation of variables between the program code,
the evaluation and the table space, the different calls to both a/7 and b/1 are
presented using a generic variable X, instead of the real variables X7 and X2.

In the first round of the evaluation (steps 1 to 12), the solutions found for
a(X), at steps 5 and 9, are propagated to the context of a(X7) and, in the
continuation, b(X2) consumes (note that at this point b(X2) is a repeated call

1782 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

(.
- table a/1, b/1. Call Sol ut i ons

5. X=1

cl) o a(x) - b(X). 1 a() 9 X=2
c2) a(2). . _conplete

c3) b(X) :- a(X). 4: X=1

c4) b(1). 2: b(X) 17: X=2
\ : conplete

(N

1: a(X1), b(X2)

7. X1=1, 11: X1=2, 14: X1=1, 17: Xx1=1, 21: X1=2, 22: X1=2,
X2=1 X2=1 X2=1 X2=2 X2=1 X2=2

12: fix-point check

cl c2
2: b(X) 9: X=2 23-...
5. X=

19: fix-point check
c4

18: X=1
(repeat ed)

16: X=1 17: X=2
_ (repeat ed))

Fig. 4. Propagation of solutions in reevaluation rounds using batched scheduling

to b(X)) the available solution found at step 4, which originates the solutions
{X1=1, X2=1} (step 7) and {X1=2, X2=1} (step 11) for the top query goal.

Next, in the second round of the evaluation, the leader call starts by prop-
agating its first solution, calling b(X2) in the continuation (step 13). Since this
is the first call to b(X) in this round, b(X2) also starts by propagating its current
solution (step 14). Then, when reevaluating the program clauses for b(X) (steps
15 to 18), a new solution {X=2} is found (step 17). The combination of this
new solution with the previous solutions for a(X7) originates two new solutions,
{X1=1, X2=2} (step 17) and {X1=2, X2=2} (step 22), for the top query goal.

Notice that without the propagation of solutions for the leader call (steps 13
and 20), no further solutions had been found for the top query goal. In particular,
the solution {X=2} for b(X) would have been found in the context of a(X) (simi-
larly to the solution {X=1} found at step 4) but, since this originates a repeated
solution for a(X), the computation will fail. By failing for a(X), we cannot combine
the new solution for b(X) with the previous solutions for a(X7) at the top query
goal. Hence, this fact, i.e., the fact that tabling fails for repeated solutions, can
lead to a collateral effect where it can be blocking forward execution. To solve
this problem, in a reevaluation round, we start by propagating all the available
solutions.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1783

M. Areias, R. Rocha

5. Implementation Details

This section describes the implementation details regarding the extension of
our framework to support batched scheduling, with particular focus on the table
space data structures and on the tabling operations.

5.1. Table Space

To implement the table space, Yap uses tries which is considered a very efficient
data structure to implement the table space [10]. Tries are trees in which com-
mon prefixes are represented only once. Tries provide complete discrimination
for terms and permit look up and insertion to be done in a single pass.

In more detail, a trie is a tree structure where each different path through the
trie nodes corresponds to a term described by the tokens labeling the traversed
nodes. For example, the tokenized form of the term p(X, 1,f(Y)) is the sequence
of 5 tokens p/3, VAR,, 1, /1 and VAR, where each variable is represented as a
distinct VAR, constant [3]. Two terms with common prefixes will branch off from
each other at the first distinguishing token. Consider, for example, a second
term p(Z,1,b). Since the main functor, token p/3, and the first two arguments,
tokens VAR, and 1, are common to both terms, only one additional node will
be required to fully represent this second term in the trie, thus allowing to save
three trie nodes in this case.

As other tabling engines, Yap uses two levels of tries: one for the subgoal
calls and other for the computed solutions. A tabled predicate accesses the ta-
ble space through a specific table entry data structure. Each different subgoal
call is represented as a unique path in the subgoal trie and each different so-
lution is represented as a unique path in the solution trie. Contrary to subgoal
tries, solution trie paths hold just the substitution terms for the free variables that
exist in the argument terms of the corresponding subgoal call [10]. An example
for a tabled predicate p/3 is shown in Fig. 5.

