DOI: 10.2298/CSIS121130061M

Managing experiments on cognitive processes in
writing with HandSpy

Carlos Monteiro! and José Paulo Leal?

! CRACS & INESC-Porto LA
Faculty of Sciences, University of Porto
Porto, Portugal
carlosmonteiro@dcc.fc.up.pt
2 CRACS & INESC-Porto LA
Faculty of Sciences, University of Porto
Porto, Portugal
zp@dcc.fc.up.pt

Abstract. Experiments on cognitive processes require a detailed analy-
sis of the contribution of many participants. In the case of cognitive pro-
cesses in writing, these experiments require special software tools to col-
lect gestures performed with a pen or a stylus, and recorded with special
hardware. These tools produce different kinds of data files in binary and
proprietary formats that need to be managed on a workstation file system
for further processing with generic tools, such as spreadsheets and sta-
tistical analysis software. The lack of common formats and open reposito-
ries hinders the possibility of distributing the workload among researchers
within the research group, of re-processing the collected data with soft-
ware developed by other research groups, and of sharing results with the
rest of the cognitive processes research community.

This paper describes the development of HandSpy, a collaborative envi-
ronment for managing experiments in the cognitive processes in writing.
This environment was designed to cover all the stages of the experiment,
from the definition of tasks to be performed by participants, to the synthe-
sis of results. Collaboration in HandSpy is enabled by a rich web interface.
To decouple the environment from existing hardware devices for collecting
written production, namely digitizing tablets and smart pens, HandSpy is
based on the InkML standard, an XML data format for representing digital
ink. This design choice shaped many of the features in HandSpy, such as
the use of an XML database for managing application data and the use
of XML transformations. XML transformations convert between persistent
data representations used for storage and transient data representations
required by the widgets on the user interface. Despite being a system in-
dependent from a specific collecting device, for the system validation, a
framework for data collection was created. This framework has also been
highlighted in the paper due to the important role it took in a data collection
process, of a scientific project to study the cognitive processes involved in
writing.

Keywords: InkML, experiments management, collaborative environment,
XML data processing.

Carlos Monteiro and José Paulo Leal

1. Introduction

Writing is a basic tool for a successful personal and academic growth. Given
the importance of this subject social scientists are actively researching the cog-
nitive processes involved in writing. Writing studies can focus on different writ-
ing forms, such as keyboard logging and handwriting. The writting action can
be complemented with other indicators, such as eye movements and speech
made during the production. The collected data focus on the complementary
concepts of burst and pause [7]. A burst is a time span in which text was pro-
duced without interruptions. A pause is a non-writing time span between two
writing bursts. These two moments are linked to distinct cognitive processes.
The duration of a pause is related to the writing task being performed. Dur-
ing the pause period the working memory used in the writing process is freed.
Therefore the time spent pausing is used for planning and revising the written
production.

The development of HandSpy is embedded in the research project DAAR,
being held at the Psychology Faculty of Porto University. The object of study in
this research is the relation between the cognitive processes involved in writing
and the quality of the writing productions. As the goal of this research is in
general to determine the factors that influence the development of writing skills,
the participants are school children. The object of these research studies are
writing productions on different tasks such as narratives, copies, dictations and
alphabet transcriptions. Different tasks influence the way the idea of the text is
processed. The study results may be used to detect learning problems related
to the ability of creating good quality writing productions. This can then be used
to define new strategies and interventions on writing teaching.

The development of HandSpy was inspired on the existing, state of the art,
software for collecting and analysing written productions. Although these tools
offer a good handwritten analysis system they lack of a simple way to collect
and organize the data. With the desire to innovate and improve the way the
writing studies are processed, HandSpy was designed to be a web based sys-
tem offering typical features of writing research tools. The system covers the
entire experimental process filling the existing gap on the experiment manage-
ment. By using a common repository, researchers can set up an experiment for
storing all the entities involved. An entity is an abstract concept to define the
different components of project such as tasks definitions, trait information on
participants involved in the experiment and the generated data. Using a web
server for data storing, the system follows a collaborative paradigm where var-
ious researchers can work on the same experiment simultaneously. HandSpy
uses a standard XML format for data files which enables users to collect data
from various hardware devices. XML files enable the data persistence over time.
Being based on a web system avoids the complexity of installation processes,
as one installation can be shared by several users. The collected data files need
to be uploaded just once, and thereafter are accessible to all researches, even
to those not involved in the collection process.

1748 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

A collecting framework was developed to collect data for system validation.
This framework uses a fairly inexpensive hardware device in a shape of a nor-
mal pen, enabling a less intrusive collecting method in the writing process.

The present paper is organized as follows. Section 2 describes the state
of the art with regard to the platforms used to conduct scientific experiments
on writing productions and describes the principles of experiment management
systems in which HandSpy was based. Section 3 describes the main technolo-
gies used to develop HandSpy and describes existing devices to record hand-
writing productions. Section 4 is the main description of the design and im-
plementation methods. Section 5 describes a collecting framework created to
validate HandSpy usage. Section 6 is an evaluation of the usability of HandSpy
to prepare future modifications. Section 7 concludes this paper and identifies
opportunities for future work on HandSpy.

2. Related Work

This section covers background topics related to the development of a collabo-
rative environment for managing experiments on cognitive processes in writing.
Studying cognitive processes in writing involves the detailed analysis of writ-
ten productions, therefore the analysis component is the essential feature on a
software for that purpose. HandSpy analysis engine owes credit to two mature
systems used in the study of cognitive processes in writing. These systems are
described in the first section of this paper.

The proposed environment complies with the requisites for an Experiment Man-
agement System (EMS) [3] thus the second section is devoted to introduce this
kind of system.

2.1. Collecting and Analysing Tools

Studies on cognitive processes in writing are mainly conducted by social sci-
entists. In the last decade this subject was supported by the availability of new
devices to digitally record the writing productions and complemented with new
software to analyze those productions. The two most proeminent tools currently
available to conduct studies on cognitive processes in handwriting are Eye And
Pen [1] and Ductus [2]. The following subsections are a description of these
systems.