Initially, the table entry for p/3 points to an empty subgoal trie. Then, the
subgoal p(X,1,Y) is called and three trie nodes are inserted to represent the
arguments in the call: one for variable X (VAR;), a second for integer 1, and
a last one for variable Y (VAR;). Since the predicate’s functor term is already
represented by its table entry, we can avoid inserting an explicit node for p/3
in the subgoal trie. Then, the leaf node is set to point to a subgoal frame, from
where the answers for the call will be stored. The example shows two answers
for p(X,1,Y): {X=VAR,, Y=f(VAR,)} and {X=VAR,, Y=b}. Since both answers
have the same substitution term for argument X, they share the top node in the
answer trie (VARy). For argument Y, each answer has a different substitution
term and, thus, a different path is used to represent each.

When adding answers, the leaf nodes are chained in a linked list in insertion
time order, so that the recovery may happen the same way. In Fig. 5, we can ob-
serve that the leaf node for the first answer (node VAR;) points (dashed arrow)
to the leaf node of the second answer (node b). To maintain this list, two fields in
the subgoal frame data structure point, respectively, to the first and last answer

1784 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

table entry for
p/3
v

subgoal
lst argument - '@ trie
2nd argunent --------» q
3rd argunent --------» m

subgoal frame for
p(VAR, 1, VARL)

substitution termfor . solu'tion
1st argunent trie
substitution termfor
3rd argunent

Fig. 5. Table space organization

of this list (for simplicity of illustration, these pointers are not shown in Fig. 5).
When consuming answers, a consumer node only needs to keep a pointer to
the leaf node of its last loaded answer, and consumes more answers just by
following the chain. Answers are loaded by traversing the trie nodes bottom-up
(again, for simplicity of illustration, such pointers are not shown in Fig. 5).

A key data structure in this organization is the subgoal frame. Subgoal
frames are used to store information about each tabled subgoal call, namely:
the entry point to the solution trie; the state of the subgoal (ready, evaluating
or complete); support to detect if the subgoal is a leader call; and support to
detect if new solutions were found during the last round of evaluation. The DRA
and DRE strategies extend the subgoal frame data structure with the following
extra information [2]: support to detect, store and load looping alternatives; two
new states used to detect generator and consumer calls in reevaluating rounds
(loop_ready and loop_evaluating); the pioneer call; and the backtracking clause
of the former call. In more detail, the most relevant subgoal frame fields in our
implementation are:

SgFr_dfn: is the depth-first number of the call. Calls are numbered incremen-
tally and according to the order in which they appear in the evaluation.
SgFr_state: indicates the state of the subgoal. A subgoal can be in one of the

following states: ready, evaluating, loop_ready, loop_evaluating or complete.
SgFr.is_leader: indicates if the call is a leader call or not. New calls are by
default leader calls.
SgFr_prev_on_scc: points to the subgoal frame corresponding to the previous
call in evaluation (i.e., with SgFr_state as evaluating or loop_evaluating) in
the current SCC. It is used by the leader call to traverse the subgoal frames

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1785

M. Areias, R. Rocha

in order to mark them for reevaluation or as completed. A global variable
TOP_SCC always points to the youngest subgoal frame in evaluation in the
current SCC.

SgFr_prev_on_branch: points to the subgoal frame corresponding to the previ-
ous call in the current branch that is in the first round (i.e., with SgFr_state as
evaluating) or that is a leader call. It is used to traverse the subgoal frames
in order to detect looping alternatives and to detect non-leader calls. A
global variable TOP_.BRANCH always points to the youngest subgoal frame
in the current branch.

SgFr_new_solutions: indicates if new solutions were found during the execu-
tion of the current round.

SgFr first_solution: points to the leaf trie node corresponding to the first avail-
able solution.

SgFr_last_solution: points to the leaf trie node corresponding to the last avail-
able solution.

SgFr_last_ consumed: marks the last solution consumed in a generator (pio-
neer or follower) call (supports the propagation of solutions, as discussed
in section 4).

5.2. Tabling Operations

We next introduce the pseudo-code for the main tabling operations required to
support batched scheduling with DRA and DRE evaluation.

We start with Algorithm 1 showing the pseudo-code for the new solution
operation. Initially, the operation simply inserts the given solution SOL in the
solution trie structure for the given subgoal frame SF (line 1) and, if the solution
is new, it updates the SgFr_new_solutions subgoal frame field to TRUE (line
2) and proceeds with forward execution as usual. Otherwise, the solution is
repeated and execution fails (line 4).