Eye And Pen The Eye and Pen system was originally design to study read-
ing while performing a writing production. The system is composed by three
parts. A collecting system composed by a digitizing tablet and a eye tracker, a
software for data analysis and experiment control system. The digitizing tablet
recordings and the eye tracker signals are synced in the begining of the ex-
periment. The digitizing tablet records the position of the pen and the pressure
made in every point throughout collection. This data is used by the Eye and

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1749

Carlos Monteiro and José Paulo Leal

Pen analysis software to reconstruct the written text and display the point of
regard on the tablet surface related to the pen position on that specific moment.
The point of regard is the spot in the paper that the participant is looking at a
particular moment. The text reconstruction can be played and controlled with a
media player style control set. The pauses are displayed on the reconstructed
text image and are represented by a circle centered on the place where the pen
stopped, its diameter is defined by the pause duration time.

The experiment control system consists on a scripting language used to define
the tasks to be performed. The tasks are displayed on the computer connected
to the tablet. Particular regions on the tablet can be assigned to a function.
When these regions are reached they act as control buttons of the experiment
and sets the end of a task.

Before Eye and Pen, the eye tracking devices were mostly used to study

reading processes. The first known use of eye trackers for studying writing was
made on computer typing. Studies on computer typed tasks are limited by the
expertise of the participants using a computer keyboard. The tasks that can be
performed with a computer keyboard are also limited to the typing action.
Any study that makes use of technological equipment to collect the data is sub-
ject to errors and mishandling of the devices. For instance the eye tracker de-
pends on specifications of the manufacture and some eye trackers require the
participant to hold the head still in order to work properly. Using an eye tracker
while writing may distract and alter the normal text production. These factors
may invalidate the text production.

Ductus Ductus is a software to study the processes involved on handwritten
productions. The system is composed by two modules, a Stimulus Presenta-
tion Module and a Data Analysis Module. The Stimulus Presentation Module
encompasses two parts, the stimulus presentation and a data acquisition mod-
ule. The stimulus is displayed on a computer screen in front of the participant
and consists on a series of images, words or texts for transcription. The stimu-
lus module supports plain text (.txt) and bitmap (.bmp) file formats. The visual
stimulus are preceded by a sound to signal the begining of a stimulus.

The data acquisition module works with any model of digitizer from Wacom,
a recognized tablets manufacturer. The sample rate is limited by the digitizer
model. The elements recorded by the acquisition module are:

— pen postion - the position of the pen on the digitizer.

— pressure - the pressure made on the digitizer, some digitizers enable the
recording of hovering movements on the tablet.

— latency - the time between the apearence of the stimulus and the pen touch-
ing the digitizer.

— event landmark - is an event defined by the experimenter to signal some
occurence during the recording.

The recorded data is stored in a plain text file and is used by the Data Analysis
Module to produce the calculations on kinematic and geometrical parameters

1750 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

of the handwriting. The Data Analysis Module interface displays information on
several windows. There are two windows that display information on the writing
and are the most used during the data analysis.

The first window is divided in four parts. A list with data on the points that
constitute the text, such as time, position, absolute velocity, absolute accel-
eration and pressure, an image with the reconstruction of the text, hovering
movements are displayed in a gray light tone, a graph with the variations on the
trajectory made with the pen and finally a graph with the pressure made on the
tablet and an image of the text and the graphs have a vertical line that syncs
the position in the text with the positions in the trajectory and pressure graphs.

The second window is used to segment the text for a thorough analysis.
The text can be segmented in a hierarchical way, the text can be divided into
paragraphs and each paragraph into words and the words into letters. These
segments are made to limit the calculations to a precise area. The results are
presented in a table and can be exported through the clipboard or can be saved
in a plain text file.

2.2. Experiment Management Systems

The growth of data collected during scientific experiments, leveraged by the
use of digital devices, created the need for systems to manage this data. Mul-
tiple fields of scientific research require the analysis of large amounts of data.
Usually, researchers in these areas do not have the necessary knowledge to
manage this information in an automated basis by using a digital database sys-
tem.
An Experiment Management System is composed by two parts, user interface
and data storage system. These systems aim to abstract experimentation pro-
cedures, offering a consistent data management system replicated by different
experiment stages and entities. An entity is a flexible abstract format to repre-
sent information regarding some aspect of the experiment, for instance the list
of participants, tasks involved in the experiment and actual collected data [3].
In the Figure 1 is depicts the life cycle of an experiment with data abstrac-
tion on entities and its relation with data transfers. The stages of an experiment
process depicted on the Figure 1 are described on the following.

Experiment Design is the first stage of the experimentation process. In this
stage, data files containing information about the experiment are defined. These
definitions can be updated in the course of the experiment. These definitions
are stored in the database alongside with the collected data.

Data Collection stage can be repeated several times during the experiment,
if there is a need to collect more data. The need to collect or recollect data, may
arise due to the invalidity of the data or the failure to produce conclusive results.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1751

Carlos Monteiro and José Paulo Leal

EXPERIMENT LIFE CYCLE

FD EXPERIMENT DESIGN

4{> DATA COLLECTION

v

DATA ACCESS

v

ENTITIES

R

- ANALYSIS
~ RESULTS

Fig. 1. Experiment Life Cycle

Data Access stage is set to retrieve the data, for analysis, validation or shar-
ing.

Analysis is the main stage of every experiment. The data analysis is done
by researchers that assess its validity and generate the results of their studies.
In this step design modifications and the need to collect more data may arise.

Results is the final stage of the experiment cycle where the results are gen-
erated. The experiment success is validated by the results. At this point the
experiment can be terminated, redesigned or more data may be collected.

3. Technology

3.1. InkML

The recent trend of sketching and writing on digital devices capable of record-
ing hand gestures created the need for a standard to describe this kind of data.
InkML is a W3C recommendation for storing and exchanging what is commonly
called digital ink. It is an XML data format to describe a set of strokes digitally
representing handwriting and other ink input gestures. It was design to describe
ink-based formats but it is flexible enough to store digital interactions such as

1752 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

keyboard logs and mouse movements.

The ink in InkML is defined by characteristics associated with the act of creat-
ing a trace such as the width and color of the trace, the pen orientation while
writing, the pen distance to the surface(whether the trace was made with the
pen down or hovering the writing surface), among others.

The root element of InkML is i nk and has the identifier attribute document 1D
with the type Uniform Resource Identifier (URI) that uniquely defines each file.
The trace element is set to describe a continuous trace, i.e. the act of sketching
a trace with the pen down on the surface. Each trace is a collection of points and
their features, separated by commas. These characteristics are defined in the
channel element. If no channel is defined to cast traces, the default trace
is simply the X and Y coordinates of each point. A set of traces can be grouped
in a context, defining optional features such as starting time, writing surface
dimensions and characteristics of the trace.

The Listing 1.1 is an example of the "Hello” word described in a basic InkML
file. The word has five letters represented with five trace elements, its con-
tents are defined on the t raceFormat with a set of channel elements whose
attributes define the name and the type. The values on the trace element
separated by commas represent the coordinates (X,Y) and a timestamp defined
on the traceFormat channel elements. This data represents each point de-
picted on the Figure 2 and the time the point was recorded.

Fig. 2. InkML Hello Example

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1753

Carlos Monteiro and José Paulo Leal

Listing 1.1. InkML "hello” example

<ink xmins="http://www.w3.0rg/2003/InkML ">
<context xml:id="start”>
<inkSource>
<traceFormat>
<channel name="X" type="decimal”/>
<channel name="Y" type="decimal”/>
<channel name="T" type="decimal”/>
</traceFormat>
</inkSource>
<timestamp xml:id="startTime” time="10000"/>
</context>
<trace>
10 0 11000, 9 14 11200, 8 28 11400, 7 42 11500,
56 11600,
10 70 11700, 8 84 11900, 8 98 12100, 8 112 12200,
9 126 12300,
10 140 12400, 13 154 12500, 14 168 12600, 17 182 12800,
23 174 13000, 30 160 13100, 38 147 13200, 49 135 13400,
72 121 13700, 77 135 13800, 80 149 13900, 82 163 14000,
87 191 14300, 93 205 14400
</trace>
<trace>

18 188 12900,
58 124 13600,
84 177 14200,

130 155 14500, 144 159 14600, 158 160 14800, 170 154 15000, 179
179 129 15200, 166 125 15300, 152 128 15400, 140 136 15600, 131
126 163 15800, 124 177 15900, 128 190 16000, 137 200 16200, 150
163 210 16400, 178 208 16600, 192 201 16700, 205 192 16900, 214

</trace>
<trace>

227 50 17100, 226 64 17200, 225 78 17400, 227 192 17500, 228
228 120 17800, 229 134 17900, 230 148 18100, 234 162 18200, 235

</trace>
<trace>

282 145 18600, 281 159 18700, 284 173 18900, 285 187 19000, 287
288 115 19200, 290 129 19400, 291 143 19700, 294 157 19900, 294

294 185 20200, 296 199 20300
</trace>
<trace>

366 130 20400, 359 143 20600, 354 157 20700, 349 171 20800, 352
359 197 21100, 371 204 21300, 385 205 21500, 398 202 21600, 408
413 177 21900, 413 163 22000, 405 150 22100, 392 143 22200

</trace>
</ink>

1754 ComSIS Vol. 10, No. 4, Special Issue, October 2013

143
149
208
180

106
176

101
171

185
191

15100,
15700,
16300,
17000

17600,
18300

19100,
20000,

21000,
21800,

Managing experiments on cognitive processes in writing with HandSpy

3.2. Digital Sketching Devices

In recent years the digital recording of handwritten data, had significant devel-
opments. With smaller process units new writting tools appeared in the shape
of normal pens.

This section is an overview on devices that resemble a normal pen and have
the capability to digitally record handwritten text.

Fig. 3. Livescribe Smartpen and the dotted position system

Livescribe Smartpen The Livescribe Smartpen depicted on Figure 3 is a de-
vice with the shape of a normal pen featuring a LCD display, an infrared cam-
era and a microphone. The LCD display is just for status information on the
smartpen menu navigation and usage, the infrared camera is the key feature
for recording sketched shapes and more specifically handwriting. The smart-
pen has an internal memory capacity of up to 4GB and a built in battery. The
pen has a physical ink cartridge on the tip to sketch on the paper.

The smartpen works on a particular micro dotted paper which gives informa-
tion about its position on paper. The dots on the micro dotted paper, depicted
on Figure 3, are spaced about 0.3mm apart and form an apparently messy
square grid. The dots appear on one of four possible positions of an imaginary
square grid. The infrared camera captures a area of 6x6 dots on the paper and
transform this information into a X and Y coordinate pair. The camera has a fre-
quency of 72 captures per second which gives a sufficient sample rate to record
handwritting. The smartpen store the current position when pressure is made
on the tip of the pen and it is not correlated to the actual ink left on the paper.
Each page on every notebook is unique for that notebook, hence the smartpen

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1755

Carlos Monteiro and José Paulo Leal

can identify the number of the current page.

The smartpen runs a system based on Java Micro Edition and can run exter-
nal applications known as Penlets. Livescribe has a SDK for Penlets develop-
ment but its support has been discontinued, restricting the use of custom made
Penlets. The Penlets can raise events entering on active zones on the dotted
paper, for instance to scroll through the main menu. The smartpen has a built
in handwriting recognition (HWR) system. The dotted paper can be acquired
in the form of notebooks or can be produced and printed on a standard 600
dpi laser printer. Every notebook has a Anoto Functionality Document (AFD) to
describe it. This document needs to be installed on the smartpen so the printed
paper sheets can be used, all the recording done on a page on a notebook is
stored on the AFD structure.

For retrieving the recorded data, updating the software and recharging the
battery there is a dock station. It has a desktop application, Livescribe Desk-
top, that can run both on Windows and Mac OS environments. This application
downloads the data files from the smartpen and organizes by notebook. Live-
scribe has also a Desktop Application SDK for developing applications to extract
and process the recorded data on the pen.

The comercial bundle has an average price of 100€ and comes with a
smartpen, a dotted notebook and the dock station.

Fig. 4. Wacom Inkling

Wacom Inkling The Wacom Inkling is a sketching recording system composed
by a pen and a receiver that can be clipped to the top of a paper sheet or note-
book, this arrangement is depicted in Figure 4. The pen can be used to draw on
the paper as it has a physical ink cartidge. The system has a memory capacity
of 2GB and a built-in battery.

1756 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

The operation of this tool mimics the functioning of a sonar system. The
pen emits an inaudible sound, that is processed by the receiver. The receiver
uses this pulse of sound to calculate the pen position and record it. The pen is
pressure sensitive, this enhances the digital line weights. The system allows the
definition of a new layer on the same sheet, by pressing a button on the receiver.