Algorithm 1 new_solution(solution SOL, subgoal frame SF)
1: if solution_check_insert(SOL, SF) = true then {new solution}
2: SgFr_new_solutions(SF) «+ true
3: else
4: fail()

Next, in Algorithm 2, we show the pseudo-code for the tabled call opera-
tion. Initially, the operation starts by inserting the given subgoal call SC in the
subgoal trie structure, from where a subgoal frame SF, representing the given
call, is obtained (line 1). New calls to tabled subgoals are inserted into the ta-
ble space by allocating the necessary data structures, which includes a new
subgoal frame (this is the case where the state of SF starts to be ready). In

1786 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

such case, the tabled call operation then stores a new generator node® (line
3); updates the state of SF to evaluating (line 4); defines a new SCC (lines
5-6); adds SF to the current branch (lines 7-8); and proceeds by executing the
current alternative (line 9).

Algorithm 2 tabled_call(subgoal call SC)

1: SF « subgoal_check_insert(SC') {SF is the subgoal frame for the subgoal call SC}
2: if SgFr_state(SF) = ready then {new call}

store_generator_node()

SgFr_state(SF) < evaluating

SgFr_prev_on_scc(SF) «+ TOP_SCC {new SCC}

TOP.SCC «+ SF

SgFr_prev_on_branch(SF) <~ TOP_BRANCH {add to current branch}
TOP_BRANCH < SF

1 goto evaluate(current_alternative())

10: else if SgFr_state(SF) = complete then {already evaluated}

11: goto completed_table_optimization(SF)

12: else if SgF'r_state(SF) = loop_ready then {first call in reevaluation round}
13: store_generator_node()

14: SgFr_state(SF) + loop_evaluating

15: SgFr_prev_on_scc(SF) <+~ TOP_SCC {new SCC}

16: TOP.SCC + SF

17: SgFr_last_consumed(SF) < SgFr_first_solution(SF)

18: if DRA_mode(SF) then

CONIONRAR®

19: goto consume_solutions_and-reevaluate(SF, first_looping_alternative())
20: else
21: goto consume_solutions_and_reevaluate(SF, first_alternative())

22: else if SgFr_state(SF) = evaluating or SgFr_state(SF) = loop_evaluating then
23: mark_current_branch(SF)

24: if DRE mode(SF) and has_unexploited_alternatives(SF') then

25: store_follower_node()

26: if DRA_mode(SF) and SgFr_state(SF) = loop_-evaluating then

27: goto consume_solutions_and_reevaluate(SF, next_looping_alternative())
28: else

29: goto consume_solutions_and_reevaluate(SF, next_alternative())

30: else

31: store_consumer_node()

32: goto consume_solutions(SF)

On the other hand, if the subgoal call is a repeated call, then the subgoal
frame SF is already in the table space, and three different situations may occur.
First, if the call is already evaluated (this is the case where the state of SF is
complete), the operation consumes the available solutions by implementing the

% Generator, consumer and follower nodes are implemented as regular choice points
extended with some extra fields related to the table space data structures.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1787

M. Areias, R. Rocha

completed table optimization [10] which executes compiled code directly from
the solution trie structure associated with the completed call (line 11).

Second, if the call is a first call in a reevaluating round (this is the case where
the state of SF is loop_ready), the operation stores a new generator node (line
13); updates the state of SF to loop_evaluating (line 14); defines a new SCC
(lines 15-16); and resets the SgFr_last_.consumed field to the first solution (line
17). Then, it executes the consume_solutions_and_reevaluate() procedure in or-
der to consume the available solutions before reevaluate the matching alter-
natives. This procedure, consumes all the available solutions for the subgoal,
starting from the first solution, and, when no more solutions are to be con-
sumed, it starts with the evaluation of the first matching alternative, which for
DRA is the first looping alternative (lines 18-21).

Third, if the call is a repeated call (this is the case where the state of SF is
evaluating or loop_evaluating), the operation first calls the mark_current_branch()
procedure (please see Algorithm 3 next) in order to mark the current branch as
a non-leader branch and, if in DRA mode, also mark the current branch as a
looping branch (line 23). Next, if DRE mode is enabled and there are unex-
ploited alternatives (i.e., there is a backtracking clause for the former call), it
stores a follower node (line 25) and proceeds by consuming the available solu-
tions before executing the next looping alternative or the next matching alterna-
tive, according to whether the DRA mode is enabled or disabled for the subgoal
(lines 26-29). Otherwise, it stores a new consumer node and starts consuming
the available solutions (lines 31-32).

Algorithm 3 shows the details for the mark_current_branch() procedure. To
mark the current branch as a non-leader branch and, if in DRA mode, as a
looping branch, we follow the TOP_.BRANCH chain and for all intermediate
generator calls in evaluation up to the generator call for SF, we mark them
as non-leader calls (note that the call at hand defines a new dependency for
the current SCC) and we mark the alternatives being evaluated by each call as
looping alternatives.