To transfer the data from the receiver to the computer, the receiver must be
connect to the charging case. The Inkling Sketch Manager is the desktop ap-
plication for downloading data from the receiver. Sketches can be saved as a
single image by merging different layers or can be exported as layered files and
be used on common image editors. The data can also be exported as an XML
format similar to InkML.

The comercial bundle has an average price of 200€ and its composed by
the pen, the receiver and a charging case.

4. HandSpy

HandSpy is a web based application to manage distributed and collaborative
experiments on cognitive processes in writing. The system has the following
distinctive features:

— an experiment management philosophy encompassing all the steps of the
research in cognitive processes in writing;

— a multiuser web interface fostering collaboration among researchers and
enabling remote work on the experiments;

— a cloud-based data management system providing central storage for all
data collected in the experiments;

— an analysis process of the collected data, inspired in the state-of-art sys-
tems described in Section 2;

— the ability to select and synthesize collections of data based on different
criteria;

— the use of standard XML based data formats to promote interoperability and
cooperation among researchers in this community.

HandSpy system is based on a client-server model. The client makes re-
quests to the server and the server processes the request making use of other
applications to generate the response. The system follows a 3-tier architectural
model as depicted in Figure 5 where the presentation tier (a web interface) is
represented by the left box, the logic tier (a web server) is represented by the
central box and the data tier (an XML database) is represented by the right box.
This diagram represents also in three rows the data flows between these tiers.
In the top row marked with number one is represented the process of upload-
ing data files in InkML format to the database through the web interface. On
the server side the database manager module is responsible for organizing the
uploaded files in collections based on the current user context.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1757

Carlos Monteiro and José Paulo Leal

Presentation Logic data

===

)
==

ﬁ @}
o

InkML. Database
Manager

@ Protocols
: W]
< - ‘ @ -

[

|

I

I

I >

I

I

|

[}j =
ot Protocol
S'jr:e Manager

®
T

Data Entity
Source Manager Entities

Fig. 5. HandSpy application architecture

The middle row represents the interaction with ink data. The two main com-
ponents of HandSpy user interface are depicted in this row, an image viewer
to display the written production of the protocol ink and a list of calculations
based on the protocol data. The server gets the ink of the selected protocol
and generates an image file to feed the image viewer. The list grid is populated
with calculations results based on the pause concept. To optimize the system,
the main definitions on the HandSpy are classified and treated as entities. This
generalization of data permits to manage it in the same way. All data showing
objects are based on list grids which use XML data sources.

In the third row of the model in Figure 5 is shown the Entity Manager that
identifies the entity and uses the respective XSL transformer to transform the
data stored in the database into the client specific data source when the fetch
operation is made. Adding, updating and deleting entities uses XSL transforma-
tions to perform the operations and save the changes to the database.

4.1, Design
This section divides the description of the system design in three parts, the
Application Interface, Logic and Data Repository.

Application Interface The graphical user interface of HandSpy relies on a web
application. The workspace is divided in six tabs covering the usual work flow
of an experiment on cognitive processes in writing.

1758 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

Varsion 0.1.9 - 04/04/2012
HandSpy B
Tasks Upload Participants Selection Analysis Synthesis

< 243 > sl

I<
@ 1 719

[m\lhs;r::r::;:_‘ld 2000 Update Export Selected

Code: 322

Show pause end point? @

v # Burst Pause Burst siz¢ Burst Dist Burst Spe
7 1 560 10976
7 2 13741 5583
v 3 8624 7403 Y CLA q
7 4 3083 2067
7 5 14494 4872
v 5 6104 21338
v 7 123 a7s0 i
v 8 11382 2023 >P
7 9 10625 9257
Fi 10 6165 2530 Y W A (\"‘"‘M"“
v 11 14780 2807 Poe homdn oy wonP rongionts GP At Choow
7 12 8345 538
v 13 6389 3338 d’”’Pt ‘P o fon ol M‘*Pm)"&
i 14 6576 20988 SP-m;AOP sdoesaP o et PP ots opte
7 15 4618 4638 . J(‘]
v 16 2123 2148 ‘[,JW"\ o Colsile "E“‘fy‘”' ke P ot
7 17 12326 12253 Joplan 5P/m,h s Pa B Tl U}PQ{“ﬂJj
v 18 6750 6386 . wa@ 4 ,JP
7 19 3a072 20211 oo S &WP
7 0 TEEs 3635 — [y %P% ﬁM»PP

Fig.6. HandSpy interface

Tasks Identification of tasks to be performed by the participants during the
experiment. For instance, an experiment may include a task where partic-
ipants must write as much letters of the alphabet as they can in a fixed
amount of time.

Upload Upload of the InkML files collected with specialized hardware (smart
pens or digitizing tablets) to the system. The interface displays a collection
of thumbnail images of the uploaded files. Thumbnails can be selected to
display a real size image for better identification. At this stage the InkML
data is associated with a task and a participant.

Participants Manage the participants in the current experiment. Display the
features and the tasks completed by each participant. Custom features de-
scribing the participants, such as handedness or mother language, can be
added to the participants. The participants features are useful for select-
ing them in a particular study. The list of participants can be imported and
exported as a CSV (Comma Separated Values) file.

Selection Selection of protocols based on tasks and on features of the par-
ticipants such as age, handedness and gender. The selection is a collec-

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1759

Carlos Monteiro and José Paulo Leal

tion of conditions on protocols to be analyzed and synthesized. Selections
set by different researchers are independent from each other, enabling re-
searchers to analyze different collections of protocols simultaneously.

Analysis Figure 6 is a screenshot of HandSpy interface with the Analysis tab
selected. The area identified as 1 is a slider to browse the current protocol
selection (set in the Selection tab). Area 2 has a form to define the param-
eters to calculate the pauses which are listed in the table below. The main
parameter is the threshold, the time elapsed to be a pause. Each row has a
pause duration, a burst duration, a burst size is a number of words present
on the burst, burst distance and the burst average speed. The footer of the
table presents statistics on some of its columns, such as the average and
standard deviation of durations, and the count of words. Area 3 displays
the written production with red Ps (for Pause) marking the place where the
pauses selected in area 2 start. Pause selection allows worthless parts (for
instance, a part where the participant erased a word) to be removed from
the analysis. The current selection of pauses can be stored on the database
using the threshold value for identification, this enables the analysis work al-
ready done on this transcript to be retrieved for further analysis.

Synthesis Displays global statistics on the data processed on the Analysis tab
and is delimited by the selection criteria defined for the analysis process.
The statistics presented in Analysis tab table footer for each protocol are
computed on this tab aggregating all the selected protocols. These results
can be exported to other systems, such as spreadsheets or statistical anal-
ysis packages.

Logic The server side of the system was designed to receive requests, process
them and send the response to the client. Figure 7 depicts an image request flux
on the server. The client, on the left, sends a request for an image to the server.
The Process receives the request and authenticates the session based on the
UserContext. If it is a valid command for that session the command GetProcotol
is called. The Protocol accesses the Database and requests for the respective
InkML file. The resulting image is sent back to the client through the response
stream.

This flow describes the behavior of HandSpy upon a request. HandSpy
deals with many requests for information in the XML format. The main differ-
ence responding to these request is in the creation of the response. Requests
for XML files are created using an XSL transformations engine.

Data Repository HandSpy processes data uploaded in XML files and stores it
in a native XML database. The database structure model is depicted in Figure 8.
This structure keeps all the resources used by the application. Every project has
a set of entities that store data on Tasks, Participants, Selection and Configu-
rations. The data files containing the text productions of one experiment are
stored in the collection Ink in the InkML format. They remain unchanged and
are treated as read-only files. This enables future usage of the collected data

1760 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

1 > 4 > 5 >
Web browser Process (Serviet) GetProtocol Protocol
[]<H < <+
8

L v

UserContext

Fig.7. Image Request Diagram

HandSpy
<<collection>>

1
Users

Projects <<resource>>
<<collection>>
User
<<element>>
f +
Project hame
<<collection>> +password
co +proiects
Configs Tasks Participants Selection
L_| <<resource>> <<resource>> <<resource>> <<resource>> Ink Tasks
<<collection>> <<collection>>
Task Participant InkType
<<element>> <<element>> <<resource>> Data
f———] —_ — <<collection>>
+name +code
+ layout +name
+sheets +age Data
<<resource>>
+ participant
+inkML
KeyValueData
<<element>>
+name
* value Pauses
<<element>>
| +threshold

Fig. 8. Database structure diagram

for other purposes, projects or even different analysing systems. For every task
added to the project a task collection is created with the name of the task, to
store data files containing the calculations and other information obtained by
analysing the respective InkML file.

The file name is the key to identify and relate the InkML files with the respec-
tive calculated data. The InkML file name is a sequential number, given when
the file is uploaded. The data files stored in each task collection have the same
name of the respective InkML file. For every task a diferent Data file is created

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1761

Carlos Monteiro and José Paulo Leal

and associated with the InkML by name. Differente studies can be conducted
at the same time as every task has an independent Data file.

Schema Definitions The entities and the data file associated to the InkML files
were specifically defined to work with the proposed architecture. An abstract
data format — KeyValueData— which represent a mapping of a value to its key
was designed and is used in several entities on the system. The following list
covers the definitions of the resources presented on Figure 8.

— The Users resource is composed by the login name of the user, its pass-
word and a list of projects to which it has access.

— The Configs and Selection resources are composed by KeyValueData ele-
ments.

— The Tasks resource has the attributes to define the name, the layout and the
sheets. The sheets value is the page interval on the notebook associated
to this task.

— The Participants resource have the basic attribute code, to identify the par-
ticipant and a set of KeyValueData elements to complete the participant
details.

— The Data file has two attributes to identify the file. The participant which
has the code of the participant and the inkML that have the name of the
inkML file. Has pauseBurstBlock element which is a Pauses. The Pauses
element defines a set of Pause. Each Pause has an attribute threshold and
a set of Pause elements which is a PauseBurst format, with calculations for
the defined threshold. The PauseBurst element has several attributes and
a set of facets in the KeyValueData format. Figure 9 is the Data file schema
with focus on the attributes of the PauseBurst element. This file stores the
pauses selected on the interface tab Analysis described in the Section 5.

4.2. Implementation

As depicted in Figure 5, HandSpy is composed by presentation, logic and
data layers. The presentation layer was implemented on SmartClient JavaScript
framework. The logic layer was deployed on the Tomcat servlet container and
the data layer on the eXist XML database. The remainder of this section presents
the implementation of each layer, describing the implementation methods using
these components as platform.

Presentation Layer The Isomorphic SmartClient LGPL platform was the se-
lected web toolkit for the user interface. SmartClient provides sophisticated ta-
ble editing widgets connected to data sources in XML formats that are appropri-
ate to the data handled in HandSpy. These widgets have many built-in functions,
such as sorting and grouping on every column, search fields and column cus-
tomization. Data operations, such as fetching or querying, are built-in functions

1762 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

Data KeyValueData
participant string key string
inkML string value string
(8] metadata [0.*] KeyValueData
PauseBurst
[e] pauseBurstBlock [0.*] Pauses - [E] .
i strin
d tring
auseTime strin
p 9
burstTime string
nwords strin
9
distance string
(@ speed strin
@ sp g
elapsedTime string
endX string
endY string
(@ startX strin
9
(@ starty strin
9
[e] facets KeyValueData

Fig.9. Data schema

of the data source object. As the information can be displayed in a table fashion,
the most used widget is the ListGrid.

HandSpy analysis gear is the most important feature of the system as it
drives the research work. The analysis of the production is made with the visu-
altization of the text. SmartClient offers the possibility to create a HTML pane.
This pane enables the use of a HTML 5 canvas. Images of the written text
are generated on the server and displayed as background of HTML 5 canvas
object. The use of Javascript functions enables placement of image objects rep-
resenting the pauses starting points on the canvas, overlaying the background
image. This also provides flexibility for future costumizations without being tied
to widget/function limitations.

Logic Layer The server was deployed on a Tomcat - a Java Servlet container
instance. This server, based on a Java Servlet, is responsible for data transac-
tions between the Data Layer and Presentation Layer objects. The whole data
processing is done on this layer as well. The data processing consists on XML
transformations, generation of images, calculation of pauses and database man-
agement. Using eXtensible Stylesheet Language Transformations (XSLT) the
information on the database is transformed into the respective data sources on
the interface. The InkML files are used to generate the images and calculate

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1763

Carlos Monteiro and José Paulo Leal

the pauses. Creating and deleting files on the XML database is made by the
server. Maintaining the whole processing on the server side reduces the need
of processing power on client machines.