Algorithm 3 mark_current_branch(subgoal frame SF)

1! aux_sf < TOP_.BRANCH

2: while SgFr_dfn(auz_sf) > SgFr_dfn(SF) do

3: SgFr.sleader(auz_sf) + false

4: if DRA-mode(auz_sf) then

5: mark_current_alternative_as_looping-alternative(auz_sf)
6 auz_sf < SgFr_prev_on_branch(auz_sf)

if DRA_mode(auz_sf) then

8: mark_current_alternative_as_looping_alternative(auz_sf)

NG

Finally, we discuss in more detail how completion is detected with batched
scheduling. Remember that after exploring the last matching clause for a tabled

1788 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

call, we execute the fix-point check operation. Algorithm 4 shows the pseudo-
code for its implementation.

Algorithm 4 fix_point_check(subgoal frame SF')
1: if (SgFr_isleader(SF) then
2 if SgFr_new_solutions(SF) then {start a new round}
3 for all SG such that SG in current SCC do
4 SgFr_state(SG) + loop_ready
5: SgFr_state(SF) < loop_evaluating
6.
7
8

TOP.SCC + SF
SgFr_new_solutions(SF') + false
: SgFr_last_consumed(SF) < SgFr_first_solution(SF)
9: if DRA_mode(SF) then

10: goto consume_solutions_and_reevaluate(SF, first_looping_alternative())
11: else

12: goto consume_solutions_and_reevaluate(SF, first_alternative())

13: else {reached a fix-point}

14: for all SG such that SG in current SCC do {complete all subgoals in SCC}
15: SgFr_state(SG) < complete

16: TOP_SCC «+ SgFr_prev_on_scc(SF)

17: fail()

18: else {not a leader call}
19: if SgFr_state(SF) = evaluating then {first round}

20: TOP_BRANCH <« SgFr_prev_on_branch(SF)

21: if SgFr_new_solutions(SF) then {propagate new solutions}
22: SgFr_new_solutions(current_leader(SF)) «+ true

23: SgFr_new_solutions(SF) «+ false

24: fail()

The fix-point check operation starts by verifying if the subgoal at hand is a
leader call. If it is leader and has found new solutions during the last round, then
the current SCC is scheduled for a reevaluation round (lines 3-12). This includes
updating the state for all subgoals in the current SCC, updating the TOP_SCC
variable to the current subgoal frame and resetting the SgFr_new_solutions field
to FALSE (lines 3-7). Then, as for a first call in a reevaluating round in the tabled
call operation, it also resets the SgFr_last.consumed field to the first solution
(line 8) and executes the consume_solutions_and_reevaluate() procedure (lines
9-12).

On the other hand, if the subgoal is leader but no new solutions were found
during the current round, then we have reached a fix-point. All subgoals in the
current SCC are thus marked as completed, the TOP_SCC variable is updated
to the next subgoal frame and the evaluation fails (lines 14-17).

Otherwise, the subgoal is not a leader call. Then it removes itself from the
TOP_BRANCH chain (lines 19-20), propagates the new solutions information to
the current leader of the SCC (lines 21-22), resets the SgFr_new_solutions field

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1789

M. Areias, R. Rocha

to FALSE (line 23) and then fails (line 24). Note that, with batched scheduling,
we can safely fail since all the solutions were already propagated to the context
of the calling environment. Moreover, since the SgFr_new_solutions flag is prop-
agated to the leader of the SCC, the leader will mark the SCC for a reevaluation
round, which means that the current subgoal will be called again, and so it will
start by consuming its solutions.

As an optimization, a non-leader call C executing the fix-point check opera-
tion can be removed beforehand from the TOP_BRANCH chain (lines 19-20 in
Algorithm 4) since we already know that it is a non-leader call and have marked
its looping alternatives. Thus, when we execute the mark_current_branch() pro-
cedure in a reevaluation round for a call C, then C might have been removed
from the chain in a previous fix-point check operation. This is the reason why
we need to follow the subgoal frames in the TOP_.BRANCH chain up to the first
subgoal frame with a smaller SgfFr_dfn value than C (while loop on Algorithm 3).