All the data is stored as XML files on the database. Using Java Architecture
for XML Binding (JAXB) it is possible to, marshal Java objects into XML files
and doing the inverse, unmarshal XML files to Java objects. This architecture
uses the XSD’s of the XML files to construct Java objects, with getters and
setters for the XML files elements and attributes. This provides a faster and
efficient generation of Java objects, that are in line with the definition of the
XML structure on the XSD. These objects can be used to extract values from
XML files and bind them to Java primitive data types.

This architecture is useful on the image generation and calculation process.
The InkML files are bound into Java objects. By using the InkML object we can
get the values of the (X,Y) pair for every point of every stroke in that production
and draw the corresponding image. The same object is used to fetch the times-
tamp of every point and calculate the pauses and the rest of the information.

HandSpy server side is composed by a Serviet that is the dispatcher for
client requests and a set of other functions to create responses. The next list
describes some of the main functions that compose the server.

— Process - implements a Java Servlet instance. Acts as the single entrance
point on the system, managing all client requests. The HtfpSession and
the UserContext are requested or created when required. The information
is sent as an HTTP POST request and is parsed to retrieve the invoked
command. The command is tested by an authentication method to attest its
validity, if the command is valid for the authenticated user the doRequest
method is called. Every command performed is stored on the UserContext
for an efficient reusage of the same command.

— Command - is an abstract class to be used by the CommandFactory. The
method doRequest of class Command is implemented by each command.
Every command on the system needs an authenticated session to be per-
fomed. The Command have the HtipServletRequest, HttpServletResponse
and the UserContext as arguments.

— Protocol - is the class for managing the InkType and Data objects that are
the unmarshalled representations of the InkML and Data XSD. The Protocol
class implements several methods including the getimage, that uses the
InkType object to generate a png image and write it to the OutputStream of
the HttpServietResponse.

— Selector - is the class for implementing the selection engine of the sys-
tem. Makes use of the Selection resource described in Section 4.1. The
parameters of the Selection resource are used to make a XPath query
and generate a scrollable LinkedHashMap with the Protocol selection. The
slider on the client interface is delimited to this selection and can be used
to navigate in the selected elements.

— UserContext - as the name suggests, this class stores the information on
the user session. For instance, the current working project and the selection

1764 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

array are accessed through the UserContext, therefore all commands using
these variables must have a valid instance of UserContext.

— DBconnection - is a Singleton class that implements the connection to
the database. This class connects to the database using the XML:DB API,
the unique point for database management. When a fresh installation of the
system is made the method createDataBaseStructurelfNeeded is invoked
to create the basic structure of the database.

— EntityManager -is the class that implements the Add,Remove,List and Update

operations on the system resources. Every resource type has a XSL Trans-
formation for each operation. Using a DBconnection instance the resource
files on the database are requested and used to perfom these operations.
The result of the operation is written to the OutputStream.

Data Layer The Data Layer was implemented using eXist [4] database man-
agement system. As the system uses XML files to represent all the information
on the system, choosing a native XML database was the most suitable option.

The database system is installed on the same machine as the Tomcat server
and is remotely accessed through a socket. The database is exclusively man-
aged by the HandSpy server. The HandSpy database structure described in
Section 4.1 is created when the HandSpy starts for the first time.

5. Collecting Framework

As the focus of the project is based on writing productions, a tool for collecting
handwritten data was developed. The device used to collect the data for this
experiment was the Livescribe Smartpen, already described in Chapter 3.

There are several advantages in using a smartpen instead of digitizing tablets
traditionally used for this kind of experiment. The possibility of setting up an ex-
periment in a classroom, a familiar place to the participants and being a writing
device similar to the pens normally used by school children. These features
make the smartpen less intrusive than digitizing tablets. The cost of running
the experiment with smart pens is also relevant because the price of a single
digitizing tablet is equivalent to several pens. They are easy to carry, a single
researcher can set up and supervise several participants at once. The pens can
record several experiment tasks without the need to be connected to download
the data to the computer. A single computer can be used to download all the
data in every pen.

To generate the data for HandSpy with the Livescribe Smartpen was devel-
oped a framework consisting of three parts, a Penlet to record the necessary
data to calculate the pause and burst time, a Paper Application with specific
active regions to control the experiment and finally the Data File Generator to
extract the collected data and create files in the InkML format. The following
sections on this chapter cover the development of the three components of the
framework and describes a series of recurring problems of using this kind of

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1765

Carlos Monteiro and José Paulo Leal

smartpen.

5.1. Penlet

The smartpen records data written on the paper on the AFD file of the paper
application. This data is used by the Livescribe Desktop to organize the down-
loaded data and render the respective drawing. For the purpose of the exper-
iment the default data recorded on the AFD was not sufficient to calculate the
pause and burst time. By default the only information on the strokes that can be
retrieved with the AFD file was the starting time.

The penlet was developed with the Livescribe Pen API. Using the interface
— PenletStorage — storing a plain text file in the internal storage pool. For every
stroke, the timestamp of every point in the stroke was written on the file. This
extra timestamp enables the calculation of pauses occured within a stroke.

To record the moments when each experiment started and ended, active re-
gions were defined in the paper application. The active regions raise events on
the penlet when the specified regions are entered or exited. These regions set
a timestamp for the beginning and the end of the experiment. The timestamp is
over overriden if the active zone is repeatedly entered. These timestamps are
also written on the same file as extra information on the experiment and are
used to calculate the time taken to actually start the task.

A visual feedback on the status of the penlet is given through the display on the
smartpen. When the penlet starts its version is shown on the display as well as
the interaction with the active regions.

The penlet is associated with the specific paper application created for the ex-
periment, the penlet starts running when the tip of the pen touches the sheet of
paper. On every change of paper sheet the penlet writes a control line on the
text file to identify a new collection of strokes.

5.2. Paper Application

A paper application is an AFD file with the digital description of each sheet of a
notebook. Different paper applications were design to perfom the different tasks
for the experiment. The paper application was developed in the Integrated De-
velopment Environment (IDE), Eclipse. Livescribe provides an Eclipse plugin
to create an AFD file and interactively draw the active regions. A background
image, on the PostScript(PS) format, defines the page layout, with the page
header and a place for the action buttons.

All tasks, follow the same layout. The basic layout of the paper sheet consists
of three active regions. A top region to place the header, the start and the end
button region. The active regions can be drawn aided by the background image,
to ensure their exact position.