6. Experimental Results

To the best of our knowledge, Yap is now the first tabling engine that inte-
grates and supports the combination of different linear tabling strategies using
batched scheduling. We have thus the conditions to better understand the ad-
vantages and weaknesses of each strategy when used solely or combined. In
what follows, we present experimental results comparing linear tabled evalu-
ation with and without DRA and DRE support, using batched scheduling. To
put our results in perspective, we have also included experiments for the B-
Prolog linear tabling system [15] and for the YapTab suspension-based tabling
system [12], both using batched scheduling. In fact, for B-Prolog, we used its
eager scheduling mode, which is similar to batched scheduling. The environ-
ment for our experiments was a PC with a 2.83 GHz Intel(R) Core(TM)2 Quad
CPU and 8 GBytes of memory running the Linux kernel 3.0.0-16-generic. We
used B-Prolog version 7.5 and Yap version 6.0.74.

For benchmarking, we used three sets of programs. The Model Checking
set includes three different specifications and transition relation graphs usually
used in model checking applications: IProto, the transition relation graph for the
i-protocol specification defined for a correct version (fix) with a huge window size
(w = 2); Leader, the transition relation graph for the leader election specification
defined for 5 processes; and Sieve, the transition relation graph for the sieve
specification defined for 5 processes and 4 overflow prime numbers. The Path
Right set implements the right recursive definition of the well-known path/2
predicate, that computes the transitive closure in a graph, using three different
edge configurations. Figure 6 shows an example for each configuration. We ex-
perimented the Pyramid and Cycle configurations with depths 1000, 2000 and
3000 and the Grid configuration with depths 20, 30 and 40. We chose this set
of experiments because the path/2 predicate implements a relatively easy to

* Source code available from http://cracs.fc.up.pt/node/5121

1790 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

understand pattern of computation and its right recursive definition creates sev-
eral inter-dependencies between tabled subgoals. The Warren set is a variation
of the left recursive definition of the path problem for a linear graph (see Fig. 6),
where the path/2 clauses are duplicated to be used with the labels a and b.
This problem was kindly suggested by David S. Warren as a way to stress the
performance of a linear tabling system. All benchmarks find all the solutions for
the problem.

! L
! !
! a

o

ramd Cycle Gid Warren
(gépth 4) (depth 4) (depth 4) (depth 4)

Fig. 6. Edge configurations used with the second and third set of problems

In Table 1, we show the execution time, in milliseconds, for standard linear
tabling (column Std) and the respective execution time ratios for DRA and DRE
evaluation, solely and combined (column DRA+DRE), B-Prolog and YapTab,
using batched scheduling, for the Model Checking, Path Right and Warren
sets of problems. Ratios higher than 1.00 mean that the respective strategy
has a positive impact on the execution time, when compared with standard
linear tabling. The ratio marked with n.c. for B-Prolog means that we are not
considering it in the average results (for some reason, we failed in executing
this benchmark). The results are the average of five runs for each benchmark.

In addition to the results presented in Table 1, we also collected several
statistics regarding important aspects of the evaluation. In Table 2, we show
some of these statistics for standard linear tabling and the respective perfor-
mance ratios when compared with the other models, for a subset of the bench-
marks. We used the Leader specification for the Model Checking set, the con-
figurations Pyramid and Cycle with depth 2000 and Grid with depth 30 for the
Path Right set, and the configuration with depth 600 for the Warren set.

The statistics in Table 2 measure how the mixing with SLD (non-tabled)
computations can affect the base performance of our benchmarks. For that,
we extended the tabled predicates, at the beginning and at the end of each
clause, with dummy SLD (non-tabled) predicates, which we named s/di/0, with
0 < ¢ < 2n, where n is the number of clauses defining the tabled predicate. For
example, the extended definition for the path/2 predicate is:

path(X,2) :- sldl, edge(X,Y), path(Y,2), sld2.
path(X,Z) :- sl1d3, edge(X,Z), sld4.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1791

M. Areias, R. Rocha

Table 1. Execution time, in milliseconds, for standard linear tabling and the respective
execution time ratios for DRA and DRE evaluation, solely and combined, B-Prolog and
YapTab, using batched scheduling (for the linear tabling models, best ratios are in bold)

Benchmark Std DRA DRE DRA+DRE B-Prolog [YapTab
Model Checking

IProto 2,874 1.00 0.50 0.93 0.36 2.39
Leader 5,355/ 1.01 0.40 0.99 0.13 2.83
Sieve 35,218/ 1.00 0.46 0.93 0.16 3.19
Average ratio 1.00 0.45 0.95 0.22 2.80
Path Right - Pyramid
1000 983|| 1.87 0.89 1.49 1.04 1.90
2000 3,897 1.88 0.89 1.49 0.69 1.94
3000 9,043 1.91 0.89 1.53 n.c. 1.98
Path Right - Cycle
1000 687| 1.27 0.96 1.22 1.27 1.89
2000 2,793| 1.27 0.97 1.22 0.91 1.82
3000 6,048 1.29 0.95 1.22 0.70 2.05
Path Right - Grid
20 221|| 1.33 0.97 1.27 1.09 2.10
30 1,344\ 1.32 0.99 1.30 1.02 2.22
40 4,578| 1.31 0.97 1.26 0.76 2.34
Average ratio 1.50 0.94 1.33 0.93 2.03
Warren
400 2,673| 1.02 64.26 64.26 0.34 126.09
600 9,496/ 0.99 87.28 87.28 0.35 162.61
800 23,163| 1.00 112.88 116.98 0.35 216.88
Average ratio 1.00 87.93 89.51 0.35 168.53

The rows in Table 2 show the number of times each dummy SLD predicate
is called for the corresponding benchmark. We can read these numbers as an
estimation of the performance ratios that we will obtain if the execution time of
the corresponding SLD predicate clearly overweights the execution time of the
other computations. Note that the odd SLD predicates (such as sld1 and sld3)
correspond to re-executions of a clause and that the even SLD predicates (such
as sld2 and sld4) correspond to new solution operations. In our experiments,
the sld2 predicate (placed at the end of the first tabled clause) is the one that
can potentially have a greater influence in the performance ratios as it clearly
exceeds all the others in the number of times it is called (see Table 2).

7. Discussion

Analyzing the general picture of Table 1, the results show that DRA evaluation
is able to reduce the execution time for the Path Right problem set (1.50 times
faster, on average) but has no impact for the other two sets, when compared
with standard evaluation. The results also indicate that DRE evaluation has a
negative impact in the execution time for the Model Checking and Path Right

1792 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

Table 2. Number of calls to the dummy SLD predicates for standard linear tabling and
the respective ratios for DRA and DRE evaluation, solely and combined, B-Prolog and
YapTab, using batched scheduling (for the linear tabling models, best ratios are in bold)

Benchmark Std DRA DRE DRA+DRE B-Prolog \ YapTab
Model Checking - Leader

sld1 3|l 1.00 0.75 1.00 1.00 3.00
sld2 1,153,026\ 1.00 0.40 1.00 1.00 2.00
sld3 3/ 3.00 0.75 3.00 3.00 3.00
sld4 3| 3.00 0.75 3.00 3.00 3.00
Path Right - Pyramid 2000

sld1 7,999 2.00 1.00 2.00 2.00 2.00
sld2 37,951,017|| 2.38 0.86 1.73 2.38 2.38
sld3 7,999 2.00 1.00 2.00 2.00 2.00
sld4 23,988|| 2.00 1.00 2.00 2.00 2.00
Path Right - Cycle 2000

sid1 6,002|| 1.00 1.00 1.00 1.00 3.00
sld2 18,003,000 1.29 1.00 1.29 1.29 2.25
sld3 6,002|| 3.00 1.00 3.00 3.00 3.00
sld4 10,000| 2.50 1.00 2.50 2.50 2.50
Path Right - Grid 30

sid1 2,702\ 1.00 1.00 1.00 0.18 3.00
sld2 13,851,534| 1.29 1.00 1.30 0.30 2.21
sld3 2,702|| 3.00 1.00 1.02 3.00 3.00
sld4 17,400\ 2.50 1.00 1.27 2.50 2.50
Warren - 600

sld1/sld3 302|| 1.00 100.67 100.67 1.00 302.00
sld2/sld4 18,044,650/ 1.00 66.98 100.42 1.00 201.17
sld5/sld7 302|/302.00 100.67 302.00 302.00 302.00
sld6/sld8 90,600(/302.00 100.67 302.00 302.00 302.00

sets but, on the other hand, it can significantly reduce the execution time for the
Warren set (more than 80 times faster, on average). We next discuss in more
detail each strategy.

DRA: the results for DRA evaluation show that the strategy of avoiding the ex-
ploration of non-looping alternatives in reevaluation rounds is quite effective
in general and does not add extra overheads when not used. The results
also show that, for the Path Right set, DRA is more effective for programs
without loops, like the Pyramid configurations, than for programs with larger
SCCs, like the Cycle and Grid configurations. On Table 2, we can observe
that the number of dummy SLD computations is, in fact, effectively reduced
with DRA evaluation.