Figure 10 shows an example of a paper application with highlighted ac-
tive regions. In this case the header region acted as a passive region. Even

1766 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

Code: Full Name:
Gender: Female (1 Male (1 Handedness: Right [1 Left[]

start (D)

Fig. 10. Paper Application - active regions in red

if the participant didn’t touch” the start button, the start timestamp setter was
activated by an event raised by any stroke made outside the header or start
delimited region.

5.3. Data File Generator

The Livescribe Desktop SDK is a C# API to extract data from the smartpen
used for generating the InkML files.

The AFD files and the internal storage pool, where text file with the extra infor-
mation on the strokes is stored, are accessed. For every control line with the
identification of a new collection of strokes found in the file, a new InkML file is
created. The next lines have the timestamp of the beginning of each stroke pre-
ceded by increments of milliseconds of every point within the stroke. The time
increments have as reference the beginning of the stroke timestamp. These in-
crements represent the time of each point within the stroke. The timestamps
are used to access the AFD file and retrieve the X and Y coordinates of every
point given the timestamp. The InkML file is written with the XY coordinates
and the respective timestamp. The Listing 1.2 is an example of trace element
generated with information of every point, following the schema [X Y Times-
tamp] separated by commas. This data was generated from a real collection
made with the smartpen.

5.4. Hardware Issues
The collecting framework was used on a real experiment cenario while it was
being developed. This experience led us to avoid some features of the smartpen

and to reimplement som functions of the penlet. Finally we managed to make a
good practical use of the device for an efficient data collection.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1767

Carlos Monteiro and José Paulo Leal

Listing 1.2. InkML trace element example

<trace>
2534 685 37297520816, 2537 684 37297520829, 2539 681 37297520843,
2544 678 37297520856, 2546 677 37297520883, 2546 678 37297520896,
2548 680 37297520909, 2549 682 37297520923, 2554 695 37297520949,
2559 707 37297520963, 2565 720 37297520976, 2572 732 37297520989,
2580 749 37297521016, 2582 753 37297521029, 2584 754 37297521043,
2584 754 37297521056, 2584 754 37297521083, 2584 754 37297521096,
2584 754 37297521109, 2584 754 37297521123, 2584 753 37297521149,
2585 751 37297521163, 2586 748 37297521176, 2592 738 37297521189,
2603 710 37297521216, 2611 694 37297521229, 2615 684 37297521243,
2620 673 37297521256, 2620 670 37297521283, 2621 670 37297521296

</trace>

Our first intention was to use smartpen to react to active regions. On the
first version of the paper application the header had active regions to define
each field. The information written on the fields was processed by the HWR
engine to automatically transform the letters and numbers into its character
codes. To improve the HWR success different contexts were associated with
each field. For the code identification of the participant, as it was a numeric field,
the context was set to recognize only numeric symbols and for the name field,
only characters. This entailed a change of context for almost every field and
consequently an unexpected overload on the smartpen processing capacity.
This overload caused a significant increase in stroke losses, which invalidate
an entire collection. The ratio of successful recognitions was not enough to be
useful therefore the use of the HWR was discontinued.

The experiment participants are intended to be school aged children. The
use of audible signals to prompt entering active regions is also discouraged,
as it distracts the children and could led to an active region touching spree,
invalidating the experiment timestamps. Children tend to hold a pen close to its
tip. As the smartpen makes use of the infrared camera to work and it is located
on the tip of the pen, it is necessary to pick the pen in a way so the camera is
not blocked by any finger.

The Livescribe Desktop SDK is limited to Windows environment. On the first
month of the development of the collecting framework, a surprising business
move from Livescribe occurred, they discontinued the development program,
ceasing the support and updates on the Livescribe SDK. This led to run system
updates more thoroughly.

6. HandSpy Usability Evaluation

The project, Develop Automate and Auto Regulating cognitive processes in writ-
ing composition (DAAR), focus on the development of cognitive processes in

1768 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

written production. It aims to relate the automation of writing processes and
self-regulation of others with the development of this competence.

The plan of the study is divided in two phases. On the first phase, which
was the first year of HandSpy development, the participants were children from
the second grade to the seventh. The studies characterize the text production
and the involved cognitive processes. The second phase will be divided in two
interventions. The participants of the first intervention will be children from first
to fourth grade and will focus on transcription skills. The second, with children
in the fourth grade, will focus on strategies of self-regulation in writing.

In the first year of the development, HandSpy is being used to store the col-
lected data of the first phase of the study. More than two thousand productions
were collected on several tasks performed with five hundred and sixty children.
The collections were made with the collecting device described in Chapter 5
with groups of fifteen children at a time making five different writting tasks. Af-
ter collecting the data was uploaded to the HandSpy system and automatically
stored on the XML database. HandSpy is currently being used to analyze the
data of the first phase of the project.

The social scientists on this project were the users who had more contact
with HandSpy therefore they were the main assessors of the system usability.
Besides the evaluation that was made throughout the development which iden-
tified some problems, an evaluation based on the completion of a questionnaire
was also made. The evaluation method is described in the following sections.

6.1. Heuristic Evaluation

Heuristic evaluation is on the most popular methods to identify problems in
the user interface design. An heuristic is a set of rules and methods to solve
problems. Rolf Molich and Jakob Nielsen [6] describe the heuristic evaluation
as "an informal method of usability analysis where a number of evaluators are
presented with an interface design and asked to comment on it”.

After evaluating different heuristics, Nielsen created a list with the best heuris-
tics to identify interface usability problems [5].

— Visibility of system status - The system should always give operation
status.

— Compatibility - The system should use familiar language to the user. Infor-
mation should appear in a natural order.

— User control and freedom - Support undo and redo operations to recover
from choosing functions by mistake.

— Consistency and standards - The interface should use consistent colors,
operations names and layout.

— Error prevention - Try to prevent errors from ocurring displaying confirma-
tion on critical operations.

— Recognition rather than recall - Minimize the users memory load by mak-
ing objects, actions, and options always visible.

— Flexibility and efficiency of use - Permission for the user to personalize
frequent actions.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1769

Carlos Monteiro and José Paulo Leal

— Aesthetic and minimalist design - The information displayed must be rel-
evant.

— Help users recognize, diagnose, and recover from errors - Error mes-
sages should be clear, precisely indicate the problem and suggest a solu-
tion.

— Help and documentation - Help and documentation should always be
available.