DRE: for the Model Checking set, DRE evaluation is around two times slower
than standard evaluation and, for the Path Right set, DRE has no signifi-
cant impact for all the configurations. Table 2 confirms that, the strategy of
allocating follower nodes, adds an extra complexity to the evaluation for the
Model Checking set (the number of dummy SLD calls is higher) and that

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1793

M. Areias, R. Rocha

it has no impact for the Path Right set (the number of dummy SLD calls is
identical to standard evaluation). For the Warren set, DRE evaluation pro-
duces the most interesting results. Note that, this is the set of benchmarks
where suspension-based tabling (the YapTab system) is far more faster than
standard linear tabling (168.53 times faster, on average) and the difference
increases as the depth of the problem also increases. However, DRE evalu-
ation is able to reduce this huge difference to a minimum. On average, DRE
evaluation is 87.93 times faster than standard evaluation and the scalabil-
ity, as the depth of the problem increases, is similar to the one observed
for YapTab. Table 2 confirms this behavior for DRE and YapTab evaluations
(the number of dummy SLD calls is clearly lower than standard evaluation).

Regarding the combination of both strategies (DRA+DRE), our experiments
show that, in general, the best of both worlds is always present in the com-
bination. The results in Table 1 show that, by combining both strategies, DRA
is able to avoid DRE behavior for the Model Checking and Path Right sets.
Still, the results for DRA+DRE are slightly worst than DRA used solely. For the
Warren set, the results show that, by combining both strategies, it is possible to
reduce even further the execution time when compared with DRE used solely.
In particular, one can observe that, for depths 400 and 600, the execution times
are the same but, for depth 800, DRA+DRE evaluation outperforms DRE used
solely.

The statistics on Table 2 confirm that, in general, the best of both worlds
is always present in the combination. The exceptions are the sld2 predicate,
for the Pyramid 2000 configuration, and the sld3 and sld4 predicates, for the
Grid 30 configuration. On the other hand, for the Warren 600 configuration, the
sld1/sld3 predicates are executed the same number of times as for DRE used
solely, the sld5 to sld8 predicates are executed the same number of times as
for DRA used solely, and the sld2 and sld4 predicates are executed less times
than both strategies used solely, which is explained by the fact that the fix-point
is achieved in less rounds (statistics not shown here).

Regarding the comparison with the B-Prolog linear tabling system, the re-
sults in Table 2 suggest that B-Prolog implements a DRA-based evaluation
strategy since the statistics for B-Prolog and DRA evaluation are all the same,
except for the sld1 and sld2 predicates in the Grid 30 configuration. However,
the execution times in Table 1 show that our DRA implementation is always
faster than B-Prolog in these experiments and that, for almost all configura-
tions, the ratio difference shows a generic tendency to increase as the depth of
the problem also increases.

For all experiments, the results obtained for the YapTab suspension-based
system clearly outperform the standard linear tabled evaluation but, for our
DRA+DRE implementation, they are globally comparable. On average, YapTab
is around 2 times faster than DRA+DRE evaluation, including the Warren prob-
lem set, where YapTab shows a huge difference for standard linear tabling. The
results also indicate that our implementation scales as well as YapTab when we
increase the depth of the problem being tested.

1794 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

8. Conclusions

We have presented a new linear tabling framework that integrates and supports
batched scheduling with DRA and DRE evaluation, solely or combined. We
discussed how these strategies can optimize different aspects of a tabled eval-
uation and we presented the relevant implementation details for their integration
on top of the Yap system.

Our experimental results were very interesting and very promising. In partic-
ular, the combination of DRA with DRE showed the potential of our framework
to effectively reduce the execution time of the standard linear tabled evaluation.
When compared with YapTab’s suspension-based mechanism, the commonly
referred weakness of linear tabling of doing a huge number of redundant com-
putations for computing fix-points was not such a problem in our experiments.
We thus argue that an efficient implementation of linear tabling can be a good
and first alternative to incorporate tabling into a Prolog system without such
support.

Further work will include adding new strategies/optimizations to our frame-
work, and exploring the impact of applying our strategies to more complex prob-
lems, seeking real-world experimental results, allowing us to improve and con-
solidate our current implementation.

Acknowledgments. This work is partially funded by the ERDF (European Regional De-
velopment Fund) through the COMPETE Programme and by FCT (Portuguese Foun-
dation for Science and Technology) within projects LEAP (FCOMP-01-0124-FEDER-
015008) and PEst (FCOMP-01-0124-FEDER-022701). Miguel Areias is funded by the
FCT grant SFRH/BD/69673/2010.