6.2. Evaluation

The evalution made on HandSpy usability was based on the results of a ques-
tionnaire. The questionnaire was based on the heuristic set listed in Section
6.1. The questionnaire was answered by three evaluators. The questionnaire
consisted on a multiple choice answer system. In the Figure 11 is the graph
with percentage of each heuristic. The results were processed as follows:

— For each group of questions the possible answers were - Does not apply
— Never — Almost Never — Regular — Almost Always — Always

— The total number of effective answers is calculated by subtracting the Does
not apply answers to the total answers.

— The percentage of the answers "Never/Almost Never”, "Regular”, "Always/Al-
most Always” is calculated based on effective answers.

With the analysis of graph is clear that the critical issues on the interface
are the lack of help, documentation and poor flexibility. These problems are re-
inforced by the evaluators in the comments “Insufficient help menus and still
arise many errors that are not comprehended”, “Integrate the help in tutorial
format, improve ergonomics and clarity of controls and functions”. We can ver-
ify that the heuristics better accomplish are "Compatibility” and “Recognition
rather than recall”. Despite a better classification, some comments made on
these heuristics suggest some improvements on some specific components
“Improve the way to confirm the selection of data”, “Improve interactivity with
the data from participants” and “Transparency for the user’s project idea and
its management”. The comments clearly show that project management is the
feature that deserves more improvements on usability. Despite having quite a
few negative points the interface meets satisfactorily the usability heuristics.

The answer to, an overall evaluation of the system, "Considering all the pa-
rameters that you analyzed how would you rank HandSpy ?” was unanimous, all
evaluaters answer that the system is "Merely Adequate”. Despite some severe
faults on the interface this evaluation showed that HandSpy has potential to be
a reference in this field, improving some aspects on the user experience.

7. Conclusion

With the use of new devices capable of recording hand gestures, the use of dig-
ital handwriting as a transferable data is becoming more common. These new

1770 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Flexibility and efficiency of use
Help and documentation
Help users recognize

User control and freedom

Performance

H Almost Never/Never

Ease B Regular

Reliability 1 Almost Always/Always
Error prevention
Consistency and standards

Visibility of system

Recognition rather than recall

Compatibility

Fig. 11. Heuristic Evaluation

possibilities provide new ways of studying the cognitive processes involved in
the handwriting process. This paper describes the design, implementation and
evalution of a new tool, HandSpy, to support the study on cognitive processes
in writing.

HandSpy aims to manage and support handwriting research studies with large
amounts of data and enable collaborative work to speed up the analysis pro-
cess. Embedded in a web platform, HandSpy is a powerful tool to be used as
a cross platform environment. With the use of the web browser as the main
working tool, it obviates the need for installing various programs, on various
machines.

The collecting framework described in the Chapter 5 is a new tool for record-
ing writing productions. The use of a commercial product such as the Livescribe
smartpen to collect written productions results on a affordable, easy to use and
less intrusive compared to other tools for this purpose. This tool has already
raised interest among the social sciences research community.

7.1. Future Work

As future work the evolution of HandSpy will consist in user interface upgrades
and expanding the collection to new data elements. The evaluation of HandSpy

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1771

Carlos Monteiro and José Paulo Leal

defined the next steps in the user interface upgrades. Based on the outcome
of the questionnaire along with a series of suggestions made by the evalua-
tors, we present here some of the main future implementations to improve user
interaction.

— Incorporate user guides and tutorials on the interface, offering information
on the current screens.

— Improve error handling giving specific feedback of the error.

— Optimize interaction in the analysis screen giving a more accurate selection
and identification of the pauses.

— Create a real time animation playback of the written text.

The smartpen has a built-in microphone which enables collection extension with
audio data. This can be used to record information on what participants are
thinking, if they are asked to "think out loud”, while writing. In this case synchro-
nizing the audio with the writing is eased as they are collected with the same
device. Collecting physiologic data such as heart rate or electric conductivity
of the skin can be useful to relate with the writing pauses. Video recording the
production is also an added value for the research but only if we manage to
retrieve the point of regard on the paper during the writing production. Never-
theless synchronizing video and physiologic data with the writing raises new
challenges.

Acknowledgments. This work is in part funded by the ERDF/COMPETE Programme
and by FCT within the projects FCOMP-01-0124-FEDER-022701 & PTDC/PSI-PCO/110708/2009.

References

1. D. Alamargot, D. Chesnet, C.D., Ros, C.: Eye and pen: A new device for studying
reading during writing. Behavior Research Methods (2006)

2. E.Guinet, Kandel, S.: Ductus: A software package for the study of handwriting pro-
duction. Behavior Research Methods (2010)

3. loannidis, Y.E., Livny, M.: Conceptual schemas: Multi-faceted tools for desktop sci-
entific experiment management. Journal of Intelligent and Cooperative Information
Systems 1, 451-474 (1992)

4. Meier, W.: e[x]ist: An open source native xml database. Web, Web-Services, and
Database Systems (2003)

5. Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: Proceedings
of the SIGCHI conference on Human factors in computing systems: celebrating inter-
dependence. pp. 152-158. ACM, New York, NY, USA (1994)

6. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of the
SIGCHI conference on Human factors in computing systems: Empowering people.
pp. 249-256. ACM, New York, NY, USA (1990)

7. Olive, T, Alves, R.A., Castro, S.L.: Cognitive processes in writing during pause and
execution periods. European Journal of Cognitive Psychology 21(5), 758—-785 (2009)

1772 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Managing experiments on cognitive processes in writing with HandSpy

Carlos Monteiro is currently a Telecommunications Engineer at Inmarsat, a
satellite telecommunications company. During his master's degree he was in-
volved in a research project that was focused on digital handwriting formats and
analysis, based on XML.

José Paulo Leal is assistant professor at the department of Computer Sci-
ence of the Faculty of Sciences of the University of Porto (FCUP) and asso-
ciate researcher of the Center for Research in Advanced Computing Systems
(CRACS). His main research interests are eLearning system implementation,
structured document processing and software engineering. He has a special
interest on automatic exercise evaluation, in particular on the evaluation of pro-
gramming exercises, on ontology processing and on web adaptability. He has
participated in several research projects in his main research areas, including
technology transfer projects with industrial partners. He has over 60 publica-
tions in conference proceedings, journals and book chapters.

Received: November 30, 2012; Accepted: July 9, 2013.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1773