References

1. Areias, M., Rocha, R.: An Efficient Implementation of Linear Tabling Based on Dy-
namic Reordering of Alternatives. In: International Symposium on Practical Aspects
of Declarative Languages. pp. 279-293. No. 5937 in LNCS, Springer-Verlag (2010)

2. Areias, M., Rocha, R.: On Combining Linear-Based Strategies for Tabled Evaluation
of Logic Programs. Journal of Theory and Practice of Logic Programming, Interna-
tional Conference on Logic Programming, Special Issue 11(4-5), 681-696 (2011)

3. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimina-
tion Nets. In: International Joint Conference on Theory and Practice of Software
Development. pp. 61-74. No. 668 in LNCS, Springer-Verlag (1993)

4. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1), 20-74 (1996)

5. Chico, P, Carro, M., Hermenegildo, M.V, Silva, C., Rocha, R.: An Improved Contin-
uation Call-Based Implementation of Tabling. In: International Symposium on Prac-
tical Aspects of Declarative Languages. pp. 197—213. No. 4902 in LNCS, Springer-
Verlag (2008)

6. Cruz, F., Rocha, R.: Retroactive Subsumption-Based Tabled Evaluation of Logic
Programs. In: European Conference on Logics in Artificial Intelligence. pp. 130—142.
No. 6341 in LNAI, Springer-Verlag (2010)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1795

M. Areias, R. Rocha

7. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic Pro-
grams through Alternative Scheduling Strategies. In: International Symposium on
Programming Language Implementation and Logic Programming. pp. 243-258. No.
1140 in LNCS, Springer-Verlag (1996)

8. Guo, H.F,, Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: International Con-
ference on Logic Programming. pp. 181-196. No. 2237 in LNCS, Springer-Verlag
(2001)

9. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag (1987)

10. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1), 31—
54 (1999)

11. Sagonas, K., Swift, T.. An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and Sys-
tems 20(3), 586-634 (1998)

12. Santos Costa, V., Rocha, R., Damas, L.: The YAP Prolog System. Journal of Theory
and Practice of Logic Programming 12(1 & 2), 5-34 (2012)

13. Somogyi, Z., Sagonas, K.: Tabling in Mercury: Design and Implementation. In: Inter-
national Symposium on Practical Aspects of Declarative Languages. pp. 150-167.
No. 3819 in LNCS, Springer-Verlag (2006)

14. Swift, T., Warren, D.S.: XSB: Extending Prolog with Tabled Logic Programming. The-
ory and Practice of Logic Programming 12(1 & 2), 157-187 (2012)

15. Zhou, N.F.: The Language Features and Architecture of B-Prolog. Journal of Theory
and Practice of Logic Programming 12(1 & 2), 189-218 (2012)

16. Zhou, N.F.,, Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a Linear Tabling
Mechanism. In: Practical Aspects of Declarative Languages. pp. 109-123. No. 1753
in LNCS, Springer-Verlag (2000)

Miguel Areias received his B.Sc. and M.Sc. degrees in Computer Science
from Faculty of Science of the University of Porto, in 2008 and 2010, respec-
tively. He is currently pursuing the Ph.D. degree at the University of Porto. He
is a Researcher in the Center for Research in Advanced Computing Systems
(CRACS), where he has been since 2008 under the supervision of Prof. Dr.
Ricardo Rocha. His research interests lie on Parallelism, Concurrency, Multi-
threading and Tabling mechanisms applied to Logic Programs.

Ricardo Rocha is an Assistant Professor at the Department of Computer Sci-
ence, Faculty of Sciences, University of Porto, Portugal and a researcher at the
CRACS & INESC-Porto LA research unit. He received his PhD degree in Com-
puter Science from the University of Porto in 2001 and his main research topics
are the Design and Implementation of Logic Programming Systems, Tabling in
Logic Programming and Parallel and Distributed Computing. Another areas of
interest include Inductive Logic Programming, Probabilistic Logic Programming
and Deductive Databases. He is also one of the main developers of Yap Prolog
system, and in particular of the execution models that support tabling and par-
allel evaluation. He has published more than 50 refereed papers in journals and
international conferences, has supervised 11 MSc students and has leading

1796 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Batched Evaluation of Linear Tabled Logic Programs

role in two national projects: project STAMPA, funded with 150,000 Euros, and
project LEAP, funded with 115,000 Euros. Currently, he also serves the ALP
Newsletter as area co-editor for the topic on Implementation.

Received: November 29, 2012; Accepted: August 12, 2013.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1797

